Как найти синус угла по координатам вершин

Содержание:

При изучении геометрии вы рассматривали отношения сторон в прямоугольном треугольнике и познакомились с понятиями синуса, косинуса, тангенса и котангенса острого угла (рис. 28).

Построение синуса и косинуса произвольного угла

Построим точку Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Рассмотрим прямоугольный треугольник Определение синуса и косинуса произвольного угла с примерами решения в котором гипотенуза Определение синуса и косинуса произвольного угла с примерами решения равна 1 (радиусу единичной окружности). По определению синуса и косинуса острого угла получим: Определение синуса и косинуса произвольного угла с примерами решения

Таким образом, синус угла Определение синуса и косинуса произвольного угла с примерами решения равен ординате точки Определение синуса и косинуса произвольного угла с примерами решения а косинус угла Определение синуса и косинуса произвольного угла с примерами решения равен абсциссе точки Определение синуса и косинуса произвольного угла с примерами решения

Поскольку в тригонометрии рассматриваются углы Определение синуса и косинуса произвольного угла с примерами решения то определим синус и косинус для любого угла Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса произвольного угла

Определение:

Синусом угла Определение синуса и косинуса произвольного угла с примерами решения называется ордината точки Определение синуса и косинуса произвольного угла с примерами решения полученной поворотом точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности вокруг начала координат на угол Определение синуса и косинуса произвольного угла с примерами решения Определение синуса и косинуса произвольного угла с примерами решения

Определение косинуса произвольного угла

Определение:

Косинусом угла Определение синуса и косинуса произвольного угла с примерами решения называется абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения полученной поворотом точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности вокруг начала координат на угол Определение синуса и косинуса произвольного угла с примерами решения Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Для того чтобы найти синус и косинус произвольного угла Определение синуса и косинуса произвольного угла с примерами решения нужно:

  1. Построить точку Определение синуса и косинуса произвольного угла с примерами решения единичной окружности.
  2. Найти ординату точки Определение синуса и косинуса произвольного угла с примерами решения Определение синуса и косинуса произвольного угла с примерами решения
  3. Найти абсциссу точки Определение синуса и косинуса произвольного угла с примерами решения Определение синуса и косинуса произвольного угла с примерами решения

Найдите синус и косинус угла Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Значения синуса и косинуса произвольного угла с помощью единичной окружности в основном можно указать только приближенно.

Однако для некоторых углов значения синуса и косинуса можно указать точно. Определим значения синуса и косинуса для углов, которые соответствуют точкам пересечения окружности с осями координат Определение синуса и косинуса произвольного угла с примерами решенияОпределение синуса и косинуса произвольного угла с примерами решения Найдем Определение синуса и косинуса произвольного угла с примерами решения Углу Определение синуса и косинуса произвольного угла с примерами решения соответствует точка Определение синуса и косинуса произвольного угла с примерами решения имеющая координаты Определение синуса и косинуса произвольного угла с примерами решения По определению синус угла Определение синуса и косинуса произвольного угла с примерами решения равен ординате точки Определение синуса и косинуса произвольного угла с примерами решения значит, Определение синуса и косинуса произвольного угла с примерами решения Косинус угла Определение синуса и косинуса произвольного угла с примерами решения равен абсциссе точки Определение синуса и косинуса произвольного угла с примерами решения т.е. Определение синуса и косинуса произвольного угла с примерами решения (рис. 31).

Пользуясь определением синуса и косинуса угла Определение синуса и косинуса произвольного угла с примерами решения получим, что: Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Так как ординаты и абсциссы точек единичной окружности изменяются от -1 до 1, то значения синуса и косинуса произвольного угла принадлежат промежутку Определение синуса и косинуса произвольного угла с примерами решения

Например, выясним, может ли Определение синуса и косинуса произвольного угла с примерами решения принимать значения, равные:

