Как найти sin целого числа

Примеры:

(sin{⁡30^°}=)(frac{1}{2})
(sin⁡)(frac{π}{3})(=)(frac{sqrt{3}}{2})
(sin⁡2=0,909…) 

Содержание:

  • Аргумент и значение

  • Синус острого угла

  • Синус числа

  • Синус любого угла

  • Связь с другими функциями

  • Функция
     

Аргумент и значение

аргумент и значения синуса

Синус острого угла

Синус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к гипотенузе.

Пример:

1) Пусть дан угол и нужно определить синус этого угла.

угол

2) Достроим на этом угле любой прямоугольный треугольник.

определение синуса через треугольник

3) Измерив, нужные стороны, можем вычислить (sinA).

определение синуса через катет и гипотенузу

Синус числа

как определяется синус с помощью окружности

Числовая окружность позволяет определить синус любого числа, но обычно находят синус чисел как-то связанных с Пи: (frac{π}{2}), (frac{3π}{4}), (-2π).

Например, для числа (frac{π}{6}) — синус будет равен (0,5). А для числа (-)(frac{3π}{4}) он будет равен (-)(frac{sqrt{2}}{2}) (приблизительно (-0,71)).

значение синуса на числовой окружности

Подробнее как вычисляется синус разных чисел можно прочитать в этой статье.

Значение синуса всегда лежит в пределах от (-1) до (1). При этом вычислен он может быть для абсолютно любого угла и числа.

Синус любого угла

Благодаря единичному кругу можно определять тригонометрические функции не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

синус тупого угла

Теперь пояснение: пусть нужно определить (sin∠КОА) с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам (sin⁡∠KOA).

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

синус отрицательного угла

И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

синус угла больше 360 градусов

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.

Как вы могли заменить, и синус числа, и синус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Foxford

Связь с другими тригонометрическими функциями:

— косинусом того же угла (или числа): основным тригонометрическим тождеством (sin^2⁡x+cos^2⁡x=1)
— тангенсом и косинусом того же угла (или числа): формулой (tg⁡x=)(frac{sin⁡x}{cos⁡x})
— котангенсом того же угла (или числа): формулой (1+сtg^2⁡x=)(frac{1}{sin^2⁡x})
Другие наиболее часто применяемые формулы смотри здесь.

Функция (y=sin⁡x)

Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения синуса, мы получим следующий график:

синусоида.png

График данной функции называется синусоида и обладает следующими свойствами:

      — область определения – любое значение икса:   (D(sin⁡x )=R)
      — область значений – от (-1) до (1) включительно:    (E(sin⁡x )=[-1;1])
      — нечетная:   (sin⁡(-x)=-sin⁡x)
      — периодическая с периодом (2π):   (sin⁡(x+2π)=sin⁡x)
      — точки пересечения с осями координат:
             ось абсцисс:   ((πn;0)), где (n ϵ Z)
             ось ординат:   ((0;0))
      — промежутки знакопостоянства:
             функция положительна на интервалах:   ((2πn;π+2πn)), где (n ϵ Z)
             функция отрицательна на интервалах:    ((π+2πn;2π+2πn)), где (n ϵ Z)
      — промежутки возрастания и убывания:
             функция возрастает на интервалах:    ((-)(frac{π}{2})(+2πn;) (frac{π}{2})(+2πn)), где (n ϵ Z)
             функция убывает на интервалах:    (()(frac{π}{2})(+2πn;)(frac{3π}{2})(+2πn)), где (n ϵ Z)
       — максимумы и минимумы функции:
             функция имеет максимальное значение (y=1) в точках (x=)(frac{π}{2})(+2πn), где (n ϵ Z)
             функция имеет минимальное значение (y=-1) в точках (x=-)(frac{π}{2})(+2πn), где (n ϵ Z).

Смотрите также:

Косинус
Тангенс
Котангенс
Решение уравнения (sin⁡x=a)

Как найти синус по таблице Брадиса

«Четырехзначные математические таблицы» Брадиса, несмотря на большое количество современных средств вычисления тригонометрических функций, не выходят из употребления. С их помощью можно быстро найти нужное значение, не прилагая особых усилий. Но для этого необходимо научиться пользоваться этими таблицами.

Как найти синус по таблице Брадиса

Вам понадобится

  • — заданный угол;
  • — «Четырехзначные математические таблицы».

Инструкция

Откройте «Четырехзначные математические таблицы. Они есть как в печатном варианте, так и в интернете. Пользуются ими в обоих случаях одинаково, только в книге нужно заглянуть в содержание, а на сайте — в меню. Найдите главу «Синусы» и откройте нужную страницу.

Посмотрите, какой угол вам дан. Таблицами Брадиса можно пользоваться и в том случае, если угол дробный, то есть измеряется в градусах и минутах. Если размер угла дан в радианах, переведите его в градусы. Он равен произведению размера в радианах, умноженному на отношение 180° на коэффициент π и выражается формулой α1=α*180°/π, где α — величина угла в градусах, а α1 — в радианах.

В таблице вы видите горизонтальные и вертикальные ряды. Посмотрите на самый крайний ряд слева. В верхнем левом углу стоит слово sin, а под ним — столбик цифр с обозначением градуса. Это целое количество градусов. Найдите число, которое соответствует числу целых градусов в заданном вам угле. Например, вам дан угол размером 27°18′. Найдите в крайней левой колонке число 27. Затем в верхней строке отыщите число 18. На пересечении нужных строки и столбца найдите нужное значение.

Обратите внимание на то, что градусы в таблице идут подряд, а минуты — через шесть. То есть 18 минут найти непосредственно в таблице можно, а 19 — нет. Для того чтобы найти синус угла, количество минут которого не кратно шести, существуют поправки. Они находятся в правой стороне таблицы. Вычислите разницу между количеством минут в заданном угле и ближайшем, где количество минут кратно 6. Если эта разность составляет 1, 2 или 3 минуты, просто приплюсуйте нужное значение к последней цифре величины синуса меньшего угла. Если разность составляет 4 или 5, возьмите величину ближайшего большего угла и отнимите от последней цифры значение первой или второй поправок.

Видео по теме

Источники:

  • Таблицы Брадиса
  • таблица брадиса квадратные корни

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Тригонометрические функции любого угла и определение синуса, косинуса, тангенса и котангенса:

Отметим на оси х справа от начала координат точку А и проведем через нее окружность с центром в точке О (рис. 64). Радиус OA будем называть начальным радиусом.

Повернем начальный радиус около точки О на 70° против часовой стрелки. При этом он перейдет в радиус ОВ. Говорят, что угол поворота равен 70°. Если повернуть начальный радиус около точки О на 70° по часовой стрелке, то он перейдет в радиус ОС. В этом случае говорят, что угол поворота равен —70°. Углы поворота в 70° и —70° показаны стрелками на рисунке 64.

Тригонометрические выражения

Вообще при повороте против часовой стрелки угол поворота считают положительным, а при повороте по часовой стрелке — отрицательным.

Из курса геометрии известно, что мера угла в градусах выражается числом от 0 до 180. Что касается угла поворота, то он может выражаться в градусах каким угодно действительным числом от Тригонометрические выражения Так, если начальный

Тригонометрические выражения

радиус повернуть против часовой стрелки на 180°, а потом еще на 30°, то угол поворота будет равен 210°. Если начальный радиус сделает полный оборот против часовой стрелки, то угол поворота будет равен 360°; если он сделает полтора оборота в том же направлении, то угол поворота будет равен 540° и т. д. На рисунке 65 стрелками показаны углы поворота в 405° и -200°.

Рассмотрим радиусы OA и ОВ (рис. 66). Существует бесконечно много углов поворота, при которых начальный радиус OA переходит в радиус ОВ. Так, если Тригонометрические выражения то соответствующие углы поворота будут равны 130° + 360°n, где n — любое целое число. Например, при n = 0, 1, —1, 2, —2 получаем углы поворота 130°, 490°, —230°, 850°, —590°.

