Как найти синус единицы

Васил­ий Котен­очкин
[24.9K]

более года назад 

Для начала было бы неплохо уточнить: единица в каких единицах измеряется? В радианах или в градусах? Впрочем, ни синус одного градуса, ни синус одного радиана аналитически не вычисляются. И находить эти значения можно только на компьютере, калькуляторе или в таблицах Брадиса. Учащимся школ иногда запрещают пользоваться калькуляторами, но таблицы Брадиса не запрещены.

Синус одного радиана равен 0,8414709848.

Синус одного градуса — 0,0174524064

автор вопроса выбрал этот ответ лучшим

комментировать

в избранное

ссылка

отблагодарить

Единичная окружность помогает понять, чему равны sin 1, sin 2, sin 3, sin 4, sin 5, sin 6.

Итак, речь идет об углах в радианах. 1 радиан — это угол, длина дуги которого равна радиусу окружности. Соответственно, определяем приблизительное местонахождение на единичной окружности углов в 2, 3, 4, 5 и 6 радиан, отмечая каждую следующую точку через дугу, длина которой равна радиусу.  Впрочем, если вспомнить, что п приближенно равно 3,14, задача существенно упростится.

Рисунок позволяет наглядно определять приблизительные значения sin 1, sin 2, sin 3, sin 4, sin 5, sin 6, а также сравнивать их.

Поскольку синус — это ордината соответствующей точки на единичной окружности (как это легко запомнить — здесуглы в радианах на единичной окружностиь), то для нахождения sin 1, sin 2, sin 3, sin 4, sin 5, sin 6 достаточно определить значение y в точках 1, 2, 3, 4, 5 и 6 радиан.

синус 1, синус 2, синус 3, синус 4, синус 5, синус 6Поскольку синус — это y, то вверху, над осью x, синус принимает положительные значения. Поэтому sin 1>0, sin 2>0, sin 3>0.

Соответственно внизу синус отрицателен: sin 4<0, sin 5<0, sin 6<o. Поэтому легко сравнить sin2 и sin4, например: sin2>sin4, ведь любое положительное число больше любого отрицательного.

Если требуется сравнить значения синуса одного знака, например, sin2 и sin3, то исходя из геометрических соображений, sin2>sin3.

Если нужно уточнить, чему равен 1 радиан, 2, 3, 4, 5 и 6 радиан в градусах, то приближенные значения таковы:

    [{1radian approx {{57}^0}17'}]

    [{2rad approx {{115}^0}}]

    [{3rad approx {{172}^0}}]

    [{4rad approx {{229}^0}}]

    [{5rad approx {{286}^0}}]

    [{6rad approx {{343}^0}}]

Приближенно чему равен синус 1, синус 2 и синус 3, можно узнать по таблицам Брадиса:

    [sin 1 approx 0,8415]

    [sin 2 approx 0,9093]

    [sin 3 approx 0,1411.]

Используя геометрические соображения, можно найти и приблизительные значения углов, больших 6 радиан.

Узнать ещё

Знание — сила. Познавательная информация

sin x =1

Эта ассоциация помогает легко запомнить значения x, в которых синус равен 1, и быстро решить уравнение sin x =1.

Частные случаи синуса, как и частные случаи косинуса, удобнее всего искать на единичной окружности.

Итак, косинус — колобок. Оба начинаются с ко-, и буква o в имени cos x такая же круглая, как колобок.

Как движется колобок? Влево-вправо, с его круглой фигурой вверх-вниз особо не попрыгаешь. На координатной плоскости влево-вправо движется x. Значит, косинус — это x, а синус — это y.

Поэтому, чтобы определить, где sin x =1, нам надо найти, где на единичной окружности y=1. Двигаемся вверх по оси y и попадаем в точку п/2.

Это только одна из точек, в которых синус равен единице.

Через полный оборот окружности мы снова попадем в эту точку, через два, три и т.д. оборотов — тоже.

Если пойдем по часовой стрелке, то есть -2п, -2п·2, -2п·3 и т.д., то тоже попадем в эту точку.

Чтобы учесть все точки, в которых sin x =1, прибавляем к п/2 2пn, где n — целое число (n принадлежит Z). То есть n=0,±1,±2,±3,…

Таблица СИНУСОВ для углов от 0° до 360° градусов

СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.

