Как найти синус угла по формуле приведения

$$ctg(pi-alpha)=-ctg(alpha);$$

Давайте вместо угла (alpha) возьмем какой-нибудь реальный угол. Суть от этого не изменится. Чтобы усложнить задачу, я не буду рисовать рисунок. Нарисуйте окружность сами и по пунктам сделайте пример.

Пример 7
$$cos(3pi+frac{pi}{6})=?;$$

  • Угол ((3pi+frac{pi}{6})) лежит в третьей четверти. Действительно, (3pi=2pi+pi) можно представить как полный круг плюс еще половина;
  • В третьей четверти косинус отрицательный. Знак минус;
  • (3pi) лежит на горизонтальной оси в точке (C). Значит косинус не меняется на синус;

$$cos(3pi+frac{pi}{6})=-cos(frac{pi}{6})=-frac{sqrt{3}}{2};$$

До этого мы рассматривали примеры, когда угол (alpha) был острым. А что, если он больше (90^o)?

В этом случае нам придется сделать из него острый угол. Рассмотрим пример:

Пример 8
$$tg(frac{pi}{2}-frac{5pi}{6})=?;$$
Угол (frac{5pi}{6}) — тупой угол. Для того, чтобы воспользоваться формулой приведения, можно представить:
$$frac{5pi}{6}=pi-frac{pi}{6};$$
Подставим в исходный пример
$$tg(frac{pi}{2}-frac{5pi}{6})=tg(frac{pi}{2}-pi+frac{pi}{6})=tg(frac{pi}{6}-frac{pi}{2});$$
Угол (frac{pi}{6}) острый и теперь можно воспользоваться правилом лошади.

  • ((frac{pi}{6}-frac{pi}{2})) лежит в четвертой четверти. Отмечаем (frac{pi}{6}) и по часовой стрелке вычитаем из него (frac{pi}{2});
  • В четвертой четверти тангенс отрицательный;
  • (frac{pi}{2}) лежит на вертикальной оси, тангенс меняется на котангенс;

$$tg(frac{pi}{2}-frac{5pi}{6})=tg(frac{pi}{6}-frac{pi}{2})=-ctg(frac{pi}{6})=-sqrt{3};$$

У любопытного читателя может возникнуть вопрос: а почему данный алгоритм называется правилом лошади? При чем тут, казалось бы, лошадь?

Лошадь, действительно, не при чем. Но дело в том, что когда вы определяете в третьем пункте, меняется ли наша тригонометрическая функция на противоположную или нет, то в случае, если дополнительный угол к (alpha) лежит на вертикальной оси, мы как бы смотрим вверх-вниз, киваем головой, как лошадь, говоря себе: «Да, меняем». Или если угол лежит на горизонтальной оси, то мы киваем влево вправо вдоль горизонтальной оси, как бы говоря: «Нет, не меняем». Такое вот странное название у правила.

все формулы приведения на одной картинке

Формулы приведения разработаны для углов, представленных в одном из следующих видов: (frac{pi}{2}+a), (frac{pi}{2}-a), (π+a), (π-a), (frac{3pi}{2}+a), (frac{3pi}{2}-a), (2π+a) и (2π-a). Аналогично их можно использовать для углов представленных в градусах: (90^°+a), (90^°-a), (180^°+a), (180^°-a), (270^°+a), (270^°-a), (180^°+a), (180^°-a). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

общий вид формул приведения

Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Функция:                Кофункция:
(sin⁡) (a)          (→)            (cos⁡) (a)
(cos⁡) (a)          (→)             (sin⁡) (a)
(tg⁡) (a)            (→)            (ctg) (a)
(ctg⁡) (a)          (→)             (tg) (a)

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс
или котангенс, он либо останется синусом, либо превратиться в косинус. А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее. 

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
— как определить знак перед конечной функцией (плюс или минус)?
— как определить меняется ли функция на кофункцию или нет?

Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Например, выводим формулу приведения для (⁡cos⁡(frac{3pi}{2}-a) =….) С исходной функцией понятно – косинус, а исходная четверть?

Для того, чтобы ответить на этот вопрос, представим, что (a) – угол от (0) до (frac{pi}{2}), т.е. лежит в пределах (0°…90^°) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол (frac{3pi}{2}-a)?
Чтобы ответить на вопрос, надо от точки, обозначающей (frac{3pi}{2}), повернуть в отрицательную сторону на угол (a).

как определяется знак у формул приведения

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: (cos(frac{3pi}{2}-a)=-…)

Менять ли функцию на кофункцию или оставить прежней?

Здесь правило еще проще:

— если «точка привязки» (frac{pi}{2}) ((90^°)) или (frac{3pi}{2}) ((270^°))– функция меняется на кофункцию;
— если «точка привязки» (π) ((180^°)) или (2π) ((360^°)) – функция остается той же.

