Как найти синус угла между двумя диагоналями

четырехугольник MNKP задан координатами своих вершин : M(5;-3) N(1;2) К(4;4) P(6;1)

Четырехугольник MNKP задан координатами своих вершин : M(5;-3) N(1;2) К(4;4) P(6;1) отыскать синус угла меж его диагоналями (т.е синус угла О Я достроила четырехугольник и дорисованный угол обозначила как N1. 1) Угол МОN = УГЛУ MNN1
2) вектор МК * вектор ПН= модулю МК*модуль ПН*косинус угла меж ними
3) sin квадрат альфа +косинус квадрат альфа =1(по формуле) А подставить никак не могу. помогите. ОТвет в учебнике : 17/5 корень из 13. помогите

  • Клищевская Елизавета
  • Геометрия 2019-04-20 02:18:36 335 1

Решим по другому, вычислим площадь этого четырехугольника. Проведя диагональ в выпуклом четырехугольнике , найдем площадь треугольника — стороны

Сейчас так же треугольника
оно одинакова , а как известно площадь четырехугольника равен полу творенью диагоналей на то есть

Четырехугольники. Основные теоремы, формулы и свойства. Виртуальный справочник репетитра по математике

З десь ученики и репетиторы по математике и могут найти основные свойства и формулы площадей четырехугольников, изучаемых в школе по основной программе. Регулярно пользуюсь этими теоретическими сведениями на тематических и обзорных занятиях по геометрии (планиметрии), а также при подготовке к ЕГЭ по математкие. Все математические понятия и факты иллюстрированы с цветовыми выделениями главных особенностей изучаемого.

1) Площади четырехугольников

Площадь параллелограмма

произведение основания на высоту

пороизведение сторон на синус угла между ними

полупроизведение диагоналей на синус угла между ними

Площадь трапеции

произведение полусуммы оснований на высоту

произведение средней линии на высоту

полупроизведение диагоналей на синус угла между ними

Площадь произвольного четырехугольника


Площадь произвольного четырехугольника равна полупроизведению его диагоналей на синус угла между ними

2) Свойства параллелограмма

В параллелограмме:
противолежащие стороны и углы равны

диагонали пересекаются и в точке пересечения делятся пополам

3) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон, то есть

3) Cредняя линия в трапеции

Теорема о средней линии: Средняя линия трапеции параллельна основаниям и равна их полусумме.
То есть и

4) Средняя линия в равнобедренной трапеции

Средняя линия в равнобедренной трапеции равна отрезку нижнего основания, соединяющему вершину основания с снованием проведенной к ней высоты.

То есть

5) Теорема с сдвиге диагонали в трапеции

Теорема: Если в трапеции через вершину В, как показано на рисунке слева , провести отрезок параллельный одной из диагоналей, то окажутся верными следующие факты:

трапеция — равнобедренная равнобедренный

6) Четыре замечательные точки в трапеции

Теорема: В любой трапеции точка пересечения диагоналей, точка пеерсечения продолжений боковых сторон и середины оснований лежат на одной прямой.

То есть точки M, N, K и P лежат на одной прямой

Комментарий репетитора по математкие: Знаний этих свойств по четырехугольникам вполне достаточно для решения задачи С4 на ЕГЭ, то есть ничего сверх этих фактов по четырехугольникам абитуриент знать не обязан. Однако сильным ученикам для решения сложных задач части С или олимпиадных геометрических задач, а также для качественной подготовки к экзамену по математике в МГУ необходимо расширить список. Я бы не советовал репетиторам ограничиваться только задачами на применение этих свойств, так как составителями ЕГЭ по математике закладывается проверка сразу нескольких навыков работы с теорией. В течении всего времени подготовки к ЕГЭ репетитору по математкие необходимо отбирать тренировочные задачи на одновременное использование этих свойств с другими планиметрическими фактами внутри одной задачи, ибо на экзамене может встретиться многоходовая комбинация.

Колпаков Александр Николаевич. Репетитор по математике.

Александр, конечно, есть множество карманных справочников, НО! Было бы здорово сделать для репетиторов по математике скачиваемые материалы в каком-нибудь удобном формате, а также для проработки отдельно задачи к таким шпаргалкам опять же от простого к сложному.

Я выкладывал на каких-то страницах с карточками-памятками готовые теоретические материалы — файлы в формате word, по крайней мере для планиметрии точно. Просмотрите соответствующие разделы сайта. На них ведут ссылки с главной страницы. Задумываю выделить репетиторам по математике для скачивания материалов отдельный раздел сайта. Все упирается в мою занятость реальными учениками. Иначе бы уже давно реализовал все замыслы.

В этой хорошей подборке, на мой взгляд, не достает сведений по углам, например, два внутренних угла параллелограмма, связанных одной стороной в сумме дают 180 градусов.

Принципиально ли в формуле площади через диагонали брать именно меньший угол между ними? Или можно любой?

Александр, если не затруднит, очень хотелось бы получить файлик world на почту или тыкнуть ссылкой на нее. За ранее очень благодарен за титанический труд.

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Определение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Свойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Ромб – это параллелограмм, у которого все стороны равны.

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объекты яблони теплица сарай жилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объекты яблони теплица сарай жилой дом
Цифры 3 5 1 7

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазина Расход краски Масса краски в одной банке Стоимость одной банки краски Стоимость доставки заказа
1 0,25 кг/кв.м 6 кг 3000 руб. 500 руб.
2 0,4 кг/кв.м 5 кг 1900 руб. 800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

источники:

http://ankolpakov.ru/2010/10/11/chetyrexugolniki-osnovnye-teoremy-formuly-i-svojstva-virtualnyj-spravochnik-repetitra-po-matematike/

Четырехугольники

Задания

Версия для печати и копирования в MS Word

Тип 32 № 1196

В выпуклом четырёхугольнике диагонали равны 9 и 14, его площадь равна 27. Найдите синус угла между диагоналями.

Спрятать решение

Решение.

Выразим синус угла между диагоналями через площадь четырехугольника:

S = дробь: числитель: 1, знаменатель: 2 конец дроби d_1d_2 умножить на синус angle альфа равносильно синус angle альфа = дробь: числитель: 2S, знаменатель: d_1d_2 конец дроби = дробь: числитель: 54, знаменатель: 9 умножить на 14 конец дроби = дробь: числитель: 3, знаменатель: 7 конец дроби .

Ответ:  дробь: числитель: 3, знаменатель: 7 конец дроби .

