Как найти синус угла между двумя векторами

Нахождение угла между векторами с помощью скалярного произведения

Косинус угла между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2a12+a22⋅b12+b22.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2a12+a22⋅b12+b22).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}right).

Пример 1

Найти угол между векторами a⃗=(1;−1)vec{a}=(1; -1) и b⃗=(1;2).vec{b}=(1; 2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+(−1)⋅212+(−1)2⋅12+22=1−22⋅5=−110.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+(-1)cdot2}{sqrt{1^{2}+(-1)^{2}}cdot sqrt{1^{2}+2^{2}}}=frac{1-2}{sqrt{2}cdotsqrt{5}}=frac{-1}{sqrt{10}}.

(a⃗,b⃗^)=arccos⁡(−110)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-1}{sqrt{10}} right )=arccosleft ( frac{-sqrt{10}}{10} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-sqrt{10}}{10} right).

Пример 2

Найти угол между векторами a⃗=(2;3)vec{a}=(2; 3) и b⃗=(3;1).vec{b}=(3; 1).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅3+3⋅122+32⋅32+12=6+313⋅10=9130=9130130.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot3+3cdot1}{sqrt{2^{2}+3^{2}}cdot sqrt{3^{2}+1^{2}}}=frac{6+3}{sqrt{13}cdotsqrt{10}}=frac{9}{sqrt{130}}=frac{9sqrt{130}}{130}.

(a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{9sqrt{130}}{130} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccos left ( frac{9sqrt{130}}{130} right ).

Косинус угла между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+ b_{3}^{2}}}right).

Пример 3

Найти угол между векторами a⃗=(1;2;3)иb⃗=(1;−2;3).vec{a}=(1; 2; 3) и vec{b}=(1; -2; 3).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+2⋅(−2)+3⋅312+22+32⋅12+(−2)2+32=1−4+914⋅14=614=37.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+2cdot(-2)+3cdot3}{sqrt{1^{2}+2^{2}+3^{2}}cdot sqrt{1^{2}+(-2)^{2}+3^{2}}}=frac{1-4+9}{sqrt{14}cdotsqrt{14}}=frac{6}{14}=frac{3}{7}.

(a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Пример 4

Найти угол между векторами a⃗=(2;−1;−2)vec{a}=(2; -1; -2) и b⃗=(1;3;−2).vec{b}=(1; 3; -2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅1+(−1)⋅3+(−2)⋅(−2)22+(−1)2+(−2)2⋅12+32+(−2)2=2−3+49⋅14=33⋅14=114=1414.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot1+(-1)cdot3+(-2)cdot(-2)}{sqrt{2^{2}+(-1)^{2}+(-2)^{2}}cdot sqrt{1^{2}+3^{2}+(-2)^{2}}}=frac{2-3+4}{sqrt{9}cdotsqrt{14}}=frac{3}{3cdotsqrt{14}}=frac{1}{sqrt{14}}=frac{sqrt{14}}{14}.

(a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Нахождение угла между векторами с помощью векторного произведения

Синус угла между векторами можно вычислить по формуле: sin⁡(a⃗,b⃗^)=∣a⃗×b⃗∣∣a⃗∣⋅∣b⃗∣.sin(widehat{vec{a},vec{b}})=frac{left | vec{a}times vec{b} right |}{left | vec{a} right |cdotleft | vec{b} right |}.

Пример 1

Найти угол между векторами a⃗=(2;−1;2)vec{a}=(2;-1;2) и b⃗=(3;0;1).vec{b}=(3;0;1).

a⃗×b⃗=∣ijk2−12301∣=(−1−0)i−(2−6)j+(0+3)k=−i+4j+3k.vec{a}times vec{b}=begin{vmatrix}i&j&k\2&-1&2\3&0&1end{vmatrix}=(-1-0)i-(2-6)j+(0+3)k=-i+4j+3k.

∣a⃗×b⃗∣=(−1)2+42+32=1+16+9=26.left | vec{a}times vec{b} right |=sqrt{(-1)^{2}+4^{2}+3^{2}}=sqrt{1+16+9}=sqrt{26}.