То есть, при аргументах исходной функции (frac{pi}{2}+a), (frac{pi}{2}-a), (frac{3pi}{2}+a) или (frac{pi}{2}-a), мы должны поменять функцию, а при аргументах (π+a), (π-a), (2π+a) или (2π-a) — нет. Для того, чтоб это легче запомнить, вы можете воспользоваться мнемоническим правилом, которое в школе называют «лошадиным правилом»:

Точки, обозначающие (frac{pi}{2}) ((90^°)) и (frac{3pi}{2}) ((270^°)), расположены вертикально, и если вы переводите взгляд с одной на другую и назад, вы киваете головой, как бы говоря «да».

меняется ли функция в формулах приведения

Точки же, обозначающие (π) ((180^°)) и (2π) ((360^°)), расположены горизонтально, и если вы переводите взгляд между ними, вы мотаете головой, как бы говоря «нет».

меняется ли функция в формулах приведения 

Эти «да» и «нет» — и есть ответ на вопрос: «меняется ли функция?».
Таким образом, согласно правилу, в нашем примере выше (cos⁡(frac{3π}{2}-a)=…) косинус будет меняться на синус. В конечном итоге получаем, (cos⁡(frac{3π}{2}-a)=-sin⁡) (a). Это и есть верная формула приведения.

Foxford

Примеры с формулами приведения:

Зачем нужны формулы привидения? Ну, например, они позволяют упрощать выражения или находить значения некоторых тригонометрических выражений без использования калькулятора.

Пример. (Задание из ЕГЭ) Найдите значение выражения (frac{18 cos {⁡{41}^°} }{sin⁡ {{49}^°}})

Решение:

(frac{18 cos {{⁡41}^°} }{sin⁡{{49}^°}}=)

Углы ({41}^°) и ({49}^°) нестандартные, поэтому «в лоб» без калькулятора вычислить непросто. Однако использовав формулы привидения, мы легко найдем правильный ответ.
Прежде всего, обратите внимание на один важный момент: (49^°=90^°-41^°). Поэтому мы можем заменить (49^°) на (90^°-41^°).

(=frac{18 cos {⁡41^° }}{sin⁡ {({90}^°-{41}^°)}}=)

 

Теперь применим к синусу формулу приведения:

  • (90^°-41^°) – это первая четверть, синус в ней положителен. Значит, знак будет плюс;

  • (90^°)- находится на «вертикали» — функция меняется на кофункцию.

(sin⁡{(90^°-41^°)}=cos⁡ 41^° )

(=frac{18 cos {⁡41^° }}{cos⁡ {{41}^°}}=)

 

В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.

(= 18)

 

Записываем ответ

Ответ:  (18)

Пример. Найдите значение выражения (frac{3 sin{⁡(pi-a)}-cos(frac{pi}{2}+a) }{cos⁡ {(frac{3pi}{2}-a)}})

Решение:

(frac{3 sin{⁡(pi-a)}-cos(frac{pi}{2}+a) }{cos⁡ {(frac{3pi}{2}-a)}}=)

Рассмотрим первое слагаемое числителя: (sin⁡(π-a)). Воспользуемся формулами приведения, выведя ее самостоятельно:

  • ((π-a)) это вторая четверть, а синус во второй четверти положителен. Значит, знак будет плюс;
  • (π) это точка «горизонтальная», то есть мотаем головой, значит функция остается той же.

Таким образом, (sin⁡(π-a)=sin⁡a) 

(=frac{3 sin{⁡a}-cos(frac{pi}{2}+a) }{cos⁡ {(frac{3pi}{2}-a)}}=)

 

Второе слагаемое числителя: (cos⁡{(frac{π}{2} + a)}):

  • ((frac{π}{2} + a)) это опять вторая четверть, а косинус во второй четверти отрицателен. Значит, знак будет минус.
  • (frac{π}{2}) это точка «вертикальная», то есть киваем, значит, функция меняется на кофункцию – синус.

Таким образом, (cos{⁡(frac{π}{2} + a)}=-sin⁡a)

(=frac{3 sin{⁡a}-(-sin{a}) }{cos⁡ {(frac{3pi}{2}-a)}}=)

 

Теперь знаменатель: (cos⁡(frac{3π}{2} — a)). Его мы разобрали выше, он равен минус синусу. (cos⁡(frac{3π}{2} — a)=-sin{⁡a})

(=frac{3 sin{⁡a}-(-sin{a}) }{-sin⁡ {a}}=)

 

Раскрываем скобки и приводим подобные слагаемые.

(=frac{3 sin{⁡a}+sin{a}}{-sin⁡ {a}}=frac{4sin{a}}{-sin{a}})

 

Сократив на (sin⁡{a}), получаем ответ.

(=frac{4 }{-1}=)(-4)

 

Ответ:  (-4)

Пример. Вычислить чему равен (ctg(-a-frac{7π}{2})), если (tg) (⁡a=2)

Решение:

(ctg(-a-frac{7π}{2}) =)

Здесь сразу формулу приведения применять нельзя, так как аргумент нестандартный. Что не так? Прежде всего, (a) стоит первой, хотя должна быть после «точки привязки». Поменяем местами слагаемые аргумента, сохраняя знаки.