Спрятать решение

·

Помощь

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Прямоугольник – плоская четырёхугольная геометрическая фигура. Прямоугольник относится к
параллелограммам и обладает некоторыми свойствами:

  • Все внутренние углы фигуры прямые.
  • Противолежащие стороны попарно параллельны и равны.
  • Диагонали прямоугольника (отрезок, соединяющий вершины противоположных внутренних углов) равны.
    Точка пересечения делит их на равные отрезки.
  • Диагональ делит фигуру на 2 одинаковых прямоугольных треугольника.
  • Диагональ делит внутренний угол (90°) на 2 угла. Накрест лежащие углы при проведенном отрезке
    равны.
  • Острый угол между диагоналями прямоугольника через площадь
    и диагональ
  • Угол между диагоналями прямоугольника через угол между
    стороной и диагональю
  • Острый угол между диагоналями прямоугольника через ширину и
    диагональ
  • Острый угол между диагоналями прямоугольника через длину и
    диагональ
  • Острый угол между диагоналями прямоугольника через ширину и
    длину
  • Тупой угол между диагоналями прямоугольника через длину и
    диагональ
  • Тупой угол между диагоналями прямоугольника через ширину и
    диагональ
  • Тупой угол между диагоналями прямоугольника через длину и
    ширину

Острый угол между диагоналями прямоугольника через площадь и диагональ

Рис 1

Острый угол (a) между диагоналями, зная площадь (S) и длину диагонали (d) легко можно вычислить по
формуле:

sin a = (2 * S) / d²

где d — диагональ, S — площадь прямоугольника.

Цифр после
запятой:

Результат в:

Через синус находится значение угла. По этой формуле также можно найти тупой угол между диагоналями,
так как 2 данных угла являются смежными, а синусы смежных углов равны.

Пример. Дан прямоугольник, площадь которого равна 108 см², а диагональ – 15 см.
Нужно найти острый угол между диагоналями. Необходимые значения подставляем в формулу sin a = (2 * S) / d² = (2 * 108) / 225 = 0,96. По значению синуса
находится величина острого угла между диагоналями. В данном случае она равна 73,73°.

Угол между диагоналями прямоугольника через угол между стороной и диагональю

Рис 2

Величина нужного угла (α) в два раза больше угла (β) между стороной и диагональю по свойству углов
равнобедренного треугольника, так как диагонали при пересечении образуют 4 равнобедренных
треугольника. В равнобедренном треугольнике углы при основании (b) равны, а нужный угол является
смежным по отношению к углу при вершине (c), в таком случае c = 180 — α. Сумма углов
треугольника равна 180°. Несложно составить уравнение β+β+180-α=180, которое легко сокращается до
вида

β = 2 * α

где α — угол между стороной и диагональю.

Цифр после
запятой:

Результат в:

Пример. Пусть угол α = 15 (он может быть от 0 до 90º), тогда β = 2 * α = 2 * 15 = 30º

Острый угол между диагоналями прямоугольника через длину и ширину

Рис 5

Если в задаче неизвестна длина диагонали, не нужно тратить время на ее поиски. Можно быстро найти
острый угол между диагоналями при помощи длины и ширины прямоугольника по формуле:

α = 2 arctg b / a

где b — ширина прямоугольника, a — длина прямоугольника.

Цифр после
запятой:

Результат в:

Пример. Дан прямоугольник со сторонами 8 см и 6 см. Нужно построить диагонали и
найти острый угол между ними. Угол α = 2 arctg 6 / 8 = 2 arctg 0,75=73,73°.

Острый угол между диагоналями прямоугольника через ширину и диагональ

Рис 3

Значение нужного угла можно определить, зная длину диагонали и ширины (B) четырёхугольника, по
формуле:

α = 2 arcsin b / d

где b — ширина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. Рассмотрим применение формулы в конкретной задаче. Дан прямоугольник, ширина
которого равна 3 мм, а длина диагонали – 5 мм. Необходимо найти острый угол между
диагоналями. Применив данную формулу, находим значение нужного угла: a = 2 * arcsin 0,6 = 73,73°.

Острый угол между диагоналями прямоугольника через длину и диагональ

Рис 4

Если неизвестна ширина прямоугольника, но есть значение длины (a), можно также просто найти острый
угол между диагоналями. Формула почти идентична предыдущей:

α = 2 arccos a / d

где a — длина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. В прямоугольнике с длиной 8 см, в котором проведены диагонали длиной 10 см,
найти острый угол между диагоналями. Угол α = 2arccos 8 / 10 = 2arccos 0,8 = 73,73°.

Тупой угол между диагоналями прямоугольника через ширину и диагональ

Рис 7

Для того чтобы быстро вычислить значение данного угла при помощи известной ширины и диагонали
прямоугольника, нужно воспользоваться следующей формулой:

β = 2 arccos b / d

где b — ширина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. Известна ширина прямоугольника, она равна 8 мм. А длина диагонали равна 17
мм. Задача найти значение тупого угла между диагоналями.
Вставив данные в формулу, вы получите
правильный результат. Таким образом, β = 2 arccos 8 / 17 = 2 arccos 0,47 = 123,85°.

Тупой угол между диагоналями прямоугольника через длину и диагональ

Рис 6

Можно, конечно, применить предыдущую формулу и найти острый угол через длину и диагональ, а потом
вычесть значение из 180°. Но есть упрощенная формула для быстрой скорости решения: тупой угол между
диагоналями

β = 2 arcsin a / d

где a — длина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. Дан прямоугольник с длиной равной 20 см, в котором проведены диагонали
длиной 25 см. Чтобы найти нужную величину, подставляем значения в формулу: β = 2 arcsin 20 / 25 = 2 arcsin 0,8 = 106°.

Тупой угол между диагоналями прямоугольника через длину и ширину

Рис 8

Формула для определения тупого угла между диагоналями прямоугольника через известные значения длины и
ширины такова:

β = 2 arctg a / b

где a — длина прямоугольника, b — ширина прямоугольника.

Цифр после
запятой:

Результат в:

Пример. Дан прямоугольник со сторонами 15 см и 8 см. Вычислим значение тупого угла,
подставив данные в формулу: β = 2arctg 15 / 8 = 2 arctg 0,5= 123,85°.

Стоит отметить, что при использовании указанных в статье правил нужно владеть знаниями о
тригонометрических функциях. Для того чтобы быстро определять углы, образованные пересечением
диагоналей прямоугольника, поможет именно данный список формул, которые необходимо знать наизусть.
Если на решение задач по геометрии дается небольшой промежуток времени, к примеру, контрольная или
экзамен, лучше отложить сложные алгоритмы и воспользоваться упрощенными формулами.

Параллелограмм относится к выпуклым четырехугольным геометрическим фигурам. Его основные
отличительные признаки от других фигур: равные и попарно параллельные противоположные стороны,
равные противолежащие углы. Диагонали фигуры всегда делятся точкой пересечения на равные отрезки, а
также они делят параллелограмм на 2 одинаковых треугольника. Еще одним главным свойством
четырёхугольника является то, что сумма квадратов диагоналей равна двум суммам квадратов смежных
сторон параллелограмма.

Биссектрисы внутренних углов данного четырёхугольника всегда отсекают от него равнобедренный
треугольник, а также они равны между собой. Сумма углов параллелограмма равна 360°, как и у других
четырёхугольников.
К параллелограммам относятся: квадрат (четырёхугольник с равными сторонами и
равными прямыми внутренними углами), прямоугольники и ромбы (параллелограмм с равными сторонами).
Эти фигуры часто встречаются в школьной программе на уроках геометрии.