α (радианы) 0 π/6 π/4 π/3 π/2 π 3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
SIN α (СИНУС) 0 1/2 2/2 3 /2 1 0 -1 0

Малая таблица значений тригонометрических функций (в радианах и градусах)

Угол в градусах Sin (Синус)
0
0.0175
0.0349
0.0523
0.0698
0.0872
0.1045
0.1219
0.1392
0.1564
10° 0.1736
11° 0.1908
12° 0.2079
13° 0.225
14° 0.2419
15° 0.2588
16° 0.2756
17° 0.2924
18° 0.309
19° 0.3256
20° 0.342
21° 0.3584
22° 0.3746
23° 0.3907
24° 0.4067
25° 0.4226
26° 0.4384
27° 0.454
28° 0.4695
29° 0.4848
30° 0.5
31° 0.515
32° 0.5299
33° 0.5446
34° 0.5592
35° 0.5736
36° 0.5878
37° 0.6018
38° 0.6157
39° 0.6293
40° 0.6428
41° 0.6561
42° 0.6691
43° 0.682
44° 0.6947
45° 0.7071
46° 0.7193
47° 0.7314
48° 0.7431
49° 0.7547
50° 0.766
51° 0.7771
52° 0.788
53° 0.7986
54° 0.809
55° 0.8192
56° 0.829
57° 0.8387
58° 0.848
59° 0.8572
60° 0.866
61° 0.8746
62° 0.8829
63° 0.891
64° 0.8988
65° 0.9063
66° 0.9135
67° 0.9205
68° 0.9272
69° 0.9336
70° 0.9397
71° 0.9455
72° 0.9511
73° 0.9563
74° 0.9613
75° 0.9659
76° 0.9703
77° 0.9744
78° 0.9781
79° 0.9816
80° 0.9848
81° 0.9877
82° 0.9903
83° 0.9925
84° 0.9945
85° 0.9962
86° 0.9976
87° 0.9986
88° 0.9994
89° 0.9998
90° 1

Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°

Угол в градусах Sin (Синус)
91° 0.9998
92° 0.9994
93° 0.9986
94° 0.9976
95° 0.9962
96° 0.9945
97° 0.9925
98° 0.9903
99° 0.9877
100° 0.9848
101° 0.9816
102° 0.9781
103° 0.9744
104° 0.9703
105° 0.9659
106° 0.9613
107° 0.9563
108° 0.9511
109° 0.9455
110° 0.9397
111° 0.9336
112° 0.9272
113° 0.9205
114° 0.9135
115° 0.9063
116° 0.8988
117° 0.891
118° 0.8829
119° 0.8746
120° 0.866
121° 0.8572
122° 0.848
123° 0.8387
124° 0.829
125° 0.8192
126° 0.809
127° 0.7986
128° 0.788
129° 0.7771
130° 0.766
131° 0.7547
132° 0.7431
133° 0.7314
134° 0.7193
135° 0.7071
136° 0.6947
137° 0.682
138° 0.6691
139° 0.6561
140° 0.6428
141° 0.6293
142° 0.6157
143° 0.6018
144° 0.5878
145° 0.5736
146° 0.5592
147° 0.5446
148° 0.5299
149° 0.515
150° 0.5
151° 0.4848
152° 0.4695
153° 0.454
154° 0.4384
155° 0.4226
156° 0.4067
157° 0.3907
158° 0.3746
159° 0.3584
160° 0.342
161° 0.3256
162° 0.309
163° 0.2924
164° 0.2756
165° 0.2588
166° 0.2419
167° 0.225
168° 0.2079
169° 0.1908
170° 0.1736
171° 0.1564
172° 0.1392
173° 0.1219
174° 0.1045
175° 0.0872
176° 0.0698
177° 0.0523
178° 0.0349
179° 0.0175
180° 0