Пусть при повороте на угол а начальный радиус OA переходит в радиус ОВ. В зависимости от того, в какой координатной четверти окажется радиус ОВ, угол а называют углом этой четверти. Так, если 0° < а < 90°, то а — угол I четверти; если 90° < а <180°, то а — угол II четверти; если 180° < а < 270°, то а — угол III четверти; если 270° < а < 360°, то а — угол IV четверти. Очевидно, что при прибавлении к углу целого числа оборотов получается угол той же четверти. Например, угол в 430° является углом I четверти, так как 430° = 360°+ 70° и 0°<70°<90°; угол в 920° является углом III четверти, так как Тригонометрические выражения200° < 270°.

Углы Тригонометрические выражения не относятся ни к какой четверти.

В курсе геометрии были определены синус, косинус и тангенс угла а при Тригонометрические выражения Теперь мы распространим эти определения на случай произвольного угла а. Кроме того, определим еще котангенс угла а, который обозначают ctg а.

Пусть при повороте около точки О на угол а начальный радиус OA переходит в радиус ОВ (рис. 67).

Тригонометрические выражения

Синусом угла а называется отношение ординаты точки В к длине радиуса.

Косинусом утла а называется отношение абсциссы точки В к длине радиуса.

Тангенсом угла а называется отношение ординаты точки В к ее абсциссе.

Котангенсом угла а называется отношение абсциссы точки В к ее ординате.

Если координаты точки В равны х и у, а длина начального радиуса равна R, то

Тригонометрические выражения

В курсе геометрии было показано, что значения синуса, косинуса и тангенса угла а, где Тригонометрические выражения зависят только от а и не зависят от длины радиуса R. И в общем случае sin а, cos a, tg а, а также ctg а зависят только от угла а.

Покажем, например, что sin а не зависит от R.

Пусть при повороте луча Тригонометрические выражения около точки О на угол а (рис. 68) радиусы Тригонометрические выражения займут положения Тригонометрические выраженияОбозначим координаты точки Тригонометрические выражения а координаты точки Тригонометрические выражения

Опустим перпендикуляры из точек Тригонометрические выраженияна ось х. Прямоугольные треугольники Тригонометрические выражения подобны. Отсюда

Тригонометрические выражения

Так как точки Тригонометрические выражения принадлежат одной и той же координатной четверти, то их ординаты Тригонометрические выражения имеют одинаковые знаки. Поэтому Тригонометрические выражения

Заметим, что это равенство верно и в том случае, когда точки Тригонометрические выражения попадают на одну из осей координат. Таким образом, для любого угла а отношение Тригонометрические выражения не зависит от длины радиуса R.

Выражения sin а и cos а определены при любом а, так как для любого угла поворота можно найти соответствующие значения дробей Тригонометрические выражения Выражение tg а имеет смысл при любом а, кроме углов поворота Тригонометрические выражения так как для этих углов не имеет смысла дробь Тригонометрические выражения Для выражения ctg а исключаются углы 0°, ±180°, ±360°, для которых не имеет смысла дробь Тригонометрические выражения

Каждому допустимому значению а соответствует единственное значение sin a, cos а, tg а и ctg а. Поэтому синус, косинус, тангенс и котангенс являются функциями угла а. Их называют тригонометрическими функциями.

Можно доказать, что областью значений синуса и косинуса является промежуток [—1; 1], а областью значений тангенса и котангенса — множество всех действительных чисел.

Приведем примеры вычисления значений тригонометрических функций.

Пример:

Найдем с помощью чертежа приближенные значения sin 110°, cos 110°, tg 110° и ctg 110°.

Начертим окружность с центром в начале координат и радиусом OA = R = 3 (рис. 69). Повернем радиус OA на 110°. Получим радиус ОВ. Найдем по рисунку координаты х и у точки В: Тригонометрические выражения Отсюда

Тригонометрические выражения
Тригонометрические выражения
Тригонометрические выражения

В таблице приведены известные из курса геометрии значения синуса, косинуса и тангенса углов 0°, 30°, 45°, 60° и 90°. Прочерк сделан в том случае, когда выражение не имеет смысла.

Тригонометрические выражения

Значения котангенса могут быть получены из значений тангенса, так как котангенс угла является числом, обратным тангенсу этого же угла. Поэтому, например,

Тригонометрические выражения

Пример:

Найдем синус, косинус, тангенс и котангенс углов 180° и 270°.

При повороте на 180° около точки О радиус OA, равный 1, (рис. 70) переходит в радиус ОВ, а при повороте на 270° — в радиус ОС.

Тригонометрические выражения

Так как точка В имеет координаты х = — 1 и у = 0, то

Тригонометрические выражения

Так как точка С имеет координаты х = 0 и у = —1, то

Тригонометрические выражения

Напомним, что выражения ctg 180° и tg 270° не имеют смысла.

Свойства синуса, косинуса, тангенса и котангенса

Рассмотрим некоторые свойства тригонометрических функций.

Выясним сначала, какие знаки имеют синус, косинус, тангенс и котангенс в каждой из координатных четвертей.

Пусть при повороте радиуса OA, равного R, на угол а точка А перешла в точку В с координатами х и у (см. рис. 67).

Так как Тригонометрические выражения то знак sin а зависит от знака у.

В I и II четвертях у > 0, а в III и IV четвертях у < 0. Значит, sin a > 0, если а является углом I или II четверти, и sin a < 0, если а является углом III или IV четверти.

Знак cos а зависит от знака х, так как Тригонометрические выражения В I и IV четвертях х > 0, а во II и III четвертях х < 0. Поэтому cos a > 0, если а является углом I или IV четверти, и cos a<0, если a является углом II или III четверти.

Так как Тригонометрические выражения то знаки tg а и ctg а зависят от знаков х и у. В I и III четвертях хну имеют одинаковые знаки, а во II и IV — разные. Значит, tg a > 0 и ctg a > 0, если а является углом I или III четверти; tg a < 0 и ctg a < 0, если а является углом II или IV четверти.

Знаки синуса, косинуса, тангенса и котангенса в каждой из четвертей показаны на рисунке 73.

Тригонометрические выражения

Выясним теперь вопрос о четности и нечетности тригонометрических функций.

Пусть при повороте на угол а радиус OA переходит в радиус ОВ, а при повороте на угол — а в радиус ОС х (рис. 74). Соединив отрезком точки В и С, получим равнобедренный треугольник ВОС. Луч OA является биссектрисой угла ВОС. Значит, отрезок ОК является медианой и высотой треугольника ВОС. Отсюда следует, что точки В и С симметричны относительно оси абсцисс.

Тригонометрические выражения

Пусть координаты точки В равны х и у, тогда координаты точки С равны х и -у. Пользуясь этим, найдем, что

Тригонометрические выражения

Мы получили формулы, выражающие зависимость между синусами, косинусами, тангенсами и котангенсами противоположных углов:

Тригонометрические выражения

Например:

Тригонометрические выражения

Итак, синус, тангенс и котангенс являются нечетными функциями, а косинус является четной функцией.

Рассмотрим еще одно свойство тригонометрических функций.

Если при повороте радиуса OA на угол а получен радиус ОВ (см. рис. 67), то тот же радиус получится и при повороте OA на угол, отличающийся от а на целое число оборотов. Отсюда следует, что при изменении угла на целое число оборотов значения синуса, косинуса, тангенса и котангенса не изменяются.

Например:

Тригонометрические выражения

Рассмотренные свойства позволяют свести нахождение значений синуса, косинуса, тангенса и котангенса любого угла к нахождению их значений для неотрицательного угла, меньшего 360°.

Пример:

Найдем sin 765° и cos ( — 1170°). Имеем:

Тригонометрические выражения

Радианная мера угла. Вычисление значении тригонометрических функции с помощью микрокалькулятора

Как известно, углы измеряются в градусах, минутах, секундах. Эти единицы измерения связаны между собой соотношениями

Тригонометрические выражения

Кроме указанных, используется также единица измерения углов, называемая радианом.