∣a⃗∣=22+(−1)2+22=4+1+4=9=3.left | vec{a} right |=sqrt{2^{2}+(-1)^{2}+2^{2}}=sqrt{4+1+4}=sqrt{9}=3.

∣b⃗∣=32+02+12=9+0+1=10.left | vec{b} right |=sqrt{3^{2}+0^{2}+1^{2}}=sqrt{9+0+1}=sqrt{10}.

sin⁡(a⃗,b⃗^)=26310=132325=1335=6515.sin(widehat{vec{a},vec{b}})=frac{sqrt{26}}{3sqrt{10}}=frac{sqrt{13}sqrt{2}}{3sqrt{2}sqrt{5}}=frac{sqrt{13}}{3sqrt{5}}=frac{sqrt{65}}{15}.

(a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Пример 2

Найти угол между векторами a⃗=(1;1;3)vec{a}=(1;1;3) и b⃗=(0;1;1).vec{b}=(0;1;1).

a⃗×b⃗=∣ijk113011∣=(1−3)i−(1−0)j+(1−0)k=−2i−j+k.vec{a}times vec{b}=begin{vmatrix}i&j&k\1&1&3\0&1&1end{vmatrix}=(1-3)i-(1-0)j+(1-0)k=-2i-j+k.

∣a⃗×b⃗∣=(−2)2+(−1)2+12=4+1+1=6.left | vec{a}times vec{b} right |=sqrt{(-2)^{2}+(-1)^{2}+1^{2}}=sqrt{4+1+1}=sqrt{6}.

∣a⃗∣=12+12+32=1+1+9=11.left | vec{a} right |=sqrt{1^{2}+1^{2}+3^{2}}=sqrt{1+1+9}=sqrt{11}.

∣b⃗∣=02+12+12=0+1+1=2.left | vec{b} right |=sqrt{0^{2}+1^{2}+1^{2}}=sqrt{0+1+1}=sqrt{2}.

sin⁡(a⃗,b⃗^)=6112=32112=311=3311.sin(widehat{vec{a},vec{b}})=frac{sqrt{6}}{sqrt{11}sqrt{2}}=frac{sqrt{3}sqrt{2}}{sqrt{11}sqrt{2}}=frac{sqrt{3}}{sqrt{11}}=frac{sqrt{33}}{11}.

(a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Тест по теме “Как найти угол между двумя векторами”

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти угол между векторами

Вы будете перенаправлены на Автор24

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Пусть нам даны два вектора $overline<α>$ и $overline<β>$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline<α>=overline$ и $overline<β>=overline$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline<α>$ и $overline<β>$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Скалярное произведение двух данных векторов $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

Готовые работы на аналогичную тему

Обозначение: $overline<δ>cdot overline<β>$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

Из теоремы 1 мы знаем, что $overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

Расписывая по формуле длины вектора значения $|overline<δ>|$ и $|overline<β>|$, окончательно получим

Найдя значение косинуса, мы легко найдем и значение самого угла.

Найти косинус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline<δ>cdot overline<β>=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

В результате, получим

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Математически это выглядит следующим образом:

  1. $|overline<δ>хoverline<β>|=|overline<δ>||overline<β>|sin⁡∠(overline<δ>,overline<β>)$
  2. $overline<δ>хoverline<β>⊥overline<δ>$, $overline<δ>хoverline<β>⊥overline<β>$
  3. $(overline<δ>хoverline<β>,overline<δ>,overline<β>)$ и $(overline,overline,overline)$ одинаково ориентированы (рис. 2)

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

Найдем вектор векторного произведения по формуле:

$overline<δ>хoverline<β>=beginoverline&overline&overline\δ_1&δ_2&δ_3\β_1&β_2&β_3end=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline<δ>|$, $|overline<β>|$ и $|overline<δ>хoverline<β>|$, окончательно получим

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Найти синус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

Найдем длины этих векторов:

В результате, получим

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 20 07 2022

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

источники:

http://ru.onlinemschool.com/math/library/vector/angl/

http://spravochnick.ru/geometriya/metod_koordinat_v_prostranstve/kak_nayti_ugol_mezhdu_vektorami/

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

Два вектора

a→

и

b→

 всегда образуют угол.