Для чего необходимо вычисление угла между диагоналями параллелограмма

  • Для нахождения сторон четырёхугольника (длины и ширины).
  • Для нахождения площади и периметра фигуры.
  • Для нахождения углов между стороной и диагональю.
  • Для нахождения длины диагонали.

Знание свойств геометрических фигур помогает справиться с задачей любой сложности. Постоянная
практика с использованием формул способствует быстрому запоминанию информации, помогает проработать
маршруты и теоремы, которые западают.

Прямоугольник часто встречается в решении задач по геометрии. Важно знать все его свойства и уметь
пользоваться правилами и теоремами для успешного нахождения результата. Упрощенные формулы и
несколько конкретных примеров помогут определить правильный алгоритм решения и быстро найти
ответ.

геометрия — Найти угол между диагоналями четырехугольника

В четырехугольнике суммы квадратов противоположных сторон равны. Найти угол между диагоналями этого четырехугольника.

задан 20 Май ’14 23:02

@Vipz3, Если вы получили исчерпывающий ответ, отметьте его как принятый.

1 ответ

Диагонали четырёхугольника перпендикулярны, это его свойство в данном случае. Для доказательства распишите квадраты сторон через теорему косинусов. В итоге придете к тому, что косинус умножить на положительную сумму равно нулю. Понятно, что косинус равен нулю и угол 90.

Геометрия. Урок 4. Четырехугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение четырехугольника
  • Выпуклые четырехугольники
  • Параллелограмм
  • Робм
  • Прямоугольник
  • Квадрат
  • Трапеция
  • Примеры решений заданий из ОГЭ

Определение четырехугольника

Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырехугольники бывают выпуклые ( A B C D ) и невыпуклые ( A 1 B 1 C 1 D 1 ) .

Выпуклый четырехугольник

Выпуклые четырехугольники

В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.

Смежные стороны – соседние стороны, которые выходят из одной вершины. Пары смежных сторон: A B и A D , A B и B C , B C и C D , C D и A D .

Противолежащие стороны – несмежные стороны (соединяют разные вершины). Пары противолежащих сторон: A B и C D , B C и A D .

Противолежащие вершины – вершины, не являющиеся соседними (лежат друг напротив друга). Пары противолежащих вершин: A и C , B и D .

Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины. A C и B D – диагонали четырехугольника A B C D .

Диагонали выпуклого четырехугольника пересекаются в одной точке.

Площадь произвольного выпуклого четырехугольника можно найти по формуле:

S = 1 2 d 1 d 2 ⋅ sin φ

где d 1 и d 2 – диагонали четырехугольника, φ – угол между диагоналями (острый или тупой – не важно).

Рассмотрим более подробно некоторые виды выпуклых четырехугольников.

Класс параллелограммов : параллелограмм, ромб, прямоугольник, квадрат.

Класс трапеций : произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.

Параллелограмм

Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.

Свойства параллелограмма:

  • Противолежащие стороны равны.
  • Противоположные углы равны.
  • Диагонали точкой пересечения делятся пополам.
  • Сумма углов, прилежащих к одной стороне, равна 180 ° .
  • Сумма квадратов диагоналей равна сумме квадратов сторон. d 1 2 + d 2 2 = 2 ( a 2 + b 2 )

Площадь параллелограмма можно найти по трём формулам.

Как произведение стороны и высоты, проведенной к ней.

Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.

Как произведение двух смежных (соседних) сторон на синус угла между ними.

Как полупроизведение диагоналей на синус угла между ними.

Ромб – параллелограмм, у которого все стороны равны.

Свойства ромба:

  • Диагонали пересекаются под прямым углом.
  • Диагонали являются биссектрисами углов, из которых выходят.
  • Сохраняются все свойства параллелограмма.

Площадь ромба можно найти по трём формулам.

Как произведение стороны ромба на высоту ромба.

Как квадрат стороны ромба на синус угла между двумя сторонами.

Как полупроизведение диагоналей ромба.

Прямоугольник

Прямоугольник – это параллелограмм, у которого все углы равны 90 ° .

Свойства прямоугольника:

  • Диагонали прямоугольника равны.
  • Сохраняются все свойства параллелограмма.

Площадь прямоугольника можно найти по двум формулам:

Как произведение двух смежных (соседних) сторон прямоугольника.

Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.

Квадрат

Квадрат – прямоугольник, у которого все стороны равны.

Свойства квадрата:

  • Сохраняет свойства ромба.
  • Сохраняет свойства прямоугольника.

Площадь квадрата можно вычислить по двум формулам:

Как квадрат стороны.

Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).

Трапеция

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.

Стороны, которые параллельны друг другу называются основаниями , другие две стороны называются боковыми сторонами .

B C и A D – основания, A B и C D – боковые стороны трапеции A B C D .

Свойства трапеции:

сумма углов, прилежащих к боковой стороне, равна 180 ° .

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Средняя линия параллельна основаниям. Её длина находится по формуле: m = a + b 2

Площадь трапеции можно найти по двум формулам:

Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.

Как полупроизведение диагоналей на синус угла между ними.

Виды трапеций

Прямоугольная трапеция – трапеция, у которой два угла прямые.

Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.

Четырехугольник, вписанный в окружность — основные свойства, признаки и формулы

Основные правила

Фигура является вписанной в окружность, когда все ее вершины лежат на ней. Произвести вписание в окружность четырехугольника можно только в том случае, когда он выпуклый. Все его точки находятся по одну сторону от произвольной прямой, которая проходит через соседние вершины фигуры. Нужно отметить, что в этом случае окружность является описанной вокруг фигуры. Если в параллелограмм вписана окружность, то ее центр совпадает с центром окружности, которая описана вокруг него.

Четырехугольники бывают самопересекающимися. Они также могут быть вписанными, однако это встречается крайне редко. Не каждую фигуру можно вписать в круг, поскольку существуют определенные законы. Например, вокруг ромба нельзя описать круг — исключение составляет случай, когда ромб является квадратом.

Основные правила

Выпуклый четырехугольник можно вписать в окружность. Однако для этого существуют некоторые правила (критерии) или признаки. Некоторые задачи сформулированы таким образом, что нужно знать основные критерии, а также уметь доказывать возможность вписывать или описывать окружность. Около четырехугольника можно описать окружность, если выполняются следующие условия:

Формулы и соотношения

  • Сумма углов, которые являются противоположными, соответствует 180 градусам.
  • Соблюдается равенство смежного и противоположного углов.
  • Угол между стороной и диагональю равен углу между противоположной стороной и диагональю.
  • Произведение двух диагоналей соответствует размерности суммы произведений противоположных сторон.
  • Четыре точки лежат на окружности, когда две прямые АС и BD, образующие диагонали, пересекаются в некоторой точке P, а также выполняется следующее равенство: AP * PC = BP * PD.
  • Произведения тангенсов половины двух противоположных углов равны 1. Кроме того, значения произведений эквивалентны друг другу (tg (A/2) * tg (C/2) = tg (B/2) * tg (D/2) = 1).