Полная таблица синусов для углов от 91° до 180°

Угол Sin (Синус)
181° -0.0175
182° -0.0349
183° -0.0523
184° -0.0698
185° -0.0872
186° -0.1045
187° -0.1219
188° -0.1392
189° -0.1564
190° -0.1736
191° -0.1908
192° -0.2079
193° -0.225
194° -0.2419
195° -0.2588
196° -0.2756
197° -0.2924
198° -0.309
199° -0.3256
200° -0.342
201° -0.3584
202° -0.3746
203° -0.3907
204° -0.4067
205° -0.4226
206° -0.4384
207° -0.454
208° -0.4695
209° -0.4848
210° -0.5
211° -0.515
212° -0.5299
213° -0.5446
214° -0.5592
215° -0.5736
216° -0.5878
217° -0.6018
218° -0.6157
219° -0.6293
220° -0.6428
221° -0.6561
222° -0.6691
223° -0.682
224° -0.6947
225° -0.7071
226° -0.7193
227° -0.7314
228° -0.7431
229° -0.7547
230° -0.766
231° -0.7771
232° -0.788
233° -0.7986
234° -0.809
235° -0.8192
236° -0.829
237° -0.8387
238° -0.848
239° -0.8572
240° -0.866
241° -0.8746
242° -0.8829
243° -0.891
244° -0.8988
245° -0.9063
246° -0.9135
247° -0.9205
248° -0.9272
249° -0.9336
250° -0.9397
251° -0.9455
252° -0.9511
253° -0.9563
254° -0.9613
255° -0.9659
256° -0.9703
257° -0.9744
258° -0.9781
259° -0.9816
260° -0.9848
261° -0.9877
262° -0.9903
263° -0.9925
264° -0.9945
265° -0.9962
266° -0.9976
267° -0.9986
268° -0.9994
269° -0.9998
270° -1

Таблица синусов для углов 181° — 270°

Угол Sin (Синус)
271° -0.9998
272° -0.9994
273° -0.9986
274° -0.9976
275° -0.9962
276° -0.9945
277° -0.9925
278° -0.9903
279° -0.9877
280° -0.9848
281° -0.9816
282° -0.9781
283° -0.9744
284° -0.9703
285° -0.9659
286° -0.9613
287° -0.9563
288° -0.9511
289° -0.9455
290° -0.9397
291° -0.9336
292° -0.9272
293° -0.9205
294° -0.9135
295° -0.9063
296° -0.8988
297° -0.891
298° -0.8829
299° -0.8746
300° -0.866
301° -0.8572
302° -0.848
303° -0.8387
304° -0.829
305° -0.8192
306° -0.809
307° -0.7986
308° -0.788
309° -0.7771
310° -0.766
311° -0.7547
312° -0.7431
313° -0.7314
314° -0.7193
315° -0.7071
316° -0.6947
317° -0.682
318° -0.6691
319° -0.6561
320° -0.6428
321° -0.6293
322° -0.6157
323° -0.6018
324° -0.5878
325° -0.5736
326° -0.5592
327° -0.5446
328° -0.5299
329° -0.515
330° -0.5
331° -0.4848
332° -0.4695
333° -0.454
334° -0.4384
335° -0.4226
336° -0.4067
337° -0.3907
338° -0.3746
339° -0.3584
340° -0.342
341° -0.3256
342° -0.309
343° -0.2924
344° -0.2756
345° -0.2588
346° -0.2419
347° -0.225
348° -0.2079
349° -0.1908
350° -0.1736
351° -0.1564
352° -0.1392
353° -0.1219
354° -0.1045
355° -0.0872
356° -0.0698
357° -0.0523
358° -0.0349
359° -0.0175
360° 0

Таблица синусов для углов от 271° до 360°

Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.

Чему равен синус 45? …

— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    источники:

    http://kvn201.com.ua/table-of-sines.htm

    http://ege-study.ru/ru/ege/materialy/matematika/trigonometricheskij-krug/

    Синус онлайн калькулятор

    Введите число от 0 до 360.

    (обязательное поле)

    Введите число от 0 до 59.

    (не обязательное поле, по умолчанию — 0)

    Введите число от 0 до 59.

    (не обязательное поле, по умолчанию — 0)

    Математика, Геометрия 9 класс.

    Cинус 1 градусов.

    Cинус 1 градусов таблица.

    Синус 1 градусов 0 минут равен = 0.0175

    Синус 1 градусов 1 минут равен = 0.0177

    Синус 1 градусов 2 минут равен = 0.018

    Синус 1 градусов 3 минут равен = 0.0183

    Синус 1 градусов 4 минут равен = 0.0186

    Синус 1 градусов 5 минут равен = 0.0189

    Синус 1 градусов 6 минут равен = 0.0192

    Синус 1 градусов 7 минут равен = 0.0195

    Синус 1 градусов 8 минут равен = 0.0198

    Синус 1 градусов 9 минут равен = 0.0201

    Синус 1 градусов 10 минут равен = 0.0204

    Синус 1 градусов 11 минут равен = 0.0207

    Синус 1 градусов 12 минут равен = 0.0209

    Синус 1 градусов 13 минут равен = 0.0212

    Синус 1 градусов 14 минут равен = 0.0215

    Синус 1 градусов 15 минут равен = 0.0218

    Математика, Геометрия 9 класс.

