Как найти силу тяги в двигателе машины

Как определить силу тяги

Если тело движется с ускорением, то на него обязательно оказывает влияние некая сила. Для него она и является слой тяги в данный момент времени. В реальном мире, даже если тело движется равномерно и прямолинейно, сила тяги должна преодолевать силы сопротивления. Эту силу можно найти через равнодействующую всех сил, которые действуют на тело. В технике определяют силу тяги, зная мощность и скорость тела.

Как определить силу тяги

Вам понадобится

  • — динамометр;
  • — акселерометр;
  • — спидометр или радар для измерения скорости;
  • — калькулятор.

Инструкция

Для того чтобы измерить силу тяги, прикрепите к телу динамометр и начинайте равномерно перемещать его по поверхности. Динамометр покажет силу тяги, которую нужно приложить к телу, чтобы оно двигалось равномерно. Изменение производите в Ньютонах.

Если тело известной массы движется по ровной поверхности, силу тяги можно рассчитать. Для этого определите коэффициент трения между поверхностью, по которой движется тело, и самим телом μ. Это можно сделать по специальной таблице. Определите, как движется тело. Если равномерно, то найдите силу тяги F, умножив коэффициент трения на массу тела m и ускорение свободного падения g=10 м/с² (F=μ∙m∙g).

Например, если автомобиль массой 1200 кг движется по горизонтальной дороге равномерно, при коэффициенте трения 0,05, то сила тяги его двигателя составит F=0,05∙1200∙10=600 Н. Если нужна более высокая точность измерения, берите g=9,81 м/с².

В том случае, если тело имеет ускорение под воздействием силы тяги, она будет равна F=m∙(μ∙g+a). Где a – это значение ускорения, в м/с², которое можно измерить акселерометром.

Чтобы измерить силу тяги двигателя, определите его максимальную мощность. Она, как правило, дается в технической документации к нему. Разгоните аппарат, который приводится этим двигателем в движение до максимальной скорости, соблюдая все меры предосторожности. Измерьте скорость спидометром или специальным радаром. Чтобы найти максимальную силу тяги двигателя F, поделите его мощность в ваттах N, на скорость v в м/с (F=N/v).

Например, если максимальная мощность двигателя автомобиля 96 кВт, (если мощность подана в лошадиных силах, умножьте это значение на 735 для того, чтобы получить его в ваттах), а его максимальная скорость 216 км/ч, какова максимальная сила тяги двигателя? Найдите мощность в ваттах: 96∙1000=96000 ватт. Выразите скорость в м/с, для этого 216∙1000/3600=60 м/с. Определите силу тяги двигателя: F=960000/60=1600 Н.

Источники:

  • как найти силу тяги двигателя

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.

1445617943r

Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:

Первый и второй законы Ньютона

Обратимся к законам Ньютона, которые хорошо описывают механическое движение тел. Из школьной программы мы знаем, что есть первый закон Ньютона, который описывает закон инерции. Он гласит, что любое тело, если на него не действуют силы, или если их равнодействующая равна нулю, движется прямолинейно и равномерно, или же находится в состоянии покоя. Это означает, что тело, пока на него ничто не действует, будет двигаться с постоянной скоростью v=const или пребывать в состоянии покоя сколько угодно долго, пока какое-то внешнее воздействие не выведет тело из этого состояния. Это и есть движение по инерции.

Надо сказать, что этот закон справедлив лишь в так называемых инерциальных системах отсчёта. В неинерциальных системах отсчёта этот закон не действует и нужно использовать второй закон Ньютона. В таких системах отсчёта тело тоже будет двигаться по инерции, но оно будет двигаться с ускорением, стремясь сохранять своё движение, т.е. на него также не будут действовать никакие внешние силы, кроме силы инерции, стремящейся двигать тело в том направлении, в каком оно двигалось до воздействия. Тут мы приходим к рассмотрению второго закона Ньютона, который также справедлив в инерциальных системах отсчёта, т. е. в таких системах отсчёта, в которых тело движется с постоянной скоростью либо находится в покое.