Углом в один радиан называют центральный угол, которому соответствует длина дуги, равная длине радиуса окружности.

Угол, равный 1 рад, изображен на рисунке 75.

Тригонометрические выражения

Радианная мера угла, т. е. величина угла, выраженная в радианах, не зависит О А от длины радиуса. Это следует из того, что фигуры, ограниченные углом и дугой окружности с центром в вершине этого угла, подобны между собой (рис. 76).

Установим связь между радиан-ным и градусным измерениями углов.

Углу, равному 180°, соответствует полуокружность, т. е. дуга, длина l которой равна Тригонометрические выражения

Тригонометрические выражения

Тригонометрические выражения

Чтобы найти радианную меру этого угла, надо длину дуги l разделить на длину радиуса R. Получим:

Тригонометрические выражения

Следовательно, радианная мера угла в 180° равна Тригонометрические выражения

Тригонометрические выражения

Отсюда получаем, что радианная мера угла в 1° равна Тригонометрические выражения

Тригонометрические выражения

Приближенно 1° равен 0,017 рад.

Из равенства Тригонометрические выражения рад также следует, что градусная мера угла в 1 рад равна Тригонометрические выражения

Тригонометрические выражения

Приближенно 1 рад равен 57°.

Рассмотрим примеры перехода от радианной меры к градусной и от градусной меры к радианной.

Пример:

Выразим в градусах 4,5 рад.

Так как Тригонометрические выражения

Тригонометрические выражения

Пример:

Найдем радианную меру угла в 72°.

Так как Тригонометрические выражения

Тригонометрические выражения

При записи радианной меры угла обозначение «рад» часто опускают. Например, вместо равенства Тригонометрические выражения рад обычно пишут:

Тригонометрические выражения

Выразим в радианной мере углы 30°, 45°, 60°, 90°, 270° и 360°. Получим:

Тригонометрические выражения

Радианная мера угла часто используется в тригонометрических выражениях. Так, запись sirfl означает синус угла в 1 радиан, запись sin ( — 2,5) означает синус угла в —2,5 радиана, запись Тригонометрические выраженияозначает синус угла в Тригонометрические выражения радиан. Вообще запись sin х, где х — произвольное действительное число, означает синус угла, равного х радианам.

Значения тригонометрических функций для углов, выраженных как в градусах, так и в радианах, можно находить, используя микрокалькулятор. Так, с помощью микрокалькулятора «Электроника БЗ-З6» значения синуса, косинуса и тангенса вычисляют следующим образом. Переводят переключатель «ГРАД — РАД», находящийся в нижней части корпуса, в положение «ГРАД», если угол задан в градусах, или в положение «РАД», если угол задан в радианах. Вводят угол, нажимают клавишу Тригонометрические выражения а затем клавишу, над которой написано название соответствующей функции.

Пример:

Найдем с помощью микрокалькулятора значение выражения с точностью до 0,001:

Тригонометрические выражения

а) Установим переключатель в положение «ГРАД», затем выразим 28°17′ в градусах и нажмем «последовательно клавиши Тригонометрические выражения Так как Тригонометрические выражения то программа вычислений выглядит так:

Тригонометрические выражения

Получаем, что Тригонометрические выражения

б) Устанавливаем переключатель в положение «РАД» и находим значение cos 3,9 по программе:

Тригонометрические выражения

Получаем, что cos Тригонометрические выражения

в) Переключатель устанавливаем в положение «РАД». При нахождении значения выражения Тригонометрические выражения воспользуемся тем, что на панели микрокалькулятора «Электроника БЗ-З6» имеется специальная клавиша Тригонометрические выражения при нажатии которой высвечивается число 3,1415926 — приближенное значение числа Тригонометрические выражения с точностью до Тригонометрические выражения Вычисления проводим по программе:

Тригонометрические выражения

Получаем, что Тригонометрические выражения

Отметим, что для вычисления котангенса угла надо сначала найти значение тангенса этого угла, а потом обратное число, нажав клавиши Тригонометрические выражения

Основные тригонометрические формулы

Соотношения между тригонометрическими функциями одного и того же угла:

Рассмотрим, как связаны между собой синус и косинус одного и того же угла.

Пусть при повороте радиуса OA вокруг точки О на угол а получен радиус ОВ (рис. 77). По определению

Тригонометрические выражения

где х — абсцисса точки В, у — ее ордината, a R — длина радиуса OA. Отсюда

Тригонометрические выражения

Так как точка В принадлежит окружности с центром в начале координат, радиус которой равен R, то ее координаты удовлетворяют уравнению

Тригонометрические выражения

Подставив в это уравнение вместо х и у выражения R cos а и R sin а, получим:

Тригонометрические выражения

Разделив обе части последнего равенства на Тригонометрические выражения найдем, что

Тригонометрические выражения

Равенство (1) верно при любых значениях а. Выясним теперь, как связаны между собой тангенс, синус и косинус одного и того же угла.

По определению Тригонометрические выражения Так как y = R sin a, x = R cos a,

Тригонометрические выражения

Таким образом,

Тригонометрические выражения

Аналогично

Тригонометрические выражения

Тригонометрические выражения

Равенство (2) верно при всех значениях а, при которых cos Тригонометрические выражения, а равенство (3) верно при всех значениях а, при которых sin Тригонометрические выражения

С помощью формул (1) — (3) можно получить другие формулы, выражающие соотношения между тригонометрическими функциями одного и того же угла.

Из равенств (2) и (3) получим:

Тригонометрические выражения

Равенство (4) показывает, как связаны между собой тангенс и котангенс угла а. Оно верно при всех значениях а, при которых tg а и ctg а имеют смысл.

Заметим, что формулу (4) можно получить и непосредственно из определения тангенса и котангенса.

Выведем теперь формулы, выражающие соотношения между тангенсом и косинусом, а также между котангенсом и синусом одного и того же угла.

Разделив обе части равенства (1) на Тригонометрические выражения получим:

Тригонометрические выражения

Если обе части равенства (1) разделить на Тригонометрические выражения то будем иметь:

Тригонометрические выражения

т. е.

Равенство (5) верно, когда cos Тригонометрические выражения а равенство (6), когда sin Тригонометрические выражения

Равенства (1) — (6) являются тождествами. Их называют основными тригонометрическими тождествами. Рассмотрим примеры использования этих тождеств для нахождения значений тригонометрических функций по известному значению одной из них.

Пример:

Найдем cos a, tg а и ctg а, если известно, что sinТригонометрические выражения

Найдем сначала cos а. Из формулы Тригонометрические выраженияполучаем, что Тригонометрические выражения

Так как а является углом II четверти, то его косинус отрицателен. Значит,

Тригонометрические выражения

Зная синус и косинус угла а, можно найти его тангенс:

Тригонометрические выражения

Для отыскания котангенса угла а удобно воспользоваться формулой tg a • ctg a = 1. Имеем:

Тригонометрические выражения

Пример:

Известно, что Тригонометрические выражения Найдем sin a, cos a и ctg a.

Воспользовавшись формулой Тригонометрические выражения найдем cos a. Имеем:

Тригонометрические выражения

По условию угол a является углом I четверти, поэтому его косинус положителен. Значит,

Тригонометрические выражения

Зная cos а и tg а, можно найти sin а. Из формулы Тригонометрические выражения получим:

Тригонометрические выражения

По известному tg а легко найти ctga:

Тригонометрические выражения

Итак,

Тригонометрические выражения

Применение основных тригонометрических формул к преобразованию выражении

Мы уже встречались с некоторыми простейшими преобразованиями тригонометрических выражений. Рассмотрим более сложные примеры.

