Как найти син а у ромба

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Развёрнутый, прямой, острый и тупой углы

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается a.

Угол A обозначается соответствующей греческой буквой alpha.

Гипотенуза и катеты

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет a, лежащий напротив угла alpha, называется противолежащим (по отношению к углу alpha). Другой катет b, который лежит на одной из сторон угла alpha, называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

sin A=genfrac{}{}{}{0}{displaystyle a}{displaystyle c}.

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

cos A=genfrac{}{}{}{0}{displaystyle b}{displaystyle c}.

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

tg A =genfrac{}{}{}{0}{displaystyle a}{displaystyle b}.

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

tg A=genfrac{}{}{}{0}{displaystyle sin A}{displaystyle cos A}.

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

ctg A =genfrac{}{}{}{0}{displaystyle cos A}{displaystyle sin A}.

Обратите внимание на основные формулы для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

sin displaystyle alpha = frac{a}{c} sin{}^2 alpha +cosdisplaystyle {}^2 alpha =1 alpha + beta = 90 ^{circ} 
cos displaystyle alpha = frac{b}{c} 1+tg displaystyle {}^2 alpha =frac{1}{cos ^2 alpha} cosalpha = sin beta
tg displaystyle alpha = frac{a}{b} 1+ctg displaystyle {}^2 alpha =frac{1}{sin ^2 alpha} sinalpha = cosbeta
ctg displaystyle alpha = frac{b}{a} tgalpha = ctgbeta

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна 180^{circ}. Значит, сумма двух острых углов прямоугольного треугольника равнa 90^{circ}.
  2. С одной стороны, sin A =genfrac{}{}{}{0}{displaystyle a}{displaystyle c} как отношение противолежащего катета к гипотенузе. С другой стороны, cos B =genfrac{}{}{}{0}{displaystyle a}{displaystyle c}, поскольку для угла beta катет а будет прилежащим. Получаем, что cos beta =sin alpha. Иными словами, cos left( 90^{circ}-A right) = sin A.
  3. Возьмем теорему Пифагора: a^2+b^2=c^2. Поделим обе части на c^2, получаем displaystyle left ( frac{a}{c} right )^2+left ( frac{b}{c} right )^2=left ( frac{c}{c} right )^2 , то есть sin ^2 A+cos^2 A=1.
    Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на cos^2 A, получим: 1+tg ^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle cos ^2 A }. Это значит, что если нам дан тангенс острого угла alpha, то мы сразу можем найти его косинус. Аналогично,1+ctg ^2 A =genfrac{}{}{}{0}{1}{sin ^2 A }.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна 180^{circ}.

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: a^2+b^2=c^2.

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от 0^{circ} до 90^{circ}.

varphi 0 genfrac{}{}{}{0}{displaystyle pi}{displaystyle 6} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 4} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 3} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 2}
sinvarphi 0 displaystyle frac{1}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{sqrt{3}}{2} 1
cosvarphi 1 displaystyle frac{sqrt{3}}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{1}{2} 0
tgvarphi 0 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 1 sqrt{3}
ctgvarphi sqrt{3} 1 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 0

Обратите внимание на два прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Докажем теорему:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

В самом деле, пусть АВС и A_1B_1C_1 — два прямоугольных треугольника с прямыми углами С и C_1 и равными острыми углами А и A_1.

Треугольники АВС и A_1B_1C_1 подобны по первому признаку подобия треугольников, поэтому displaystyle frac{AB}{A_1 B_1}=frac{BC}{B_1 C_1}=frac{AC}{A_1 C_1 } .

Из этих равенств следует, что displaystyle frac{BC}{AB}=frac{B_1 C_1}{A_1 B_1} , т. е. sin А = sin A_1.

Аналогично, displaystyle frac{AC}{AB}=frac{A_1C_1}{A_1 B_1}, т. е. cos А = cosA_1, и displaystyle frac{BC}{AC}=frac{B_1C_1}{A_1 C_1}, т. е. tg A = tg A_1.

Это значит, что синус, косинус и тангенс зависят только от величины угла.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача 1. В треугольнике ABC угол C равен 90^{circ}, sin A = 0,1. Найдите cos B.

Задача решается за четыре секунды.

Поскольку A+B = 90^{circ}, sin A = cos B = 0,1.

Задача 2В треугольнике ABC угол C равен 90^{circ}, AB=5, sin A = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Найдите AC.

Решение:

sin A = genfrac{}{}{}{0}{displaystyle a}{displaystyle c} = genfrac{}{}{}{0}{displaystyle BC}{displaystyle AB} = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Отсюда

BC= genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25} cdot AB = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 5}.

Найдем AC по теореме Пифагора.

AC=sqrt{AB^2-BC^2} = genfrac{}{}{}{0}{displaystyle 24}{displaystyle 5} = 4,8.

Ответ: 4,8.

Задача 3. В треугольнике АВС угол С равен 90^circ , AВ = 13, ВС = 5. Найдите косинус и тангенс острого угла А. Ответ округлите до сотых.