    Синус 1 таблица.

    Синус 1 градусов 16 минут равен = 0.0221

    Синус 1 градусов 17 минут равен = 0.0224

    Синус 1 градусов 18 минут равен = 0.0227

    Синус 1 градусов 19 минут равен = 0.023

    Синус 1 градусов 20 минут равен = 0.0233

    Синус 1 градусов 21 минут равен = 0.0236

    Синус 1 градусов 22 минут равен = 0.0239

    Синус 1 градусов 23 минут равен = 0.0241

    Синус 1 градусов 24 минут равен = 0.0244

    Синус 1 градусов 25 минут равен = 0.0247

    Синус 1 градусов 26 минут равен = 0.025

    Синус 1 градусов 27 минут равен = 0.0253

    Синус 1 градусов 28 минут равен = 0.0256

    Синус 1 градусов 29 минут равен = 0.0259

    Синус 1 градусов 30 минут равен = 0.0262

    Математика, Геометрия 9 класс.

    Синус 1 равен:

    Таблица значений синусов 1 градусов.

    Синус 1 градусов 31 минут равен = 0.0265

    Синус 1 градусов 32 минут равен = 0.0268

    Синус 1 градусов 33 минут равен = 0.027

    Синус 1 градусов 34 минут равен = 0.0273

    Синус 1 градусов 35 минут равен = 0.0276

    Синус 1 градусов 36 минут равен = 0.0279

    Синус 1 градусов 37 минут равен = 0.0282

    Синус 1 градусов 38 минут равен = 0.0285

    Синус 1 градусов 39 минут равен = 0.0288

    Синус 1 градусов 40 минут равен = 0.0291

    Синус 1 градусов 41 минут равен = 0.0294

    Синус 1 градусов 42 минут равен = 0.0297

    Синус 1 градусов 43 минут равен = 0.03

    Синус 1 градусов 44 минут равен = 0.0302

    Синус 1 градусов 45 минут равен = 0.0305

    Математика, Геометрия 9 класс.

    Найти синус 1 градусов:

    SIN 1 градусов равен:

    Синус 1 градусов 46 минут равен = 0.0308

    Синус 1 градусов 47 минут равен = 0.0311

    Синус 1 градусов 48 минут равен = 0.0314

    Синус 1 градусов 49 минут равен = 0.0317

    Синус 1 градусов 50 минут равен = 0.032

    Синус 1 градусов 51 минут равен = 0.0323

    Синус 1 градусов 52 минут равен = 0.0326

    Синус 1 градусов 53 минут равен = 0.0329

    Синус 1 градусов 54 минут равен = 0.0332

    Синус 1 градусов 55 минут равен = 0.0334

    Синус 1 градусов 56 минут равен = 0.0337

    Синус 1 градусов 57 минут равен = 0.034

    Синус 1 градусов 58 минут равен = 0.0343

    Синус 1 градусов 59 минут равен = 0.0346

    Синус 1 градусов 60 минут равен = 0.0349

    Недавние расчеты

    Синус 1 градусов 59 минут и 53 секунд равен = 0.03486558039821

    (0.034872648082209 радиан)

    Синус 1 градусов 21 минут и 29 секунд равен = 0.023700321542621

    (0.023702540869445 радиан)

    Синус 1 градусов 17 минут и 47 секунд равен = 0.022624323971467

    (0.022626254497382 радиан)

    Синус 1 градусов 15 минут и 0 секунд равен = 0.021814885034561

    (0.021816615649929 радиан)

    Синус 1 градусов 24 минут и 5 секунд равен = 0.024456411593436

    (0.024458850211976 радиан)

    Синус 1 градусов 56 минут и 37 секунд равен = 0.03391590771776

    (0.033922413267234 радиан)

    Синус 1 градусов 5 минут и 25 секунд равен = 0.01902778860659

    (0.019028936983549 радиан)

