Как найти силу тяжести зная высоту

Формула силы тяжести

ОПРЕДЕЛЕНИЕ

Сила тяжести, действующая на тело, расположенную на поверхности Земли, равна массе тела, умноженной на константу

Здесь F — сила тяжести, m — масса, g — ускорение силы тяжести.

Единицей измерения силы является Н (Ньютон).

Для тела, которое находится на определенной высоте над Землей, силу тяжести можно найти по формуле:

Здесь G – сила тяжести постоянная, m — масса тела, M — масса Земли , r — высота тела над Землей, R — радиус Земли

Из-за того, что Земля имеет сплюснутую форму, т. Е. Ее радиус не везде одинаковый, ускорение силы тяжести изменяется в зависимости от географической широты, от 9,832 на экваторе до 9,78 у полюсов. 9.8 — его среднее значение.

Сила тяжести действует на тело, имеющее опору или подвеску. Если тело их не имеет, то есть оно находится в состоянии свободного падения, тогда они говорят, что тело находится в невесомости. Сила тяжести всегда направлена к центру Земли.

Примеры решения проблем на тему «Гравитация»

ПРИМЕР 1

Задача

Найти силу тяжести тел весом 1 кг и 10 кг, расположенных на поверхности Земли.

Решение.

Подставим массы в формулу

Ответ

Силы тяжести — 9,8 и 98 ньютонов.

ПРИМЕР 2

Задача

Тело массы m расположено на высоте r над Землей. Сколько раз сила притяжения изменяется, когда она поднимается до высоты

Решение

На высоте сила тяжести была:

На высоте сила тяжестистала:

Найти соотношение сил:

Ответ.

Сила тяжести изменится раз.

Формула силы тяжести

    [    F = mg ]

Здесь F – сила тяжести, m – масса, g — ускорение свободного падения.

Единица измерения силы – Н (ньютон).

Для тела, находящегося на определённой высоте над Землёй сила тяжести может быть найдена по формуле:

    [    F = G frac{m cdot M}{left( r + R right)^{2}} ]

Здесь G – гравитационная постоянная, m – масса тела, M – масса Земли (5,972 cdot 10^{24} кг), r – высота тела над Землёй, R – радиус Земли (6,371 cdot 10^{6} м).

Из-за того, что Земля имеет сплюснутую форму, то есть её радиус не везде одинаков, ускорение свободного падения меняется в зависимости от географической широты, от 9,832 на экваторе до 9,78 на полюсах. 9,8 – его среднее значение.

Сила тяжести действует на тело, имеющее опору или подвес. Если тело их не имеет, то есть находится в состоянии свободного падения, то говорят, что тело находится в невесомости. Сила тяжести всегда направлена к центру Земли.

Примеры решения задач по теме «Сила тяжести»

Понравился сайт? Расскажи друзьям!


Download Article


Download Article

Gravity is one of the fundamental forces of physics. The most important aspect of gravity is that it is universal: all objects have a gravitational force that attracts other objects to them.[1]
The force of gravity acting on any object is dependent upon the masses of both objects and the distance between them.[2]

  1. Image titled Calculate Force of Gravity Step 1

    1

    Define the equation for the force of gravity that attracts an object, Fgrav = (Gm1m2)/d2.[3]
    In order to properly calculate the gravitational force on an object, this equation takes into account the masses of both objects and how far apart the objects are from each other. The variables are defined below.

    • Fgrav is the force due to gravity
    • G is the universal gravitation constant 6.673 x 10-11 Nm2/kg2[4]
    • m1 is the mass of the first object
    • m2 is the mass of the second object
    • d is the distance between the centers of two objects
    • Sometimes you will see the letter r instead of the letter d. Both symbols represent the distance between the two objects.
  2. Image titled Calculate Force of Gravity Step 2

    2

    Use the proper metric units. For this particular equation, you must use metric units. The masses of objects need to be in kilograms (kg) and the distance needs to be in meters (m). You must convert to these units before continuing with the calculation.