Четвертое утверждение является теоремой Птолемея. Все эти правила являются следствиями, полученными при доказательстве различных гипотез. Правила можно применять в зависимости от условия поставленной задачи. Любой параллелограмм можно вписать в окружность, когда он является прямоугольником или квадратом.

Свойства и утверждения

При решении можно воспользоваться некоторыми свойствами, которые были доказаны. Это нужно для того, чтобы не тратить время на выведение какой-либо формулы. Применяется методика для оптимизации вычислений. К ним можно отнести следующие:

  • Если вокруг четырехугольника описана окружность, то центры окружностей, которые вписанных в треугольники, образованные диагоналями фигуры, являются вершинами прямоугольника.
  • Не бывает четырехугольников, вписанных в окружность, с рациональной площадью и сторонами, которые образуют арифметический или геометрический тип прогрессии.
  • При продолжении сторон до точек пересечения Y и Z, внутренние биссектрисы углов Y и Z являются перпендикулярными.

Данные утверждения применяются не всегда. В некоторых случаях можно ограничиться формулами и основными соотношениями — они позволяют легко и быстро искать нужные величины.

Формулы и соотношения

Очень часто необходимо перерыть горы информации для поиска нужной формулы. Это сказывается на оптимизации решения. Кроме того, некоторые соотношения могут содержать ошибки, поскольку материал излагается неквалифицированными специалистами.

Педагоги утверждают, что обучение какой-либо дисциплине с физико-математическим уклоном должно быть основано на алгоритмах. Кроме того, рекомендуется прочитать условие задачи несколько раз до полного его понимания. В основном необходимо находить площадь, диагонали и углы четырехугольника.

Периметр и полупериметр

Четырехугольник, вписанный в окружность

Периметром выпуклого четырехугольника со сторонами a, b, c и d называется сумма длин всех его сторон. Величина обозначается литерой «Р», и вычисляется по следующей формуле: P = a + b + c +d. Кроме того, в некоторых формулах встречается величина, которая называется полупериметром. Обозначается она литерой «р». Для ее нахождения применяется такое соотношение: p = P / 2 = (a + b + c +d) / 2. Единицей измерения полупериметра являются метрические величины: мм, см, дм, м и т. д.

Для квадрата формула периметра имеет вид: P = 4 * a. Равенство легко доказывается для фигуры со стороной а. Из определения периметра получается соотношение: P = a + a + a + a. Если привести подобные слагаемые, то результирующая формула имеет вид: P = 4 * a. У прямоугольника противоположные стороны равны. Чтобы найти его периметр, нужно воспользоваться равенством: P = a + b + a + b = 2 * (a + b). Необходимо отметить, что квадрат является правильным четырехугольником, поскольку его стороны равны между собой.

Понятие площади

Площадь двумерных фигур — понятие геометрии, которое показывает ее численную характеристику или размер. Очень часто она обозначается литерой S. Измеряется величина в квадратных единицах (см 2 , м 2 и т. д. ). Фигура, имеющая характеристику S, называется квадратируемой.

Для нахождения S применяется интегральный метод, но существуют частные случаи, при которых интегрировать необязательно. Очень часто возникает необходимость перевода одной единицы в другую. Для этого существует простой алгоритм, позволяющий корректно выполнить данную операцию. Например, нужно перевести м 2 в см 2 . Необязательно заучивать единицы площади и их эквивалентность другим. Достаточно выполнить следующие действия:

  • Определить базовую единицу: м и см.
  • Выполнить перевод одной метрической величины в другую: 1 м = 100 см.
  • Возвести обе части выражения во втором пункте в квадрат: 1 м 2 = 100 2 см 2 = 10000 см 2 .

Однако бывают и другие единицы, которые применяются для измерения размерности земельных участков: 1 ар (сокращенно а) = 1 сотке = 100 м 2 и 1 гектар (га) = 10000 м 2 .

Основные свойства четырехугольника, вписанного в окружность

Когда известны все стороны четырехугольника (a, b, c и d), который вписан в окружность, можно найти его S. Для этого нужно знать еще одну величину. Она называется полупериметром. Расчет выполняется по формуле: S = [(p — a) * (p — b) * (p — c) * (p — d)]^(½). Соотношение называется формулой Брахмагупты.

Необходимо отметить, что вписанный четырехугольник обладает максимальным значением S среди остальных эквивалентных фигур. Если известны четыре стороны, которые являются последовательными (a, b, c и d), а также угол В между a и b, то можно воспользоваться более упрощенной формулой: S = [(a * b + c * d) * sin (B)] / 2. В случае, когда известны все стороны и любой угол (Y) между диагоналями, соотношение можно записать таким образом: S = [(a * с + и * d) * sin (Y)] / 2.

Площадь можно выразить и другим соотношением, когда известны все стороны и угол А, который не является прямым: S = [(a 2 — b 2 — c 2 + d 2 ) * tg (A)] / 4. При известном радиусе описанной окружности и углах (A, B и Y) можно воспользоваться такой формулой: S = 2 * R^(2) * sin (A) * sin (B) * sin (Y). Следствием из последнего соотношения является S <= 2 * R 2 . Если четырехугольник является квадратом, то неравенство преобразуется в равенство, т. е. S = 2 * R 2 .

Диагонали и углы

Периметр и полупериметр

Для вписанного четырехугольника ABCD существуют определенные соотношения, по которым можно найти его диагонали. Для фигуры со сторонами a = AB, b = BC, c = CD и d = DA диагонали (s = АС и t = DA) находятся таким образом: s = [((a * c + b * d) * (a * d + b * c)) / (a * b + c * d)]^(½) и t = [((a * c + b * d) * (a * b + d * c)) / (a * d + c * b)]^(½). Если умножить диагональ s на t и привести подобные слагаемые, то в результате получится формула Птолемея: s * t = a * c + b * d.

При отношении двух диагоналей получается вторая теорема Птолемея: s / t = (a * d + b * c) / (a * b + d * c). Сумма диагоналей — есть неравенство такого вида: s + t >= 2 * [a * c + b * d]^(½). Неравенство преобразуется в равенство, когда диагонали равны. Однако в этом случае можно воспользоваться следующим выражением: [s + t]^(½) >= [a * c]^(2) + [b * d]^(2).

Необходимо отметить, что в произвольном выпуклом четырехугольнике диагонали делят его на 4 треугольника, которые являются между собой подобными по парам. Кроме того, при пересечении двух диагоналей AC и BD в некоторой точке М, справедливо следующее соотношение: AM / CM = (AB * AD) / (CB * CD).