Определение синуса и косинуса произвольного угла с примерами решения

Значения синуса произвольного угла принадлежат отрезку Определение синуса и косинуса произвольного угла с примерами решения значит, Определение синуса и косинуса произвольного угла с примерами решения может принимать значения, равные Определение синуса и косинуса произвольного угла с примерами решения и Определение синуса и косинуса произвольного угла с примерами решения так как Определение синуса и косинуса произвольного угла с примерами решенияи Определение синуса и косинуса произвольного угла с примерами решения Поскольку Определение синуса и косинуса произвольного угла с примерами решения то Определение синуса и косинуса произвольного угла с примерами решения не может принимать значения, равные Определение синуса и косинуса произвольного угла с примерами решения

По определению синуса и косинуса угла Определение синуса и косинуса произвольного угла с примерами решения синус угла Определение синуса и косинуса произвольного угла с примерами решения равен ординате точки Определение синуса и косинуса произвольного угла с примерами решения а косинус угла Определение синуса и косинуса произвольного угла с примерами решения равен абсциссе этой точки. Значит, знаки Определение синуса и косинуса произвольного угла с примерами решения и Определение синуса и косинуса произвольного угла с примерами решения совпадают со знаками ординаты и абсциссы точки Определение синуса и косинуса произвольного угла с примерами решения соответственно.

Пример №1

Определите знак выражения:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Так как Определение синуса и косинуса произвольного угла с примерами решения — угол второй четверти (рис. 32), а ординаты точек единичной окружности, находящихся во второй четверти, положительны, то Определение синуса и косинуса произвольного угла с примерами решения

б) Так как Определение синуса и косинуса произвольного угла с примерами решения — угол третьей четверти (см. рис. 32), а абсциссы точек единичной окружности, находящихся в третьей четверти, отрицательны, то Определение синуса и косинуса произвольного угла с примерами решения

в) Так как Определение синуса и косинуса произвольного угла с примерами решения — угол третьей четверти (см. рис. 32), а ординаты точек единичной окружности, находящихся в третьей четверти, отрицательны, то Определение синуса и косинуса произвольного угла с примерами решения

г) Так как Определение синуса и косинуса произвольного угла с примерами решения — угол первой четверти (см. рис. 32), а абсциссы точек единичной окружности, находящихся в первой четверти, положительны, то Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Из геометрии нам известны значения синусов и косинусов острых углов (см. табл.).

Определение синуса и косинуса произвольного угла с примерами решения

С помощью этих значений можно находить значения синусов и косинусов некоторых других углов Определение синуса и косинуса произвольного угла с примерами решения

Пример №2

Вычислите:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Отметим на единичной окружности точку Определение синуса и косинуса произвольного угла с примерами решения Поскольку известно, что Определение синуса и косинуса произвольного угла с примерами решения а Определение синуса и косинуса произвольного угла с примерами решения то ордината точки Определение синуса и косинуса произвольного угла с примерами решенияравна Определение синуса и косинуса произвольного угла с примерами решения а абсцисса этой точки равна Определение синуса и косинуса произвольного угла с примерами решения

Точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности симметричны относительно оси абсцисс (рис. 33), значит, их ординаты (синусы углов Определение синуса и косинуса произвольного угла с примерами решенияпротивоположны, а абсциссы (косинусы углов Определение синуса и косинуса произвольного угла с примерами решения и Определение синуса и косинуса произвольного угла с примерами решения равны. Таким образом, Определение синуса и косинуса произвольного угла с примерами решения а Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

б) Так как Определение синуса и косинуса произвольного угла с примерами решения то точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности симметричны относительно оси ординат (рис. 34). Тогда их ординаты (синусы углов Определение синуса и косинуса произвольного угла с примерами решения равны, а абсциссы (косинусы углов Определение синуса и косинуса произвольного угла с примерами решения и Определение синуса и косинуса произвольного угла с примерами решенияпротивоположны. Значит, Определение синуса и косинуса произвольного угла с примерами решения

в) Точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности симметричны относительно начала координат (рис. 35), поскольку Определение синуса и косинуса произвольного угла с примерами решения Тогда и их ординаты противоположны, и их абсциссы противоположны, т. е.Определение синуса и косинуса произвольного угла с примерами решения