Этот закон утверждает, что для того, чтобы вывести тело из состояния покоя или равномерного движения, к нему необходимо приложить силу, равную F=m•a, где m — это масса тела, a — ускорение, сообщаемое телу. Зная эти законы, можно рассчитать силу тяги (двигателя автомобиля, ракетного двигателя или, например, лошади, тянущей нагруженную повозку).

img2

Примеры из жизни

Насколько вы сильны?

Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.

Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m•a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax • N, где fmax – максимальный коэффициент трения покоя.

Если в эту формулу подставить выражение для N, то мы получим Fтр.max = fmax•m•g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax•m•g = fск•m•g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 • 30 кг • 9,81 м/с² = 206,01 Н (Ньютона).

Насколько силён ваш автомобиль?

Допустим, вы разогнали свой автомобиль до скорости v за какое-то время t, проехав расстояние s. Тогда Fтяги будет легко рассчитана по формуле: Fтяги = m•v/t. Как и в примере с санками, справедлива также такая формула: Fтяги = f•m•g, где f – коэффициент трения качения, который зависит от скорости автомобиля (чем больше скорость, тем меньше этот коэффициент).

Допустим, вы разогнали свой автомобиль до скорости v = 180 км/ч, а мощность его двигателя N = 200 л. с. (лошадиных сил). Чтобы вычислить Fтяги двигателя, необходимо прежде перевести указанные единицы измерения в единицы СИ, т. е. международной системы измерения. Здесь 1 л. с. = 735,499 Вт, поэтому мощность двигателя составит N = 200 л. с. • 735,499 Вт/л. с. = 147099,8 Вт. Скорость в системе СИ будет равна v = 180 км/ч = 180 • 1000 м/3600 с = 50 м/с. Тогда искомое значение будет равно Fтяги = 147099,8 Вт/50 (м/с) = 2941,996 Н

2,94 кН (килоньютона).

0,98 кН. Полученное для автомобиля значение Fтяги больше веса штанги в 2,94/0,98 = 3 раза. Это равносильно тому, что вы будете поднимать штангу массой в 300 кг. Такова сила тяги двигателя вашего автомобиля (на скорости 180 км/ч).

kak po formule uznat silu tyagi

Таким образом, зная школьный курс физики, мы можем с лёгкостью вычислить силу тяги:

В нашем видео вы найдете интересные опыты, поясняющие, что такое сила тяги и сила сопростивления.

Источник

Как найти силу тяги

Что такое сила тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

d6ddc1 tyagi 1598870724

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg;times;sinalpha=m;times;a.)

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Измерение и обозначение силы тяги

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

(F_т;=;frac N v = frac<96000> <60>= 1600 Н)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

Чтобы определить ускорение а, воспользуемся формулой (s;=;frac2)

Подставив численные значения величин, получаем:

Задача 3

Решение

764069 tyagi vektory uklon 1598871636

Сделаем проекции на координатные оси:

Подставим значение (F_<тр>) в уравнение (OX) и определим (F_т) :

Источник

Сила тяги автомобиля

На первый взгляд все просто: вал двигателя вращается, вращение передается механизмам трансмиссии, заставляя вращаться колесам, колеса катятся по дороге. Совместно с кузовом и осями, автомобиль двигается. Однако только ли во вращении дело?

Можно перечислить, силы, действующие на колесо:

? Действие силы тяжести посредством массы автомобиля.

? Сила направленная вертикально по дороге, она противоположна силе действующей на осевые подшипники.

? Обратная сила противоположная движению.

? Сила кручения вала, действующая по ходу автомобиля и равная силе реакции дороги.

? Тяговое усилие на передних или задних полуосях автомобиля зависит, от крутящего момента на валу двигателя.

? Передаточного отношения механизмов вращения в трансмиссии, КПД КПП.