Можно находить и некоторые углы фигуры. Для этого существуют определенные соотношения. Во вписанном четырехугольнике со сторонами, которые соответствуют значениям a, b, c и d, углом A между сторонами a и d, а также полупериметром p, функции тригонометрического типа для А вычисляются таким образом:

В параллелограмм вписана окружность

  1. cos (A) = (a 2 + d 2 — b 2 — c 2 ) / (2 * (a * d + b + c)).
  2. sin (A) = [(p — a) * (p — b) * (p — c) * (p — d)]^(½) / (a * d + b + c).
  3. tg (A/2) = [((p — a) * (p — d)) / ((p — b) * (p — c))]^(½).

В некоторых случаях нужно вычислить значение тангенса для угла Y, который находится между диагоналями, по формуле: tg (Y/2) = [((p — b) * (p — d)) / ((p — a) * (p — c))]^(½).

В геометрии существует вписанный четырехугольник, стороны которого являются целыми числами. Кроме того, целочисленными являются также его диагонали и площадь. Он называется четырехугольником Брахмагупты. Однако для преобразования любого четырехугольника в данную фигуру необходимо выполнить некоторые математические операции. Пусть он имеет следующие целочисленные параметры:

  1. Стороны: a, b, c и d.
  2. Диагонали: s и t.
  3. Площадь: S.
  4. Радиус описанной окружности: R.

В некоторых случаях возникает необходимость избавиться от рациональных значений в знаменателе. При значениях дробных параметров k, l и m нужно использовать такие соотношения:

  1. a = [k * (l + m) + (1 — (l * m))] * [l + m — k * (1 — (l * m))].
  2. b = (1 — l 2 ) * (m — k) * (1 + k * m).
  3. c = k * (1 + l 2 ) * (1 + m 2 ).
  4. d = (1 + m 2 ) * (l — k) * (1 + k * l).
  5. s = l * (1 + k 2 ) * (1 + m 2 ).
  6. t = m * (1 + k 2 ) * (1 + l 2 ).
  7. S = l * m * [2 * k * (1 — l * m) — (l + m) * (1 — k 2 )] * [2 * k (l + m) + (1 — l * m) * (1 — k 2 )].
  8. 4 * R = (1 + l 2 ) * (1 + m 2 ) * (1 + k 2 ).

Существуют также соотношения для описанной вокруг четырехугольника окружности. Математики утверждают, что при комбинации двух и более геометрических фигур время поиска некоторых параметров увеличивается.

Параметры для окружности

Нахождение радиуса и диаметра окружности

Радиус окружности R для четырехугольника c полупериметром р и со сторонами a, b, c, d находится по формуле Парамешвары: R = (¼) * [((a * b + c * d) * (a * c + b * d) * (a * d + b * c)) / ((p — a) * (p — b) * (p — c) * (p — d))]^(½). Соотношение было выведено в XV веке математиком из Индии Ватассери Парамешварой.

При комбинации данной формулы с соотношением Брахмагупты можно получить следующее соотношение: 4 * S * R = [(a * b + c * d) * (a * c + b * d) * (a * d + b *c)]^(½). Следует отметить, что величина S является площадью вписанного четырехугольника. Для ортогонального четырехугольника с перпендикулярными диагоналями, которые делятся на отрезки s1, s2, t1 и t2, существует некоторое соотношение, позволяющее найти диаметр окружности (D): D 2 = (s1)^2 + (s2)^2 + (t1)^2 + (t2)^2 = a 2 + c 2 = b 2 + d 2 .

Радиус в этом случае находится таким образом: R = D / 2 = [(s1)^2 + (s2)^2 + (t1)^2 + (t2)^2] / 2 = [a 2 + c 2 ] / 2 = [b 2 + d 2 ] / 2. Если выполнить сложение квадратов сторон, то получится такое равенство: 8 * R = a 2 + b 2 + c 2 + d 2 . По формуле Эйлера R можно также выразить через диагонали (s и t) и расстояние v между их серединами: R = [(s 2 + t 2 + 4 * v 2 ) / 8]^(½).

Таким образом, специалисты рекомендуют на начальных этапах обучения использовать уже готовые формулы для вычисления основных параметров выпуклого четырехугольника, вписанного в окружность.

Как найти синус угла между диагоналями куба

В пирамиде DABC прямые, содержащие ребра DC и AB, перпендикулярны.

а) Постройте сечение плоскостью, проходящей через точку E — середину ребра DB, и параллельно DC и AB. Докажите, что получившееся сечение является прямоугольником.

б) Найдите угол между диагоналями этого прямоугольника, если DC = 24, AB = 10.

а) Построим прямые такие что: тогда искомое сечение параллелограмм Покажем, что EKFM прямоугольник:

б) Заметим, что и E — середина DB, тогда EK — средняя линия треугольника Значит, аналогично Так как EKMF прямоугольник, получаем:

Пусть прямая MK пересекает прямую EF в точке O, тогда:

Заметим, что (чтобы косинус в ответе получился положительным, а полученный угол —острым). Применим теорему косинусов в треугольнике

Откуда

Ответ:

Идея окончания решения Игоря Калинкина.

Можно найти площадь сечения, перемножив стороны прямоугольника и приравнять полученное произведение к формуле площади параллелограмма через диагонали ( где α — угол между диагоналями). Выразив отсюда синус угла между диагоналями и найдя арксинус, получим

Идея окончания решения Марины Максимовской.

Рассмотрим равнобедренный треугольник МОЕ, проведём высоту к МЕ. В получившемся прямоугольном треугольнике выразим тангенс половины нужного угла. Половина нужного угла получится тогда весь угол —

В пирамиде DABC прямые, содержащие ребра DA и BC, перпендикулярны.

а) Постройте сечение плоскостью, проходящей через точку E — середину ребра DB, и параллельно DA и BC. Докажите, что получившееся сечение является прямоугольником.

б) Найдите угол между диагоналями этого прямоугольника, если DA = 30, BC = 16.

а) Построение: проводим Четырехугольник EKFM — искомое сечение — параллелограмм. Далее, Значит, EKMF — прямоугольник.

б) Так как и E — середина DB, отрезок EK — средняя линия треугольника значит, аналогично Далее, так как EKMF прямоугольник, и Пусть MK пересекает EF в точке

Заметим, что Применим теорему косинусов в треугольнике

Ответ:

Аналоги к заданию № 509423: 509444 511590 Все

В пирамиде DABC прямые, содержащие ребра DA и BC, перпендикулярны.

а) Постройте сечение плоскостью, проходящей через точку E — середину ребра DB, и параллельно DA и BC. Докажите, что получившееся сечение является прямоугольником.

б) Найдите угол между диагоналями этого прямоугольника, если DA = 20, BC = 10.

а) Построим прямые такие что: — параллелограмм, искомое сечение. следовательно, значит, Таким образом, EKMF — прямоугольник.

б) EK || и E — середина DB, тогда EK — средняя линия значит, аналогично так как EKMF прямоугольник.

Пусть прямая MK пересекает прямую EF в точке О:

Ответ:

Аналоги к заданию № 509423: 509444 511590 Все

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

а) В плоскости AA1D1 проведём через точку E прямую, параллельную TF. Пусть она пересекает ребро A1D1 или его продолжение в точке G. Плоскость EFT проходит через точку G. Треугольник EGA1 подобен равнобедренному треугольнику FTB1, в котором FB1 = B1T = 2. Отсюда EA1 = A1G = 4, значит, точка G совпадает с точкой D1.