г) Поскольку Определение синуса и косинуса произвольного угла с примерами решения то точки Определение синуса и косинуса произвольного угла с примерами решения и Определение синуса и косинуса произвольного угла с примерами решения единичной окружности совпадают (рис. 36), а значит, их координаты равны. Тогда Определение синуса и косинуса произвольного угла с примерами решения

Пример №3

Вычислите:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Так как Определение синуса и косинуса произвольного угла с примерами решения то точка Определение синуса и косинуса произвольного угла с примерами решения единичной окружности совпадает с точкой Определение синуса и косинуса произвольного угла с примерами решения (рис. 37).

Определение синуса и косинуса произвольного угла с примерами решения

Поскольку Определение синуса и косинуса произвольного угла с примерами решения

б) Точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности симметричны относительно начала координат (см. рис. 37), а значит, их абсциссы (косинусы углов Определение синуса и косинуса произвольного угла с примерами решения и Определение синуса и косинуса произвольного угла с примерами решенияотличаются только знаком. Так как Определение синуса и косинуса произвольного угла с примерами решения

Пример №4

Постройте один из углов, если:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Так как Определение синуса и косинуса произвольного угла с примерами решения то на оси ординат отметим Определение синуса и косинуса произвольного угла с примерами решения Проведем прямую, параллельную оси абсцисс, и найдем на единичной окружности точки Определение синуса и косинуса произвольного угла с примерами решения ордината каждой из которых равна Определение синуса и косинуса произвольного угла с примерами решения Отметим один из углов, соответствующих точкам Определение синуса и косинуса произвольного угла с примерами решения или Определение синуса и косинуса произвольного угла с примерами решения (рис. 38, а).

б) Так как Определение синуса и косинуса произвольного угла с примерами решения то на оси абсцисс отметим 0,8. Проведем прямую, параллельную оси ординат, и найдем на единичной окружности точки Определение синуса и косинуса произвольного угла с примерами решенияи Определение синуса и косинуса произвольного угла с примерами решения абсцисса каждой из которых равна 0,8. Отметим один из углов,соответствующих точкам Определение синуса и косинуса произвольного угла с примерами решения или Определение синуса и косинуса произвольного угла с примерами решения (рис. 38, б).

Определение синуса и косинуса произвольного угла с примерами решения

  • Заказать решение задач по высшей математике

Примеры заданий и их решения:

Пример №5

Точка Определение синуса и косинуса произвольного угла с примерами решения единичной окружности имеет координаты Определение синуса и косинуса произвольного угла с примерами решения Используя определение синуса и косинуса произвольного угла, найдите Определение синуса и косинуса произвольного угла с примерами решения

Решение:

Синусом угла Определение синуса и косинуса произвольного угла с примерами решения называется ордината точки Определение синуса и косинуса произвольного угла с примерами решения полученной поворотом точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности вокруг начала координат на угол Определение синуса и косинуса произвольного угла с примерами решения По условию ордината точки Определение синуса и косинуса произвольного угла с примерами решения равна Определение синуса и косинуса произвольного угла с примерами решения значит, Определение синуса и косинуса произвольного угла с примерами решения

Косинусом угла Определение синуса и косинуса произвольного угла с примерами решения называется абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения полученной поворотом точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности вокруг начала координат на угол Определение синуса и косинуса произвольного угла с примерами решения По условию абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения равна Определение синуса и косинуса произвольного угла с примерами решения значит, Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Пример №6

Если Определение синуса и косинуса произвольного угла с примерами решения то угол Определение синуса и косинуса произвольного угла с примерами решения может быть равен:

Определение синуса и косинуса произвольного угла с примерами решения

Выберите правильный ответ.

Решение:

Так как синусом угла Определение синуса и косинуса произвольного угла с примерами решения называется ордината точки Определение синуса и косинуса произвольного угла с примерами решения полученной поворотом точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности вокруг начала координат на угол Определение синуса и косинуса произвольного угла с примерами решения то нужно найти точку единичной окружности, ордината которой равна -1. Эта точка лежит на оси ординат, и из данных углов ей соответствует угол Определение синуса и косинуса произвольного угла с примерами решения (рис. 39). Правильный ответ в).