Перемножив момент силы на валу ДВС и передаточное число, и на КПД КПП и разделив произведение на радиус колеса, можно вычислить тяговую силу двигателя. Момент силы на кручение вала двигателя — величина, меняющаяся в зависимости от подачи горючего в камеры сгорания двигателя. Передаточное число и КПД КПП зависят от переключаемой передачи водителем. Посмотрим внимательно, что происходит в точке касания шины с дорогой. В каждое взятое мгновение ближайшая к дороге точка колеса неподвижна!

Приходится не редко наблюдать на киноэкране колеса движущегося автомобиля, или экипажа как бы стоят на месте? Это бывает в тех случаях, когда происходит совпадение частоты смены кадров с частотой смены спиц колеса или выступов протектора шины над точкой контакта. Колесо, упираясь в дорогу, как бы стремится вращаться относительно этой точки. Точку сменяет соседнюю и т. д. Колесо катится по дороге.

Для предотвращения скольжения на дорогах, учитывают коэффициент скольжения (для сухих дорог 0,5-08 и 0,14-0,4 для мокрых). Это можно характеризовать, как неподвижный момент контакта колеса з землей. Сила трения протектора с грунтом, появляется вследствие изменения формы поверхности шины, присасыванием к земле. Можно делать вывод: Сила сопротивления качению и трения увеличится при низком давлении в шинах, при углубленном рисунке протектора, при увеличении окружной скорости.

И напоследок пара мелочей: Вес автомобиля умноженная на коэффициент качения, равняется силе сопротивления качения, мощность- это выполненная работа в единицу времени или сила, умноженная на скорость. Мощность, расходуемая на качения в ваттах = (скорость в м/сек. * силу спор. качению) / 100, условием движения всегда является то, что момент силы на валу двигателя (тяга) всегда меньше силы сцепления!

Источник

Устройство автомобилей

Основы динамики автомобиля

Скоростная характеристика двигателя

Скоростная характеристика двигателя определяется зависимостями эффективной мощности Ne и крутящего момента Mк от частоты вращения n коленчатого вала.

Ведущие колеса автомобиля приводят его в движение в результате возникновения силы тяги, которая возникает при приложении крутящего момента к полуосям ведущих колес со стороны трансмиссии:

где Pт – сила тяги, Н;
Mт – крутящий (тяговый) момент на ведущем колесе, Нм;
r – радиус колеса, м.

Крутящий момент на ведущих колесах зависит от величины момента, развиваемого двигателем на коленчатом валу, передаточного числа iтр трансмиссии и ее КПД – ηтр :

1 2

Анализ графика показывает, что максимальная эффективная мощность и максимальный крутящий момент, развиваемый двигателем, доступен в узком интервале частот вращения коленчатого вала. При небольшой частоте вращения коленчатого вала величина этих динамических показателей недостаточна для появления на ведущих колесах требуемой для движения автомобиля силы тяги, а при превышении частотой вращения коленвала некоторого максимального порога двигатель начинает терять мощность и тяговые показатели, или, как говорят механики, начинает работать «вразнос».
По этой причине эффективная эксплуатация двигателя внутреннего сгорания возможна лишь в некотором узком диапазоне частот вращения коленчатого вала.

Тяговая характеристика автомобиля

Тягово-скоростные свойства автомобиля удобно оценивать с помощью тяговой характеристики, т. е. зависимостью силы тяги на ведущих колесах от скорости движения на различных передачах (рис. 2).

Число кривых на тяговой характеристике (рис. 2) соответствует числу ступеней в коробке передач.

Тяговая характеристика позволяет быстро определить максимальное значение силы тяги на ведущих колесах, которая может быть обеспечена при данной скорости движения автомобиля, поскольку она рассчитывается по наибольшей для данной частоты вращения коленчатого вала мощности двигателя. Меньшее значение силы тяги получается при недоиспользовании мощности двигателя, т. е. при неполной подаче топлива. Следовательно, с помощью тяговой характеристики можно оценить предельные тяговые возможности автомобиля в фактическом интервале скоростей его движения.

Силы и моменты, действующие на ведущие колеса

Реактивные силы, действующие на колеса

Тяговый момент Мт на ведущих колесах стремится сдвинуть назад верхний слой дорожного покрытия, в результате чего со стороны дороги на ведущее колесо в зоне контакта действует противоположно направленная сила Rx – горизонтально направленная касательная реакция дороги.