б) В плоскости BB1C1 из точки B1 опустим перпендикуляр B1K на отрезок FT. В плоскости EFT из точки K проведём перпендикуляр к FT, который пересекает ED1 в точке L. Тогда ∠B1KL — угол между плоскостью EFT и плоскостью BB1C1 или смежный с ним. Из равнобедренного треугольника FB1T находим

Из равнобедренной трапеции EFTD1 находим

Точка L — середина отрезка ED1, поэтому она удалена от сторон AA1 и A1D1 параллелепипеда на 2. Значит, B1L является диагональю параллелепипеда со сторонами 2, 2 и 4. Отсюда Из теоремы косинусов для треугольника B1KL находим

Заметим, что угол между плоскостями – это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях. Углом между прямыми называется меньший из углов, образованных при их пересечении. Для угла B1KL получено отрицательное значение косинуса, следовательно, этот угол является тупым, и углом между плоскостями будет являться смежный с ним угол, для которого значение косинуса положительно.

Ответ: б)

Дана четырёхугольная пирамида SABCD с прямоугольником ABCD в основании. Сторона AB равна а BC равна 6. Вершина пирамиды проектируется в точку пересечения диагоналей прямоугольника. Из вершин A и C на ребро SB опущены перпендикуляры AP и CQ.

а) Докажите, что точка P является серединой отрезка BQ.

б) Найдите угол между плоскостями SBA и SBC, если ребро SD равно 9.

а) Пусть (т. к. S проектируется в центр).

По теореме косинусов в треугольнике ABS:

B треугольнике ASP: тогда откуда

Аналогично находим

Тогда откуда что и требовалось доказать.

б) Из пункта а) следует, что Проведем PC’ параллельно QC, C принадлежит BC, тогда угол APC’ — искомый. Поскольку PC’ параллельно QC и P — середина QB, то PC’ — средняя линия, тогда В треугольнике CBQ: угол Q — прямой, тогда В треугольнике APB: угол P — прямой, В треугольнике ABC’: угол B — прямой,

По теореме косинусов в треугольнике APC’:

Тогда угол между плоскостями SBA и SBC равен

Угол между гранями оказался тупым. Угол между плоскостями не может превышать 90°.

Ответ: б)

Аналоги к заданию № 517558: 517561 Все

В правильной треугольной призме все ребра которой равны 3, найдите угол между прямыми и Ответ дайте в градусах.

Боковая грань CBB1C1 — квадрат, поэтому угол между его стороной и диагональю равен 45°.

В правильной треугольной призме все ребра которой равны 3, найдите угол между прямыми и Ответ дайте в градусах.

Боковая грань CAA1C1 — квадрат, поэтому угол между его стороной и диагональю равен 45°.

Как определили, что САА1С1 — это квадрат? Если в условии сказано, что призма правильная, это ещё не значит, что гранями являются квадраты!

В условии сказано, что все рёбра призмы равны трём.

В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N — середина ребра SC, точка L — середина ребра SA.

а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S.

б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен

а) Проведем LN — среднюю линию треугольника SAC. Она является линией пересечения плоскости SAC и сечения BLN. Пусть O — точка пересечения диагоналей основания, пусть LN пересекает SO в точке M (оба отрезка лежат в плоскости SAC), и пусть BM пересекает SD в точке K (оба отрезка лежат в плоскости SBD). Тогда отрезок BM лежит в плоскости BLN и, следовательно, K — точка пересечения плоскости BLN с ребром SD. Заметим, что O — середина диагонали BD, а M — середина отрезка SO. Запишем теорему Менелая для треугольника SOD и прямой BK:

б) Так как пирамида правильная, SO — ее высота. Угол между боковым ребром и основанием равен углу SBO, Пусть OB = 5x, тогда Запишем теорему Пифагора для треугольника SBO:

Тогда

Прямая OB — проекция прямой MB на плоскость ABCD. Прямые OB и AC перпендикулярны, прямые LN и AC параллельны, поэтому прямые MB и LN перпендикулярны. Обе прямые OB и MB перпендикулярны линии пересечения плоскостей BLN и ABC. Следовательно, угол MBO — линейный угол двугранного угла между плоскостями BLN и ABC и равен искомому. Найдем

откуда искомый угол равен

Ответ: б)

Приведем решение пункта б) Татьяны Шевелевой.

Прямая OB — проекция прямой MB на плоскость ABCD. Прямые OB и AC перпендикулярны, прямые LN и AC параллельны, поэтому прямые MB и LN перпендикулярны. Обе прямые OB и MB перпендикулярны линии пересечения плоскостей BLN и ABC. Следовательно, угол MBO — линейный угол двугранного угла между плоскостями BLN и ABC и равен искомому.

По доказанному в пункте а) следовательно,

откуда искомый угол равен

В правильной шестиугольной призме ABCDEFA’B’C’D’E’F’ все ребра равны 1.

а) Докажите, что AC’ перпендикулярна прямой BE.

б) Найдите угол между прямой AC’ и плоскостью ACD’.

а) Проекция прямой AC’ на плоскость ABC − прямая AC. В правильном шестиугольнике ABCDEF диагонали AC и BE перпендикулярны. Тогда, по теореме о трех перпендикулярах,

б) Введем прямоугольную систему координат, как показано на рисунке. В этой системе координат:

откуда

Плоскость проходит через начало координат, ее уравнение имеет вид Для координат точек C и имеем систему уравнений:

Не теряя общности, положим тогда Уравнение плоскости : вектор нормали к ней Тогда искомый угол между прямой и плоскостью равен

Ответ:

Приведем другое решение пункта б).

Заметим, в силу того, что и значит, плоскость содержит прямую следовательно, и AK — проекция Следовательно, — искомый, так как это угол между прямой и ее проекцией

Рассмотрим прямоугольный

(т. к. — диагональ квадрата )

Ответ:

Скалярное произведение векторов — это число, равное произведению длин этих векторов на косинус угла между ними. Тогда почему синус а не косинус получился?

В формуле угла между прямой и плоскостью синус т .к. это угол между прямой и нормалью к этой плоскости.

Если ответ записать через тангенс угла, его зачтут?

Почему во втором решении Спасибо.

Потому, что это малая диагональ правильногого шестиугольника.

Дана четырёхугольная пирамида SABCD с прямоугольником ABCD в основании. Сторона AB равна 4, а BC равна Вершина пирамиды S проецируется в точку пересечения диагоналей прямоугольника. Из вершины A и C на ребро SB опущены перпендикуляры AP и CQ.

а) Докажите, что точка P является серединой отрезка BQ.

б) Найдите угол между плоскостями SBA и SBC, если ребро SD равно 8.

а) Пусть (т. к. S проектируется в центр).