(= ctg(-frac{7π}{2}-a) =)

 

Уже лучше, но все еще есть проблемы – «точка привязки» с минусом, а такого аргумента у нас нет. Избавимся от минуса, вынеся его за скобку внутри аргумента.

(= ctg(-(frac{7π}{2}+a)) =)

 

Теперь вспомним о том, что котангенс – функция нечетная, то есть
(ctg) ((-t)=- ctg) (t). Преобразовываем наше выражение.

(= — ctg(frac{7π}{2}+a) =)

 

Несмотря на то, что точка привязки (frac{7π}{2}) мы все равно можем использовать формулы приведения, потому что (frac{7π}{2}) лежит на пересечении одной из осей и числовой окружности (смотри пояснение ниже). ((frac{7π}{2}+a)) это четвертая четверть, и котангенс там отрицателен. «Точка привязки» — вертикальная, то есть функцию меняем. Окончательно имеем (ctg(frac{7π}{2}+a)=-tg a) .

(= — (- tg) (a) = tg) (a = 2)

 

Готов ответ.

Ответ:  (2)

Еще раз проговорим этот важный момент: с точки зрения формулы приведения (frac{7π}{2}) — это тоже самое, что и (frac{3π}{2}). Почему? Потому что (frac{7π}{2}=frac{3π+4π}{2}=frac{3π}{2}+frac{4π}{2}=frac{3π}{2}+2π). Иными словами, они отличаются ровно на один оборот (2π). А на значения тригонометрических функций количество оборотов никак не влияет:

(cos) (⁡t=cos ⁡(t+2π)=cos ⁡(t+4π)=cos ⁡(t+6π)= …=cos⁡ (t-2π)=cos ⁡(t-4π)=cos⁡ (t-6π)…)
(sin) (t=sin⁡ (t+2π)=sin ⁡(t+4π)=sin ⁡(t+6π)= …=sin⁡ (t-2π)=sin ⁡(t-4π)=sin ⁡(t-6π)…)

Аналогично с тангенсом и котангенсом (только у них «оборот» равен (π)).
(tg) (t=tg⁡(t+π)=tg⁡(t+2π)=tg⁡(t+3π)= …=tg⁡(t-π)=tg⁡(t-2π)=tg⁡(t-3π)…)
(ctg) (t=ctg⁡(t+π)=ctg⁡(t+2π)=ctg⁡(t+3π)= …=ctg⁡(t-π)=ctg⁡(t-2π)=ctg⁡(t-3π)…)

Таким образом, (-ctg(frac{7π}{2}+a)=- ctg(frac{3π}{2}+2π+a)=- ctg(frac{3π}{2}+a)).

То есть, для определения знака и необходимости смены функции важно лишь местоположение «точки привязки», а не её значение, поэтому так расписывать не обязательно (но можно если вы хотите впечатлить своими знаниями учительницу).

Ответы на часто задаваемые вопросы

Вопрос: Есть ли формулы приведения с аргументами ((frac{π}{3}-a)),((frac{π}{4}+a)),((frac{7π}{6}+a)) или тому подобное?
Ответ: К сожалению, нет. В таких ситуациях выгодно использовать формулы разности и суммы аргументов. Например, (cos⁡(frac{π}{3}-a)=cos⁡frac{π}{3} cos⁡a+sin⁡frac{π}{3} sin⁡a=frac{1}{2}cos⁡a+frac{sqrt{3}}{2} sin⁡a).

Смотрите также Как доказать тригонометрическое тождество?

Данная статья посвящена подробному изучению тригонометрических формул приведения. Дан полный список формул приведения, показаны примеры их использования, приведено доказательство верности формул. Также в статье дано мнемоническое правило, которое позволяет выводить формулы приведения, не запоминая каждую формулу.

Формулы приведения. Список

Фомулы приведения позволяют приводить основные тригонометрические функции углов произвольной величины к функциям углов, лежащих в интервале от 0 до 90 градусов (от 0 до π2 радиан). Оперировать углами от 0 до 90 градусов гораздо удобнее, чем работать со сколь угодно большими значениями, поэтому формулы приведения широко применяются при решении задач тригонометрии. 

Прежде, чем мы запишем сами формулы, уточним несколько важных для понимания моментов.

  • Аргументами тригонометрических функций в формулах приведения являются угды вида ±α+2π·z, π2±α+2π·z, 3π2±α+2π·z. Здесь z — любое целое число, а α — произвольный угол поворота.
  • Не обязательно учить все формулы приведения, количество которых довольно внушительно. Существует мнемоническое правило, которо позволяет легко вывести нужную формулу. Речь о мнемоническом правиле пойдет позже.

Теперь перейдем непосредственно к формулам приведения.

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов. запишем все формулы в виде таблицы.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

 В данном случае формулы записаны с радианами. Однако можно записать их и с использованием градусов. Достаточно только перевести радианы в градусы, заменив π на 180 градусов.

Примеры использования формул приведения

Покажем, как пользоваться формулами приведения и как указанные формулы применяются при решении практических примеров.