Угол между векторами может принимать значения от

до

180°

включительно.

Если векторы не параллельны, то их можно расположить на пересекающихся прямых.

Векторы могут образовать:

1. острый угол;

Lenkis_vekt4.png

2. тупой угол;

Lenkis_vekt5.png

3. прямой угол (векторы перпендикулярны).

Lenkis_vekt2.png

Если векторы расположены на параллельных прямых, то они могут образовать:

4. угол величиной

 (векторы сонаправлены);

Lenkis_vekt1.png

5. угол величиной

180°

 (векторы противоположно направлены).

Lenkis_vekt3.png

Если один из векторов или оба вектора нулевые, то угол между ними будет равен

.

Угол между векторами записывают так:

Скалярное произведение векторов

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

a→⋅b→=a→⋅b→⋅cosa→b→ˆ

.

Результат скалярного произведения векторов является числом (в отличие от результата рассмотренных ранее действий с векторами — сложения, вычитания и умножения на число. В таких случаях результатом был вектор). При умножении вектора на вектор получается число, так как длины векторов — это числа, косинус угла — число — соответственно, их произведение также будет являться числом.

1. Если угол между векторами острый, то скалярное произведение будет положительным числом (так как косинус острого угла — положительное число). 

Если векторы сонаправлены, то угол между ними будет равен

, а косинус равен (1), скалярное произведение также будет положительным.

2. Если угол между векторами тупой, то скалярное произведение будет отрицательным (так как косинус тупого угла — отрицательное число). 

Если векторы направлены противоположно, то угол между ними будет равен

180°

. Скалярное произведение также отрицательно, так как косинус этого угла равен (-1).

Справедливы и обратные утверждения:

1. Если скалярное произведение векторов — положительное число, то угол между данными векторами острый.

2. Если скалярное произведение векторов — отрицательное число, то угол между данными векторами тупой.

Особенный третий случай!

Обрати внимание!

3. Если угол между векторами прямой, то скалярное произведение векторов равно нулю, так как косинус прямого угла равен (0).

Обратное суждение: если скалярное произведение векторов равно нулю, то эти векторы перпендикулярны.

Вектор, умноженный на самого себя, будет числом, которое называется скалярным квадратом вектора. Скалярный квадрат вектора  равен квадрату длины данного вектора и обозначается как 

a→2

.

Свойства скалярного произведения

Для любых векторов и любого числа справедливы следующие свойства:

1.

a→2≥0

, к тому же

a→2>0

, если

a→≠0→

.

2. Переместительный, или коммутативный, закон скалярного произведения:

a→⋅b→=b→⋅a→

.

3. Распределительный, или дистрибутивный, закон скалярного произведения:

a→+b→⋅c→=a→⋅c→+b→⋅c→

.

4. Сочетательный, или ассоциативный, закон скалярного произведения:

k⋅a→⋅b→=k⋅a→⋅b→

.

Использование скалярного произведения

Удобно использовать скалярное произведение векторов для определения углов между прямыми и между прямой и плоскостью.

Угол между прямыми

Ознакомимся с ещё одним определением.

Вектор называют направляющим вектором прямой, если он находится на прямой или параллелен этой прямой.

Taisne_vektors.png

Чтобы определить косинус угла между прямыми, надо определить косинус угла между направляющими векторами этих прямых, то есть найти векторы, параллельные прямым, и определить косинус угла между векторами.

Для этого необходимо рассмотреть определение скалярного произведения, если векторы даны в координатной системе.

Если

a→x1;y1;z1

,

b→x2;y2;z2

, то

a→⋅b→=x1⋅x2+y1⋅y2+z1⋅z2

.

Прежде была рассмотрена формула определения длины вектора в координатной форме.

Теперь, объединив эти формулы, получим формулу для определения косинуса угла между векторами в координатной форме. Так как из формулы скалярного произведения следует, что

cosα=a→⋅b→a→⋅b→

, то

cosα=x1⋅x2+y1⋅y2+z1⋅z2x12+y12+z12 ⋅x22+y22+z22

.

