Как найти синус угла формула приведения

$$ctg(pi-alpha)=-ctg(alpha);$$

Давайте вместо угла (alpha) возьмем какой-нибудь реальный угол. Суть от этого не изменится. Чтобы усложнить задачу, я не буду рисовать рисунок. Нарисуйте окружность сами и по пунктам сделайте пример.

Пример 7
$$cos(3pi+frac{pi}{6})=?;$$

  • Угол ((3pi+frac{pi}{6})) лежит в третьей четверти. Действительно, (3pi=2pi+pi) можно представить как полный круг плюс еще половина;
  • В третьей четверти косинус отрицательный. Знак минус;
  • (3pi) лежит на горизонтальной оси в точке (C). Значит косинус не меняется на синус;

$$cos(3pi+frac{pi}{6})=-cos(frac{pi}{6})=-frac{sqrt{3}}{2};$$

До этого мы рассматривали примеры, когда угол (alpha) был острым. А что, если он больше (90^o)?

В этом случае нам придется сделать из него острый угол. Рассмотрим пример:

Пример 8
$$tg(frac{pi}{2}-frac{5pi}{6})=?;$$
Угол (frac{5pi}{6}) — тупой угол. Для того, чтобы воспользоваться формулой приведения, можно представить:
$$frac{5pi}{6}=pi-frac{pi}{6};$$
Подставим в исходный пример
$$tg(frac{pi}{2}-frac{5pi}{6})=tg(frac{pi}{2}-pi+frac{pi}{6})=tg(frac{pi}{6}-frac{pi}{2});$$
Угол (frac{pi}{6}) острый и теперь можно воспользоваться правилом лошади.

  • ((frac{pi}{6}-frac{pi}{2})) лежит в четвертой четверти. Отмечаем (frac{pi}{6}) и по часовой стрелке вычитаем из него (frac{pi}{2});
  • В четвертой четверти тангенс отрицательный;
  • (frac{pi}{2}) лежит на вертикальной оси, тангенс меняется на котангенс;

$$tg(frac{pi}{2}-frac{5pi}{6})=tg(frac{pi}{6}-frac{pi}{2})=-ctg(frac{pi}{6})=-sqrt{3};$$

У любопытного читателя может возникнуть вопрос: а почему данный алгоритм называется правилом лошади? При чем тут, казалось бы, лошадь?

Лошадь, действительно, не при чем. Но дело в том, что когда вы определяете в третьем пункте, меняется ли наша тригонометрическая функция на противоположную или нет, то в случае, если дополнительный угол к (alpha) лежит на вертикальной оси, мы как бы смотрим вверх-вниз, киваем головой, как лошадь, говоря себе: «Да, меняем». Или если угол лежит на горизонтальной оси, то мы киваем влево вправо вдоль горизонтальной оси, как бы говоря: «Нет, не меняем». Такое вот странное название у правила.

все формулы приведения на одной картинке

Формулы приведения разработаны для углов, представленных в одном из следующих видов: (frac{pi}{2}+a), (frac{pi}{2}-a), (π+a), (π-a), (frac{3pi}{2}+a), (frac{3pi}{2}-a), (2π+a) и (2π-a). Аналогично их можно использовать для углов представленных в градусах: (90^°+a), (90^°-a), (180^°+a), (180^°-a), (270^°+a), (270^°-a), (180^°+a), (180^°-a). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

общий вид формул приведения

Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Функция:                Кофункция:
(sin⁡) (a)          (→)            (cos⁡) (a)
(cos⁡) (a)          (→)             (sin⁡) (a)
(tg⁡) (a)            (→)            (ctg) (a)
(ctg⁡) (a)          (→)             (tg) (a)

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс
или котангенс, он либо останется синусом, либо превратиться в косинус. А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее. 

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
— как определить знак перед конечной функцией (плюс или минус)?
— как определить меняется ли функция на кофункцию или нет?

Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Например, выводим формулу приведения для (⁡cos⁡(frac{3pi}{2}-a) =….) С исходной функцией понятно – косинус, а исходная четверть?

Для того, чтобы ответить на этот вопрос, представим, что (a) – угол от (0) до (frac{pi}{2}), т.е. лежит в пределах (0°…90^°) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол (frac{3pi}{2}-a)?
Чтобы ответить на вопрос, надо от точки, обозначающей (frac{3pi}{2}), повернуть в отрицательную сторону на угол (a).

как определяется знак у формул приведения

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: (cos(frac{3pi}{2}-a)=-…)

Менять ли функцию на кофункцию или оставить прежней?

Здесь правило еще проще:

— если «точка привязки» (frac{pi}{2}) ((90^°)) или (frac{3pi}{2}) ((270^°))– функция меняется на кофункцию;
— если «точка привязки» (π) ((180^°)) или (2π) ((360^°)) – функция остается той же.

То есть, при аргументах исходной функции (frac{pi}{2}+a), (frac{pi}{2}-a), (frac{3pi}{2}+a) или (frac{pi}{2}-a), мы должны поменять функцию, а при аргументах (π+a), (π-a), (2π+a) или (2π-a) — нет. Для того, чтоб это легче запомнить, вы можете воспользоваться мнемоническим правилом, которое в школе называют «лошадиным правилом»:

Точки, обозначающие (frac{pi}{2}) ((90^°)) и (frac{3pi}{2}) ((270^°)), расположены вертикально, и если вы переводите взгляд с одной на другую и назад, вы киваете головой, как бы говоря «да».

меняется ли функция в формулах приведения

Точки же, обозначающие (π) ((180^°)) и (2π) ((360^°)), расположены горизонтально, и если вы переводите взгляд между ними, вы мотаете головой, как бы говоря «нет».

меняется ли функция в формулах приведения 

Эти «да» и «нет» — и есть ответ на вопрос: «меняется ли функция?».
Таким образом, согласно правилу, в нашем примере выше (cos⁡(frac{3π}{2}-a)=…) косинус будет меняться на синус. В конечном итоге получаем, (cos⁡(frac{3π}{2}-a)=-sin⁡) (a). Это и есть верная формула приведения.

Foxford

Примеры с формулами приведения:

Зачем нужны формулы привидения? Ну, например, они позволяют упрощать выражения или находить значения некоторых тригонометрических выражений без использования калькулятора.

Пример. (Задание из ЕГЭ) Найдите значение выражения (frac{18 cos {⁡{41}^°} }{sin⁡ {{49}^°}})

Решение:

(frac{18 cos {{⁡41}^°} }{sin⁡{{49}^°}}=)

Углы ({41}^°) и ({49}^°) нестандартные, поэтому «в лоб» без калькулятора вычислить непросто. Однако использовав формулы привидения, мы легко найдем правильный ответ.
Прежде всего, обратите внимание на один важный момент: (49^°=90^°-41^°). Поэтому мы можем заменить (49^°) на (90^°-41^°).

(=frac{18 cos {⁡41^° }}{sin⁡ {({90}^°-{41}^°)}}=)

 

Теперь применим к синусу формулу приведения:

  • (90^°-41^°) – это первая четверть, синус в ней положителен. Значит, знак будет плюс;

  • (90^°)- находится на «вертикали» — функция меняется на кофункцию.

(sin⁡{(90^°-41^°)}=cos⁡ 41^° )

(=frac{18 cos {⁡41^° }}{cos⁡ {{41}^°}}=)

 

В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.

(= 18)

 

Записываем ответ

Ответ:  (18)

Пример. Найдите значение выражения (frac{3 sin{⁡(pi-a)}-cos(frac{pi}{2}+a) }{cos⁡ {(frac{3pi}{2}-a)}})

Решение:

(frac{3 sin{⁡(pi-a)}-cos(frac{pi}{2}+a) }{cos⁡ {(frac{3pi}{2}-a)}}=)

Рассмотрим первое слагаемое числителя: (sin⁡(π-a)). Воспользуемся формулами приведения, выведя ее самостоятельно:

  • ((π-a)) это вторая четверть, а синус во второй четверти положителен. Значит, знак будет плюс;
  • (π) это точка «горизонтальная», то есть мотаем головой, значит функция остается той же.