Угол под знаком тригонометрической функции можно представить не одним, а множеством способов. Например, аргумент тригонометрической функции может быть представлен в видах ±α+2πz, π2±α+2πz, π±α+2πz, 3π2±α+2πz. Продемонстрируем это.

Возьмем угол α=16π3. Это угол можно записать так:

α=16π3=π+π3+2π·2α=16π3=-2π3+2π·3α=16π3=3π2-π6+2π

В зависимости от представления угла используется соответствующая формула приведения.

Возьмем тот же угол α=16π3 и вычислим его тангенс

Пример 1. Использование формул приведения

α=16π3, tg α=?

Представим угол  α=16π3 в виде α=π+π3+2π·2

Этому представлению угла будет соответствовать формула приведения

tg(π+α+2πz)=tg α

Получим

tg 16π3=tgπ+π3+2π·2=tgπ3

Воспользовавшись таблицей, укажем значение тангенса

tgπ3=3

Теперь используем другое представление угла α=16π3.

Пример 2. Использование формул приведения

α=16π3, tg α=?α=-2π3+2π·3tg16π3=tg-2π3+2π·3=-tg2π3=-(-3)=3

Наконец, для третьего представления угла запишем

Пример 3. Использование формул приведения

α=16π3=3π2-π6+2πtg3π2-α+2πz=ctg αtg α=tg (3π2-π6+2π)=ctgπ6=3

Теперь приведем пример на использование формул приведения посложнее

Пример 4. Использование формул приведения

Представим sin 197° через синус и косинус острого угла.

Для того, чтобы можно было применять формулы приведения, нужно представить угол α=197° в одном из видов

±α+360°·z, 90°±α+360°·z, 180°±α+360°·z, 270°±α+360°·z. Согласно условию задачи, угол должен быть острым. Соответственно, у нас есть два способа для его представления:

197°=180°+17°197°=270°-73°

Получаем

sin197°=sin(180°+17°)sin197°=sin(270°-73°)

Теперь посмотрим на формулы приведения для синусов и выберем соответствующие

sin(π+α+2πz)=-sinαsin(3π2-α+2πz)=-cosαsin 197°=sin(180°+17°+360°·z)=-sin17°sin 197°=sin(270°-73°+360°·z)=-cos73°

Мнемоническое правило

Формул приведения много, и, к счастью, нет необходимости заучивать их наизусть. Существуют закономерности, по которым можно выводить формулы приведения для разных углов и тригонометрических функций. Эти закономерности называются мнемоническим правилом. Мнемоника — искусство запоминания. Мнемоническое правило состоит из трех частей, или содержит три этапа.

Мнемоническое правило

1. Аргумент исходной функции представляется в одном из видов

±α+2πzπ2±α+2πzπ±α+2πz3π2±α+2πz

Угол α должен лежать в пределах от 0 до 90 градусов. 

2. Определяется знак исходной тригонометрической функции. Такой же знак будет иметь функция, записываемая в правой части формулы.

3. Для углов ±α+2πz и π±α+2πz название исходной функции остается неизменным, а для углов π2±α+2πz и 3π2±α+2πz соответственно меняется на «кофункцию». Синус — на косинус. Тангенс — на котангенс.

Чтобы пользоваться мнемоническим праилом для формул приведения нужно уметь определять знаки тригонометрических функций по четвертям единичной окружности. Разберем примеры применения мнемонического правила. 

Пример 1. Использование мнемонического правила

Запишем формулы приведения для cosπ2-α+2πz и tgπ-α+2πz. α — улог первой четверти.

1. Так как по условию α — улог первой четверти, мы пропускаем первый пункт правила.

2. Определим знаки функций cosπ2-α+2πz и tgπ-α+2πz. Угол π2-α+2πz также является углом первой четверти, а угол π-α+2πz находится во второй четверти. В первой четверти функция косинуса положительна, а тангенс во второй четверти имеет знак минус. Запишем, как будут выглядеть искомые формулы на этом этапе.

 cosπ2-α+2πz=+tgπ-α+2πz=-

3. Согласно третьему пункту для угла π2-α+2π название функции изменяется на конфуцию, а для угла π-α+2πz остается прежним. Запишем:

cosπ2-α+2πz=+sin αtgπ-α+2πz=-tg α

А теперь заглянем в формулы, приведенные выше, и убедимся в том, что мнемоническое правило работает.

Рассмотрим  пример с конкретным углом α=777°. Приведем синус альфа к тригонометрической функции острого угла.

Пример 2. Использование мнемонического правила

1. Представим углол α=777° в необходимом виде

777°=57°+360°·2777°=90°-33°+360°·2

2. Исходный угол — угол первой четверти. Значит, синус угла имеет положительный знак. В итоге имеем:

3. sin 777°=sin(57°+360°·2)=sin 57°sin 777°=sin(90°-33°+360°·2)=cos 33°

Теперь рассмотрим пример, который показывает, как важно правильно определить знак тригонометрической функции и правильно представить угол при использовании мнемонического правила. Повторим еще раз.