Решение:

Для угла А противолежащий катет – это ВС,

АВ является гипотенузой треугольника, лежит против angle C. Значит, sin A displaystyle = frac{BC}{AB}= frac{5}{13}.

Катет, прилежащий к angle A – это катет АС, следовательно, cos⁡ А displaystyle = frac{AC}{AB}=frac{AC}{13}.

Длину катета АС найдем по теореме Пифагора: AC^2+BC^2=AB^2.

Тогда AC = sqrt{AB^2-BC^2}=sqrt{(13)^2-5^2}=sqrt{144}=12.

cos⁡ А displaystyle = frac{12}{13}=0,923 ... approx 0,92 ;

tg A displaystyle = frac{BC}{AC} = frac{5}{12}=0,416...approx 0,42.

Ответ: 0,92; 0,42.

Заметим, что если катеты прямоугольного треугольника равны 5 и 12, то гипотенуза равна 13. Это одна из так называемых Пифагоровых троек. О них мы расскажем в других статьях сайта.

Задача 4. В треугольнике АВС угол С равен 90^circ , AC = 2, sin A= displaystyle frac{sqrt{17}}{17} .

Найдите BC.
Решение:

AC = b = 2, BC = a, AB = c.

Так как sin A displaystyle = frac{a}{c} = frac{BC}{AB} = frac{sqrt{17}}{17}, displaystyle frac{a}{c} = frac{sqrt{17}}{17} , displaystyle c = frac{17a}{sqrt{17}}=sqrt{17}a.

По теореме Пифагора a^2+b^2=c^2, получим

a^2+2^2=(sqrt{17} a)^2;

a^2+4=17a^2;

16a^2=4, displaystyle a= frac{1}{2}=0,5;

BC = 0,5.

Ответ: 0,5.

Задача 5. В треугольнике АВС угол С равен 90^circ , AC = 4, tg A = displaystyle frac{33}{4sqrt{33}} . Найдите AB.

Решение:

AC = b = 4, tg A displaystyle = frac{a}{b}=frac{33}{4sqrt{33}},

displaystyle frac{a}{4}=frac{33}{4sqrt{33}}, displaystyle a=frac{4 cdot 33}{4 cdot sqrt{33}}=sqrt{33},

AB = c = sqrt{a^2+b^2}=sqrt{(sqrt{33})^2+4^2}=sqrt{33+16} =7.

Ответ: 7.

Задача 6.

В треугольнике АВС угол С равен 90^ circ, CH – высота, AB = 13, tg A = displaystyle frac{1}{5} . Найдите AH.

Решение:

AВ = с = 13, tg A = displaystyle frac{a}{b}=frac{1}{5} , тогда b = 5a.

По теореме Пифагора triangleABC: a^2+b^2=c^2,

a^2+(5a)^2=13^2,

26 a^2=169,

displaystyle a=sqrt{frac{169}{26}}=frac{13}{sqrt{26}}, тогда displaystyle b = 5a=5cdot frac{13}{sqrt{26}}=frac{65}{sqrt{26}}.

triangle AHC approx triangle ACB (по двум углам), следовательно displaystyle frac{AH}{AC}=frac{AC}{AB} , откуда

displaystyle AH = frac{AC^2}{AB}=frac{b^2}{c}=left ( frac{65}{sqrt{26}}right )^2:13=12,5.

Ответ: 12,5.

Задача 7. В треугольнике АВС угол С равен 90^circ,

CH – высота, BC = 3, sin A = displaystyle frac{1}{6} .

Найдите AH.

Решение:

Так как sin A = displaystyle frac{a}{c} = frac{BC}{AB} = frac{1}{6}, тогда displaystyle frac{3}{c} = frac{1}{6} , c = АВ = 18.

sin A = displaystyle frac{a}{c} = cos⁡ B = displaystyle frac{1}{6} .

Рассмотрим triangle BHC:

{cos B=  }displaystyle frac{BH}{BC} = displaystyle frac{1}{6} , получим displaystyle frac{BH}{3}=displaystyle frac{1}{6},

тогда BH = displaystyle frac{3}{6}=displaystyle frac{1}{2} = 0,5,

AH = AB — BH = 18 — 0,5 = 17,5.

Ответ: 17,5.

Задача 8. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BC = 3, cos A = displaystyle frac{sqrt{35}}{6}.

Найдите АH.

Решение:

Так как для triangle АВС: cos A = displaystyle frac{AC}{AB}= sin В = displaystyle frac{sqrt{35}}{6},

а для triangle ВНС: sin В = displaystyle frac{CH}{BC} = displaystyle frac{sqrt{35}}{6} , откуда СН = displaystyle frac{BC cdot  sqrt{35}}{6}=displaystyle frac{3 cdot sqrt{35}}{6}=displaystyle frac{sqrt{35}}{2},

По теореме Пифагора найдем ВН:

BH = sqrt{{BC}^2-{CH}^2}=sqrt{3^2-{left(displaystyle frac{sqrt{35}}{2}right)}^2}=

=sqrt{9-displaystyle frac{35}{4}}=sqrt{displaystyle frac{1}{4}}=displaystyle frac{1}{2}=0,5.