    Синус 1 градусов 57 минут и 2 секунд равен = 0.034037041159098

    (0.034043616687512 радиан)

    Синус 1 градусов 6 минут и 31 секунд равен = 0.019347706726416

    (0.019348914013082 радиан)

    Синус 1 градусов 10 минут и 26 секунд равен = 0.020486792812163

    (0.020488226163689 радиан)

    В данной таблице представлены значения синусов от 0° до 360°. Таблица синусов нужна, когда у вас под рукой нет калькулятора. Чтобы узнать, чему равен синус угла, просто найдите нужный градус в таблице. Для начала короткая версия таблицы.
    таблица синусов, косинусов, тангенсов, котангенсов

    https://uchim.org/matematika/tablica-sinusov — uchim.org

    Таблица синусов для 0°-180°

    sin(1°) 0.0175
    sin(2°) 0.0349
    sin(3°) 0.0523
    sin(4°) 0.0698
    sin(5°) 0.0872
    sin(6°) 0.1045
    sin(7°) 0.1219
    sin(8°) 0.1392
    sin(9°) 0.1564
    sin(10°) 0.1736
    sin(11°) 0.1908
    sin(12°) 0.2079
    sin(13°) 0.225
    sin(14°) 0.2419
    sin(15°) 0.2588
    sin(16°) 0.2756
    sin(17°) 0.2924
    sin(18°) 0.309
    sin(19°) 0.3256
    sin(20°) 0.342
    sin(21°) 0.3584
    sin(22°) 0.3746
    sin(23°) 0.3907
    sin(24°) 0.4067
    sin(25°) 0.4226
    sin(26°) 0.4384
    sin(27°) 0.454
    sin(28°) 0.4695
    sin(29°) 0.4848
    sin(30°) 0.5
    sin(31°) 0.515
    sin(32°) 0.5299
    sin(33°) 0.5446
    sin(34°) 0.5592
    sin(35°) 0.5736
    sin(36°) 0.5878
    sin(37°) 0.6018
    sin(38°) 0.6157
    sin(39°) 0.6293
    sin(40°) 0.6428
    sin(41°) 0.6561
    sin(42°) 0.6691
    sin(43°) 0.682
    sin(44°) 0.6947
    sin(45°) 0.7071
    sin(46°) 0.7193
    sin(47°) 0.7314
    sin(48°) 0.7431
    sin(49°) 0.7547
    sin(50°) 0.766
    sin(51°) 0.7771
    sin(52°) 0.788
    sin(53°) 0.7986
    sin(54°) 0.809
    sin(55°) 0.8192
    sin(56°) 0.829
    sin(57°) 0.8387
    sin(58°) 0.848
    sin(59°) 0.8572
    sin(60°) 0.866
    sin(61°) 0.8746
    sin(62°) 0.8829
    sin(63°) 0.891
    sin(64°) 0.8988
    sin(65°) 0.9063
    sin(66°) 0.9135
    sin(67°) 0.9205
    sin(68°) 0.9272
    sin(69°) 0.9336
    sin(70°) 0.9397
    sin(71°) 0.9455
    sin(72°) 0.9511
    sin(73°) 0.9563
    sin(74°) 0.9613
    sin(75°) 0.9659