Важно! 

Угол α должен быть острым!

Вычислим тангенс угла 5π3. Из таблицы значений основных тригонометрических функций можно сразу взять значение tg 5π3=-3, но мы применим мнемоническое правило.

Пример 3. Использование мнемонического правила

tg 5π3=?

Представим угол α=5π3 в необходимом виде и воспользуемся правилом

tg 5π3=tg3π2+π6=-ctgπ6=-3tg 5π3=tg2π-π3=-tgπ3=-3

Если же представить угол альфа в виде 5π3=π+2π3, то результат применениея мнемонического правила будет неверным.

tg 5π3=tgπ+2π3=-tg2π3=-(-3)=3

Неверный результат обусловлен тем, что угол 2π3 не явдяется острым.

Формулы приведения. Доказательство

Доказательство формул приведения основывается на свойствах периодичности и симметричности тригонометрических функций, а также на свойстве сдвига на углы π2 и 3π2. Доказательство справедливости всех формул приведения иожно проводить без учета слагаемого 2πz, так как оно обозначает изменение угла на целое число полных оборотов и как раз отражает свойство периодичности.

Первые 16 формул следуют напрямую из свойств основных тригонометрических функций: синуса, косинуса, тангенса и котанганса. 

Приведем доказательство формул приведения для синусов  и косинусов

sinπ2+α=cos α и cosπ2+α=-sin α

Посмотрим на единичную окружность, начальная точка которой после повоторота на угол α перешла в точку A1x, y, а после поворота на угол π2+α — в точку A2. Из обеих точек проведем перпендикуляры к оси абсцисс.

                                                                         Формулы приведения. Доказательство

Два прямоугольных треугольника OA1H1 и OA2H2 равны по гипотенузе и прилежащим к ней углам. Из расположения точек на окружности и равенства треугольников можно сделать вывод о том, что точка A2 имеет координаты A2-y, x. Используя определения синуса и косинуса, запишем:

sin α=y, cosα=x, sinπ2+α=x, cosπ2+α=y

Отсюда

sinπ2+α=cos α, cosπ2+α=-sinα

С учетом основных тождеств тригонометрии и только что доказанного, можно записать

tgπ2+α=sinπ2+αcosπ2+α=cos α-sin α=-ctg αctgπ2+α=cosπ2+αsinπ2+α=-sin αcosα=-tg α

Для доказательства формул приведения с аргументом π2-α его необходимо представить в виде π2+(-α). Например:

cosπ2-α=cosπ2+(-α)=-sin(-α)=sinα

В доказательстве используются свойства тригонометрических функций с аргументами, противоположными по знаку.

Все остальные формулы приведения можно доказать на базе записанных выше.

Формулы приведения — это соотношения, которые позволяют перейти от тригонометрических функций синус, косинус, тангенс и котангенс с углами `frac {pi}2 pm alpha`, `pi pm alpha`, `frac {3pi}2 pm alpha`, `2pi pm alpha` к этим же функциям угла `alpha`, который находится в первой четверти единичной окружности. Таким образом, формулы приведения «приводят» нас к работе с углами в пределе от 0 до 90 градусов, что очень удобно.

Содержание статьи:

  • 1 Формулы приведения: список и таблицы
  • 2 Мнемоническое правило формул приведения или как их запомнить
    • 2.1 Лошадиное правило
  • 3 Практические примеры использования формул приведения
  • 4 Доказательство формул приведения

Формулы приведения: список и таблицы

Всех вместе формул приведения есть 32 штуки. Они несомненно пригодятся на ЕГЭ, экзаменах, зачетах. Но сразу предупредим, что заучивать наизусть их нет необходимости! Нужно потратить немного времени и понять алгоритм их применения, тогда для вас не составит труда в нужный момент вывести необходимое равенство.

Сначала запишем все формулы приведения:

Для угла (`frac {pi}2 pm alpha`) или (`90^circ pm alpha`):

`sin(frac {pi}2 — alpha)=cos alpha;` ` sin(frac {pi}2 + alpha)=cos alpha`
`cos(frac {pi}2 — alpha)=sin alpha;` ` cos(frac {pi}2 + alpha)=-sin alpha`
`tg(frac {pi}2 — alpha)=ctg alpha;` ` tg(frac {pi}2 + alpha)=-ctg alpha`
`ctg(frac {pi}2 — alpha)=tg alpha;` ` ctg(frac {pi}2 + alpha)=-tg alpha`

Для угла (`pi pm alpha`) или (`180^circ pm alpha`):

`sin(pi — alpha)=sin alpha;` ` sin(pi + alpha)=-sin alpha`
`cos(pi — alpha)=-cos alpha;` ` cos(pi + alpha)=-cos alpha`
`tg(pi — alpha)=-tg alpha;` ` tg(pi + alpha)=tg alpha`
`ctg(pi — alpha)=-ctg alpha;` ` ctg(pi + alpha)=ctg alpha`