Угол между прямой и плоскостью

Введём понятие о нормальном векторе плоскости.

Нормальный вектор плоскости — это любой ненулевой вектор, лежащий на прямой, перпендикулярной к данной плоскости.

Plakne_vektors.png

Используя следующий рисунок, легко доказать, что косинус угла

β

между нормальным вектором

n→

 данной плоскости и неким вектором

b→

 равен синусу угла

α

между прямой и плоскостью, так как

α

и

β

 вместе образуют угол в

90°

.

Plakne_vektors_lenkis.png

При нахождении косинуса угла между

n→

и

b→

можно использовать это число как синус угла между прямой, на которой лежит вектор

b→

, и плоскостью.

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Определение 1

Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Угол между векторами. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Обозначение: $∠(overline{α},overline{β})$

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Определение 2

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

$overline{δ}overline{β}=|overline{δ}||overline{β}|cos∠(overline{δ},overline{β})$

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Теорема 1

Скалярное произведение двух данных векторов $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

«Как найти угол между векторами» 👇

Обозначение: $overline{δ}cdot overline{β}$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

$cos∠(overline{δ},overline{β})=frac{overline{δ}cdot overline{β}}{|overline{δ}||overline{β}|}$

Из теоремы 1 мы знаем, что $overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{|overline{δ}||overline{β}|}$

Расписывая по формуле длины вектора значения $|overline{δ}|$ и $|overline{β}|$, окончательно получим

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{sqrt{δ_1^2+β_1^2+γ_1^2 } sqrt{δ_2^2+β_2^2+γ_2^2}}$

Найдя значение косинуса, мы легко найдем и значение самого угла.

Пример 1

Найти косинус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline{δ}cdot overline{β}=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$cos⁡∠(overline{δ},overline{β})=frac{11}{3cdot 5}=frac{11}{15}$

Ответ: $frac{11}{15}$.

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Определение 3

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Обозначение: $overline{δ}хoverline{β}$.

Математически это выглядит следующим образом:

  1. $|overline{δ}хoverline{β}|=|overline{δ}||overline{β}|sin⁡∠(overline{δ},overline{β})$
  2. $overline{δ}хoverline{β}⊥overline{δ}$, $overline{δ}хoverline{β}⊥overline{β}$
  3. $(overline{δ}хoverline{β},overline{δ},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)

Векторное произведение. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}$

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

${sin angle left(overrightarrow{delta },overrightarrow{beta }right) }=frac{left|overrightarrow{delta }хoverrightarrow{beta }right|}{left|overrightarrow{delta }right||overrightarrow{beta }|}$

Найдем вектор векторного произведения по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline{δ}|$, $|overline{β}|$ и $|overline{δ}хoverline{β}|$, окончательно получим

$sin∠(overline{δ},overline{β})=frac{sqrt{(δ_2 β_3-δ_3 β_2)^2+(δ_3 β_1-δ_1 β_3)^2+(δ_1 β_2-δ_2 β_1)^2}}{sqrt{δ_1^2+δ_2^2+δ_3^2}sqrt{β_1^2+β_2^2+β_3^2}}$

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Пример 2

Найти синус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\1&-2&2\3&0&4end{vmatrix}=-8overline{i}+2overline{j}+6overline{k}=(-8,1,6)$

Найдем длины этих векторов:

$|overline{δ}хoverline{β}|=sqrt{(-8)^2+2^2+6^2}=sqrt{104}=2sqrt{26}$

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$sin∠(overline{δ},overline{β})=frac{2sqrt{26}}{3cdot 5}=frac{2sqrt{26}}{15}$

Ответ: $frac{2sqrt{26}}{15}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Learn how to take the dot or cross product of 2 vectors to find the angle between them

  • Dot Product Formula
  • |

  • Cross Product Formula
  • |

  • Understanding the Dot Product Formula
  • |

  • Video
  • |

  • Q&A
  • |

  • Tips

If you’re learning about angles and vectors in math class, your teacher probably just assigned you problems to find the angle between 2 vectors. It can definitely seem a little confusing to get started, so that’s why we’re here to help! In this article, we’ll tell you about the 2 formulas that find the angle between 2 vectors and walk you through how to use them. Read on to get your math problems solved!