Пример:

Упростим выражение Тригонометрические выражения

Воспользовавшись формулами Тригонометрические выраженияТригонометрические выражения получим:

Тригонометрические выражения

Пример:

Упростим выражение Тригонометрические выражения

Тригонометрические выражения

Пример:

Докажем тождество

Тригонометрические выражения

Преобразуем левую часть данного равенства:

Тригонометрические выражения

Мы получили выражение, стоящее в правой части равенства. Таким образом, тождество доказано.

Формулы приведения

Тригонометрические функции углов вида Тригонометрические выражения Тригонометрические выражения могут быть выражены через функции угла а с помощью формул, которые называют формулами приведения.

Выведем сначала формулы приведения для синуса и косинуса.

Докажем, что для любого а

Тригонометрические выражения

Повернем радиус OA, длина которого равна R, на угол а и на угол Тригонометрические выражения При этом радиус OA перейдет соответственно в радиусы ОВ1 и ОВ2 (рис. 78).

Тригонометрические выражения

Опустим из точки В1 перпендикуляры Тригонометрические выражения на оси координат. Получим прямоугольник Тригонометрические выражения

Повернем прямоугольник Тригонометрические выражения около точки О на угол Тригонометрические выражения Тогда точка В1 перейдет в точку В2, точка С1 перейдет в точку С2 на оси у, точка D1 — в точку D2 на оси х, а прямоугольник Тригонометрические выражения перейдет в равный ему прямоугольник Тригонометрические выражения

Отсюда следует, что ордината точки В2 равна абсциссе точки В1, а абсцисса точки В2 равна числу, противоположному ординате точки В1. Обозначим координаты точки B1 через Тригонометрические выражения а координаты точки В2 через Тригонометрические выражения Тогда

Тригонометрические выражения

Значит,

Тригонометрические выражения

Из формул (1) следует, что

Тригонометрические выражения

Действительно, представим разность Тригонометрические выражения в виде суммы Тригонометрические выражения Тогда

Тригонометрические выражения

Формулы приведения для синуса и косинуса угла Тригонометрические выражения выглядят так:

Тригонометрические выражения

Для доказательства достаточно представить Тригонометрические выражения в виде Тригонометрические выражения и дважды воспользоваться формулами (1). Например :

Тригонометрические выражения

Заметим, что к формулам (2) легко прийти и из геометрических соображений (рис. 79). При повороте радиуса OA на угол а и на угол Тригонометрические выражения точка А перейдет соответственно в точки В1 и В2, которые симметричны относительно начала координат. Абсциссы, а также ординаты симметричных относительно

Тригонометрические выражения

начала координат точек равны по модулю и противоположны по знаку. Отсюда следует, что Тригонометрические выражения а также Тригонометрические выражения — противоположные числа.

Из формул (2) следует, что

Тригонометрические выражения

Для доказательства достаточно представить Тригонометрические выражения в виде суммы Тригонометрические выражения и применить формулы (2).

Формулы приведения для синуса и косинуса угла Тригонометрические выражения имеют вид:

Тригонометрические выражения

Чтобы доказать формулы (3), достаточно представить Тригонометрические выражения и применить последовательно формулы (1) и (2).

Из формул (3) нетрудно получить, что

Тригонометрические выражения

Наконец, формулы приведения для синуса и косинуса угла Тригонометрические выражения следуют из того, что при изменении угла на целое число оборотов значения синуса и косинуса не изменяются:

Тригонометрические выражения

Справедливы также формулы

Тригонометрические выражения

Например, для Тригонометрические выражения

Формулы приведения для тангенса и котангенса можно получить с помощью формул приведения для синуса и косинуса. Например:

Тригонометрические выражения

Все формулы приведения сведем в две таблицы, поместив в первой из них формулы для углов Тригонометрические выражения а во второй — для углов Тригонометрические выражения

Тригонометрические выражения

Цо таблицам легко проследить закономерности, имеющие место для формул приведения. Эти закономерности позволяют сформулировать правило, с помощью которого можно записать любую формулу приведения, не прибегая к таблице:

Функция в правой части равенства берется с тем же знаком, какой имеет исходная функция, если считать, что угол а является углом 1 четверти;

для углов Тригонометрические выражения название исходной функции сохраняется; для углов Тригонометрические выражения название исходной функции заменяется (синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс).

Пример:

Выразим Тригонометрические выражения через тригонометрическую функцию угла а.

Если считать, что a — угол I четверти, то Тригонометрические выражения будет углом II четверти. Во II четверти тангенс отрицателен, значит, в правой части равенства следует поставить знак «минус». Для угла Тригонометрические выраженияназвание исходной функции «тангенс» сохраняется. Поэтому

Тригонометрические выражения

С помощью формул приведения нахождение значений тригонометрических функций любого угла можно свести к нахождению значений тригонометрических функций угла от Тригонометрические выражения.

Пример:

Найдем значение Тригонометрические выражения

Тригонометрические выражения

Пример:

Найдем значение sin (— 585°).

Тригонометрические выражения

Формулы сложения и их следствия

Выведем формулы, выражающие тригонометрические функции суммы и разности двух углов через тригонометрические функции этих углов.

Повернем радиус OA, равный R, около точки О на угол а и на угол Тригонометрические выражения(рис. 80). Получим радиусы ОВ и ОС.

Найдем скалярное произведение векторов Тригонометрические выражения Пусть координаты точки В равны Тригонометрические выражения координаты точки С равны Тригонометрические выражения Эти же координаты имеют соответственно и векторы Тригонометрические выражения По определению скалярного произведения векторов:

Тригонометрические выражения

Выразим скалярное произведение Тригонометрические выражения через тригонометрические функции углов а и Тригонометрические выражения. Из определения косинуса и синуса следует, что

Тригонометрические выражения

Подставив значения Тригонометрические выражения в правую часть равенства Тригонометрические выражения получим:

Тригонометрические выражения

С другой стороны, по теореме о скалярном произведении векторов имеем:

Тригонометрические выражения

Угол ВОС между векторами Тригонометрические выражения может быть равен а — Тригонометрические выражения (см. рис. 80), Тригонометрические выражения (рис. 81) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos Тригонометрические выражения Поэтому

Тригонометрические выражения

Так как Тригонометрические выражения равно также Тригонометрические выражения то

Тригонометрические выражения

Формулу (1) называют формулой косинуса разности.

Косинус разности двух углов равен произведению косинусов этих углов плюс произведение синусов этих углов.

С помощью формулы (1) легко получить формулу косинуса суммы:

Тригонометрические выражения

Тригонометрические выражения

Косинус суммы двух углов равен произведению косинусов этих углов минус произведение синусов этих углов.

Выведем теперь формулы синуса суммы и синуса разности. Используя формулы приведения и формулу (1), получим:

Тригонометрические выражения

Синус суммы двух углов равен произведению синуса первого угла на косинус второго плюс произведение косинуса первого угла на синус второго.

Для синуса разности имеем:

Тригонометрические выражения

Синус разности двух углов равен произведению синуса первого угла на косинус второго минус произведение косинуса первого угла на синус второго.

Формулы (1) — (4) называют формулами сложения для синуса и косинуса.

Приведем примеры использования формул сложения.

Пример:

Вычислим cos 15° и sin 15°. Представим 15° в виде разности 45° — 30°. Тогда

Тригонометрические выражения

Пример:

Упростим выражение Тригонометрические выражения Воспользовавшись формулами косинуса суммы и косинуса разности, получим:

Тригонометрические выражения

Используя формулы (1) — (4), можно вывести формулы сложения для тангенса и котангенса. Выведем, например, формулу тангенса суммы:

Тригонометрические выражения

Разделим числитель и знаменатель полученной дроби на произведение cos a cos Тригонометрические выражения, предполагая, что Тригонометрические выраженияПолучим:

Тригонометрические выражения

Значит,

Тригонометрические выражения

Аналогично можно доказать, что

Тригонометрические выражения

Формулы двойного угла

Формулы сложения позволяют выразить sin 2a, cos 2a и tg 2a через тригонометрические функции угла a. Положим в формулах

Тригонометрические выражения

Тригонометрические выражения равным a. Получим тождества:

Тригонометрические выражения

Эти тождества называют формулами двойного угла.