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому для triangle АВС получим:

{CH}^2=AH cdot BH, тогда AH= displaystyle frac{ {CH}^2}{BH}, ; AH= displaystyle frac{ {left(displaystyle frac{sqrt{35}}{2}right)}^2}{0,5}=displaystyle frac{35 cdot 2}{4}=17,5.

Ответ: 17,5.

Задача 9. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 24 и BН = 7. Найдите sin A.

Решение:

По определению sin A= displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = {cos B}.

Рассмотрим triangle BHC : {cos B=  }displaystyle frac{BH}{BC}.

ВС найдем по теореме Пифагора:

ВС= sqrt{{BH}^2+{CH}^2}=sqrt{7^2+{24}^2}=sqrt{49+576}=sqrt{625}=25,

тогда {cos B=  }displaystyle frac{BH}{BC}=displaystyle frac{7}{25}=0,28, а значит и sin A = {cos B  }= 0,28.

Ответ: 0,28.

Задача 10. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 8 и BН = 4. Найдите tg A.

Решение:

По определению sin A = displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = ;   cos A = displaystyle frac{b}{c} = displaystyle frac{AC}{AB} = {sin B },

тогда tg A = displaystyle frac{sin A}{{cos A }}=displaystyle frac{cosB}{sinB}=ctgB, который найдем из triangle BHC:

ctgB=displaystyle frac{BH}{CH}=displaystyle frac{4}{8}=0,5.

Ответ: 0,5.

Задача 11. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, tg A = displaystyle frac{2}{3}. Найдите АН.

Решение:

По определению tg A= displaystyle frac{BC}{AC}=ctgB=displaystyle frac{2}{3}.

Для triangle BHC: ctgB=displaystyle frac{BH}{CH}=displaystyle frac{2}{3} , значит displaystyle frac{12}{CH}=displaystyle frac{2}{3}, СН = displaystyle frac{12 cdot 3}{2}=18.

Для triangle АHC: tg A= displaystyle frac{CH}{AH}=displaystyle frac{2}{3}, то displaystyle frac{18}{AH}=displaystyle frac{2}{3}, AH = displaystyle frac{18 cdot 3}{2}=27.

Ответ: 27.

Задача 12. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, sin A = displaystyle frac{2}{3}. Найдите АВ.

Решение:

Так как cos В = displaystyle frac{BC}{AB} = sin A = displaystyle frac{2}{3}.

Из triangle СВН имеем cos В = displaystyle frac{HB}{BC} = displaystyle frac{2}{3}, тогда ВС = displaystyle frac{3 cdot  HB}{2}=displaystyle frac{3 cdot 12}{2}=18.

В triangle АВС имеем sinA = displaystyle frac{BC}{AB} = displaystyle frac{2}{3}, тогда AВ = displaystyle frac{3 cdot BC}{2}=displaystyle frac{3 cdot 18}{2}=27.

Ответ: 27.

Задача 13. В треугольнике АВС угол С равен 90{}^circ, из вершины прямого угла к гипотенузе проведена высота СН. Найдите cos A, AC и AB, если СН = 12, ВС = 20.

Решение:

Найдем НВ по теореме Пифагора из triangle ВСН:

HB = sqrt{BC^2-BH^2}=sqrt{20^2-12^2}=sqrt{(20-12)(20+12)}=

sqrt{8 cdot 32}= sqrt{8 cdot 2 cdot 16}=16.

sin В = displaystyle frac{CH}{BC} = displaystyle frac{12}{20}=displaystyle frac{3}{5}.

Для triangle АВС: cos A = displaystyle frac{AC}{AB}=sin B=displaystyle frac{3}{5}, получили cos A = 0,6.

Найдем АС и АВ несколькими способами.

1-й способ.

Так как cos A = displaystyle frac{AC}{AB}=displaystyle frac{3}{5}, то пусть АС = 3х, АВ = 5х,

тогда по теореме Пифагора {AC}^2+{BC}^2= {AB}^2, получим {(3x)}^2+{(20)}^2= {(5x)}^2
{25x}^2-{9x}^2= {20}^2 ,

{16x}^2= {20}^2,

x^2= {left(displaystyle frac{20}{4}right)}^2,
х = 5 ( так как хtextgreater 0). Значит, AC=15,  AB=25.

2-й способ.

triangle HBC approx triangle CBA (по двум углам), значит displaystyle frac{HB}{CB}=frac{HC}{AC}=frac{BC}{AB} или displaystyle frac{16}{20}={12}{AC}={20}{AB} = k,

k = displaystyle frac{16}{20}=displaystyle frac{4}{5} , тогда displaystyle frac{12}{AC}=displaystyle frac{4}{5}, АС = displaystyle frac{12 cdot 5}{4}=15; displaystyle frac{20}{AB}=displaystyle frac{4}{5}, АВ = displaystyle frac{20 cdot 5}{4}=25.