    Advertisement

  3. Image titled Calculate Force of Gravity Step 3

    3

    Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine their weight in grams. For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[5]

  4. Image titled Calculate Force of Gravity Step 4

    4

    Measure the distance between the two objects. If you are trying to calculate the force of gravity between an object and the earth, you need to determine how far away the object is from the center of the earth.[6]

    • The distance from the surface of the earth to the center is approximately 6.38 x 106 m.[7]
    • You can find tables and other resources online that will provide you with approximate distances of the center of the earth to objects at various elevations on the surface.[8]
  5. Image titled Calculate Force of Gravity Step 5

    5

    Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[9]

    • For example: Determine the force of gravity on a 68 kg person on the surface of the earth. The mass of the earth is 5.98 x 1024 kg.[10]
    • Make sure all your variables have the proper units. m1 = 5.98 x 1024 kg, m2 = 68 kg, G = 6.673 x 10-11 Nm2/kg2, and d = 6.38 x 106 m
    • Write your equation: Fgrav = (Gm1m2)/d2 = [(6.67 x 10-11) x 68 x (5.98 x 1024)]/(6.38 x 106)2
    • Multiply the masses of the two objects together. 68 x (5.98 x 1024) = 4.06 x 1026
    • Multiply the product of m1 and m2 by the gravitational constant G. (4.06 x 1026) x (6.67 x 10-11) = 2.708 x 1016
    • Square the distance between the two objects. (6.38 x 106)2 = 4.07 x 1013
    • Divide the product of G x m1 x m2 by the distance squared to find the force of gravity in Newtons (N). 2.708 x 1016/4.07 x 1013 = 665 N
    • The force of gravity is 665 N.
  6. Advertisement

  1. Image titled Calculate Force of Gravity Step 6

    1

    Understand Newton’s Second Law of Motion, F = ma. Newton’s second law of motion states that any object will accelerate when acted upon by a net or unbalanced force.[11]
    In other words, if a force is acting upon an object that is greater than the forces acting in the opposite direction, the object will accelerate in the direction of the larger force.

    • This law can be summed up with the equation F = ma, where F is the force, m is the mass of the object, and a is acceleration.
    • Using this law, we can calculate the force of gravity of any object on the surface of the earth, using the known acceleration due to gravity.
  2. Image titled Calculate Force of Gravity Step 7

    2

    Know the acceleration due to gravity on earth. On earth, the force of gravity causes objects to accelerate at a rate of 9.8 m/s2. On the earth’s surface, we can use the simplified equation Fgrav = mg to calculate the force of gravity.

    • If you want a more exact approximation of force, you can still use the above equation, Fgrav = (GMearthm)/d2 to determine force of gravity.
  3. Image titled Calculate Force of Gravity Step 8

    3

    Use the proper metric units. For this particular equation, you must use metric units. The mass of the object needs to be in kilograms (kg) and the acceleration needs to be in meters per second squared (m/s2). You must convert to these units before continuing with the calculation.

  4. Image titled Calculate Force of Gravity Step 9

    4

    Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine its weight in kilograms (kg). For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[12]

  5. Image titled Calculate Force of Gravity Step 10

    5

    Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[13]

    • Let’s use the same equation from above and see how close the approximation is. Determine the force of gravity on a 68 kg person on the surface of the earth.
    • Make sure all your variables have the proper units: m = 68 kg, g = 9.8 m/s2.
    • Write your equation. Fgrav = mg = 68*9.8 = 666 N.
    • With F = mg the force of gravity is 666 N, while using the more exact equation yields a force of 665 N. As you can see, these values are almost identical.
  6. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do I find the mass of the moon?

    Community Answer

    Check out same steps as mentioned below. But remember gravity on moon is 1/6th of gravity on earth.

  • Question

    A mass of 25 kg weighs 123 Newtons on another planet. What is the gravity on the planet?

    Community Answer

    The «gravity» on the surface of a planet is it’s acceleration (the rate of increase in speed as an object falls). Fg (the force of gravity) is m x g (acceleration of gravity), in m/(s squared), so g is Fg / m = 123 N / 25 kg ~= 4.92 m/(s squared).

  • Question

    How do I find the value of acceleration due to a gravity at a height of 2R from the surface of the earth?

    Community Answer

    If you want to know what the gravity would be when you are 3 earth-radii away from the center of earth, then the gravity would be 1/9th normal gravity. You’re multiplying by 3 on the bottom, so 1/3, but then it’s squared. Acceleration would then be 1.09 meters per second squared.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • These two formulas should give the same result, but the shorter formula is simpler to use when discussing objects on a planet’s surface.

  • You may round off 9.8m/s2 to 10m/s2, to make calculations easier.

  • Use the first formula if you don’t know the acceleration due to gravity on a planet or if you’re determining the force of gravity between two very large objects such as a moon and a planet.