Для угла (`frac {3pi}2 pm alpha`) или (`270^circ pm alpha`):

`sin(frac {3pi}2 — alpha)=-cos alpha;` ` sin(frac {3pi}2 + alpha)=-cos alpha`
`cos(frac {3pi}2 — alpha)=-sin alpha;` ` cos(frac {3pi}2 + alpha)=sin alpha`
`tg(frac {3pi}2 — alpha)=ctg alpha;` ` tg(frac {3pi}2 + alpha)=-ctg alpha`
`ctg(frac {3pi}2 — alpha)=tg alpha;` ` ctg(frac {3pi}2 + alpha)=-tg alpha`

Для угла (`2pi pm alpha`) или (`360^circ pm alpha`):

`sin(2pi — alpha)=-sin alpha;` ` sin(2pi + alpha)=sin alpha`
`cos(2pi — alpha)=cos alpha;` ` cos(2pi + alpha)=cos alpha`
`tg(2pi — alpha)=-tg alpha;` ` tg(2pi + alpha)=tg alpha`
`ctg(2pi — alpha)=-ctg alpha;` ` ctg(2pi + alpha)=ctg alpha`

Часто можно встретить формулы приведения в виде таблицы, где углы записаны в радианах:

Чтобы воспользоваться ею, нужно выбрать строку с нужной нам функцией, и столбец с нужным аргументом. Например, чтобы узнать с помощью таблицы, чему будет равно ` sin(pi + alpha)`, достаточно найти ответ на пересечении строки ` sin beta` и столбца ` pi + alpha`. Получим ` sin(pi + alpha)=-sin alpha`.

И вторая, аналогичная таблица, где углы записаны в градусах:

Мнемоническое правило формул приведения или как их запомнить

Как мы уже упоминали, заучивать все вышеприведенные соотношения не нужно. Если вы внимательно на них посмотрели, то наверняка заметили некоторые закономерности. Они позволяют нам сформулировать мнемоническое правило (мнемоника — запоминать), с помощью которого легко можно получить любую с формул приведения.

Сразу отметим, что для применения этого правила нужно хорошо уметь определять (или запомнить) знаки тригонометрических функций в разных четвертях единичной окружности.Знаки синуса, косинуса, тангенса котангенсаСамо привило содержит 3 этапа:

    1. Аргумент функции должен быть представлен в виде `frac {pi}2 pm alpha`, `pi pm alpha`, `frac {3pi}2 pm alpha`, `2pi pm alpha`, причем `alpha` — обязательно острый угол (от 0 до 90 градусов).
    2. Для аргументов `frac {pi}2 pm alpha`, `frac {3pi}2 pm alpha` тригонометрическая функция преобразуемого выражения меняется на кофункцию, то есть противоположную (синус на косинус, тангенс на котангенс и наоборот). Для аргументов `pi pm alpha`, `2pi pm alpha` функция не меняется.
    3. Определяется знак исходной функции. Полученная функция в правой части будет иметь такой же знак.

Чтобы посмотреть, как на практике можно применить это правило, преобразим несколько выражений:

1. ` cos(pi + alpha)`.

Функция на противоположную не меняется. Угол ` pi + alpha` находится в III четверти, косинус в этой четверти имеет знак «-» , поэтому преобразованная функция будет также со знаком «-» .

Ответ: ` cos(pi + alpha)= — cos alpha`

2.  `sin(frac {3pi}2 — alpha)`.

Согласно мнемоническому правилу функция изменится на противоположную. Угол `frac {3pi}2 — alpha` находится в III четверти, синус здесь имеет знак «-» , поэтому результат также будет со знаком «-» .

Ответ: `sin(frac {3pi}2 — alpha)= — cos alpha`

3. `cos(frac {7pi}2 — alpha)`.

`cos(frac {7pi}2 — alpha)=cos(frac {6pi}2+frac {pi}2-alpha)=cos (3pi+(frac{pi}2-alpha))`. Представим `3pi` как `2pi+pi`. `2pi` — период функции.

Важно: Функции `cos alpha` и `sin alpha` имеют период `2pi` или `360^circ`, их значения не изменятся, если на эти величины увеличить или уменьшить аргумент.

Исходя из этого, наше выражение можно записать следующим образом: `cos (pi+(frac{pi}2-alpha)`. Применив два раза мнемоническое правило, получим: `cos (pi+(frac{pi}2-alpha)= — cos (frac{pi}2-alpha)= — sin alpha`.

Ответ: `cos(frac {7pi}2 — alpha)=- sin alpha`.

Лошадиное правило

Второй пункт вышеописанного мнемонического правила еще называют лошадиным правилом формул приведения. Интересно, почему лошадиным?

Итак, мы имеем функции с аргументами `frac {pi}2 pm alpha`, `pi pm alpha`, `frac {3pi}2 pm alpha`, `2pi pm alpha`, точки `frac {pi}2`, `pi`, `frac {3pi}2`, `2pi` — ключевые, они располагаются на осях координат. `pi` и `2pi` на горизонтальной оси абсцисс, а `frac {pi}2` и `frac {3pi}2` на вертикальной оси ординат.