    sin(76°) 0.9703
    sin(77°) 0.9744
    sin(78°) 0.9781
    sin(79°) 0.9816
    sin(80°) 0.9848
    sin(81°) 0.9877
    sin(82°) 0.9903
    sin(83°) 0.9925
    sin(84°) 0.9945
    sin(85°) 0.9962
    sin(86°) 0.9976
    sin(87°) 0.9986
    sin(88°) 0.9994
    sin(89°) 0.9998
    sin(90°) 1
    sin(91°) 0.9998
    sin(92°) 0.9994
    sin(93°) 0.9986
    sin(94°) 0.9976
    sin(95°) 0.9962
    sin(96°) 0.9945
    sin(97°) 0.9925
    sin(98°) 0.9903
    sin(99°) 0.9877
    sin(100°) 0.9848
    sin(101°) 0.9816
    sin(102°) 0.9781
    sin(103°) 0.9744
    sin(104°) 0.9703
    sin(105°) 0.9659
    sin(106°) 0.9613
    sin(107°) 0.9563
    sin(108°) 0.9511
    sin(109°) 0.9455
    sin(110°) 0.9397
    sin(111°) 0.9336
    sin(112°) 0.9272
    sin(113°) 0.9205
    sin(114°) 0.9135
    sin(115°) 0.9063
    sin(116°) 0.8988
    sin(117°) 0.891
    sin(118°) 0.8829
    sin(119°) 0.8746
    sin(120°) 0.866
    sin(121°) 0.8572
    sin(122°) 0.848
    sin(123°) 0.8387
    sin(124°) 0.829
    sin(125°) 0.8192
    sin(126°) 0.809
    sin(127°) 0.7986
    sin(128°) 0.788
    sin(129°) 0.7771
    sin(130°) 0.766
    sin(131°) 0.7547
    sin(132°) 0.7431
    sin(133°) 0.7314
    sin(134°) 0.7193
    sin(135°) 0.7071
    sin(136°) 0.6947
    sin(137°) 0.682
    sin(138°) 0.6691
    sin(139°) 0.6561
    sin(140°) 0.6428
    sin(141°) 0.6293
    sin(142°) 0.6157
    sin(143°) 0.6018
    sin(144°) 0.5878
    sin(145°) 0.5736
    sin(146°) 0.5592
    sin(147°) 0.5446
    sin(148°) 0.5299
    sin(149°) 0.515
    sin(150°) 0.5
    sin(151°) 0.4848
    sin(152°) 0.4695
    sin(153°) 0.454
    sin(154°) 0.4384
    sin(155°) 0.4226
    sin(156°) 0.4067
    sin(157°) 0.3907
    sin(158°) 0.3746
    sin(159°) 0.3584
    sin(160°) 0.342
    sin(161°) 0.3256
    sin(162°) 0.309
    sin(163°) 0.2924
    sin(164°) 0.2756
    sin(165°) 0.2588
    sin(166°) 0.2419
    sin(167°) 0.225
    sin(168°) 0.2079
    sin(169°) 0.1908
    sin(170°) 0.1736
    sin(171°) 0.1564
    sin(172°) 0.1392
    sin(173°) 0.1219
    sin(174°) 0.1045
    sin(175°) 0.0872
    sin(176°) 0.0698
    sin(177°) 0.0523
    sin(178°) 0.0349
    sin(179°) 0.0175
    sin(180°) 0