По теореме косинусов в треугольнике ABS:

B треугольнике ASP: тогда откуда

Аналогично находим

Тогда откуда что и требовалось доказать.

б) Из пункта а) следует, что Проведем PC’ параллельно QC, C’ принадлежит BC, тогда угол APC’ — искомый. Поскольку PC’ параллельно QC и P — середина QB, то PC’ — средняя линия, тогда В треугольнике CBQ: угол Q — прямой, тогда В треугольнике APB: угол P — прямой, В треугольнике ABC’: угол B — прямой,

По теореме косинусов в треугольнике APC’:

Тогда угол между плоскостями SBA и SBC равен

Ответ: б)

К решению никаких замечаний , а вот касаемо записи ответа .

В решении получено , что косинус искомого угла отрицателен , сл-но угол тупой , а в ответе угол уже острый ( непонятным образом исчез минус ).

Угол между плоскостями не может быть тупым. Он всегда не больше 90°

Угол между плоскостями SBA и SBC равен углу, который является смежным с углом APC’

Диагональ основания ABCD правильной пирамиды SABCD равна 8, высота пирамиды SO равна 1. Точка M — середина ребра SC, точка K — середина ребра CD.

а) Найдите угол между прямыми BM и SK.

б) Найдите расстояние между прямыми BM и SK.

Имеем: поэтому Далее,

а) Пусть — середина KC, тогда — средняя линия треугольника CSK и прямая параллельна прямой SK. Далее:

Прямая BM — медиана треугольника CSB. По формуле для медианы получим:

Из прямоугольного треугольника имеем:

Наконец, SK — высота равнобедренного треугольника SDC, поэтому:

Теперь запишем теорему косинусов для треугольника

откуда Поскольку угол между прямыми не может быть тупым, мы нашли угол между неподходящими их лучами. Настоящий ответ:

Ответ: а) б)

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

а) В плоскости AA1D1 проведём через точку E прямую, параллельную TF. Пусть она пересекает ребро A1D1 или его продолжение в точке G. Плоскость EFT проходит через точку G. Треугольник EGA1 подобен равнобедренному треугольнику FTB1, в котором FB1 = B1T = 1. Отсюда EA1 = A1G = 2, значит, точка G совпадает с точкой D1.

б) В плоскости BB1C1 из точки B1 опустим перпендикуляр B1K на отрезок FT. В плоскости EFT через точку K проведём перпендикуляр к FT, который пересекает ED1 в точке L. Тогда ∠B1KL — угол между плоскостью EFT и плоскостью BB1C1 или смежный с ним. Из равнобедренного треугольника FB1T

Из равнобедренной трапеции EFTD1 находим

Точка L — середина отрезка ED1, поэтому она удалена от сторон AA1 и AD1 параллелепипеда на 1. Значит, B1L является диагональю параллелепипеда со сторонами 1, 1 и 4. Отсюда Из теоремы косинусов для треугольника B1KL находим

Ответ: б)

Нужно ли в решение на экзамене пояснять,почему треугольники подобны или же за это не будут снижать баллы?

Думаю, лучше объяснить, вам же не трудно, зато это снимет все вопросы.

В данной задаче треугольники подобны, потому что имеют углы с сонаправленными сторонами, а значит равные.

в ответе должно быть пи-arccos

Под углом между плоскостями в стереометрии понимается меньший (а значит не тупой) из образовавшихся двугранных углов.

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

а) В плоскости AA1D1 проведём через точку E прямую, параллельную TF. Пусть она пересекает ребро A1D1 или его продолжение в точке G. Плоскость EFT проходит через точку G. Треугольник EGA1 подобен равнобедренному треугольнику FTB1, в котором FB1 = B1T = 2. Отсюда EA1 = A1G = 4, значит, точка G совпадает с точкой D1.

б) В плоскости BB1C1 из точки B1 опустим перпендикуляр B1K на отрезок FT. В плоскости EFT из точки K проведём перпендикуляр к FT, который пересекает ED1 в точке L. Тогда ∠B1KL — угол между плоскостью EFT и плоскостью BB1C1 или смежный с ним. Из равнобедренного треугольника FB1T

Из равнобедренной трапеции EFTD1 находим

Точка L — середина отрезка ED1, поэтому она удалена от сторон AA1 и AD1 параллелепипеда на 1. Значит, B1L является диагональю параллелепипеда со сторонами 2, 2 и 3. Отсюда Из теоремы косинусов для треугольника B1KL находим

Ответ: б)

с чего бы вдруг трапеция стала равнобедренной

, как гипотенузы прямоугольных треугольников с катетами 3 и 2

Здравствуйте! Почему в ответе пропал знак минус? Должно быть либо с минусом, либо Пи минус арккосинус.

Угол между плоскостями не может быть тупым

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

а) В плоскости AA1D1 проведём через точку E прямую, параллельную TF. Пусть она пересекает ребро A1D1 или его продолжение в точке G. Плоскость EFT проходит через точку G. Треугольник EGA1 подобен равнобедренному треугольнику FTB1, в котором FB1 = B1T = 1. Отсюда EA1 = A1G = 2, значит, точка G совпадает с точкой D1.

б) В плоскости BB1C1 из точки B1 опустим перпендикуляр B1K на отрезок FT. В плоскости EFT из точки K проведём перпендикуляр к FT, который пересекает ED1 в точке L. Тогда ∠B1KL — угол между плоскостью EFT и плоскостью BB1C1 или смежный с ним. Из равнобедренного треугольника FB1T находим

Из равнобедренной трапеции EFTD1 находим

Точка L — середина отрезка ED1, поэтому она удалена от сторон AA1 и A1D1 параллелепипеда на 1. Значит, B1L является диагональю параллелепипеда со сторонами 1, 1 и 3. Отсюда Из теоремы косинусов для треугольника B1KL находим

Ответ: б)

В правильной треугольной призме ABCA1B1C1 сторона основания равна 4, а боковое ребро равно 2. Точка M — середина ребра A1C1, а точка O — точка пересечения диагоналей боковой грани ABB1A1.

а) Докажите, что точка пересечения диагоналей четырёхугольника, являющегося сечением призмы ABCA1B1C1 плоскостью AMB, лежит на отрезке OC1.

б) Найдите угол между прямой OC1, и плоскостью AMB.

а) Проведем AM, MN параллельно AB и NB. Таким образом, равнобедренная трапеция AMNB — искомое сечение. Введем обозначения, как показано на рисунке. Точка I — точка пересечения диагоналей трапеции, точки P и T — середины верхнего и нижнего основания трапеции соответственно, точка L — середина A1B1, Проведем отрезок C1O, он равен Если мы докажем, что сумма отрезков C1I и IO равна длине отрезка C1O, то точка пересечения диагоналей четырехугольника будет действительно лежать на этом отрезке. диагональ трапеции

В треугольнике TIO по теореме косинусов найдем IO.