Задаем себе вопрос: «Меняется ли функция на кофункцию?». Чтобы ответить на этот вопрос, нужно подвигать головой вдоль оси, на которой расположена ключевая точка.

То есть для аргументов с ключевыми точками, расположенными на горизонтальной оси, мы отвечаем «нет», мотая головой в стороны. А для углов с ключевыми точками, расположенными на вертикальной оси, мы отвечаем «да», кивая головой сверху вниз, как лошадь 🙂

Рекомендуем посмотреть видеоурок, в котором автор подробно объясняет, как запомнить формулы приведения без заучивания их наизусть.

Практические примеры использования формул приведения

Применение формул приведения начинается еще в 9, 10 классе. Немало задач с их использованием вынесено на ЕГЭ. Вот некоторые из задач, где придется применять эти формулы:

  • задачи на решение прямоугольного треугольника;
  • преобразования числовых и буквенных тригонометрических выражений, вычисление их значений;
  • стереометрические задачи.

Пример 1. Вычислите при помощи формул приведения а) `sin 600^circ`, б) `tg 480^circ`, в) `cos 330^circ`, г) `sin 240^circ`.

Решение: а) `sin 600^circ=sin (2 cdot 270^circ+60^circ)=-cos 60^circ=-frac 1 2`;

б) `tg 480^circ=tg (2 cdot 270^circ-60^circ)=ctg 60^circ=frac{sqrt 3}3`;

в) `cos 330^circ=cos (360^circ-30^circ)=cos 30^circ=frac{sqrt 3}2`;

г) `sin 240^circ=sin (270^circ-30^circ)=-cos 30^circ=-frac{sqrt 3}2`.

Пример 2. Выразив косинус через синус по формулам приведения, сравнить числа: 1) `sin frac {9pi}8` и `cos frac {9pi}8`; 2) `sin frac {pi}8` и `cos frac {3pi}10`.

Решение: 1)`sin frac {9pi}8=sin (pi+frac {pi}8)=-sin frac {pi}8`

`cos frac {9pi}8=cos (pi+frac {pi}8)=-cos frac {pi}8=-sin frac {3pi}8`

`-sin frac {pi}8> -sin frac {3pi}8`

`sin frac {9pi}8>cos frac {9pi}8`.

2) `cos frac {3pi}10=cos (frac {pi}2-frac {pi}5)=sin frac {pi}5`

`sin frac {pi}8<sin frac {pi}5`

`sin frac {pi}8<cos frac {3pi}10`.

Доказательство формул приведения

Докажем сначала две формулы для синуса и косинуса аргумента `frac {pi}2 + alpha`: ` sin(frac {pi}2 + alpha)=cos alpha` и` cos(frac {pi}2 + alpha)=-sin alpha`. Остальные выводятся из них.

Возьмем единичную окружность и на ней точку А с координатами (1,0).  Пусть после поворота на Доказательство формул приведенияугол `alpha` она перейдет в точку `А_1(х, у)`, а после поворота на угол `frac {pi}2 + alpha` в точку `А_2(-у,х)`. Опустив перпендикуляры с этих точек на прямую ОХ, увидим, что треугольники `OA_1H_1` и `OA_2H_2` равны, поскольку равны их гипотенузы и прилежащие углы. Тогда исходя из определений синуса и косинуса можно записать `sin alpha=у`, `cos alpha=х`, ` sin(frac {pi}2 + alpha)=x`, ` cos(frac {pi}2 + alpha)=-y`. Откуда можно записать, что ` sin(frac {pi}2 + alpha)=cos alpha` и ` cos(frac {pi}2 + alpha)=-sin alpha`, что доказывает формулы приведения для синуса и косинуса угла `frac {pi}2 + alpha`.

Выходя из определения тангенса и котангенса, получим ` tg(frac {pi}2 + alpha)=frac {sin(frac {pi}2 + alpha)}{cos(frac {pi}2 + alpha)}=frac {cos alpha}{-sin alpha}=-ctg alpha` и ` сtg(frac {pi}2 + alpha)=frac {cos(frac {pi}2 + alpha)}{sin(frac {pi}2 + alpha)}=frac {-sin alpha}{cos alpha}=-tg alpha`, что доказывает формулы приведения для тангенса и котангенса угла `frac {pi}2 + alpha`.

Чтобы доказать формулы с аргументом `frac {pi}2 — alpha`, достаточно представить его, как `frac {pi}2 + (-alpha)` и проделать тот же путь, что и выше. Например, `cos(frac {pi}2 — alpha)=cos(frac {pi}2 + (-alpha))=-sin(-alpha)=sin(alpha)`.

Углы `pi + alpha` и `pi — alpha` можно представить, как `frac {pi}2 +(frac {pi}2+alpha)` и `frac {pi}2 +(frac {pi}2-alpha)` соответственно.

А `frac {3pi}2 + alpha` и `frac {3pi}2 — alpha` как `pi +(frac {pi}2+alpha)` и `pi +(frac {pi}2-alpha)`.