Advertisement

References

About This Article

Article SummaryX

To calculate the force of gravity of an object, use the formula: force of gravity = mg, where m is the mass of the object and g is the acceleration of the object due to gravity. Since g is always 9.8 m/s^2, just multiply the object’s mass by 9.8 and you’ll get its force of gravity! If you want to learn how to calculate the force of gravity between 2 objects, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 622,960 times.

Reader Success Stories

  • Ezekiel Ishaya

    Ezekiel Ishaya

    Mar 1, 2019

    «It was great! It clears the doubt, and all those examples were very helpful.»

Did this article help you?

Закон всемирного тяготения

Закон всемирного тяготения (закон тяготения Ньютона) был открыт великим английским ученым Исааком Ньютоном в конце 60-х годов XVII века и опубликован в 1687 г. Он гласит:

Сила гравитационного притяжения двух тел с массами $m_1$ и $m_2$ прямо пропорциональна массе каждого из тел и обратно пропорциональна квадрату расстояния $r^2$ между ними:

$F=G{m_1m_2}/{r^2},$

где $G$ — гравитационная постоянная. Значение гравитационной постоянной было определено экспериментально в 1798 г. английским физиком Г. Кавендишем и составляет $6.67·10^{-11}H·м^2$/$кг^2$. Гравитацией (от лат. gravitas — тяжесть) называется притяжение всех тел во Вселенной друг к другу.

Закон всемирного тяготения имеет всеобъемлющий характер. Притяжение существует не только между Землей и телами, находящимися на ней. Все тела притягиваются друг к другу. Притягиваются между собой Земля и Луна. Притяжение Земли к Луне вызывает приливы и отливы воды. Огромные массы воды поднимаются в океанах и морях дважды в сутки на много метров. Земля и другие планеты движутся вокруг Солнца, притягиваясь друг к другу.

Необходимо помнить, что закон тяготения как всеобщий закон справедлив для материальных точек, и силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки. Такие силы называются центральными.

При расчетах силы тяготения между двумя телами под расстоянием $г$ между ними имеется в виду расстояние между центрами тяжести этих тел. Это особенно важно в том случае, когда размеры тел сопоставимы с расстоянием между ними (тогда форма тела имеет значение). Как показывают расчеты, точные значения силы тяжести можно определить в следующих случаях:

  1. размеры тел пренебрежимо малы по сравнению с расстоянием между ними;
  2. имеются два однородных шара (произвольного размера);
  3. форма одного из тел — шар, а размеры и масса его тела намного больше, чем у второго тела (произвольной формы), которое находится вблизи поверхности первого.

Благодаря последнему случаю можно рассчитать силу притяжения к Земле любого предмета, находящегося на ней.

Сила тяжести

Сила, с которой Земля притягивает к себе тело, находящееся вблизи ее поверхности, называется силой тяжести.

То, что Земля притягивает к себе все тела, находящиеся на ее поверхности и вблизи нее (деревья, воду, дома, Луну и т. д.), или явление тяготения, следует из простых наблюдений за окружающим миром. Так, мяч, брошенный в горизонтальном направлении, через некоторое время оказывается на земле; камень, выпущенный из рук, падает вниз; прыгнувший вверх человек вскоре снова оказывается внизу. Благодаря явлению тяготения искусственный спутник, запущенный с Земли, летит не по прямой, а движется вокруг Земли.

Сила тяжести всегда направлена вертикально вниз, к центру Земли. Обозначается она обычно латинской буквой $F$ со значком «т» (тяжесть) внизу — $F_т$. Сила тяжести приложена к центру тяжести тела.

Центр тяжести тела произвольной формы находят так: подвешивают тело на нити за разные его точки. Точка пересечения всех направлений, отмеченных нитью, и будет центром тяжести тела. Для тел правильной формы центр тяжести находится в центре симметрии тела, и точка эта не обязательно принадлежит телу (например, центр симметрии кольца).

Сила тяжести для тела, находящегося вблизи поверхности Земли, равна:

$F_3=G{M_3m}/{R_3^2},$

где $M_3$ — масса Земли, $m$ — масса тела, $R_3$ — радиус Земли.

Согласно второму закону Ньютона, сила тяжести может быть определена как произведение массы тела на ускорение, которое в данном случае называется ускорением свободного падения $g$:

$F_т=mg$

Сопоставляя две последние формулы, получим выражение для ускорения свободного падения:

$g={GM_3}/{R_3^2}$

Таким образом, ускорение, с которым тело падает на Землю, — ускорение свободного падения — не зависит от массы тела, а также от других его характеристик (объема, плотности и т. д.)