Таким образом, (sin⁡(π-a)=sin⁡a) 

(=frac{3 sin{⁡a}-cos(frac{pi}{2}+a) }{cos⁡ {(frac{3pi}{2}-a)}}=)

 

Второе слагаемое числителя: (cos⁡{(frac{π}{2} + a)}):

  • ((frac{π}{2} + a)) это опять вторая четверть, а косинус во второй четверти отрицателен. Значит, знак будет минус.
  • (frac{π}{2}) это точка «вертикальная», то есть киваем, значит, функция меняется на кофункцию – синус.

Таким образом, (cos{⁡(frac{π}{2} + a)}=-sin⁡a)

(=frac{3 sin{⁡a}-(-sin{a}) }{cos⁡ {(frac{3pi}{2}-a)}}=)

 

Теперь знаменатель: (cos⁡(frac{3π}{2} — a)). Его мы разобрали выше, он равен минус синусу. (cos⁡(frac{3π}{2} — a)=-sin{⁡a})

(=frac{3 sin{⁡a}-(-sin{a}) }{-sin⁡ {a}}=)

 

Раскрываем скобки и приводим подобные слагаемые.

(=frac{3 sin{⁡a}+sin{a}}{-sin⁡ {a}}=frac{4sin{a}}{-sin{a}})

 

Сократив на (sin⁡{a}), получаем ответ.

(=frac{4 }{-1}=)(-4)

 

Ответ:  (-4)

Пример. Вычислить чему равен (ctg(-a-frac{7π}{2})), если (tg) (⁡a=2)

Решение:

(ctg(-a-frac{7π}{2}) =)

Здесь сразу формулу приведения применять нельзя, так как аргумент нестандартный. Что не так? Прежде всего, (a) стоит первой, хотя должна быть после «точки привязки». Поменяем местами слагаемые аргумента, сохраняя знаки.

(= ctg(-frac{7π}{2}-a) =)

 

Уже лучше, но все еще есть проблемы – «точка привязки» с минусом, а такого аргумента у нас нет. Избавимся от минуса, вынеся его за скобку внутри аргумента.

(= ctg(-(frac{7π}{2}+a)) =)

 

Теперь вспомним о том, что котангенс – функция нечетная, то есть
(ctg) ((-t)=- ctg) (t). Преобразовываем наше выражение.

(= — ctg(frac{7π}{2}+a) =)

 

Несмотря на то, что точка привязки (frac{7π}{2}) мы все равно можем использовать формулы приведения, потому что (frac{7π}{2}) лежит на пересечении одной из осей и числовой окружности (смотри пояснение ниже). ((frac{7π}{2}+a)) это четвертая четверть, и котангенс там отрицателен. «Точка привязки» — вертикальная, то есть функцию меняем. Окончательно имеем (ctg(frac{7π}{2}+a)=-tg a) .

(= — (- tg) (a) = tg) (a = 2)

 

Готов ответ.

Ответ:  (2)

Еще раз проговорим этот важный момент: с точки зрения формулы приведения (frac{7π}{2}) — это тоже самое, что и (frac{3π}{2}). Почему? Потому что (frac{7π}{2}=frac{3π+4π}{2}=frac{3π}{2}+frac{4π}{2}=frac{3π}{2}+2π). Иными словами, они отличаются ровно на один оборот (2π). А на значения тригонометрических функций количество оборотов никак не влияет:

(cos) (⁡t=cos ⁡(t+2π)=cos ⁡(t+4π)=cos ⁡(t+6π)= …=cos⁡ (t-2π)=cos ⁡(t-4π)=cos⁡ (t-6π)…)
(sin) (t=sin⁡ (t+2π)=sin ⁡(t+4π)=sin ⁡(t+6π)= …=sin⁡ (t-2π)=sin ⁡(t-4π)=sin ⁡(t-6π)…)