5

где Рш – сила, учитывающая потери энергии в шинах ведущих колес.

Таким образом, касательная реакция дороги создает силу тяги.

Боковая сила Рy значительно увеличивается при криволинейном движении автомобиля или при движении по косогору. Боковая реакция Ry со стороны дороги удерживает колеса автомобиля от бокового скольжения (заноса) при движении автомобиля поперек косогора или при выполнении маневра.

Сила тяги на ведущих колесах

При этом не учитываются затраты энергии на деформацию дорожного покрытия, трение внутри шины и силы инерции, обусловленные ускорением вращающихся масс колес и деталей трансмиссии в случае неравномерного движения.

3 4

Следует учитывать, что радиус колеса вследствие эластичности шины является переменной величиной.
Различают следующие радиусы автомобильных колес:

Радиус качения колеса определяется по формуле:

Если проскальзывание колеса относительно дороги отсутствует, что характерно для ведомого колеса, то радиусы rд и rк почти равны между собой. В случае полного буксования колеса его пройденный путь будет равен нулю, и тогда (согласно приведенной выше формуле) его радиус качения тоже будет равен нулю.
В случае движения колеса юзом (скольжение без вращения) число оборотов будет равно нулю, и, соответственно, радиус качения rк будет стремиться к бесконечности.

Источник

Сила тяги, помогите разобраться.

Новичок

Приветствую завсегдатых. Вопрос, на самом деледовольно тривален и возможно вызовет у Вас даже улыбку, однако так как я человек из совершенно иной области который пока чисто с теоритической точки зрегия заинтересовался авицией, это должно быть прастительно. Интересует не только ответ, но еще и матиматическое объяснение в идеале.

Опишу покасвои разсуждения:
Из физики, Вес тела (на поверхности земли), можно приравнять к его масс умноженной на ускорение свободного падения:
Вес = mg.

Для невесомости (динамометр), на тело должно действовать та же противодействующая сила, т.е. что бы просто зависнуть без опоры над землей, нам нужна сила приложенная прямо пропорционально веса объекта и равная его весу. Получается что нам нужно так же приложить силу равную mg для того что бы пребывать в уравновешенном состоянии.
mg(вес тела) = mg(вес противодействия).

Соответственно, если добавить к противодействующей силе какое либо дополнительное ускорение, допустим то же g, то наш объект с масой m, будет подниматься над поверхностью земли с константным ускорением g.
Имею ввиду mg^2 = постоянный подъем тела массой m (и соответсвенно весом mg) с ускорением g.

Принебреджем тем фактом, что g будет становиться меньче по мере удаления от поверхности земли, допустим это действительно константа.

Получается что одля равномерного вертикального подъема тела, требуется противодействие, равное весу данного тела + даже самое малое небольшое ускорение, верно?

Старожил

Приветствую завсегдатых. Вопрос, на самом деледовольно тривален и возможно вызовет у Вас даже улыбку, однако так как я человек из совершенно иной области который пока чисто с теоритической точки зрегия заинтересовался авицией, это должно быть прастительно. Интересует не только ответ, но еще и матиматическое объяснение в идеале.

Опишу покасвои разсуждения:
Из физики, Вес тела (на поверхности земли), можно приравнять к его масс умноженной на ускорение свободного падения:
Вес = mg.

Для невесомости (динамометр), на тело должно действовать та же противодействующая сила, т.е. что бы просто зависнуть без опоры над землей, нам нужна сила приложенная прямо пропорционально веса объекта и равная его весу. Получается что нам нужно так же приложить силу равную mg для того что бы пребывать в уравновешенном состоянии.
mg(вес тела) = mg(вес противодействия).

Соответственно, если добавить к противодействующей силе какое либо дополнительное ускорение, допустим то же g, то наш объект с масой m, будет подниматься над поверхностью земли с константным ускорением g.
Имею ввиду mg^2 = постоянный подъем тела массой m (и соответсвенно весом mg) с ускорением g.