3-й способ.

{CH}^2=AH cdot HB (высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой) , тогда {12}^2=AH cdot 16, АН = 144:16 = 9.

АВ = АН + НВ = 9 + 16 = 25.

По теореме Пифагора найдем АС:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{25}^2-{20}^2}=sqrt{(25-20)(25+20)} = sqrt{5cdot 45}=sqrt{5cdot 5cdot 9}=15.

Ответ: cos A = 0,6; АС = 15, АВ = 25.

Задача 14.

Высота ВН прямоугольного треугольника АВС, проведенная из вершины прямого угла В, равна 24 и отсекает от гипотенузы АС отрезок НС, равный 18.

Найдите АВ и cos А.

Решение:

Из прямоугольного triangle ВНС по теореме Пифагора найдем гипотенузу ВС и cos C:

ВС = sqrt{{HC}^2+{BH}^2}=sqrt{{18}^2+{24}^2}=sqrt{324+576}= sqrt{900}=30;

cos C = displaystyle frac{HC}{BC}=displaystyle frac{18}{30}=displaystyle frac{3}{5}.

Для triangle АВС: sin А = displaystyle frac{BC}{AC} = cos C = displaystyle frac{3}{5}.

Для triangle АНВ: sin А = displaystyle frac{BH}{AB} = displaystyle frac{3}{5}, то displaystyle frac{24}{AB} = displaystyle frac{3}{5}, АВ = displaystyle frac{24 cdot 5}{3}=40.

Из основного тригонометрического тождества найдем

cos A = sqrt{1-{sin}^2A}=sqrt{1-0,36}=sqrt{0,64}=0,8.

Ответ: АВ = 40, cos A = 0,8.

Задача 15.

Гипотенуза АС прямоугольного треугольника АСЕ равна 50, sin А = displaystyle frac{7}{25}.

Найдите площадь треугольника.

Решение:

В прямоугольном triangle АСЕ sin А = displaystyle frac{CE}{AC},

значит CE=AC cdot sinA=50 cdot displaystyle frac{7}{25} = 14.

Второй катет найдем, используя теорему Пифагора: AE= sqrt{{AC}^2-{CE}^2};

AE = sqrt{{50}^2-{14}^2}=sqrt{(50-14)(50+14)} =sqrt{36cdot 64}=6cdot8=48.

Площадь прямоугольного треугольника равна S = displaystyle frac{1}{2}ab,

поэтому S_{ACE}= displaystyle frac{1}{2} AEcdot CE=displaystyle frac{48cdot 14}{2}=336.

Ответ: 336.

Задача 16.

В треугольнике АВС угол С — прямой, катеты АВ = 13 и ВС = 12, СК — высота.

Найдите sin angle ACK. Результат округлите до сотых.

Решение:

triangle CAK approx triangle BAC ( angle A-общий, angle AKC=angle ACB=90{}^circ ),

значит angle ACK=angle ABC, sin angle ACK=displaystyle frac{AK}{AC}=displaystyle frac{AC}{AB}.

Найдем АС по теореме Пифагора из triangle САВ:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{13}^2-{12}^2}=

=sqrt{(13-12)(13+12)}=sqrt{25}= 5.

Тогда sin angle ACK=displaystyle frac{5}{13}=0,384..approx 0,38.

Ответ: 0,38.

Задача 17. В треугольнике АВС АС = ВС, АВ = 72, cos A = displaystyle frac{12}{13}. Найдите высоту СН.

Решение:

Так как АС = ВС, то triangle АВС — равнобедренный с основанием АВ, тогда

высота СН является медианой, то есть АН = НВ = displaystyle frac{1}{2}AB=36.

Поскольку triangle АСН — прямоугольный,

cos A = displaystyle frac{AH}{AC}= displaystyle frac{12}{13}, то есть displaystyle frac{36}{AC}= displaystyle frac{12}{13} Rightarrow АС = displaystyle frac{36 cdot 13}{12}=39.

По теореме Пифагора {AH}^2+{CH}^2={AC}^2, тогда

CH = sqrt{{AC}^2-{AH}^2} = sqrt{{39}^2-{36}^2}=

=sqrt{(39-36)(39+36)}=sqrt{3cdot 3cdot 25}=15.

Ответ: 15.

Задача 18. В треугольнике АВС угол С равен 90{}^circ, sin A = displaystyle frac{11}{14}, AC = 10sqrt{3}. Найдите АВ.

Решение:

1-й способ.

Поскольку sin A = displaystyle frac{BC}{AB}= displaystyle frac{11}{14}, то можно обозначить

ВС = 11х, АВ = 14х.

По теореме Пифагора AC^2+{BC}^2={AB}^2;

{(10sqrt{3})}^2+{(11x)}^2={(14x)}^2;

{(14x)}^2-{(11x)}^2 = 3 cdot 100;

(14х- 11х)(14х + 11х) = 3 cdot 100;

3cdot 25 x^2 = 3 cdot 100.

x^2=4, учитывая, что длина стороны положительна, х = 2,

следовательно, АВ = 14 cdot 2 = 28.