Аналогично с тангенсом и котангенсом (только у них «оборот» равен (π)).
(tg) (t=tg⁡(t+π)=tg⁡(t+2π)=tg⁡(t+3π)= …=tg⁡(t-π)=tg⁡(t-2π)=tg⁡(t-3π)…)
(ctg) (t=ctg⁡(t+π)=ctg⁡(t+2π)=ctg⁡(t+3π)= …=ctg⁡(t-π)=ctg⁡(t-2π)=ctg⁡(t-3π)…)

Таким образом, (-ctg(frac{7π}{2}+a)=- ctg(frac{3π}{2}+2π+a)=- ctg(frac{3π}{2}+a)).

То есть, для определения знака и необходимости смены функции важно лишь местоположение «точки привязки», а не её значение, поэтому так расписывать не обязательно (но можно если вы хотите впечатлить своими знаниями учительницу).

Ответы на часто задаваемые вопросы

Вопрос: Есть ли формулы приведения с аргументами ((frac{π}{3}-a)),((frac{π}{4}+a)),((frac{7π}{6}+a)) или тому подобное?
Ответ: К сожалению, нет. В таких ситуациях выгодно использовать формулы разности и суммы аргументов. Например, (cos⁡(frac{π}{3}-a)=cos⁡frac{π}{3} cos⁡a+sin⁡frac{π}{3} sin⁡a=frac{1}{2}cos⁡a+frac{sqrt{3}}{2} sin⁡a).

Смотрите также Как доказать тригонометрическое тождество?

Формулы приведения — это соотношения, которые позволяют перейти от тригонометрических функций синус, косинус, тангенс и котангенс с углами `frac {pi}2 pm alpha`, `pi pm alpha`, `frac {3pi}2 pm alpha`, `2pi pm alpha` к этим же функциям угла `alpha`, который находится в первой четверти единичной окружности. Таким образом, формулы приведения «приводят» нас к работе с углами в пределе от 0 до 90 градусов, что очень удобно.

Содержание статьи:

  • 1 Формулы приведения: список и таблицы
  • 2 Мнемоническое правило формул приведения или как их запомнить
    • 2.1 Лошадиное правило
  • 3 Практические примеры использования формул приведения
  • 4 Доказательство формул приведения

Формулы приведения: список и таблицы

Всех вместе формул приведения есть 32 штуки. Они несомненно пригодятся на ЕГЭ, экзаменах, зачетах. Но сразу предупредим, что заучивать наизусть их нет необходимости! Нужно потратить немного времени и понять алгоритм их применения, тогда для вас не составит труда в нужный момент вывести необходимое равенство.

Сначала запишем все формулы приведения:

Для угла (`frac {pi}2 pm alpha`) или (`90^circ pm alpha`):

`sin(frac {pi}2 — alpha)=cos alpha;` ` sin(frac {pi}2 + alpha)=cos alpha`
`cos(frac {pi}2 — alpha)=sin alpha;` ` cos(frac {pi}2 + alpha)=-sin alpha`
`tg(frac {pi}2 — alpha)=ctg alpha;` ` tg(frac {pi}2 + alpha)=-ctg alpha`
`ctg(frac {pi}2 — alpha)=tg alpha;` ` ctg(frac {pi}2 + alpha)=-tg alpha`

Для угла (`pi pm alpha`) или (`180^circ pm alpha`):

`sin(pi — alpha)=sin alpha;` ` sin(pi + alpha)=-sin alpha`
`cos(pi — alpha)=-cos alpha;` ` cos(pi + alpha)=-cos alpha`
`tg(pi — alpha)=-tg alpha;` ` tg(pi + alpha)=tg alpha`
`ctg(pi — alpha)=-ctg alpha;` ` ctg(pi + alpha)=ctg alpha`