Принебреджем тем фактом, что g будет становиться меньче по мере удаления от поверхности земли, допустим это действительно константа.

Получается что одля равномерного вертикального подъема тела, требуется противодействие, равное весу данного тела + даже самое малое небольшое ускорение, верно?

Источник

Содержание

  • В чем измеряется тяговая сила?
  • Как зная силу тяги двигателя и скорость движения машины определить мощность?
  • Как рассчитать силу тяги автомобиля?
  • Какая формула связывает мощность двигателя силу тяги и максимальную скорость?
  • Чему равна мощность двигателя Если сила тяги 1000 ньютонов а скорость движения 20 мс?
  • Как найти мощность имея силу и скорость?
  • Как найти силу реактивной тяги?
  • Когда возникает сила тяги?

В чем измеряется тяговая сила?

Основные единицы, в которых измеряется тяговая сила — это либо тонны, либо килоньютоны.

Как зная силу тяги двигателя и скорость движения машины определить мощность?

Поскольку формула расстояния имеет вид s = v•t, то выражение для работы будет таким: A = Fтяги • v • t. Разделив обе части этого равенства на t, получим A/t = Fтяги • v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги • v.

Как рассчитать силу тяги автомобиля?

Рассмотрим силу тяги как сумму двух сил:

  1. разгоняющей автомобиль с заданным ускорением: F 1 = m ⋅ a , где — масса, — ускорение;
  2. преодолевающей силу трения: F 2 = μ ⋅ m ⋅ g , где — коэффициент силы трения, — ускорение свободного падения.

Какая формула связывает мощность двигателя силу тяги и максимальную скорость?

Формула : N=А/t.

Чему равна мощность двигателя Если сила тяги 1000 ньютонов а скорость движения 20 мс?

Рассчитаем мощность двигателя автомобиля: N = F*V = 1000*20 = 20000 Вт = 20 кВт. Ответ: Мощность двигателя автомобиля равна 20 кВт.

Как найти мощность имея силу и скорость?

Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:

  1. P = F ¯ v ¯ = F τ v.
  2. P = m v v ˙ ( 4 )
  3. P = M ¯ ω ¯ ( 7 )

Как найти силу реактивной тяги?

Реактивная сила тяги может быть найдена как: R=μu (2.3). Учитывая равенство (2.3) уравнение преобразуем к виду: μu−mg=ma→a=μu−mgm(2.4).

Когда возникает сила тяги?

Касательная сила тяги образуется в месте контакта движущих колёс и рельсов, а сумма всех этих сил есть касательная сила тяги локомотива. Сила тяги на сцепке меньше касательной, так как в этом случае учитывается и сопротивление движению от самого локомотива как повозки.

Интересные материалы:

Как должен быть натянут ремень?
Как должно биться сердце?
Как дома усилить сигнал сотовой связи?
Как достать заклинивший поршень из суппорта?
Как дрифтить на автомате задний привод?
Как Дрифтовать на автомате полный привод?
Как дрифтовать на автомате задний привод?
Как дублировать кадр в Adobe Premiere?
Как дублировать текст?
Как дублировать в Adobe After Effects?

Содержание:

  • Определение и формула силы тяги
  • Единицы измерения силы тяги
  • Примеры решения задач

В том случае, если тело при перемещении имеет ускорение, то на него кроме всех прочих обязательно действует некоторая сила, которая является
силой тяги в рассматриваемый момент времени. В действительности, если тело движется прямолинейно и с постоянной скоростью, то сила тяги также
действует, так как тело должно преодолевать силы сопротивления. Обычно силу тяги находят, рассматривая силы, действующие на тело, находя
равнодействующую и применяя второй закон Ньютона. Жестко определенной формулы для силы тяги не существует.