2-й способ.

Воспользуемся основным тригонометрическим тождеством {sin}^2A+{cos}^2A=1;

cos A = sqrt{1-{sin}^2A}=sqrt{1-{left(displaystyle frac{11}{14}right)}^2}=sqrt{displaystyle frac{196-121}{196}}=sqrt{displaystyle frac{75}{196}}=displaystyle frac{5sqrt{3}}{14}.

По определению cos A = displaystyle frac{AC}{AB}, значит displaystyle frac{AC}{AB}= displaystyle frac{5sqrt{3}}{14}.

Так как АС=10sqrt{3}, то displaystyle frac{10sqrt{3}}{AB}= displaystyle frac{5sqrt{3}}{14}, откуда АВ = displaystyle frac{10sqrt{3} cdot 14}{5sqrt{3}} = 28.

Ответ: 28.

Задача 19. Найдите углы ромба АВСD, если его диагонали АС и ВD равны 4sqrt{3} и 4.

Решение:

Пусть angle ВАО = alpha .

Диагонали ромба делят его углы пополам, значит, angle DAO=angle BAO = alpha .

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно, в прямоугольном треугольнике АВО катет АО = displaystyle frac{1}{2} AC=2sqrt{3}, а катет ВО = displaystyle frac{1}{2}BD =2.

Поэтому tgalpha =displaystyle frac{BO}{AO}=displaystyle frac{2}{2sqrt{3}}=displaystyle frac{1}{sqrt{3}}, откуда alpha =30{}^circ .

angle BAD=2alpha =60{}^circ , ; angle ADC=angle ABC=180{}^circ -60{}^circ =120{}^circ .

Ответ: {60}^circ, {120}^circ, {60}^circ, {120}^circ .

Часто в задачах встречаются треугольники с углами 90^{circ},, 30^{circ} и 60^{circ} или с углами 90^{circ},, 45^{circ} и 45^{circ}. Основные соотношения для них запоминайте наизусть!

Прямоугольные треугольники с углами 30, 60, 90 и 45, 45, 90 градусов

Для треугольника с углами 90^{circ},, 30^{circ} и 60^{circ} катет, лежащий напротив угла в 30^{circ}, равен половине гипотенузы.

Треугольник с углами 90^{circ},, 45^{circ} и 45^{circ} — равнобедренный. В нем гипотенуза в sqrt{2} раз больше катета.

Задача 20.

В треугольнике АВС угол С равен 90{}^circ, угол А равен 30{}^circ, АВ = 2sqrt{3} .

Найдите высоту CH.

Решение:

Рассмотрим triangle АВС:

По свойству катета, лежащего против угла {30}^circ, имеем ВС = displaystyle frac{1}{2} АВ = sqrt{3}.

В triangle BHC: angle BHC=90{}^circ ,;  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно, ВН = displaystyle frac{1}{2} BC = displaystyle frac{sqrt{3}}{2}.

По теореме Пифагора найдем НС:

HC = sqrt{{BC}^2-{BH}^2}=sqrt{{left(sqrt{3}right)}^2-{left(displaystyle frac{sqrt{3}}{2}right)}^2}=sqrt{3-displaystyle frac{3}{4}}=

=sqrt{2displaystyle frac{1}{4}}=sqrt{displaystyle frac{9}{4}}=displaystyle frac{3}{2}=1,5.

Ответ: 1,5.

Задача 21.

В треугольнике АВС угол С равен 90{}^circ, CH — высота, АВ = 2, angle A=30{}^circ . Найдите АH.

Решение:

Из triangle АВС найдем ВС = displaystyle frac{1}{2} АВ = 1 (по свойству катета, лежащего против угла 30{}^circ),

angle A=30{}^circ , то angle B=60{}^circ .

Из triangle ВСН: angle BHC=90{}^circ ,  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно,

ВН = displaystyle frac{1}{2} ВС = displaystyle frac{1}{2}.

АН = АВ — НВ = 2 — displaystyle frac{1}{2} = 1,5.

Ответ: 1,5.

Еще раз повторим, что такое синус, косинус и тангенс угла в прямоугольном треугольнике.

Как запомнить эти соотношения? Лучший способ – решать много задач, и на уроках геометрии, и готовясь к ЕГЭ. Тогда все формулы, равенства, соотношения запомнятся сами собой.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Если вам понравился разбор данной темы — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Синус, косинус и тангенс острого угла прямоугольного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Ромб. Формулы, признаки и свойства ромба

Определение.

Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом.

Ромбы отличаются между собой размером стороны и размером углов.