Для угла (`frac {3pi}2 pm alpha`) или (`270^circ pm alpha`):

`sin(frac {3pi}2 — alpha)=-cos alpha;` ` sin(frac {3pi}2 + alpha)=-cos alpha`
`cos(frac {3pi}2 — alpha)=-sin alpha;` ` cos(frac {3pi}2 + alpha)=sin alpha`
`tg(frac {3pi}2 — alpha)=ctg alpha;` ` tg(frac {3pi}2 + alpha)=-ctg alpha`
`ctg(frac {3pi}2 — alpha)=tg alpha;` ` ctg(frac {3pi}2 + alpha)=-tg alpha`

Для угла (`2pi pm alpha`) или (`360^circ pm alpha`):

`sin(2pi — alpha)=-sin alpha;` ` sin(2pi + alpha)=sin alpha`
`cos(2pi — alpha)=cos alpha;` ` cos(2pi + alpha)=cos alpha`
`tg(2pi — alpha)=-tg alpha;` ` tg(2pi + alpha)=tg alpha`
`ctg(2pi — alpha)=-ctg alpha;` ` ctg(2pi + alpha)=ctg alpha`

Часто можно встретить формулы приведения в виде таблицы, где углы записаны в радианах:

Чтобы воспользоваться ею, нужно выбрать строку с нужной нам функцией, и столбец с нужным аргументом. Например, чтобы узнать с помощью таблицы, чему будет равно ` sin(pi + alpha)`, достаточно найти ответ на пересечении строки ` sin beta` и столбца ` pi + alpha`. Получим ` sin(pi + alpha)=-sin alpha`.

И вторая, аналогичная таблица, где углы записаны в градусах:

Мнемоническое правило формул приведения или как их запомнить

Как мы уже упоминали, заучивать все вышеприведенные соотношения не нужно. Если вы внимательно на них посмотрели, то наверняка заметили некоторые закономерности. Они позволяют нам сформулировать мнемоническое правило (мнемоника — запоминать), с помощью которого легко можно получить любую с формул приведения.

Сразу отметим, что для применения этого правила нужно хорошо уметь определять (или запомнить) знаки тригонометрических функций в разных четвертях единичной окружности.Знаки синуса, косинуса, тангенса котангенсаСамо привило содержит 3 этапа:

    1. Аргумент функции должен быть представлен в виде `frac {pi}2 pm alpha`, `pi pm alpha`, `frac {3pi}2 pm alpha`, `2pi pm alpha`, причем `alpha` — обязательно острый угол (от 0 до 90 градусов).
    2. Для аргументов `frac {pi}2 pm alpha`, `frac {3pi}2 pm alpha` тригонометрическая функция преобразуемого выражения меняется на кофункцию, то есть противоположную (синус на косинус, тангенс на котангенс и наоборот). Для аргументов `pi pm alpha`, `2pi pm alpha` функция не меняется.
    3. Определяется знак исходной функции. Полученная функция в правой части будет иметь такой же знак.

Чтобы посмотреть, как на практике можно применить это правило, преобразим несколько выражений:

1. ` cos(pi + alpha)`.

Функция на противоположную не меняется. Угол ` pi + alpha` находится в III четверти, косинус в этой четверти имеет знак «-» , поэтому преобразованная функция будет также со знаком «-» .

Ответ: ` cos(pi + alpha)= — cos alpha`

2.  `sin(frac {3pi}2 — alpha)`.

Согласно мнемоническому правилу функция изменится на противоположную. Угол `frac {3pi}2 — alpha` находится в III четверти, синус здесь имеет знак «-» , поэтому результат также будет со знаком «-» .

Ответ: `sin(frac {3pi}2 — alpha)= — cos alpha`

3. `cos(frac {7pi}2 — alpha)`.

`cos(frac {7pi}2 — alpha)=cos(frac {6pi}2+frac {pi}2-alpha)=cos (3pi+(frac{pi}2-alpha))`. Представим `3pi` как `2pi+pi`. `2pi` — период функции.