Не следует считать, что сила тяги, например, транспортного средства действует со стороны двигателя, так как внутренние силы не могут менять
скорость системы как единого целого, что входило бы в противоречие с законом сохранения импульса. Однако следует отметить, что для получения у
силы трения покоя необходимого направления, мотор вращает колеса, колеса «цепляются за дорогу» и порождается сила тяги. Теоретически было бы
возможно не использовать понятие «сила тяги», а говорить о силе трения покоя или силе реакции воздуха. Но удобнее внешние силы, которые действуют
на транспорт делить на две части, при этом одни силы называть силами тяги
$(/bar{F}_T)$, а другие — силами сопротивления
$bar{F}_S$ . Это делается для того,
чтобы уравнения движения не потеряли свой универсальный вид и полезная механическая мощность (P) имела простое выражение:

$$P=bar{F}_{T} bar{v}(1)$$

Определение и формула силы тяги

Определение

Исходя из формулы (1) силу тяги можно определить через полезную мощность, и скорость транспортного средства (v):

$$F_{T}=frac{P}{v}(2)$$

Для автомобиля, поднимающегося в горку, которая имеет уклон
, масса автомобиля m сила тяги (FT) войдет в уравнение:

$$F_{T}-F_{s}-m g sin alpha=m a(3)$$

где a – ускорение, с которым движется автомобиль.

Единицы измерения силы тяги

Основной единицей измерения силы в системе СИ является: [FT]=Н

В СГС: [FT]=дин

Примеры решения задач

Пример

Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения,
которая равна $mu$=0,1 от силы тяжести.
Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем второй закон Ньютона:

$$bar{N}+m bar{g}+bar{F}_{t r}+bar{F}_{T}=m bar{a}(1.1)$$

Спроектируем уравнение (1.1) на оси X и Y:

$$
begin{array}{c}
X: F_{T}-F_{t r}=m a(1.2) \
Y: m g=N(1.3)
end{array}
$$

По условию задачи:

$$
F_{t r}=mu cdot m g (1.4)
$$

Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:

$$F_{T}=m a+mu cdot m g$$

Переведем массу в систему СИ m=1т=103 кг, проведем вычисления:

$$F_{T}=10^{3}(2+0,1 cdot 9,8)=2,98 cdot 10^{3}(H)$$

Ответ. FT=2,98 кН

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. На гладкой горизонтальной поверхности лежит доска массой M. На доске находится тело массы m.
Коэффициент трения тела о доску равен $mu$ . К доске
приложена сила горизонтальная сила тяги, которая зависит от времени как: F=At (где A=const). В какой момент
времени доска начнет выскальзывать из-под тела?

Решение. Сделаем рисунок.

Для решения задачи нам потребуются проекции сил на осиX и Y, которые отличны от нуля. Для тела массы m:

$$
begin{array}{c}
X: m a_{1}=F_{t r}(2.1) \
Y: m g=N(2.2) \
F_{t r}=mu N=mu m g rightarrow m a_{1}=mu m g rightarrow a_{1}=mu g(2.3)
end{array}
$$

Для тела массы M:

$$M a_{2}=F-F_{t r} rightarrow M a_{2}=A t-F_{t r} rightarrow a_{2}=frac{A t-F_{t r}}{M}(2.2)$$

Обозначим момент времени, в который доска начнет выскальзывать из-под тела t0, тогда

$$mu g=frac{A t_{0}-mu m g}{M} rightarrow t_{0}=frac{m+M}{A} mu g$$

Ответ. $t_{0}=frac{m+M}{A} mu g$

Читать дальше: Формула силы упругости.

Основы динамики автомобиля



Скоростная характеристика двигателя

Скоростная характеристика двигателя определяется зависимостями эффективной мощности Ne и крутящего момента Mк от частоты вращения n коленчатого вала.

Ведущие колеса автомобиля приводят его в движение в результате возникновения силы тяги, которая возникает при приложении крутящего момента к полуосям ведущих колес со стороны трансмиссии:

Pт = Mт/r,          (1)

где Pт – сила тяги, Н;
Mт – крутящий (тяговый) момент на ведущем колесе, Нм;
r – радиус колеса, м.