Вблизи поверхности Земли оно составляет $9.8$ м/$с^2$.

Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим сила тяжести на полюсе немного больше, чем на экваторе и других широтах (на экваторе $g = 9.78$ м/$с^2$, на Северном полюсе $g = 9.832$ м/$с^2$).

Сила тяжести, а значит, и ускорение свободного падения уменьшается при удалении от поверхности Земли. Для тела, находящегося на высоте $h$ над поверхностью Земли выражение для силы тяжести следует писать в виде:

$F_3=G{M_3m}/{(R_3+h)^2}$

Соответственно, для ускорения свободного падения:

$g=G{M_3}/{(R_3+h)^2}$

Из приведенной формулы следует, что лишь при подъеме на высоту $300$ км ускорение свободного падения уменьшается на $1$ м/$с^2$, т. е. всего на $10%$, а на высотах не только в несколько десятков или сотен метров, но и многих километров сила тяжести может считаться постоянной, не зависящей от положения тела. Именно благодаря этому свободное падение вблизи Земли можно считать равноускоренным движением.

Вес тела, невесомость, перегрузка

Вес — это сила, с которой любое тело вследствие притяжения Земли действует на опору или подвес.

Вес тела — векторная физическая величина, его обозначают буквой $Р$. Вес покоящегося, а также равномерно и прямолинейно движущегося (относительно Земли) тела по своему численному значению равен действующей на него силе тяжести:

$P=F_т=mg$

где $m$ — масса, $g$ — ускорение свободного падения.

Вес и сила тяжести приложены к разным телам, а именно: вес приложен к опоре или подвесу, а сила тяжести — к телу.

Вес и сила тяжести имеют разную физическую природу. Сила тяжести возникает вследствие взаимодействия тела и Земли. Вес тела возникает в результате взаимодействия тела и опоры (подвеса). Опора (подвес) и тело при этом деформируются, что приводит к появлению силы упругости. Из третьего закона Ньютона следует, что вес тела, т. е. сила, с которой тело давит на опору (или растягивает подвес), совпадает по величине с силой, действующей со стороны опоры на данное тело. Сила, с которой опора давит на находящееся на ней тело, называется силой реакции опоры. Обозначив силу реакции опоры через $N$, мы можем записать:

$P=N$

Полученная формула является более общей, чем $P=mg$, так как она остается справедливой и в том случае, когда тело вместе с опорой совершает ускоренное движение.

Вес тела не следует путать с его массой. Масса тела является скалярной величиной и измеряется в килограммах, а вес тела (как и любая другая сила) — векторная величина и измеряется в ньютонах.

Поскольку вес тела пропорционален ускорению свободного падения, которое различно на различных широтах, то вес тела зависит от географической широты и высоты местности (на полюсах вес несколько больше, чем на экваторе).

Вес можно измерять с помощью пружинных весов (динамометра).

Состояние невесомости — это состояние, в котором находится материальное тело, свободно движущееся в поле тяготения Земли (или другого небесного тела) под действием только сил тяготения. Отличительной особенностью такого состояния является отсутствие давления как на все тело в целом, так и на отдельные его части.

Рассмотрим условие достижения невесомости.

Если опора движется вместе с телом с ускорением а, направление которого совпадает с направлением ускорения свободного падения, то вес тела (определяемый из векторного уравнения $N↖{→}+{F_т}↖{→}=m{a}↖{→}$) в проекции на вертикальную ось $OZ$, направленную вверх, равен:

$P=N=m(g-a)$

Когда $g=a$, $P=0$, наступает невесомость.

При движении тела и опоры в направлении, противоположном направлению свободного падения, получим:

$P=N=m(g+a)$

В этом случае наступает перегрузка — вес тела увеличивается.

Движение небесных тел

Вокруг Солнца движутся девять больших планет. Все они удерживаются около Солнца силами тяготения. Эти силы очень велики. Например, между Солнцем и Землей действует сила тяготения, равная примерно $3⋅10^{22}Н$. Большое числовое значение этой силы объясняется тем, что массы Солнца и Земли очень велики.

Среди больших планет Солнечной системы наименьшую массу имеет Меркурий — его масса почти в $19$ раз меньше массы Земли. Вокруг многих планет движутся их спутники, которые также удерживаются вблизи планет силами тяготения. Спутник нашей Земли — Луна — самое близкое к нам небесное тело. Расстояние между Землей и Луной равно в среднем $380000$ км. Масса Луны в $81$ раз меньше массы Земли.