Важно: Функции `cos alpha` и `sin alpha` имеют период `2pi` или `360^circ`, их значения не изменятся, если на эти величины увеличить или уменьшить аргумент.

Исходя из этого, наше выражение можно записать следующим образом: `cos (pi+(frac{pi}2-alpha)`. Применив два раза мнемоническое правило, получим: `cos (pi+(frac{pi}2-alpha)= — cos (frac{pi}2-alpha)= — sin alpha`.

Ответ: `cos(frac {7pi}2 — alpha)=- sin alpha`.

Лошадиное правило

Второй пункт вышеописанного мнемонического правила еще называют лошадиным правилом формул приведения. Интересно, почему лошадиным?

Итак, мы имеем функции с аргументами `frac {pi}2 pm alpha`, `pi pm alpha`, `frac {3pi}2 pm alpha`, `2pi pm alpha`, точки `frac {pi}2`, `pi`, `frac {3pi}2`, `2pi` — ключевые, они располагаются на осях координат. `pi` и `2pi` на горизонтальной оси абсцисс, а `frac {pi}2` и `frac {3pi}2` на вертикальной оси ординат.

Задаем себе вопрос: «Меняется ли функция на кофункцию?». Чтобы ответить на этот вопрос, нужно подвигать головой вдоль оси, на которой расположена ключевая точка.

То есть для аргументов с ключевыми точками, расположенными на горизонтальной оси, мы отвечаем «нет», мотая головой в стороны. А для углов с ключевыми точками, расположенными на вертикальной оси, мы отвечаем «да», кивая головой сверху вниз, как лошадь 🙂

Рекомендуем посмотреть видеоурок, в котором автор подробно объясняет, как запомнить формулы приведения без заучивания их наизусть.

Практические примеры использования формул приведения

Применение формул приведения начинается еще в 9, 10 классе. Немало задач с их использованием вынесено на ЕГЭ. Вот некоторые из задач, где придется применять эти формулы:

  • задачи на решение прямоугольного треугольника;
  • преобразования числовых и буквенных тригонометрических выражений, вычисление их значений;
  • стереометрические задачи.

Пример 1. Вычислите при помощи формул приведения а) `sin 600^circ`, б) `tg 480^circ`, в) `cos 330^circ`, г) `sin 240^circ`.

Решение: а) `sin 600^circ=sin (2 cdot 270^circ+60^circ)=-cos 60^circ=-frac 1 2`;

б) `tg 480^circ=tg (2 cdot 270^circ-60^circ)=ctg 60^circ=frac{sqrt 3}3`;

в) `cos 330^circ=cos (360^circ-30^circ)=cos 30^circ=frac{sqrt 3}2`;

г) `sin 240^circ=sin (270^circ-30^circ)=-cos 30^circ=-frac{sqrt 3}2`.

Пример 2. Выразив косинус через синус по формулам приведения, сравнить числа: 1) `sin frac {9pi}8` и `cos frac {9pi}8`; 2) `sin frac {pi}8` и `cos frac {3pi}10`.

Решение: 1)`sin frac {9pi}8=sin (pi+frac {pi}8)=-sin frac {pi}8`

`cos frac {9pi}8=cos (pi+frac {pi}8)=-cos frac {pi}8=-sin frac {3pi}8`

`-sin frac {pi}8> -sin frac {3pi}8`

`sin frac {9pi}8>cos frac {9pi}8`.

2) `cos frac {3pi}10=cos (frac {pi}2-frac {pi}5)=sin frac {pi}5`

`sin frac {pi}8<sin frac {pi}5`

`sin frac {pi}8<cos frac {3pi}10`.

Доказательство формул приведения

Докажем сначала две формулы для синуса и косинуса аргумента `frac {pi}2 + alpha`: ` sin(frac {pi}2 + alpha)=cos alpha` и` cos(frac {pi}2 + alpha)=-sin alpha`. Остальные выводятся из них.