Крутящий момент на ведущих колесах зависит от величины момента, развиваемого двигателем на коленчатом валу, передаточного числа iтр трансмиссии и ее КПД – ηтр:

Мт = Мкiтрηтр.          (2)

Сила тяги Pт на ведущих колесах может быть определена не только по формуле (1), но и с учетом скорости vi движения автомобиля на i-й передаче и развиваемой двигателем эффективной мощности Nе:

Pт = 3600Nеηтр/vi.          (3)

Скорость vi движения автомобиля на i-й передаче пропорциональна частоте n вращения коленчатого вала, радиусу r ведущего колеса и обратно пропорциональна передаточному числу iтрi трансмиссии на i-й передаче:

vi = 0,377nr/iтрi.          (4)

Таким образом, частота вращения n коленчатого вала является определяющим параметром для показателей эффективной мощности Nе, крутящего момента Mк и силы тяги на ведущих колесах Pт.

динамика автомобиля

На рисунке 1 приведена внешняя скоростная характеристика двигателя при полностью открытой дроссельной заслонке, которая определяет предельные возможности двигателя при значениях частоты вращения коленчатого вала от nmin до nmax.

Анализ графика показывает, что максимальная эффективная мощность и максимальный крутящий момент, развиваемый двигателем, доступен в узком интервале частот вращения коленчатого вала. При небольшой частоте вращения коленчатого вала величина этих динамических показателей недостаточна для появления на ведущих колесах требуемой для движения автомобиля силы тяги, а при превышении частотой вращения коленвала некоторого максимального порога двигатель начинает терять мощность и тяговые показатели, или, как говорят механики, начинает работать «вразнос».
По этой причине эффективная эксплуатация двигателя внутреннего сгорания возможна лишь в некотором узком диапазоне частот вращения коленчатого вала.

Скоростная характеристика двигателя во многом зависит от типа двигателя: чем круче кривая эффективной мощности Nе, тем большей приемистостью обладает двигатель.

***

Тяговая характеристика автомобиля

Тягово-скоростные свойства автомобиля удобно оценивать с помощью тяговой характеристики, т. е. зависимостью силы тяги на ведущих колесах от скорости движения на различных передачах (рис. 2).

Используя скоростную характеристику и задавая частоты вращения коленчатого вала от nmin до nmax при соответствующих значениях эффективной мощности или крутящего момента для каждой передачи по формуле (4) находят значения скорости v, а по формуле (3) находят значение тяговой силы Pт.

Число кривых на тяговой характеристике (рис. 2) соответствует числу ступеней в коробке передач.

Тяговая характеристика позволяет быстро определить максимальное значение силы тяги на ведущих колесах, которая может быть обеспечена при данной скорости движения автомобиля, поскольку она рассчитывается по наибольшей для данной частоты вращения коленчатого вала мощности двигателя. Меньшее значение силы тяги получается при недоиспользовании мощности двигателя, т. е. при неполной подаче топлива. Следовательно, с помощью тяговой характеристики можно оценить предельные тяговые возможности автомобиля в фактическом интервале скоростей его движения.

***



Силы и моменты, действующие на ведущие колеса

На ведущие колеса автомобиля действуют силы со стороны автомобиля (т. е. со стороны двигателя посредством агрегатов трансмиссии), а также силы со стороны дороги. Обозначим силы, действующие со стороны автомобиля, буквой Р, а со стороны дороги – буквой R (рис. 3).

***

Реактивные силы, действующие на колеса

Тяговый момент Мт на ведущих колесах стремится сдвинуть назад верхний слой дорожного покрытия, в результате чего со стороны дороги на ведущее колесо в зоне контакта действует противоположно направленная сила Rx – горизонтально направленная касательная реакция дороги.

сила тяги на ведущих колесах

Так как на автомобиле используются эластичные пневматические шины, то неизбежна частичная потеря момента Мт, поэтому продольную (горизонтальную) реакцию со стороны дороги, обеспечивающую качение колеса, можно записать как разность между силой тяги и потерями в шине:

Rx = Рт – Рш,

где Рш – сила, учитывающая потери энергии в шинах ведущих колес.