    Таблица синусов для 181°-360°

    sin(181°) -0.0175
    sin(182°) -0.0349
    sin(183°) -0.0523
    sin(184°) -0.0698
    sin(185°) -0.0872
    sin(186°) -0.1045
    sin(187°) -0.1219
    sin(188°) -0.1392
    sin(189°) -0.1564
    sin(190°) -0.1736
    sin(191°) -0.1908
    sin(192°) -0.2079
    sin(193°) -0.225
    sin(194°) -0.2419
    sin(195°) -0.2588
    sin(196°) -0.2756
    sin(197°) -0.2924
    sin(198°) -0.309
    sin(199°) -0.3256
    sin(200°) -0.342
    sin(201°) -0.3584
    sin(202°) -0.3746
    sin(203°) -0.3907
    sin(204°) -0.4067
    sin(205°) -0.4226
    sin(206°) -0.4384
    sin(207°) -0.454
    sin(208°) -0.4695
    sin(209°) -0.4848
    sin(210°) -0.5
    sin(211°) -0.515
    sin(212°) -0.5299
    sin(213°) -0.5446
    sin(214°) -0.5592
    sin(215°) -0.5736
    sin(216°) -0.5878
    sin(217°) -0.6018
    sin(218°) -0.6157
    sin(219°) -0.6293
    sin(220°) -0.6428
    sin(221°) -0.6561
    sin(222°) -0.6691
    sin(223°) -0.682
    sin(224°) -0.6947
    sin(225°) -0.7071
    sin(226°) -0.7193
    sin(227°) -0.7314
    sin(228°) -0.7431
    sin(229°) -0.7547
    sin(230°) -0.766
    sin(231°) -0.7771
    sin(232°) -0.788
    sin(233°) -0.7986
    sin(234°) -0.809
    sin(235°) -0.8192
    sin(236°) -0.829
    sin(237°) -0.8387
    sin(238°) -0.848
    sin(239°) -0.8572
    sin(240°) -0.866
    sin(241°) -0.8746
    sin(242°) -0.8829
    sin(243°) -0.891
    sin(244°) -0.8988
    sin(245°) -0.9063
    sin(246°) -0.9135
    sin(247°) -0.9205
    sin(248°) -0.9272
    sin(249°) -0.9336
    sin(250°) -0.9397
    sin(251°) -0.9455
    sin(252°) -0.9511
    sin(253°) -0.9563
    sin(254°) -0.9613
    sin(255°) -0.9659
    sin(256°) -0.9703
    sin(257°) -0.9744
    sin(258°) -0.9781
    sin(259°) -0.9816
    sin(260°) -0.9848
    sin(261°) -0.9877
    sin(262°) -0.9903
    sin(263°) -0.9925
    sin(264°) -0.9945
    sin(265°) -0.9962
    sin(266°) -0.9976
    sin(267°) -0.9986
    sin(268°) -0.9994
    sin(269°) -0.9998
    sin(270°) -1
    sin(271°) -0.9998
    sin(272°) -0.9994
    sin(273°) -0.9986
    sin(274°) -0.9976
    sin(275°) -0.9962
    sin(276°) -0.9945
    sin(277°) -0.9925
    sin(278°) -0.9903
    sin(279°) -0.9877
    sin(280°) -0.9848
    sin(281°) -0.9816
    sin(282°) -0.9781
    sin(283°) -0.9744
    sin(284°) -0.9703
    sin(285°) -0.9659
    sin(286°) -0.9613
    sin(287°) -0.9563
    sin(288°) -0.9511
    sin(289°) -0.9455
    sin(290°) -0.9397
    sin(291°) -0.9336
    sin(292°) -0.9272
    sin(293°) -0.9205
    sin(294°) -0.9135
    sin(295°) -0.9063
    sin(296°) -0.8988
    sin(297°) -0.891
    sin(298°) -0.8829
    sin(299°) -0.8746
    sin(300°) -0.866
    sin(301°) -0.8572
    sin(302°) -0.848
    sin(303°) -0.8387
    sin(304°) -0.829
    sin(305°) -0.8192
    sin(306°) -0.809
    sin(307°) -0.7986
    sin(308°) -0.788
    sin(309°) -0.7771
    sin(310°) -0.766
    sin(311°) -0.7547
    sin(312°) -0.7431
    sin(313°) -0.7314
    sin(314°) -0.7193
    sin(315°) -0.7071
    sin(316°) -0.6947
    sin(317°) -0.682
    sin(318°) -0.6691
    sin(319°) -0.6561
    sin(320°) -0.6428
    sin(321°) -0.6293
    sin(322°) -0.6157
    sin(323°) -0.6018
    sin(324°) -0.5878
    sin(325°) -0.5736
    sin(326°) -0.5592
    sin(327°) -0.5446
    sin(328°) -0.5299
    sin(329°) -0.515
    sin(330°) -0.5
    sin(331°) -0.4848
    sin(332°) -0.4695
    sin(333°) -0.454
    sin(334°) -0.4384
    sin(335°) -0.4226
    sin(336°) -0.4067
    sin(337°) -0.3907
    sin(338°) -0.3746
    sin(339°) -0.3584
    sin(340°) -0.342
    sin(341°) -0.3256
    sin(342°) -0.309
    sin(343°) -0.2924
    sin(344°) -0.2756
    sin(345°) -0.2588
    sin(346°) -0.2419
    sin(347°) -0.225
    sin(348°) -0.2079
    sin(349°) -0.1908
    sin(350°) -0.1736
    sin(351°) -0.1564
    sin(352°) -0.1392
    sin(353°) -0.1219
    sin(354°) -0.1045
    sin(355°) -0.0872
    sin(356°) -0.0698
    sin(357°) -0.0523
    sin(358°) -0.0349
    sin(359°) -0.0175
    sin(360°) -0

    Существуют также следующие таблицы тригонометрических функций: таблица косинусов, таблица тангенсов и таблица котангенсов.

    Как легко запомнить таблицу синусов (видео)

    Таблицу важно всегда помнить на алгебре, чтобы найти синус.

    Всё для учебы » Математика в школе » Таблица синусов углов (градусы, значения)

    Понравилась статья? Поделить с друзьями:
  • Как найти пнг файл
  • Как найти айфон без эпл айди
  • Как составить план методисту
  • Как составить учебный план для доу
  • Как составить дневник мочеиспускания