Возьмем единичную окружность и на ней точку А с координатами (1,0).  Пусть после поворота на Доказательство формул приведенияугол `alpha` она перейдет в точку `А_1(х, у)`, а после поворота на угол `frac {pi}2 + alpha` в точку `А_2(-у,х)`. Опустив перпендикуляры с этих точек на прямую ОХ, увидим, что треугольники `OA_1H_1` и `OA_2H_2` равны, поскольку равны их гипотенузы и прилежащие углы. Тогда исходя из определений синуса и косинуса можно записать `sin alpha=у`, `cos alpha=х`, ` sin(frac {pi}2 + alpha)=x`, ` cos(frac {pi}2 + alpha)=-y`. Откуда можно записать, что ` sin(frac {pi}2 + alpha)=cos alpha` и ` cos(frac {pi}2 + alpha)=-sin alpha`, что доказывает формулы приведения для синуса и косинуса угла `frac {pi}2 + alpha`.

Выходя из определения тангенса и котангенса, получим ` tg(frac {pi}2 + alpha)=frac {sin(frac {pi}2 + alpha)}{cos(frac {pi}2 + alpha)}=frac {cos alpha}{-sin alpha}=-ctg alpha` и ` сtg(frac {pi}2 + alpha)=frac {cos(frac {pi}2 + alpha)}{sin(frac {pi}2 + alpha)}=frac {-sin alpha}{cos alpha}=-tg alpha`, что доказывает формулы приведения для тангенса и котангенса угла `frac {pi}2 + alpha`.

Чтобы доказать формулы с аргументом `frac {pi}2 — alpha`, достаточно представить его, как `frac {pi}2 + (-alpha)` и проделать тот же путь, что и выше. Например, `cos(frac {pi}2 — alpha)=cos(frac {pi}2 + (-alpha))=-sin(-alpha)=sin(alpha)`.

Углы `pi + alpha` и `pi — alpha` можно представить, как `frac {pi}2 +(frac {pi}2+alpha)` и `frac {pi}2 +(frac {pi}2-alpha)` соответственно.

А `frac {3pi}2 + alpha` и `frac {3pi}2 — alpha` как `pi +(frac {pi}2+alpha)` и `pi +(frac {pi}2-alpha)`.

Материалы по теме:

  • Формулы половинного угла тригонометрических функций
  • Тригонометрические формулы: косинус, синус и тангенс двойного угла
  • Все формулы по тригонометрии
  • Формулы понижения степени в тригонометрии: вывод и примеры

Загрузка…

Определение. Формулами приведения называют формулы, которые позволяют перейти от тригонометрических функций вида к функциям аргумента . С их помощью синус, косинус, тангенс и котангенс произвольного угла можно привести к синусу, косинусу, тангенсу и котангенсу угла из интервала от 0 до 90 градусов (от 0 до  радиан). Таким образом, формулы приведения позволяют нам переходить к работе с углами в пределах 90 градусов, что, несомненно, очень удобно.

Формулы приведения:

Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

   Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет

2. Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Пример:

Вычислить 

Воспользуемся формулами приведения:

 Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен «+». Значит у приведенной функции тоже будет знак «+». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.

Алгебра и начала математического анализа, 10 класс

Урок №37. Формулы приведения.

Перечень вопросов, рассматриваемых в теме:

  • формулы приведения;
  • мнемоническое правило для формул приведения;
  • преобразование тригонометрических выражений на основе использования формул приведения;
  • вычисление значений тригонометрических выражений на основе формул приведения;
  • доказательство тригонометрические тождества на основе формул приведения;
  • решение уравнения с использованием формул приведения.

Глоссарий по теме

Формулы приведения – это формулы, которые позволяют синус, косинус, тангенс и котангенс различных углов приводить к острым углам.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.

Теоретический материал для самостоятельного изучения

Для вычисления углов больше 90 используют формулы приведения. Они позволяют синус, косинус, тангенс и котангенс различных углов приводить к острым углам.