Таким образом, касательная реакция дороги создает силу тяги.

Автомобиль своим весом G действует на каждое колесо, передавая усилие на дорогу, и, соответственно, вызывая нормальную реакцию дороги Rz. Следует учитывать, что при наличии на колесе крутящего момента нормальная реакция Rz прикладывается не к оси симметрии опорной площадки колеса, а на некотором расстоянии αш от нее, поскольку имеет место смещение центра давления из-за эластичности шины.

Эпюра элементарных нормальных реакций дороги, показанная на рисунке 4, объясняет причину смещения точки приложения реакции Rz. Это происходит из-за того, что нормальные реакции на переднем и заднем участках опорной площадки колеса различны по величине, так как силы, возникающие в упругом материале шины при приложении и снятии нагрузки неодинаковы.
Это объясняется действием сил внутреннего трения между взаимно перемещающимися частицами материала шины. При приложении нагрузки эти силы и силы упругости направлены в одну и ту же сторону, а при снятии – в противоположные стороны.

Боковая сила Рy значительно увеличивается при криволинейном движении автомобиля или при движении по косогору. Боковая реакция Ry со стороны дороги удерживает колеса автомобиля от бокового скольжения (заноса) при движении автомобиля поперек косогора или при выполнении маневра.

***

Сила тяги на ведущих колесах

Сила тяги Рт на ведущих колесах может быть определена, как отношение крутящего (тягового) момента Mт, подводимого к колесам, к их радиусу r:

Pт = Mт/r.

При этом не учитываются затраты энергии на деформацию дорожного покрытия, трение внутри шины и силы инерции, обусловленные ускорением вращающихся масс колес и деталей трансмиссии в случае неравномерного движения.

силы, действующие на колеса автомобиля

Следует учитывать, что радиус колеса вследствие эластичности шины является переменной величиной.
Различают следующие радиусы автомобильных колес:

  • статический радиус колеса rст – расстояние от поверхности дороги до оси неподвижного колеса, воспринимающего вертикальную нагрузку, обусловленную силой тяжести, действующей на автомобиль (т. е. его весом G). Значения статического радиуса приводятся заводом-изготовителем шины в технических характеристиках;
  • динамический радиус колеса rд – расстояние от поверхности дороги до оси катящегося колеса. Динамический радиус колеса во время движения может превышать его статический радиус, поскольку в результате нагрева шины давление внутри нее увеличивается.
    Кроме того, под действием центробежных сил с возрастанием скорости автомобиля шина растягивается в радиальном направлении, вследствие чего динамический радиус увеличивается. Динамический радиус, также, зависит от величины вертикальной нагрузки Pz.
  • радиус качения колеса rк – радиус условного недеформирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковую угловую и линейную скорости.

Радиус качения колеса определяется по формуле:

rк = S/(2πnк),

где S – путь, пройденный колесом; nк – число оборотов колеса на пути S.

Если проскальзывание колеса относительно дороги отсутствует, что характерно для ведомого колеса, то радиусы rд и rк почти равны между собой. В случае полного буксования колеса его пройденный путь будет равен нулю, и тогда (согласно приведенной выше формуле) его радиус качения тоже будет равен нулю.
В случае движения колеса юзом (скольжение без вращения) число оборотов будет равно нулю, и, соответственно, радиус качения rк будет стремиться к бесконечности.

Различают еще и свободный радиус колеса rсв, который является половиной диаметра ненагруженного колеса при отсутствии его контакта с опорной поверхностью.

На дорогах с сухим покрытием скольжение ведущих колес и изменение радиуса незначительны. Поэтому радиусы статический rст, динамический rд и качения rк при расчетах считаются одинаковыми и обозначаются буквой r.

***

Силы, действующие на автомобиль



Понравилась статья? Поделить с друзьями:
  • Как найти площидь фигуры
  • При устранении неполадок произошла следующая ошибка как исправить
  • Как найти произведение всех элементов списка python
  • У вас нет разрешения на доступ на этом сервере как исправить
  • Как нужно найти плотность