Приведем примеры применения формул двойного угла для нахождения значений тригонометрических функций и преобразования тригонометрических выражений.

Пример:

Найдем значение sin 2а, зная, что cosa = — 0,8 и a — угол III четверти.

Сначала вычислим sin а. Так как a — угол III четверти, то sin а < 0. Поэтому

Тригонометрические выражения

По формуле синуса двойного угла

Тригонометрические выражения

Пример:

Упростим выражение

Тригонометрические выражения

Вынесем за скобки sin a cos a и воспользуемся формулами двойного угла:

Тригонометрические выражения

Из формулы (2) следует, что

Тригонометрические выражения

Действительно, выразив cos 2a через sin a, получим:

Тригонометрические выражения

Отсюда Тригонометрические выражения

Аналогично, выразив cos 2a через cos a, получим:

Тригонометрические выражения

Формулы (4) и (5) используются в вычислениях и преобразованиях.

Пример:

Упростим выражение Тригонометрические выражения

Применим формулы (4) и (5) к выражениям 1 — cos а и 1 + cos а, представив а в виде произведения Тригонометрические выражения Получим:

Тригонометрические выражения

Формулы суммы и разности тригонометрических функции

Сумму и разность синусов или косинусов можно представить в виде произведения тригонометрических функций. Формулы, на которых основано такое преобразование, могут быть получены из формул сложения.

Чтобы представить в виде произведения сумму sin a + sin Тригонометрические выражения, положим Тригонометрические выражения и воспользуемся формулами синуса суммы и синуса разности. Получим:

Тригонометрические выражения

Из равенств a = x + y и Тригонометрические выражения= x — y находим, что Тригонометрические выражения и Тригонометрические выражения Поэтому

Тригонометрические выражения

Мы получили формулу суммы синусов двух углов.

Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус их полуразности.

Аналогично можно вывести формулы разности синусов, суммы и разности косинусов.

Формула разности синусов:

Тригонометрические выражения

Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус их полусуммы.

Формула суммы косинусов:

Тригонометрические выражения

Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы, этих углов на косинус их полуразности.

Формула разности косинусов:

Тригонометрические выражения

Разность косинусов двух углов равна взятому со знаком *минус» удвоенному произведению синуса полусуммы этих углов на синус их полуразности.

Учитывая, что Тригонометрические выражения формулу разности косинусов можно записать в другом виде:

Тригонометрические выражения

Приведем примеры применения полученных формул.

Пример:

Упростим сумму sin 10° + sin 50°.

Воспользовавшись формулой суммы синусов, получим:

Тригонометрические выражения

Пример:

Представим в виде произведения разность Тригонометрические выражения

Воспользовавшись формулой приведения, представим данное выражение в виде разности косинусов и преобразуем ее в произведение. Тогда

Тригонометрические выражения

Пример:

Представим в виде произведения выражение 1 — sin а.

Так как Тригонометрические выражения то данное выражение можно представить в виде разности синусов. Поэтому

Тригонометрические выражения

Эту задачу можно решить иначе:

Тригонометрические выражения

С помощью формул приведения первое из полученных выражений можно преобразовать во второе и наоборот.

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Вычисление значений тригонометрических выражений

Возможно вам будут полезны эти страницы:

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Определение значения синуса, косинуса, тангенса и котангенса

Определение

Тригонометрия — это техническая часть математики, в которой представлены особенности взаимосвязи между сторонами и углами треугольников.

Тригонометрические функции, является очень важной составляющей не только математики, но других технических наук.

Применяя основные формулы и законы тригонометрии при вычислении задач. Огромное значение имеют таблицы значений данных функций. Они существенно упрощают решение задач различной сложности.  

Процесс работы и расчета функций данного вида, очень непростой. Решение задач и уравнение, очень часто вызывают сложности. Поэтому, со временем, были созданы и разработаны несколько видов решений, чтобы облегчить жизнь математика и всем представителям технических наук. Преобразовывая тригонометрические формулы, необходимо руководствоваться следующими правилами:

  1. Нельзя продумывать весь процесс решения от начала до самого конца сразу. Нужно определиться с основными задачами и данными.
  2. Весь пример, подвергать упрощению или преобразования постепенно;
  3. Разрешается применять все преобразования и действия, связанные с алгеброй, а именно: вынести значение за пределы скобок. сократить значение и многое другое:

[ sin x=frac{a}{c} ; cos x=frac{b}{c} ; operatorname{tg} x=frac{sin x}{cos x} ; operatorname{ctg}=frac{1}{operatorname{tg} x}=frac{sin x}{cos x} ]

Зная основные определения тригонометрических функций, можно определить их угловые значения. Для углов от нуля до трехсот шестидесяти градусов, вычислим данные и запишем их в виде таблицы.

Значения вышеупомянутых математических функций, в частности в разделе геометрия, вычисляются как соотношения длин прямоугольного треугольника.

Углы геометрической фигуры имеют соответствующие значения в градусах. Используя основные определения математики, а именно тригонометрии можно определить нужные нам данные.

Определим основные значения

1.синуса (sin):

Основные значения синуса

2. косинуса (cos):

Основные значения косинуса

3. тангенса(tg):

Основные значения тангенса

[ operatorname{tg} 90^{circ}, 270^{circ} ]

Данные выше угловые значения, не определяются, согласно основным законам геометрии и математики.

4. котангенса (ctg)

[ operatorname{ctg} 0^{circ}, 180^{circ}, 360^{circ} ]

Для перечисленных выше угловых значений по законам математики и всех технических наук в целом, значения не определяются

Основные значения котангенса

Мы произвели основные расчеты. Определили результаты угловых значений.

Мы определились с основными угловыми значениями функций. Следующим шагом будет их сведение в таблицу.

Таблица1.  Основные значения функций косинус, синус, тангенс и котангенс, для угловых значений и радиан

Основные значения функций 1
Основные значения функций 2
Продолжение таблицы 1
Основные значения функций 3
Продолжение таблицы 1

Вычисленные значения принято сводить в таблицу, показанную выше. Особенно рекомендуются, ее заучивать наизусть, для более лучшего восприятия. Рассмотрим, также значения для нестандартных угловых значений и сведем их в таблицу.

Таблица 2. Нестандартные углы функций косинус, синус, тангенс и котангенс в тригонометрии

Нестандартные углы функций 1

В данной таблице приведены значения углов, которые считаются нестандартными, также таблица необходима, чтобы облегчить жизнь, в первую очередь, школьной программе.

Например:

Пример 1

Значение заданной функции берется из таблицы. Оно равняется данному, которое попадает на пересечение столбца и строки.

Пример №1.  Необходимо определить чему равен [operatorname{tg} 300]

Берем левый столбец с наименованием функции, находим в верхней строке нужный градус, и на пересечении определяем нужный ответ.

Следовательно:[operatorname{tg} 300^{circ}=-sqrt{3}].

Пример №2. Необходимо определить чему равен [cos frac{5 pi}{3}].

Берем левый столбец с наименованием функции, находим в нижней строке значение радиан, поднимается на верх таблицы и определяем градусы.

[text { Следовательно: } operatorname{tg} 300^{circ}=frac{1}{2} .]

Пример №3. Необходимо определить чему равен [cos frac{11 pi}{6}].

Проводим аналогичные действия, как в предыдущих двух примерах и определяем угловое значение.

[text { Следовательно } cos =frac{sqrt{3}}{2}=330^{circ}.]

Таблица Брадиса для решения основных задач по тригонометрии

Первое упоминание о таблице, датируется 20-ми годами прошлого века. Основоположником, является советский ученый математик, и талантливый педагог Владимир Брадис. Созданная Брадисом таблица, позволяет определить значения тригонометрических функций, с большой точностью, а именно до четырех знаков. На практике решений, обычно требуется точность в три-четыре знака, после запятой, но не более. Для расчета, с такой точностью, значение синуса, в формуле достаточно трех известных слагаемых, а иногда и двух.  Произвести простых четыре перемножения.  Дважды разделить, умножить и отнять.