Признаки ромба

Параллелограмм ABCD будет ромбом, если выполняется хотя бы одно из следующих условий:

1. Две его смежные стороны равны (отсюда следует, что все стороны равны):

АВ = ВС = СD = AD

2. Его диагонали пересекаются под прямым углом:

ACBD

3. Одна из диагоналей (биссектриса) делит содержащие её углы пополам:

∠BAC = ∠CAD или ∠BDA = ∠BDC

4. Если все высоты равны:

BN = DL = BM = DK

5. Если диагонали делят параллелограмм на четыре равных прямоугольных треугольника:

Δ ABO = Δ BCO = Δ CDO = Δ ADO

6. Если в параллелограмм можно вписать круг.

Основные свойства ромба

2. Диагонали перпендикулярны:

ACBD

3. Диагонали являются биссектрисами его углов:

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:

AC2 + BD2 = 4AB2

5. Точка пересечения диагоналей называется центром симметрии ромба.

6. В любой ромб можно вписать окружность.

7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

2. Формула стороны ромба через площадь и синус угла:

3. Формула стороны ромба через площадь и радиус вписанной окружности:

4. Формула стороны ромба через две диагонали:

5. Формула стороны ромба через диагональ и косинус острого угла (cos α) или косинус тупого угла (cos β):

6. Формула стороны ромба через большую диагональ и половинный угол:

7. Формула стороны ромба через малую диагональ и половинный угол:

8. Формула стороны ромба через периметр:

Диагонали ромба

Определение.

Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.

Ромб имеет две диагонали — длинную d1, и короткую — d2

Формулы определения длины диагонали ромба:

1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d1 = a2 + 2 · cosα

d1 = a2 — 2 · cosβ

2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d2 = a2 + 2 · cosβ

d2 = a2 — 2 · cosα

3. Формулы большой диагонали ромба через сторону и половинный угол:

d1 = 2a · cos(α/2)

d1 = 2a · sin(β/2)

4. Формулы малой диагонали ромба через сторону и половинный угол:

d2 = 2a · sin(α/2)

d2 = 2a · cos(β/2)

5. Формулы диагоналей ромба через сторону и другую диагональ:

d1 = √4a2d22

d2 = √4a2d12

6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:

d1 = d2 · tg(β/2)

d2 = d1 · tg(α/2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Определение.

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Формула периметра ромба через сторону ромба:

P = 4a

Площадь ромба

Определение.

Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.

Формулы определения площади ромба:

1. Формула площади ромба через сторону и высоту:

S = a · ha

2. Формула площади ромба через сторону и синус любого угла:

S = a2 · sinα

3. Формула площади ромба через сторону и радиус:

S = 2a · r

4. Формула площади ромба через две диагонали:

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):

Окружность вписанная в ромб

Определение.

Кругом вписанным в ромб называется круг, который примыкает ко всем сторонам ромба и имеет центр на пересечении диагоналей ромба.

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Учебник

Геометрия, 11 класс

Ромб: Свойства, Формулы. Задачи

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторонами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
  • Меньшая диагональ   $AC^2=a^2+b^2-2cdot acdot bcdotcos D$     ,      большая    $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
  • Сумма   {Цвет:Red квадратов диагоналей ромба равна    $AC^2+BD^2=4cdot a^2$     четырежды квадрат стороны.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Формулы Площади ромба:

  • Площадь   ромба   равна    произведению   основания на высоту      $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
  • Площадь   ромба   равна   через синус угла:        $S=a^2cdotsin A$     ,          квадрат стороны на синус .
  • Площадь   ромба   через диагонали:    $S=frac{ACcdot BD}{2}$ .      половина произведения диагоналей

Вписанная окружность в ромб:

  • В четырехугольник   можно   вписать   окружность только если … суммы противоположных сторон   равны.
  • Вписать окружность можно в ромб и квадрат, ;
  • Если   вписывается, то площадь     $S=pcdot r$,     $p=2cdot a$       $S=2cdot a cdot r$.
  • Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.

Задача 1:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

Задача 2:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

  • Решение:          Проведем высоту   из той же вершины, из которой   проведена   меньшая диагональ.       
  • Получили прямоугольный треугольник $BED$ .    Он   подобен тем треугольникам, на которые ромб делится диагоналями:     
  • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Все прямоугольные и есть равные углы.
  • например   $alpha$.     Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
  • Для угла   $alpha$   в   $bigtriangleup EBD$   мы знаем гипотенузу и противолежащий катет   $Rightarrow$     $sinalpha=frac{BE}{BD}=frac{12}{13}$
  • Перейдем к   $bigtriangleup OCD$ : в нем прилежащий катет    $OD=frac{1}{2}BD=6,5$.    Чтобы найти второй катет, нам нужен тангенс,
  • а чтобы найти   гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
  • $sin^2alpha+cos^2alpha=1$ .   Тогда косинус:   $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
  • Угол   $alpha$   острый,   так как он входит в прямоугольный треугольник,   т. е. принадлежит первой четверти.
  • Следовательно, косинус положительный и мы останавливаемся на одном значении:   $cosalpha = frac{5}{13}$
  • Тогда:   $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$             $Rightarrow$        $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
  • Площадь ромба равна произведению основания на высоту:    Ответ:    $S=16,9cdot12=202,8$

Задача 3:          В Ромбе   $ABCD$    точка $K$ делит сторону   $CD$ в соотношении   $2:7$, а    $M$ делит   $1:3$ сторону   $BC$.       $MN$   параллельна   $AB$,   $O$ — пересечение $MN$ и   $BK$.    Найти площадь трапеции   $ABON$, если площадь   $ABCD=420$.