Чем меньше масса планеты, тем с меньшей силой она притягивает к себе тела. Сила тяжести на поверхности любой планеты рассчитывается по формуле:

$F_т=mg=GMm$/$R^2$

где $m$ — масса тела, $g$ — ускорение свободного падения на данной планете, $М$ — масса планеты, $R$ — радиус планеты, $G$ — гравитационная постоянная.

Космические скорости

Первая космическая скорость — это скорость, которую необходимо сообщить телу, чтобы оно стало искусственным спутником Земли, т. е. двигалось вокруг нее с постоянной скоростью по круговой орбите под действием силы тяжести.

Скорость эта определяется с учетом скорости равномерного движения по окружности и закона всемирного тяготения.

Центростремительное ускорение $а$ тела, равномерно движущегося по окружности, определяется выражением $a_n={υ^2}/{R}$. Поскольку в данном случае $а$ равно $g$ — ускорению свободного падения (т. к. тело движется в поле тяжести Земли), то, подставляя в $a_n={υ^2}/{R}$ вместо $а$ выражение для $g$ из $g=G{M_3}/{(R_3+h)^2}$, получим:

$υ=√{G{M_3}/{R_3+h}}$

Здесь $G$ — гравитационная постоянная, $М_3$ — масса Земли, $R_3$ — радиус Земли, $h$ — высота тела над поверхностью Земли. Это и есть формула круговой скорости спутника Земли. С такой скоростью движется спутник Земли по круговой орбите на высоте $h$ от поверхности Земли.

Пренебрегая $h$ по сравнению с $R$, получим:

$υ_1=√{G{M_3}/{R_3}}$

Это формула для расчета первой космической скорости при запуске спутника, т. е. той горизонтальной скорости, которую необходимо сообщить телу вблизи поверхности Земли, чтобы оно стало ее спутником. Запуск искусственного спутника осуществляется с помощью ракеты-носителя, которая поднимает тело спутника на высоту порядка $300$ км (это та высота, на которой уже почти не сказывается сопротивление атмосферы) и придает ему горизонтальную скорость $υ_1$. Спутник отделяется от ракеты-носителя и продолжает свое движение в гравитационном поле Земли. Численное значение первой космической скорости составляет $7.9$ км/с. Если придать телу большую скорость, оно будет двигаться по эллиптической орбите. По мере увеличения начальной скорости, придаваемой телу при запуске, орбита его будет вытягиваться, пока наконец не превратится в незамкнутую кривую — параболу.

Вторая космическая (параболическая) скорость — это скорость, которую надо придать телу у поверхности Земли, чтобы оно ее покинуло, двигаясь по параболической траектории. Эта скорость в $√2$ раза больше первой космической: $υ_{II}=√2·υ_{I}=11.2$ км/с. При второй космической скорости тело покидает Землю, но остается в пределах Солнечной системы. Оно становится спутником Солнца.

Третья космическая скорость — это та наименьшая скорость, при которой тело, начиная движение вблизи поверхности Земли, покидает сначала Землю, а затем преодолевает притяжение Солнца, покидая Солнечную систему. Она равна $υ_{III}=16.7$ км/с.

Сила тяготения.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: силы в механике, закон всемирного тяготения, сила тяжести, ускорение свободного падения, вес тела, невесомость, искусственные спутники Земли.

Любые два тела притягиваются друг к другу — по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой.

Закон всемирного тяготения.

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами m_{displaystyle 1} и m_{displaystyle 2} притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния r между ними:

F=Gfrac{displaystyle m_{displaystyle 1}displaystyle m_{displaystyle 2}}{displaystyle r^{displaystyle 2}}. (1)

Коэффициент пропорциональности G называется гравитационной постоянной. Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

G=6.67cdot 10^{-11} cdot frac{displaystyle Hcdot displaystyle m^{displaystyle 2}}{displaystyle kg^{displaystyle 2}}.

Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаимного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой примерно 6cdot 10^{24} кг.

Формула (1), будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1. Формула (1) справедлива, если тела являются однородными шарами. Тогда r — расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2. Формула (1) справедлива, если одно из тел — однородный шар, а другое — материальная точка, находящаяся вне шара. Тогда r сстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1) для силы притяжения тела (например, искусственного спутника) к планете.

Сила тяжести.

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести — это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести — это сила притяжения к Земле.