Пример: Вычислить и.

Представим число .

Рассмотрим точку А(1;0) на единичной окружности. При повороте вокруг начала координат на угол она сделает 2 полных оборота и ещё повернётся на угол . Переместится в точку В, в которую могла бы попасть, сделав поворот на угол . Значит, , .

А так как , то ,

Количество полных оборотов по 360 или по может выражаться любым целым числом k, как положительным, так и отрицательным и нулём. При повороте точки А(1;0) на угол , где k получается та же самая точка, что при повороте на угол

Рисунок 1 – точки А и В на единичной окружности

Справедливы равенства:

, где , , где

Пусть точка А(1;0) переместилась в точку В1 при повороте на угол и в точку В при повороте на угол (рис. 2).

Рисунок 2 – точки А, В, В1 на единичной окружности

Запишем в виде: . На единичной окружности точки В1 и В симметричны относительно оси Оу, значит их ординаты (синусы) равны, абсциссы (косинусы)- противоположные числа.

Поэтому , а .

А так как , то , .

Помним, что , тогда , .

Докажем, что для всех углов справедливы формулы:

, .

Воспользуемся формулой синуса и косинуса разности:, подставим известные значения в формулу, получаем:

.

(1)

(2)

Аналогично доказываются формулы:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Эти формулы называются формулами приведения для синуса и косинуса.

Пример: вычислите . Представим , тогда .

Выведем формулы для тангенса, используя его определение

,

Найдём

Получаем формулы для тангенса и котангенса:

, где и , где (13)

(14)

(15)

(16)

(17)

Пример: вычислите .

Преобразуем выражение в скобке

.

Обратите внимание, что все эти формулы связывают синусы с синусами или косинусами, а тангенсы с тангенсами или котангенсами. В одних случаях синус меняется на косинус и наоборот, в других – нет. Так, например, в формулах 1,2,3,8 и 13, где в левой части присутствуют синусы, косинусы и тангенсы не меняются.

В остальных формулах, где в левой части присутствуют или , синус меняется на косинус и наоборот, а тангенс на котангенс.

Формул приведений много и их не обязательно каждый раз выводить и запоминать.

Для этого придумали мнемоническое правило.

  1. Если в левой части присутствуют и т.д. синусы, косинусы и тангенсы не меняются.

Если в левой части присутствуют или , синус меняется на косинус, косинус на синус, тангенс на котангенс.

  1. Знак в правой части ставим тот же, который имело исходное число в левой части, при условии .

Существует легенда про рассеянного математика, который всё время забывал менять или не менять синус на косинус и наоборот. Он смотрел на свою сообразительную лошадь и она кивала головой вдоль той оси, где стояли числа и , . (рис. 3)

Рисунок 3 – «правило лошади»

Если аргумент содержал или , лошадь кивала вдоль оси Оу. Это означало «да, менять». А если , кивала вдоль оси Ох – «не менять».

Так же помните: чётные числа вида и т.д. находятся на оси Ох справа от нуля на единичной окружности, а нечётные и т. д. слева от нуля.

Если в выражении перед стоит плюс, то точка перемещается по окружности по часовой стрелке, если стоит минус, то против часовой стрелке.

Примеры и разбор решения заданий тренировочного модуля

Пример 1: упростите выражение .

находится на оси Ох, слева от нуля, косинус не меняем. Перед минус, точка перемещается против часовой стрелке и попадает во вторую четверть, здесь косинусы отрицательные (рис.4)

Рисунок 4 – перемещение точки по единичной окружности

Значит =.

Пример 2: вычислите

Преобразуем выражение в скобке: . находится слева на оси Ох, синус не меняем. Угол в третьей четверти, синусы отрицательные.

Понравилась статья? Поделить с друзьями:
  • Как найти свой кредитный договор в мтс
  • Как можно найти флешку если потерял
  • Assassins creed 2 как найти все перья
  • Дисграфия как найти логопеда
  • Как найти заказ спортмастер