Пример №7

Если Определение синуса и косинуса произвольного угла с примерами решения то угол Определение синуса и косинуса произвольного угла с примерами решения может быть равен:

Определение синуса и косинуса произвольного угла с примерами решения

Выберите правильный ответ.

Решение:

Так как косинусом угла Определение синуса и косинуса произвольного угла с примерами решения называется абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения полученной поворотом точки Определение синуса и косинуса произвольного угла с примерами решения единичной окружности вокруг начала координат на угол Определение синуса и косинуса произвольного угла с примерами решения то нужно найти точку единичной окружности, абсцисса которой равна 0. Эта точка лежит на оси ординат, и из данных углов ей соответствует угол Определение синуса и косинуса произвольного угла с примерами решения (рис. 40). Правильный ответ в).

Пример №8

Найдите значение выражения:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения соответствующей углу Определение синуса и косинуса произвольного угла с примерами решения равна -1 (рис. 41), значит, Определение синуса и косинуса произвольного угла с примерами решения Ордината точки Определение синуса и косинуса произвольного угла с примерами решения соответствующей углу Определение синуса и косинуса произвольного угла с примерами решения равна 1 (см. рис. 41), т. е. Определение синуса и косинуса произвольного угла с примерами решения Значит, Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

б) Определение синуса и косинуса произвольного угла с примерами решения( рис. 42) тогда Определение синуса и косинуса произвольного угла с примерами решенияОпределение синуса и косинуса произвольного угла с примерами решения

Может ли Определение синуса и косинуса произвольного угла с примерами решения быть равным:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

Поскольку Определение синуса и косинуса произвольного угла с примерами решения

а) не может быть равным 1,2, так как Определение синуса и косинуса произвольного угла с примерами решения

б) может быть равным 0,89, так как Определение синуса и косинуса произвольного угла с примерами решения

в) не может быть равным Определение синуса и косинуса произвольного угла с примерами решениятак как Определение синуса и косинуса произвольного угла с примерами решения

г) может быть равным Определение синуса и косинуса произвольного угла с примерами решения так как Определение синуса и косинуса произвольного угла с примерами решения

Пример №9

Определите знак выражения:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Определение синуса и косинуса произвольного угла с примерами решения так как Определение синуса и косинуса произвольного угла с примерами решения — угол четвертой четверти, а косинус в четвертой четверти положителен;

б) Определение синуса и косинуса произвольного угла с примерами решения так как Определение синуса и косинуса произвольного угла с примерами решения — угол первой четверти, а косинус в первой четверти положителен;

в) Определение синуса и косинуса произвольного угла с примерами решения так как Определение синуса и косинуса произвольного угла с примерами решенияугол второй четверти, а синус во второй четверти положителен;

г) Определение синуса и косинуса произвольного угла с примерами решения так как 6 радиан — угол четвертой четверти, а синус в четвертой четверти отрицателен.

Пример №10

Сравните: Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Отметим на единичной окружности точки, соответствующие углам Определение синуса и косинуса произвольного угла с примерами решения и сравним ординаты этих точек. Ордината точки Определение синуса и косинуса произвольного угла с примерами решения больше ординаты точки Определение синуса и косинуса произвольного угла с примерами решения (рис. 43), значит, Определение синуса и косинуса произвольного угла с примерами решения

б) Сравним абсциссы точек единичной окружности Определение синуса и косинуса произвольного угла с примерами решения Так как абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения больше абсциссы точки Определение синуса и косинуса произвольного угла с примерами решения (рис. 44), то Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

Пример №11

С помощью единичной окружности найдите значение:

Определение синуса и косинуса произвольного угла с примерами решения

Решение:

а) Ордината точки Определение синуса и косинуса произвольного угла с примерами решения равна ординате точки Определение синуса и косинуса произвольного угла с примерами решения (рис. 45), поэтому Определение синуса и косинуса произвольного угла с примерами решения