Пусть тело массы m лежит на поверхности Земли. На тело действует сила тяжести mg, где g — ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

mg=Gfrac{displaystyle Mm}{displaystyle R^{displaystyle 2}},

где M — масса Земли, Rapprox 6400 км — радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:

g= G frac {M}{R^{displaystyle 2}} . (2)

Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы M и радиуса R.

Если тело находится на высоте h над поверхностью планеты, то для силы тяжести получаем:

mg(h)=Gfrac{displaystyle mM}{displaystyle (R+h)^{displaystyle 2}}.

Здесь g(h) — ускорение свободного падения на высоте h:

g(h)=Gfrac{displaystyle M}{displaystyle (R+h)^{displaystyle 2}}=frac{displaystyle gR^{2}}{displaystyle (R+h)^{displaystyle 2}}.

В последнем равенстве мы воспользовались соотношением

GM=gR^{2},

которое следует из формулы (2).

Вес тела. Невесомость.

Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела. Вес тела — это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).

Рис. 1. Сила тяжести, реакция опоры и вес тела

На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести mvec{g} (в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости vec{N} (так называемая реакция опоры). На опору со стороны тела действует сила vec{P} — вес тела. По третьему закону Ньютона силы vec{P} и vec{N} равны по модулю (P=N) и противоположны по направлению.

Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:

mvec{g}+vec{N}=vec{0}Rightarrow mvec{g}=-vec{N}Rightarrow mg=N.

С учётом равенства N=P получаем mg=P. Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.

Задача. Тело массы m вместе с опорой движется с ускорением a, направленным вертикально вверх. Найти вес тела.

Решение. Направим ось Y вертикально вверх (рис. 2).

Рис. 2. Вес тела больше силы тяжести.

Запишем второй закон Ньютона:

mvec{a}=mvec{g}+vec{N}.

Перейдём к проекциям на ось Y:

ma=N-mg.

Отсюда N=mg+ma=m(g+a). Следовательно, вес тела

P=m(g+a).

Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.

Задача. Тело массы m вместе с опорой движется с ускорением aleqslant g, направленным вертикально вниз. Найти вес тела.

Решение. Направим ось Y вертикально вниз (рис. 3).

Рис. 3. Вес тела меньше силы тяжести.

Схема решения та же. Начинаем со второго закона Ньютона:

mvec{a}=mvec{g}+vec{N}.

Переходим к проекциям на ось Y:

ma=mg-N.

Отсюда c. Следовательно, вес тела

P=m(g-a).

В данном случае вес тела меньше силы тяжести. При a=g (свободное падение тела с опорой) вес тела обращается в нуль. Это — состояние
невесомости, при котором тело вообще не давит на опору.

Искусственные спутники.

Для того, чтобы искусственный спутник мог совершать орбитальное движение вокруг планеты, ему нужно сообщить определённую скорость. Найдём скорость кругового движения спутника на высоте h над поверхностью планеты. Масса планеты M, её радиус R (рис. 4)

Рис. 4. Спутник на круговой орбите.

Спутник будет двигаться под действием единственной силы vec{F} — силы всемирного тяготения, направленной к центру планеты. Туда же направлено и ускорение спутника — центростремительное ускорение

a=frac{displaystyle v^{displaystyle 2}}{displaystyle R+displaystyle h}.

Обозначив через m массу спутника, запишем второй закон Ньютона в проекции на ось, направленной к центру планеты: ma=F, или

mfrac{displaystyle v^{displaystyle 2}}{displaystyle R+displaystyle h}=Gfrac{displaystyle Mm}{displaystyle (R+h)^{2}}.

Отсюда получаем выражение для скорости:

v=sqrt{frac{displaystyle GM}{displaystyle R+h}}.

Первая космическая скорость — это максимальная скорость кругового движения спутника, отвечающая высоте h=0. Для первой космической скорости имеем

v_{displaystyle 1}=sqrt{frac{displaystyle GM}{displaystyle R}},

или, с учётом формулы ( 2),

v_{displaystyle 1}=sqrt{gR}.

Для Земли приближённо имеем:

v_{displaystyle 1}=sqrt{10cdot 6400000}=8000 m/c = 8 км/с.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Сила тяготения.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Как исправить гофру от унитаза
  • Как найти действующий полис осаго по номеру
  • Как найти общее решение неоднородного дифференциального уравнения
  • В сбербанк онлайн вместо суммы звездочки как исправить
  • Как найти ссылку на сайт в коде