В треугольнике INC1 найдем гипотенузу IC1. Она равна

Сложим отрезки IC1 и IO:

б) Введем систему координат, как показано на рисунке. В этой системе координат имеем:

Составим уравнение плоскости по трем точкам, получим:

Тогда вектор нормали равен

Найдем искомый угол как

Таким образом, искомый угол равен

Ответ: б)

Приведём решение Ирины Шраго.

а) Из треугольников MIN и BIA с коэффициентом подобия следует, что

Прямая PT является линией пересечения и AMB, причём PT пересекает ОС1 именно в точке I, так как ТP и C1O — медианы треугольника С1TL, а значит точкой пересечения делятся так же, ч. т. д.

б) Так как плоскость CC1L перпендикулярна сечению, то из а) следует, что искомый угол C1IP. Его легко найти по теореме косинусов из одноимённого треугольника. Зная вычислим:

В параллелепипеде точка M середина ребра C1D1, а точка K делит ребро AA1 в отношении Через точки K и M проведена плоскость α, параллельная прямой BD и пересекающая диагональ A1C в точке O.

а) Докажите, что плоскость α делит диагональ A1C в отношении

б) Найдите угол между плоскостью α и плоскостью (АВС), если дополнительно известно, что ― куб.

а) Поскольку плоскость α параллельна прямой BD, она параллельна и прямой B1D1, а, значит, плоскость α, пересекает плоскость B1D1С1 по некоторой прямой MN, параллельной прямой B1D1. Пусть точка и прямая MN пересекает прямую A1C1 в точке L, а прямая KL пересекает прямую CC1 в точке P. Тогда точка пересечения прямых A1C и KL есть точка пересечения плоскости α с диагональю A1C (см. рис. 1).

Прямая MN параллельна B1D1 и точка M середина ребра C1D1, Значит, отрезок MN ― средняя линия треугольника B1C1D1 и, следовательно,

Положим тогда Далее имеем (см. рис. 2):

1) откуда Отсюда находим: и тогда

2) откуда

что и требовалось доказать.

б) Из того, что и получаем, что А значит, согласно теореме о трех перпендикулярах, Кроме того, Таким образом, угол ― линейный угол искомого двугранного угла.

Далее имеем: Из треугольника находим: откуда

Ответ: б)

Аналоги к заданию № 516780: 516761 Все

На рис. 1 изображен прямоугольный параллелепипед, на рис. 2 — прямоугольник. В условии это не сказано и, вообще говоря, за это могут снять баллы. Решение п. а) верно для произвольного параллелепипеда.

В решении пункта а) нигде нет ссылок на то, что параллелепипед прямоугольный. Все рассуждения справедливы для любого произвольного параллелепипеда. Поэтому баллы снимать не за что.

В параллелепипеде ABCDA1B1C1D1 точка F середина ребра AB, а точка E делит ребро DD1 в отношении DE : ED1 = 6 : 1. Через точки F и E проведена плоскость α, параллельная прямой AC и пересекающая диагональ B1D в точке О.

а) Докажите, что плоскость α делит диагональ DB1 в отношении DO : OB1 = 2 : 3.

б) Найдите угол между плоскостью α и плоскостью (ABC), если дополнительно известно, что ABCDA1B1C1D1 — правильная четырехугольная призма, сторона основания которой равна 4, а высота равна 7.

а) Поскольку плоскость параллельна прямой AC, то она пересекает грань ABСD по некоторой прямой FL, параллельной прямой AC. Пусть точка и прямая FL пересекает прямую BD в точке K а прямая KE пересекает прямую BB1 в точке P. Тогда точка пересечения прямых B1D и KE есть точка пересечения плоскости с диагональю B1D (см. рис. 1).

Прямая FL параллельна AC, значит, точка F середина ребра AB, Тогда, отрезок FL ― средняя линия треугольника ABC и, следовательно,

Положим тогда

1) Треугольники BKP и DKE — подобны, откуда Таким образом,

2) Треугольники DOE и — подобны, откуда что и требовалось доказать.

б) Из того, что и получаем, что Значит, согласно теореме о трех перпендикулярах, Таким образом, угол PKB ― линейный угол искомого двугранного угла.

Учитывая, что и из треугольника PBK находим: откуда

Ответ: б)

На рисунке изображен прямоугольный параллелепипед, соответствующий условию пункта б).

Решение пункта а) справедливо для произвольного параллелепипеда.

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб.

а) Докажите, что грань ABCD — квадрат.

б) Найдите угол между плоскостями α и BCC1, если AA1 = 6, AB = 4.

Плоскость проходит через точку В, лежащую в плоскости основания, и параллельна прямой AC, лежащей в плоскости основания. Следовательно, плоскость пересекает плоскость основания по прямой, содержащей точку В и параллельной АС. Пусть эта прямая пересекает продолжения сторон DA и DC основания в точках E и F соответственно. Тогда пересекает плоскость боковых граней по прямым D1E и D1F. Пусть M и N — точки пересечения этих прямых с боковыми ребрами параллелепипеда, тогда BMD1N — сечение параллелепипеда плоскостью

Поскольку плоскость сечения проходит через прямую EF, параллельную плоскости ACC1A1 и пересекает её по прямой MN, прямая MN параллельна EF, а значит, параллельна AC.

По условию, сечение является ромбом, диагонали ромба перпендикулярны, поэтому и По теореме о трёх перпендикулярах, из перпендикулярности наклонной D1B и прямой AC следует перпендикулярность прямой AC проекции наклонной — прямой DB. Этим показано, что диагонали лежащего в основании прямоугольника взаимно перпендикулярны. Следовательно, этот прямоугольник является квадратом, что и требовалось доказать.

Приведем другое рассуждение. Диагонали ромба точкой пересечения делятся пополам, поэтому MN проходит через середину D1B. Кроме того, прямая MN параллельна прямой AC, а значит, и прямой EF. Из этого следует, что MN — средняя линия треугольника ED1F, а тогда точки M и N — середины рёбер параллелепипеда. Прямоугольные треугольники ABM и равны по гипотенузе и катету: Значит, а ABCD является квадратом.

б) Пусть K — середина ребра BB1 а KH — высота треугольника BKN. Тогда плоскость MKH перпендикулярна прямой BN. Значит, угол MHK — линейный угол искомого двугранного угла. (Или: проведём перпендикуляры MK и KH, по теореме о трёх перпендикулярах MH — также перпендикуляр к BN, поэтому MHK — линейный угол искомого двугранного угла).

В прямоугольном треугольнике BKN имеем:

Иначе. Сечение является ромбом, площадь ромба равна половине произведения его диагоналей: Проекцией ромба сечения на боковую грань ВСС1В1 является параллелограмм ВKС1N, площадь которого равна половине площади прямоугольника ВСС1В1 то есть 12. Поскольку для искомого угла между плоскостями получаем:

Ответ: или

Источник

Понравилась статья? Поделить с друзьями:
  • Как найти расстояние между сторонами треугольника
  • Как найти протяженность границ россии
  • Как найти работу деформации шаров
  • Как найти скрытый канал зуба
  • Как найти состояние природы