Things You Should Know

  1. Image titled Find the Angle Between Two Vectors Step 2

    1

  2. Image titled Find the Angle Between Two Vectors Step 1

    2

    Identify the vectors’ coordinates in your math problem. Most math problems give you the dimensional coordinates of each vector, which are sometimes also called components. You use each vector’s coordinates to find their magnitudes and combined dot product. If your math problem already gives the vectors’ magnitudes, skip the magnitude step below.[2]

    Advertisement

  3. Image titled Find the Angle Between Two Vectors Step 3

    3

    Calculate the magnitude of each vector. Picture a right triangle drawn from the vector’s x-component, its y-component, and the vector itself. The vector forms the hypotenuse of the triangle, so to find its magnitude, simply use the Pythagorean theorem. Just plug each vector’s coordinates into the theorem.[3]

  4. Image titled Find the Angle Between Two Vectors Step 4

    4

    Calculate the dot product of the 2 vectors. The dot product is a way to multiply vectors, which is also commonly called the scalar product.

    To calculate the dot product, multiply the same direction coordinates of the vectors, then add the results together.

    For computer graphics programs, see Tips before you continue.[4]

    Defining Dot Product
    In mathematical terms, {overrightarrow  {u}}{overrightarrow  {v}} = u1v1 + u2v2, where (u1, u2) are the coordinates for vector u. If your vector has more than 2 components, simply continue to add + u3v3 + u4v4

  5. Image titled Find the Angle Between Two Vectors Step 5

    5

    Plug the dot product and each vector’s magnitude into the formula. Remember, the formula is {displaystyle theta =cos^{-1}} ({overrightarrow  {u}}{overrightarrow  {v}}) / (||{overrightarrow  {u}}|| ||{overrightarrow  {v}}||) Now that you know both the dot product and the magnitudes of each vector, simply enter them into this formula.

    Finding Cosine with Dot Product and Magnitude
    In our example, θ = cos-16 / (2√23). Simplify to get θ = cos-1(√2 / 2).

  6. Image titled Find the Angle Between Two Vectors Step 6

    6

    Use a scientific calculator to find the angle based on the cosine. On most calculators, use either the arccos or cos-1 function on your calculator to find the angle θ. Simply enter “arccos” and the dot product divided by the vectors’ magnitudes. For some results, use the unit circle to work out the angle.

    Finding an Angle with Cosine
    In our example, θ = cos-1(√2 / 2). Enter «arccos(√2 / 2)» in your calculator to get θ = 45º. Alternatively, find the angle θ on the unit circle where cosθ = √2 / 2.

  7. Advertisement

  1. Image titled Find the Angle Between Two Vectors Step 7

    1

  2. Image titled Find the Angle Between Two Vectors Step 8

    2

    Find the cross product using the vectors’ coordinates. In most math problems, you have the dimensional coordinates, or components, of each vector written as {displaystyle i+j+k}. To find the cross product, make a matrix with the first vector’s coordinates in the first row and the second vector’s coordinates in the second row. Calculate the i, j, and k values for each matrix section.[6]

  3. Image titled Find the Angle Between Two Vectors Step 9

    3

    Calculate the magnitude of the cross product. The final step in finding the cross product of vectors is finding the magnitude of their coordinates. Remember, use the Pythagorean Theorem to find a vector’s magnitude. Just plug in the i, k, j coordinates of the cross product of the vectors to get their magnitude.[7]

  4. Image titled Find the Angle Between Two Vectors Step 10

    4

    Find the magnitude of each vector. Now, calculate the magnitude of each vector using their dimensional coordinates. Just plug the coordinates into the Pythagorean Theorem like in the step above.[8]

  5. Image titled Find the Angle Between Two Vectors Step 11

    5

  6. Image titled Find the Angle Between Two Vectors Step 12

    6

    Find the angle using a calculator. Simply take the inverse sine of the cross product and magnitudes to find the angle between the vectors. Using your calculator, find the arcsin or sin-1 function. Then, enter in the cross product and magnitude.[10]

    • In our example, enter “arcsin(√1539 / √14 * √110) into your calculator to get θ = 88.5º.
  7. Advertisement

  1. Image titled Find the Angle Between Two Vectors Step 7

    1

    Understand the purpose of the angle formula. This formula was not derived from existing rules. Instead, it was created as a definition of 2 vectors’ dot product and the angle between them. However, this decision was not arbitrary. With a look back to basic geometry, you see why this formula results in intuitive and useful definitions.