б) Абсцисса точки Определение синуса и косинуса произвольного угла с примерами решения противоположна абсциссе точки Определение синуса и косинуса произвольного угла с примерами решения (см. рис. 45), поэтому

Определение синуса и косинуса произвольного угла с примерами решения

Определение синуса и косинуса произвольного угла с примерами решения

  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Функция y=sin x и её свойства и график
  • Функция y=cos x и её свойства и график
  • Дробно-рациональные уравнения
  • Дробно-рациональные неравенства
  • Прогрессии в математике — арифметическая, геометрическая
  • Единичная окружность — в тригонометрии

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Как найти угол между векторами

Вы будете перенаправлены на Автор24

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Пусть нам даны два вектора $overline<α>$ и $overline<β>$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline<α>=overline$ и $overline<β>=overline$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline<α>$ и $overline<β>$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Скалярное произведение двух данных векторов $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

Готовые работы на аналогичную тему

Обозначение: $overline<δ>cdot overline<β>$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

Из теоремы 1 мы знаем, что $overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

Расписывая по формуле длины вектора значения $|overline<δ>|$ и $|overline<β>|$, окончательно получим

Найдя значение косинуса, мы легко найдем и значение самого угла.

Найти косинус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline<δ>cdot overline<β>=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

В результате, получим

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Математически это выглядит следующим образом:

  1. $|overline<δ>хoverline<β>|=|overline<δ>||overline<β>|sin⁡∠(overline<δ>,overline<β>)$
  2. $overline<δ>хoverline<β>⊥overline<δ>$, $overline<δ>хoverline<β>⊥overline<β>$
  3. $(overline<δ>хoverline<β>,overline<δ>,overline<β>)$ и $(overline,overline,overline)$ одинаково ориентированы (рис. 2)

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

Найдем вектор векторного произведения по формуле:

$overline<δ>хoverline<β>=beginoverline&overline&overline\δ_1&δ_2&δ_3\β_1&β_2&β_3end=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline<δ>|$, $|overline<β>|$ и $|overline<δ>хoverline<β>|$, окончательно получим

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Найти синус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

Найдем длины этих векторов:

В результате, получим

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 20 07 2022

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

источники:

http://spravochnick.ru/geometriya/metod_koordinat_v_prostranstve/kak_nayti_ugol_mezhdu_vektorami/

http://ru.onlinemschool.com/math/library/vector/angl/

Геометрия, 11 класс

Урок № 3. Координатный метод решения задач

Перечень вопросов, рассматриваемых в теме:

  • специфика и преимущества решения задач в пространстве координатным методом;
  • типы задач, решаемые координатным методом;
  • этап решения задачи координатным методом;
  • решение несложных задач методом координат.

Глоссарий по теме

Уравнение вида задает в пространстве плоскость α.

При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль. Очевидно, что нормалью является любой вектор, коллинеарный вектору .

Вектор и любой коллинеарный ему вектор называются направляющим векторами прямой и прямой соответственно.

Основная литература:

Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. Учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 163-170.

Потоскуев Е.В., Звавич Л. И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 353-260.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

Работа по теме урока. Объяснение новой темы

Мы рассмотрели несложную задачу на применение метода координат в пространстве.

Векторы , угол между которыми мы искали, называются направляющими векторами прямой и прямой соответственно.

Рассмотрим этот метод более подробно.

Суть метода координат на плоскости и в пространстве заключается в следующем.

  1. Ввести систему координат удобным образом (исходя их свойств заданной фигуры)
  2. Записать условие задачи в координатах, определив во введенной системе координат координаты точек и/или векторов
  3. Используя алгебраические преобразования, решить задачу
  4. Интерпретировать полученный результат в соответствии с условием данной задачи

В рассмотренном нами примере, поскольку был дан куб, мы могли ввести систему координат с центром в любой его вершине.