Материалы по теме:

  • Формулы половинного угла тригонометрических функций
  • Тригонометрические формулы: косинус, синус и тангенс двойного угла
  • Все формулы по тригонометрии
  • Формулы понижения степени в тригонометрии: вывод и примеры

Загрузка…

Формулы приведения

Суть формул приведения заключается в преобразовании тригонометрических функций углов к более «простому» виду. Они позволяют свести задачу вычисления значений тригонометрических функций к вычислению значений для углов x при условии, что x будет находиться в пределах от 0 до п/2. О важности их знания написать можно много. Этих формул тоже много — 32 штуки!

Данные формулы можно также выразить в табличной форме:

Не пугайтесь, учить их не надо. Но необходимо запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет.

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

Напомню их:

2. При этом перед приведенной функцией ставится тот знак, который имеет приводимая (т.е. исходная) функция в соответствующей четверти, если считать вычитаемый (прибавляемый) угол острым.

3. Функцию косинус называют кофункцией функции синус и наоборот. Аналогично функции тангенс и котангенс являются кофункциями.

Поэтому:

  • Если в формуле приведения угол вычитается (прибавляется) из 90 градусов или 270 градусов, то приводимая функция меняется на кофункцию;
  • Если же в формуле приведения угол вычитается (прибавляется) из 180 градусов или 360 градусов, то название приводимой функции сохраняется.
  • Ещё проще — вспомните мнемоническое правило «лошади», о котором я говорила на уроке (если мы откладываем угол от Вертикальной оси, лошадь говорит «да» (киваем головой вдоль оси OY) и приводимая функция меняет своё название: синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс. Если мы откладываем угол от горизонтальной оси, лошадь говорит «нет» (киваем головой вдоль оси OХ) и приводимая функция не меняет название).

Вот и всё!

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Меняем функцию на кофункцию, так как у нас 270 градусов, значит:

Конечно, определить значения углов можно и без формул приведения, по тригонометрической окружности. И если вы умеете это делать, то очень хорошо. Но поняв, как работают формулы приведения, вы сможете делать это очень быстро.

Рассмотрим примеры применения формул приведения.

Пример 1.

Упростить выражение: sin(x+17π)

Решение. Определим целое число периодов 2π (полных оборотов на единичной окружности), содержащихся в 17π.

17π = 8 * 2π + π

По формулам приведения:

sin(x+17π) = sin(x + 8 * 2π + π) = sin(x + π) = — sin x ( « — « т. к. находимся в 3-ей четверти)

Пример 2.

Вычислить: tg(-8π/3)

Решение. Угол -8π/3 лежит в промежутке от -3π до -2π. Поэтому можно сделать следующие преобразования:

tg(-8π/3)= tg(-8π/3+ 3π)= tg(π/3)= √3

Пример 3.

Найти: cos (π-α), если cos(π/2-α) = b и α∈(π; 3π/2).

Решение. По формулам приведения : cos(π-α) = — cos α и cos(π/2 – α) = sin α

Ввиду основного тригонометрического тождества cos2α = 1 – sin2α = 1 – b2

При извлечении квадратного корня надо учесть, что α∈(π; 3π/2) (третья четверть). В таком случае будет выполнено неравенство cos⁡α<0.

Тогда cos⁡α= -√(1-b22 ), и -cos⁡α= √(1-b22 )

Ответ: √(1-b22 )

Пример 4.

Упростите выражение: sin(π/2-α)cos (π-α)+cos (3π/2+α)sin (2π-α)

Решение. По формулам приведения : cos(π-α) = — cos α; sin(π/2 – α) = cos α; cos(3π/2 + α) = sin α; sin(2π – α) = -sin α

Получаем sin(π/2-α)cos (π-α)+cos (3π/2+α)sin (2π-α) = cos α *(-cos α) + sin α * (-sin α) = — cos2α — sin2α = — (cos2α + sin2α) = — 1

Пример 5.

Вычислить: sin⁡(-7π/3)cos(-19π/6)tg390°ctg(-300°)

Решение. В каждой тригонометрической функции исключим периоды

sin⁡(-7π/3) = — sin(2π+ π/3) = — sin π/3 = — √3/2

cos(- 19π/6) = cos(2π+π+ π/6) = cos(π+π/6) = — cos π/6 = — √3/2

tg390°=tg(2*180°+30°)= tg30°= √3/3

ctg(-300°)= -ctg(180°+90°+30°)= -ctg(90°+30°)= tg30°= √3/3

Таким образом, имеем: sin⁡(-7π/3)cos(-19π/6)tg390°ctg(-300°) = ((-√3)*(-√3)*√3*√3)/(2*2*3*3) = 1/4 = 0,25

Понравилась статья? Поделить с друзьями:
  • Как найти свойство ярлыка
  • Как найти площадь поперечного сечение железной проволоки
  • Как найти угол дуги сегмента
  • Как правильно составить дефектный акт образец
  • Как найти поставщиков сыров