    • The examples below use 2-dimensional vectors because these are the most intuitive to use. Vectors with 3 or more components use the same formula.
  2. Image titled Find the Angle Between Two Vectors Step 8

    2

    Review the Law of Cosines used in the formula. Take an ordinary triangle, with angle θ between sides a and b, and opposite side c. The Law of Cosines states that c2 = a2 + b2 -2abcos(θ). This is derived fairly easily from basic geometry.[11]

  3. Image titled Find the Angle Between Two Vectors Step 9

    3

    Connect 2 vectors to form a triangle. Sketch a pair of 2D vectors on paper, vectors {overrightarrow  {a}} and {overrightarrow  {b}}, with angle θ between them. Draw a third vector between them to make a triangle. In other words, draw vector {overrightarrow  {c}} such that {overrightarrow  {b}} + {overrightarrow  {c}} = {overrightarrow  {a}}. This vector {overrightarrow  {c}} = {overrightarrow  {a}}{overrightarrow  {b}}.[12]

  4. Image titled Find the Angle Between Two Vectors Step 10

    4

    Write the Law of Cosines for the triangle. Insert the length of the «vector triangle» sides in our example into the Law of Cosines:[13]

    • ||(a — b)||2 = ||a||2 + ||b||2 — 2||a|| ||b||cos(θ)
  5. Image titled Find the Angle Between Two Vectors Step 11

    5

    Write the Law of Cosines using the dot product of vector a and b. Remember, the dot product is the magnification of 1 vector projected onto another. A vector’s dot product with itself doesn’t require any projection, since there is no difference in direction. This means that {overrightarrow  {a}}{overrightarrow  {a}} = ||a||2. Use this fact to rewrite the equation:[14]

  6. Image titled Find the Angle Between Two Vectors Step 12

    6

    Rewrite the dot product into the angle formula. Expand the left side of the formula, then simplify to reach the formula used to find angles.[15]

  7. Advertisement

Add New Question

  • Question

    How do I find the angle between two vectors? For example, vector A = 4i + 2j — 2k and vector B = 3i +2j + 3k?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    Use the formula with the dot product, θ = cos^-1 (a * b) / ||a|| * ||b||. To get the dot product, multiply Ai by Bi, Aj by Bj, and Ak by Bk then add the values together. To find the magnitude of A and B, use the Pythagorean Theorem (√(i^2 + j^2 + k^2). Then, use your calculator to take the inverse cosine of the dot product divided by the magnitudes and get the angle.

  • Question

    If the cosine formula gives me 0, it means that the vector are perpendicular. But how do I know if it’s 90° or -90° ?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    The angle between 2 vectors is always between 0° and 180°, so the angle is 90°.

  • Question

    In the above example cosθ was 1/√2. But here cosθ can be 45 degrees or 315 degrees. Why is that the answer is not 315?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    When you find the angle between 2 vectors, the angle is always going to be between 0° and 180°.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • If you are working on a computer graphics program, you most likely only care about the direction of the vectors, not their length. Take these steps to simplify the equations and speed up your program:[16]

  • For a quick plug and solve, use this formula for any pair of two-dimensional vectors: cosθ = (u1 • v1 + u2 • v2) / (√(u12 • u22) • √(v12 • v22)).

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

1. Calculate the length of each vector.
2. Calculate the dot product of the 2 vectors.
3. Calculate the angle between the 2 vectors with the cosine formula.
4. Use your calculator’s arccos or cos^-1 to find the angle. For specific formulas and example problems, keep reading below!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,720,998 times.

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Как составить действие которое оставит в левой части уравнения х
  • Как найти контакты на самсунг аккаунт
  • Как исправить слишком сладкий заварной крем
  • Как найти синус неравенства
  • Как найти угол через его косинус