Если производить действия инженерным калькулятором, становится понятно, что все вышеперечисленные действия, уже запрограммированы в его микросхеме.  В таблице представлены следующие данные:

  • число в квадратной и кубической степени;
  • числа квадратных корней;
  • логарифмические функции и значение;
  • функции тригонометрии, представленный в градусах и радианах;
  • обратные функции.

Можно определить точность углового значения до минуты. Существуют также таблицы, где есть семизначные значения.

Для того чтобы составить таблицы следует пользовался методом разложения функций (либо метод разложения на степень в ряд)

Примеры решения задач

Пример 1:

Необходимо определить синус угла 18 ° 44 ‘.

По таблице значений определяем данные синуса 18 ° 42 ‘. Далее используем поправку, равную две минуты. Плюсуем ее и заданные минуты: 18 ° 44 ‘ − 18 ° 42 ‘ = 2 ‘   

Нужное значение равняется —  0,0006.

Узнав все необходимые значения, находим окончательное решение:

 sin   18 ° 44 ‘ = 0. 3208 + 0. 0006 = 0. 3214

Пример 2:

Условие задачи, заключается в необходимости вычислить угол функции синус 76 ° 12. В таблице находим столбец с название угол и ищем 76 градусов и строку со значением 12. Далее, исходя из найденных ячеек, находим значение угла — 0,2284.

Ответ: синус 76 ° 12 =0,2284.

Пример 3:

Нужно найти значение синус 16 градусов 32 минут.  Для того чтобы посчитать значение 16 ° 32 минуты. В таблице находим значение нужного угла, которое ближе всего по значению подходит к заданному. Это sin16 30 =0.2840. Так как 16 32=16 30+2, то в столбце, выбираем нужную поправку, которая находится на пересечении со строкой, со значением 16 градусов стоит 0,0006, то есть

 sin   16 ° 32 ‘ = 0. 3208 + 0. 0006 = 0. 3214

Пример 4:

Нужно найти значение синус 22 градусов 10 минут. Чтобы посчитать значение  22 ° 12,  в таблице найдем значение необходимого угла, наиболее подходящее заданному. Это sin16 30 =0.3778. Так как  22 ° 10= 22 ° 12+2, то тогда выбираем поправку равную двум  и видим, что нужный нам градус равный  22 ° имеет значение 0,0005. Далее записываем:

 sin   22 ° 10 ‘ = (22 12-2) =0. 3778 + 0. 0005 = 0. 3773

Пример 5:

Нужно найти значение косинус 50 градусов 33 минут.  Для того, чтобы посчитать значение 53 31 в таблице найдем значение нужного угла, наиболее близкого к искомому со знаком минус. Это косинус 50 33 =0.6361 Так как 50 33=50 30+3, то в нужном столбце выбираем значение 3. Далее находим значение 0,0007, и записываем следующее уравнение:

 косинус 50 ° 33 ‘ = (50 30-3) =0. 6361 +(- 0. 0007) = 0. 6454

Пример 6:

Нужно найти tg 35 градусов 6 минут.  В таблице значений функции, в столбце найдем значение 35 градусов, а в строке 6 минут. Определяем нужное значение по таблице равное 0,7028.

Пример 7:

Нужно найти значение котангенс 13 градусов 42 минут.  Снова применим таблицу значения функций и найдем значение 13 градусов, а в строке 40 минут и поправку равную 2.  Находим искомое значение 4,102.

Пример 8:

Нужно найти значение косинус для 49° 33 минут.  

Для того чтобы вычислить  значение 49° 31.  В таблице найдем значение угла, наиболее близкого по значению к заданному, но только с отрицательным знаком минус. Это косинус 49° 31/ =0.6361 Так как 49° 31/=50 30+3, из этого следует, что поправка  равняется  трем. Значение  49 градусов равно 0,0007, поэтому: косинус 49° 33 ‘ = ( 49° 31-3) =0 . 6361 +(- 0 . 0007) = 0,6454

Нет времени решать самому?

Наши эксперты помогут!

Основные способы, которые помогут заполнить таблицу функций

1 Действие: Необходимо изобразить простую таблицу, где будет несколько столбцов и строк, необходимых для заполнения данных. Следующая задача, состоит в том, что нужно пустые графы заполнить. Записываем в первом столбике значение математических функций, ранее нами изученных.

В начальной строке, должны отображаться самые часто используемые значения углов: от нуля до девяноста градусов и так далее.

Оставшиеся ячейки нужно оставить незаполненными, для следующих действий. Чтобы понять тригонометрию, нужно изучать не только основные функции. Стоит уделить внимание и таким функциях как: косеканс (cosec) и секанс (sec).

2. Действие: Заполняем пустые ячейки со значение синус. Берем выражение [frac{sqrt{x}}{2}] и подставляем числовые значения, то есть величины углов. они записаны в первом столбике. Далее применяя   [frac{sqrt{x}}{2}] можно вычислить данные для углов, которые нам необходимы. Вычисленные значения, записываются в таблицу.

Для наглядности все прописанные действия, можно разобрать на конкретном примере.

Например, мы заполняем ячейку sin 0 градусов. На месте неизвестного значения в выражении [frac{sqrt{x}}{2}] записываем значение угла.

Получаем следующую запись: [frac{sqrt{x}}{2}=frac{0}{2}=0]. Затем, проводим те же операции для заполнения оставшихся пустых строк.

[ frac{sqrt{1}}{2}=frac{1}{2} ; frac{sqrt{2}}{2}=frac{(sqrt{2 cdot 2})}{(2 cdot sqrt{2})}=frac{2}{2 cdot sqrt{2}}=frac{1}{sqrt{2}} ; frac{sqrt{3}}{2} frac{sqrt{4}}{2}=frac{2}{2}=1 ]

Необходимо первым делом заполнять неизвестные ячейки, для функции синус. Это значительно в будущем облегчит заполнение всей таблицы. Так как именно за данной функции и ее данных и завязана вся работы таблицы.

3. Действие: Продолжаем считать таблицу. для этого значения синуса, которые подсчитаны были ранее, переписываем для функции косинус. Только делаем это в порядке обратном значению синусу. Данная теория действительна, потому что sin x° = cos (90-x). Если в самой крайней ячейке синус, имеется  1(sin90°=1). То в первую строку значения косинус, перепишется это числовое значение, cos 0° = 1. Таким образом заканчиваем заполнение до конца.

4. Действие: Для определения тангенса. Необходимо произвести деление данных синуса на косинус. Так как тангенс равен данной функции. [operatorname{tg}=frac{sin }{cos }]. Выходим что искомое значение равно данному выражению.  Если [operatorname{tg} 45^{circ}=frac{sin }{cos }=frac{sqrt{1}}{2} / frac{sqrt{3}}{2}=frac{1}{sqrt{3}} .]

Аналогично поступаем и далее.

5. Действие: Для заполнения граф косеканс и секанс нужно 1/sin и 1/cos.

[text { Так как, } operatorname{cosec}=frac{1}{sin } . text { Например, } sin 40^{circ}=frac{1}{2}, text { поэтому } operatorname{cosec} 40^{circ}=frac{1}{frac{1}{2}}=2]

Действие 6: Оставшиеся функции тангенс и котангенс. также записываются обратно значениям. Если tg90 равняется ctg0, значение tg60 будет соответственно равен значению ctg 30 градусов.