В координатах удобно решать задачи, связанные с поиском расстояний и углов. Но для того чтобы его использовать, нужно знать некоторые формулы:

  1. Угол между прямыми
  2. Угол между прямой и плоскостью
  3. Угол между плоскостями
  4. Расстояние от точки до плоскости
  5. Расстояние от точки до прямой в пространстве
  6. Расстояние между скрещивающимися прямыми

Расстояние между параллельными плоскостями определяется как расстояние от точки, лежащей в одной плоскости, до другой плоскости.

Мы рассмотрим только первые четыре формулы.

Введем их.

Угол между прямыми

Если прямая задана двумя точками A и B, то известен направляющий вектор этой прямой с координатами {}. Пусть вторая прямая имеет направляющий вектор . Тогда угол между векторами вычисляется по формуле:

.

Дальше ищется арккосинус от найденного числа. Заметим, что если косинус получился отрицательным, то это значит, что угол между векторами тупой. Поэтому мы берем модуль получившегося числа.

Фактически мы уже рассмотрели пример вычисления угла между прямыми в пространстве.

Угол между прямой и плоскостью

Сначала рассмотрим уравнение плоскости, проходящей через три точки.

.

Вам известно, что в пространстве плоскость задается уравнением, аналогичным тому, которое на плоскости задает прямую.

Если линейное уравнение вида на плоскости задает прямую l, то уравнение вида задает в пространстве плоскость α. При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль.

Вам известно, что три точки в пространстве определяют единственную плоскость. Поэтому, если заданы три точки, то мы можем найти уравнение плоскости

Мы можем подставить координаты заданных точек в уравнение плоскости и решить систему из трех уравнений с тремя переменными:

В этой системе четыре неизвестных, однако, мы можем избавиться от одной, если разделим все уравнения на D:

.

Для изучения данного способа в 11 классе на базовом уровне введение понятий матрица, определитель матрицы не желателен, данные понятия не входят в базовый курс изучения геометрии.

Иногда эта система оказывается несложной. Но иногда бывает трудно ее решить, и тогда можно использовать следующую формулу:

Обозначение |M| означает определитель матрицы М.

В нашем случае матрица представляет собой таблицу 3х3 элемента. И определитель |M| вычисляется следующим образом:

.

Таким образом, уравнение плоскости будет записано так:

Пример 1:

Написать уравнение плоскости, проходящей через точки K(1; -2; 3), L (0; 1; 1), M (1; 0; 1).

Составим систему.

.

Решая ее, получим значения А, В и С: . То есть уравнение плоскости имеет вид:

.

Ответ: .

Теперь запишем формулу угла между прямой и плоскостью.

Пусть дано уравнение плоскости: и известен — направляющий вектор прямой.

Тогда – синус угла между прямой и плоскостью.

Пример 2:

Найдем угол между прямой и плоскостью. В качестве плоскости возьмем ту, уравнение которой мы только что написали:

Прямая проходит через точки Т(2; -1; 4) и Р(3; 2; 2).

Направляющий вектор прямой: .

Найдем синус угла между прямой и плоскостью:

.

Угол между прямой и плоскостью .

Ответ: .

Угол между плоскостями

Пусть:

уравнение первой плоскости:

уравнение второй плоскости:

Тогда — косинус угла между этими плоскостями.

Пример 3:

Найдем угол между плоскостями:

и .

Найдем косинус угла между плоскостями:

.

Угол между плоскостями:

Ответ:

Расстояние от точки до плоскости

Пусть координаты точки: , уравнение плоскости: .

Тогда Расстояние от точки до плоскости вычисляется по формуле: .

Пример 4.

Найдем расстояние от точки М(4; 3; 4) до плоскости .

.

Теперь рассмотрим решение задачи координатным методом с использованием рассмотренных формул.

Пример 5.

АВС…D1 – куб с ребром 4. Найти расстояние от точки А до плоскости ЕКС (Е – середина D1C1, K – середина C1B1)

Введем систему координат с началом в вершине А так, как показано на рисунке:

Интересующие нас точки будут иметь координаты:

A(0; 0; 0), C(4; 4; 0), E(4; 2; 4), K(2; 4; 4).