Решение:    пробa    Анализ рисунка:    

  • $AB$, $MN$,   $CD$ — параллельные.   Какие углы равные?
  • Треугольники   $BMO$ и    $BKC$ подобные.   Коэффициент подобия   $1:3$.
  • Отношение площадей    $BMO$   и   $BKC$ равен    $1:9$ — квадрату коэффициента подобия.
  • (по формулам) Площади   $BKC$   и    $BCD$ относятся как    $CK$ и   $CD$, т.е.   $5:7$.
  • Площадь   $BCD$   равен половине площади   $ABCD$,   т.е. $S_{BCD}=210$.
  • $S_{ABMN}:S_{ABCD}=1:3$        $Rightarrow$       $S_{ABMN}=140$ .   
  • Из складываемости площадей:     площадь $ABON$ =   разности   площадей   $ABMN$   и    $BOM$.

Упражнения:

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
  • Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторанами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
  • Меньшая диагональ   $AC^2=a^2+b^2-2cdot acdot bcdotcos D$     ,      большая    $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
  • Сумма   {Цвет:Red квадратов диагоналей ромба равна    $AC^2+BD^2=4cdot a^2$     четырежды квадрат стороны.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Формулы Площади ромба:

  • Площадь   ромба   равна    произведению   основания на высоту      $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
  • Площадь   ромба   равна   через синус угла:        $S=a^2cdotsin A$     ,          квадрат стороны на синус .
  • Площадь   ромба   через диагонали:    $S=frac{ACcdot BD}{2}$ .      половина произведения диагоналей

Вписанная окружность в ромб:

  • В четырехугольник   можно   вписать   окружность только если … суммы противоположных сторон   равны.
  • Вписать окружность можно в ромб и квадрат, ;
  • Если   вписывается, то площадь     $S=pcdot r$,     $p=2cdot a$       $S=2cdot a cdot r$.
  • Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.

Задача 1:        Найти периметр ромба   $ABCD$, в котором    $angle C=60^o$ , а меньшая диагональ равна    $10,5$ см.

  • Решение:          Рассмотрим   $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков   данный   треугольник?             
  • По условию,   угол $bigtriangleup BCD$ у вершине   $angle B=60^o$   , тогда как два других угла?
  • Каков все-таки этот   треугольник?   Чему равны стороны ромба. А сумма сторон? Ответ:     $p=42$ см.

Задача 2:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

Задача 3:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

  • Решение:          Проведем высоту   из той же вершины, из которой   проведена   меньшая диагональ.       
  • Получили прямоугольный треугольник $BED$ .    Он   подобен тем треугольникам, на которые ромб делится диагоналями:     
  • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Все прямоугольные и есть равные углы.
  • например   $alpha$.     Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
  • Для угла   $alpha$   в   $bigtriangleup EBD$   мы знаем гипотенузу и противолежащий катет   $Rightarrow$     $sinalpha=frac{BE}{BD}=frac{12}{13}$
  • Перейдем к   $bigtriangleup OCD$ : в нем прилежащий катет    $OD=frac{1}{2}BD=6,5$.    Чтобы найти второй катет, нам нужен тангенс,
  • а чтобы найти   гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
  • $sin^2alpha+cos^2alpha=1$ .   Тогда косинус:   $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
  • Угол   $alpha$   острый,   так как он входит в прямоугольный треугольник,   т. е. принадлежит первой четверти.
  • Следовательно, косинус положительный и мы останавливаемся на одном значении:   $cosalpha = frac{5}{13}$
  • Тогда:   $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$             $Rightarrow$        $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
  • Площадь ромба равна произведению основания на высоту:    Ответ:    $S=16,9cdot12=202,8$

Задача 4:          В Ромбе   $ABCD$    точка $K$ делит сторону   $CD$ в соотношении   $2:7$, а    $M$ делит   $1:3$ сторону   $BC$.       $MN$   параллельна   $AB$,   $O$ — пересечение $MN$ и   $BK$.    Найти площадь трапеции   $ABON$, если площадь   $ABCD=420$.

Решение:    пробa    Анализ рисунка:    

  • $AB$, $MN$,   $CD$ — параллельные.   Какие углы равные?
  • Треугольники   $BMO$ и    $BKC$ подобные.   Коэффициент подобия   $1:3$.
  • Отношение площадей    $BMO$   и   $BKC$ равен    $1:9$ — квадрату коэффициента подобия.
  • (по формулам) Площади   $BKC$   и    $BCD$ относятся как    $CK$ и   $CD$, т.е.   $5:7$.
  • Площадь   $BCD$   равен половине площади   $ABCD$,   т.е. $S_{BCD}=210$.
  • $S_{ABMN}:S_{ABCD}=1:3$        $Rightarrow$       $S_{ABMN}=140$ .   
  • Из складываемости площадей:     площадь $ABON$ =   разности   площадей   $ABMN$   и    $BOM$.