[text { Таким же методом заполняются оставшиеся строки таблицы. Так } text { как } operatorname{ctg}=frac{1}{t g}, text { в свою очередь } operatorname{ctg}=frac{cos }{sin }]

Вычисление данных при помощи фигуры — прямоугольный треугольник

Для этого строится нужный треугольник заданным углом, который необходимо определить. Строится угол, точка и луч, которые выходят из данной точки под определенным углом. Соединяем лучи, прямой линией перпендикулярной, одному из лучей. В конечном итоге получаем фигуру, угол которой равняется заданному в задаче углу. В процессе вычисления, также задаются длины сторон. Поэтому трудней с построением не должно возникнуть.  

Вычисление при помощи длин сторон треугольника происходит следующим образом:

  • обозначается катет;
  • сторона возле угла;
  • сторона напротив угла с прямым значением.

Функции могут выражаться по-разному в отношении сторон. Например, нам нужно определим значение sin 45°. Поделим имеющуюся длину значения противолежащего катета на значение длины гипотенузы. Если заданные значения длины равны 4 и 6 соответственно. Тогда, составим следующее выражение и получим sin[45^{circ}=frac{4}{6}=0,67]

Для определения значений основных функций в математике, необходимо заучить наизусть определение основных понятий, связанный с данной темой.  

В процессе решения задачи, это придется применять постоянно.

Значения косеканса и секанса определяются в обратном порядке. Для этого необходимо знать какие стороны нужно делить для определения вышеперечисленных функций.

Косеканс находится [operatorname{cosec}=frac{1}{sin }] следовательно, нужно разделить гипотенузу на противолежащий катет. Секанс, наоборот к прилежащему катету [mathrm{sec}=frac{1}{cos }].

Например, для определения cosec 40°, если катет равен 5, а гипотенуза соответственно равна 8.  Нужно разделить 5/8 и получим ответ cosec 40° = 0,63.

При вычислениях всегда рекомендуется исключать значение под корнем в знаменателе, это наиболее облегчает процесс расчета.

Рассмотренная тема преобразования и расчета функций, является довольно громоздкой, на первый взгляд. Применяя для решения огромные формулы и функции можно растеряться и не сразу сообразить, как производить их расчет. Однако досконально рассмотрев и изучив каждый раздел, становится понятно, что все достаточно просто и громоздкие таблицы освоить можно быстро и легко.

Вычисление значений углов по окружности

Самый простой и понятный способ для вычисления углов и радиан.

Для этого вычерчиваем окружность с радиусом R. Он в свою очередь, равен единичному значению. Центр окружности равен центру системы координат. От положительной оси считаем углы, по часовой стрелке, выполняющей движении против хода. Точка, имеющая координаты 1;0 равняется угловому значению ноль. если координаты -1;0, тогда угол равен 90 градусов. Точка, находящаяся на окружности, соответствует углу от нуля до 360 градусов. Так как окружность является единичной, значения углов для синуса и косинуса находятся в пределах от -1 до 1:

Вычисление значений углов по окружности

Определяются знаки функций, также по окружности. если угловое значение более 360 градусов, делается два оборота по часовой стрелке и плюсуется еще дополнительно 12 минут.

[ cos (alpha+360 cdot n)=sin alpha ;] [ sin (alpha+360 cdot n)=sin alpha / ]

Значения тангенсов и котангенсов, можно вычислить аналогично, по окружности. Однако легче посчитать по формулам, уже известных данных.

[ operatorname{tg} alpha=frac{sin alpha}{cos alpha} ; operatorname{ctg} alpha=frac{cos alpha}{sin alpha} ]

Содержание материала

  1. Синус угла sin(A), таблица
  2. Видео
  3. Тангенс и косинус, котангенс и синус
  4. Как считать коэффициенты
  5. Cинус, косинус, тангенс, котангенс угла в прямоугольном треугольнике
  6. Синус любого угла
  7. Угол поворота
  8. Тангенс и котангенс через синус и косинус
  9. Функция (y=sin⁡x)

Синус угла sin(A), таблица

° Синус угла 0 градусов $ sin(0°) = sin(0) = 0 $ 0.000
30° Синус угла 30 градусов $ sin(30°) = sinBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{1}{2}normalsize $ 0.500
45° Синус угла 45 градусов $ sin(45°) = sinBig(Largefrac{pi}{4}normalsizeBig) = Largefrac{sqrt{2}}{2}normalsize $ 0.707
60° Синус угла 60 градусов $ sin(60°) = sinBig(Largefrac{pi}{3}normalsizeBig) = Largefrac{sqrt{3}}{2}normalsize $ 0.866
90° Синус угла 90 градусов $ sin(90°) = sinBig(Largefrac{pi}{2}normalsizeBig) = 1 $ 1.000

Тангенс и косинус, котангенс и синус

Все тождества выше позволяют сделать вывод, что тангенс угла связан с косинусом угла, а котангенс угла  — с синусом.

Эта связь становится очевидна, если взглянуть на тождества:  

  • tg2α + 1 =

Сумма квадрата тангенса угла и единицы равна числу, обратному квадрату косинуса этого угла.

  • 1 + ctg2α =

Сумма единицы и квадрата котангенса угла равна числу, обратному квадрату синуса этого угла.

Вывести оба этих тождества можно из основного тригонометрического тождества: sin2α + cos2α = 1.  

  1. Для этого нужно поделить обе части тождества на cos2α, где косинус не равен нулю.
  2. В результате деления получаем формулу tg2α + 1 =
  3. Если обе части основного тригонометрического  тождества sin2α + cos2α = 1 разделить на  sin2α, где синус не равен нулю, то получим тождество: 1 + ctg2α =
  4. Отсюда можно сделать вывод, что тригонометрическое тождество tg2α + 1 = 
применимо для любого угла α, не равного 
+ π + z, где z — это любое целое число.
  5. А тригонометрическое тождество 1 + ctg2α = применимо для любого угла, не равного π * z, где z — это любое целое число. 

Хорошо бы выучить все формулы и запомнить формулировки тождеств наизусть. Чтобы это сделать, сохраняйте себе табличку с основными формулами. 

Основные тригонометрические тождества

1

sin2α + cos2α = 1

2

3

4

Читайте также: ∫ Решение интегралов онлайн с подробным решением

tgα * ctgα = 1

5

tg2α + 1 =

6

1 + ctg2α =

Читайте также: Поиск товара в Китае выгодные тарифы при огромном опыте работы

Чтобы тратить еще меньше времени на решение задач, сохраняйте таблицу значений тригонометрических функции углов, которые чаще всего встречаются в задачах.

Видео

Как считать коэффициенты

В википедии, в статье про полиномы Чебышёва есть фраза: «Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в интерполяции алгебраическими многочленами«. Это как раз наш случай.

Посмотрим ещё раз на их графики:

Голубая линия (полином 2-й степени) пересекает ось

Голубая линия (полином 2-й степени) пересекает ось абсцисс (y=0) в двух точках x = ±0.7071. Оранжевая (3-й степени) — в трёх точках: x = 0 и x = ±0.866. Это и есть корни полиномов, они будут использованы «в качестве узлов в интерполяции».

Ещё небольшое отступление, как представлять аргументы. На 32-битных процессорах полный период (круг) удобно представить как 232 (0x100000000), а угол, соответственно, в диапазоне от до 0xffffffff. Если количество интервалов аппроксимации, на которые разбит круг, равно 2n, то угол можно интерпретировать как двоичное число с фиксированной точкой. Например, при разбиении на 64 интервала (26), угол будет интерпретироваться как число размерности 6.26. Здесь старшие 6 бит — это номер интервала (считая от нуля), а младшие 26 бит — смещение внутри него.

Возьмём, для примера, угол 15°. Если вычислить 15°/360° · 232, то получим 0000_1010_1010_1010_1010_1010_1010_1011 в двоичном виде. В размерности 6.26 будет выглядеть как 000010.10101010101010101010101011. Здесь первые 6 бит 000010 — это десятичное 2 (2-й интервал), а оставшиеся 26 10101010101010101010101011, будучи поделены на 226, дадут 0.66666667 — это смещение внутри интервала. То же самое получим: 2.66666667 = 64 * 15/360.

Смещение внутри интервала лежит в диапазоне 0.0 ≤ x < 1.0. К нему же надо привести корни многочленов Чебышёва, которые находятся между -1 и +1. Корни полинома 2-й степени превратятся 0.14645 и 0.85355, 3-й степени — 0.066987, 0.5 и 0.933013.

Теперь давайте найдём коэффициенты A0, A1 и т.д. При аппроксимации полиномом 1-й степени y = A1·x + A0 нам нужно, что бы на заданном интервале с номером N в точке со смещением 0.14645 целевое значение было равно y=sin((N + 0.14645)/64 * 2π), а в точке 0.85355 — y=sin((N + 0.85355)/64 * 2π). Это делается при помощи системы из двух линейных уравнений с 2 неизвестными A1 и A0:

A1·0.14645 + A0 = sin((N + 0.14645)/64 * 2π)
A1·0.85355 + A0 = sin((N + 0.85355)/64 * 2π)

Для интервала N=2 (где находится 15°), получаем: A1 = 0.09521 и A0 = 0.19523.

Пройдясь по всем N, от 0 до 63, получим таблицу с наборами коэффициентов A1 и A0. С ней уже можно считать синус с точностью 10.7 бит. Как это делать, расскажу ниже (если кто до сих пор не понял сам).

Перейдём ко 2-й степени y = A2·x² + A1·x + A0. В качестве аргумента x подставим, соответственно, корни полинома 3-й степени 0.066987, 0.5 и 0.933013. Напишем систему из 3 уравнений с 3 неизвестными A2, A1 и A0:

A2·0.066987² + A1·0.066987 + A0 = sin((N + 0.066987)/64 * 2π)
A2·0.5² + A1·0.5 + A0 = sin((N + 0.5)/64 * 2π)
A2·0.933013² + A1·0.933013 + A0 = sin((N + 0.933013)/64 * 2π)

Решения для интервала N=15 будут следующие:

A2 = -0.004812613
A1 = +0.009628370
A0 = +0.995184425

Обратите внимание на A2 и A1. Если их умножить 27 и 26 соответственно, то их значения всё равно будет лежать в пределах от -1 до +1. Интервал №15 я выбрал не случайно — на нём значение A0 максимально и близко к 1.

Вообще, в большинстве случаев коэффициенты при больших степенях можно увеличить на некий коэффициент. При целочисленных операциях это уменьшит погрешность вычислений, а на Cortex-M3 к тому же сократит их время — об этом я расскажу ниже.

Для вычисления таблиц других размеров в предыдущую систему уравнений вместо 64 нужно подставить нужный размер. Для аппроксимации полиномом степени P нужно найти корни полинома Чебышёва степени P+1, и записать систему из P+1 уравнений с P+1 неизвестными, не забывая возводить корень многочлена в нужную степень ‘n’ при каждом An. (Если предыдущее предложение непонятно, то ничего страшного. Ближе к концу статьи будет ссылка на готовый генератор таблиц и краткая инструкция к нему.)

Cинус, косинус, тангенс, котангенс угла в прямоугольном треугольнике

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла?

Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника?

Всё верно, гипотенуза и катеты.

Гипотенуза — это сторона, которая лежит напротив прямого угла (в нашем примере это сторона ( AC))

Катеты – это две оставшиеся стороны ( AB) и ( BC) (те, что прилегают к прямому углу).

Причём, если рассматривать катеты относительно угла ( angle BAC), то катет ( AB) – это прилежащий катет, а катет ( BC) — противолежащий.

Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике ( sin beta =frac{BC}{AC}).

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике ( cos beta =frac{AB}{AC}).

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике ( tgbeta =frac{BC}{AB}).

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике ( ctgbeta =frac{AB}{BC}).

Эти определения необходимо запомнить!

Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе.

А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле).

Не веришь?

Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла ( beta ).

По определению, из треугольника ( ABC): ( cos beta =frac{AB}{AC}=frac{4}{6}=frac{2}{3}).

Но ведь мы можем вычислить косинус угла ( beta ) и из треугольника ( AHI): ( cos beta =frac{AH}{AI}=frac{6}{9}=frac{2}{3}).

Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника ( ABC), изображённого ниже на рисунке, найдём ( sin alpha , cos alpha , tg alpha , ctg alpha ).

( begin{array}{l}sin alpha =frac{4}{5}=0,8\cos alpha =frac{3}{5}=0,6\tg alpha =frac{4}{3}\ctg alpha =frac{3}{4}=0,75end{array})Ну что, уловил?

Тогда пробуй сам: посчитай то же самое для угла ( beta ).

Ответы: ( sin beta =0,6; cos beta =0,8; tg beta =0,75; ctg beta =frac{4}{3}).

Синус любого угла

Благодаря единичному кругу можно определять тригонометрические функции не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

Теперь пояснение: пусть нужно определить (sin∠КОА) с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам (sin⁡∠KOA).

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

  	 Несложно догадаться, что для откладывания угла

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.

Как вы могли заменить, и синус числа, и синус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от —∞ до +∞. 

Тангенс и котангенс через синус и косинус

Немного вводных:

  • Синус угла  — это ордината y.
  • Косинус угла  — это абсцисса x.
  • Тангенс угла  — это отношение ординаты к абсциссе. 
  • Котангенс угла — это отношение абсциссы к ординате.

Из всего этого множества красивых, но не сильно понятных слов, можно сделать вывод о зависимости одного от другого. Такая связь помогает отдельно преобразовывать нужные величины.

Исходя из определений:

Это позволяет сделать вывод, что тригонометрические тождества 


задаются sin и cos углов.

задаются sin и cos углов.

Отсюда следует, что тангенс угла — это отношение синуса угла к косинусу. А котангенс угла — это отношение косинуса к синусу.

Отдельно стоит обратить внимание на то, что тригонометрические тождества


верны для всех углов α, значения которых вписывают

верны для всех углов α, значения которых вписываются в диапазон. 

Выражение

применимо для любого угла α, не равного π * z, где

применимо для любого угла α, не равного π * z, где z — это любое целое число. 

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Функция (y=sin⁡x)

Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения синуса, мы получим следующий график:

  	 График данной функции  называется си

График данной функции называется синусоида и обладает следующими свойствами:

      — область определения – любое значение икса:   (D(sin⁡x )=R)       — область значений – от (-1) до (1) включительно:    (E(sin⁡x )=[-1;1])       — нечетная:   (sin⁡(-x)=-sin⁡x)       — периодическая с периодом (2π):   (sin⁡(x+2π)=sin⁡x)       — точки пересечения с осями координат:              ось абсцисс:   ((πn;0)), где (n ϵ Z)              ось ординат:   ((0;0))       — промежутки знакопостоянства:              функция положительна на интервалах:   ((2πn;π+2πn)), где (n ϵ Z)              функция отрицательна на интервалах:    ((π+2πn;2π+2πn)), где (n ϵ Z)       — промежутки возрастания и убывания:              функция возрастает на интервалах:    ((-)(frac{π}{2})(+2πn;) (frac{π}{2})(+2πn)), где (n ϵ Z)              функция убывает на интервалах:    (()(frac{π}{2})(+2πn;)(frac{3π}{2})(+2πn)), где (n ϵ Z)        — максимумы и минимумы функции:              функция имеет максимальное значение (y=1) в точках (x=)(frac{π}{2})(+2πn), где (n ϵ Z)              функция имеет минимальное значение (y=-1) в точках (x=-)(frac{π}{2})(+2πn), где (n ϵ Z).

Смотрите также:

Косинус Тангенс Котангенс Решение уравнения (sin⁡x=a)

Теги

Понравилась статья? Поделить с друзьями:
  • Как найти нужную строку в таблице значений
  • Найдите время отдыхать так как работа
  • Как найти повторы в таблице excel
  • Как найти среднюю линию треугольника задачи
  • Растянута горловина на футболке как исправить