Упражнения:

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто неподвижное — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
  • Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторонами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Квадратодновременно прямоугольник, ромб, параллелограмм. Диагонали квадрата    равны между собой и делятся пополам.

Задача 1:        Найти периметр ромба   $ABCD$, в котором    $angle C=60^o$ , а меньшая диагональ равна    $10,5$ см.

  • Решение:          Рассмотрим   $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков   данный   треугольник?             
  • По условию,   угол $bigtriangleup BCD$ у вершины   $angle B=60^o$   , тогда как два других угла?
  • Каков все-таки этот   треугольник?   Чему равны стороны ромба. А сумма сторон? Ответ:     $p=42$ см.

Задача 2:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

  • Полезные напоминания: «В равностороннем треугольнике все углы равны    60    градусов.
  • Если в равнобренном треугольнике один из углов 60, то это равносторонный треугольник — стороны равны, углы тоже.
  • В прямоугольном треугольнике катет напротив угла 30 градусов равен половине гипотенузы.

Упражнения:

Задачи из сайта https://resh.edu.ru :

Задача 11: В ромбе АВСD ∠А = 140°, диагонали пересекаются в точке O. Найдите угол CBO.

Задача 12:    В ромбе ABCD ∠С = 50°. Точка O – точка пересечения диагоналей ромба. Найдите угол OBC.

Задача 13: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.

Задача 14: ???? В любом ромбе равны…      Противолежащие углы равны, сумма соседних углов равна 180 градусов:(?) Ромб, у которого все углы равны, это… (?)    Диагонали пересекаются и точкой пересечения делятся пополам. (?)   Диагонали взаимно перпендикулярны. (?)

Задача 15: Отрезки AB и CD пересекаются в их общей середине. В образовавшемся четырёхугольнике ∠CAD = ∠ADB. Найдите ∠BCA.

Задача 16: На диагонали квадрата как на стороне построен новый квадрат. Чему равна его диагональ, если сторона исходного квадрата равна 6 см?

Задача 17: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.

Зная сторону ромба, можно сразу найти его высоту, периметр и площадь, без переменных второго порядка. Высота ромба равна его стороне, умноженной на синус угла α, периметр ромба, зная сторону, можно найти, умножив ее на четыре (количество сторон), а площадь представляет собой произведение стороны ромба на высоту, то есть, преобразуя через формулу высоты, — сторона ромба в квадрате, умноженная на синус угла α. (рис.115.1)
h=a sin⁡α
P=4a
S=ah=a^2 sin⁡α

Второй угол ромба вычисляется как разность 180 градусов и известного угла, исходя из того, что противоположные углы ромба равны по значению, а сумма всех углов равна 360 градусам.
β=180°-α

Диагонали ромба можно найти из равнобедренных треугольников, которые они образуют поочередно со сторонами ромба. Используя теорему косинусов для равнобедренных треугольников, диагонали через сторону и угол будут равны квадратному корню из двух разностей стороны ромба в квадрате и косинуса противоположного диагонали угла. (рис.115.4)
d_1=√(2(a^2-cos⁡α))
d_2=√(2(a^2-cos⁡β))=√(2(a^2+cos⁡α))

Найти радиус окружности, вписанной в ромб, через сторону ромба и угол α можно, заменив в формуле высоту на произведение стороны и синуса угла. (рис.115.3)
r=h/2=(a sin⁡α)/2

В ромбе (ABCD) известно, что (AB = 5), (BD = 2sqrt{21}) . Найдите синус угла (ABD).


Решение

Мы знаем, что диагонали ромба точкой пересечения делятся пополам, значит (BO=2sqrt{21}div 2=sqrt{21}).

Найдем косинус угла (ABD) (косинус – отношение прилежащего катета к гипотенузе) из прямоугольного треугольника (ABO):

(displaystyle cosABD=frac{BO}{AB}=frac{sqrt{21}}{5}).

Для нахождения синуса угла (ABD) воспользуемся основным тригонометрических тождеством (sin^2x+cos^2x=1).

(displaystyle sin^2 ABD+left(frac{sqrt{21}}{5}right)^2=1;)

(displaystyle sin^2 ABD=1-frac{21}{25};)

(sin ABD=0,4).

Ответ: (0,4).


Источник: ЕГЭ 2023 Математика. Базовый уровень. Типовые экзаменационные варианты. 30 вариантов (вариант 6) (Купить книгу)

Понравилась статья? Поделить с друзьями:
  • Когда у ребенка ножки иксом как исправить
  • Как найти старую игру по описанию
  • Как найти аквариум в субнатике
  • Как найти простую дробь от простой дроби
  • Как найти ключевое слово на своем сайте