Напишем уравнение плоскости ЕКС:

.

Решая ее, получим значения А, В, С и D: .

Уравнение плоскости имеет вид:

Теперь найдем расстояние от точки А до плоскости ЕКС: .

Ответ: .

Рассмотрим задачу (№14 из варианта ЕГЭ).

В кубе ABC…D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 2 : 1, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

Решение:

Переформулируем первый пункт этой задачи таким образом:

Проведем плоскость через точки Р, K и C1 и докажем, что она параллельна прямой BD1.

Введем систему координат так, как показано на рисунке:

Найдем координаты точек :

Р(; 0; 4), К(4; 0; 3),(4; 4; 4).

Напишем уравнение плоскости :

;

Решая ее, получим значения А, В, С и D: .

— уравнение плоскости

Теперь докажем, что плоскость параллельна прямой BD1.

Найдем угол между прямой BD1 и плоскостью .

Точки В и D1 имеют координаты: В (4; 0; 0), D1 (0; 4; 4).

Направляющий вектор прямой BD1 – это вектор .

Он имеет координаты .

Теперь найдем синус угла между вектором и плоскостью .

.

В этом случае нам не нужно считать знаменатель дроби. Так как числитель получился равен 0, то дробь равна 0, то есть синус угла между плоскостью и прямой равен 0, значит, плоскости параллельны или совпадают. Но, так как точка В, например, в плоскости, очевидно, не лежит, то плоскости параллельны.

Это значит, что плоскость, параллельная прямой BD1 и проходящая через точки действительно пересекает ребро A1B1в точке Р так, что A1P : PB1 = 2 : 1. Что и требовалось доказать.

Теперь рассмотри второй пункт задачи. Уравнение плоскости у нас есть. Плоскость BB1C1 параллельна координатной плоскости YOZ и проходит через точку

В(4; 0; 0). Поэтому она имеет уравнение .

То есть ее коэффициенты .

Найдем угол между плоскостями, используя формулу

Ответ: .

Угол между векторами

Определение

Угол между векторами — это угол между отрезками, которые изображают эти две направляющие и которые отложены от одной точки пространства. Другими словами — это кратчайший путь, на который можно повернуть один из векторов вокруг его начала до положения общей направленности со вторым.

Угол между векторами

 

На изображении это α, который также можно обозначить следующим образом:

(left(widehat{overrightarrow a;overrightarrow b}right))

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как и любой другой угол, векторный может быть представлен в нескольких вариациях.

Острый:

Острый угол между векторами

 

Тупой:

Тупой угол между векторами

 

Прямой:

Прямой угол

 

С величиной (0^circ) (то есть, векторы сонаправлены):

0 градусов

 

С величиной (180^circ) (векторы направлены в противоположные стороны):

180 градусов

 

Нахождение угла между векторами

Как правило, угол между ( overrightarrow a) и (overrightarrow b) можно найти с помощью скалярного произведения или теоремы косинусов для треугольника, который был построен на основе двух этих направляющих.

Определение

Скалярное произведение — это число, которое равно произведению двух направляющих на косинус угла между ними.

Формула скалярного произведения:

(left(overrightarrow a;overrightarrow bright)=left|overrightarrow aright|timesleft|overrightarrow bright|timescosleft(widehat{overrightarrow a;overrightarrow b}right))

  1. Если α — острый, то СП (скалярное произведение) будет положительным числом (cos острого угла — положительное число).
  2. Если векторы имеют общую направленность, то есть угол между ними равен (0^circ), а косинус — 1, то СП будет тоже положительным.
  3. Если α — тупой, то скалярное произведение будет отрицательным (cos тупого угла — отрицательное число).
  4. Если α равен (180^circ), то есть векторы противоположно направлены, то СП тоже отрицательно, потому что cos данного угла равен 1.
  5. Если α — прямой, то СП равно 0, так как косинус (90^circ) равен 0.

В случае, если overrightarrow a и overrightarrow b не нулевые, можно найти косинус α между ними, опираясь на формулу:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|})

Расчет угла, если вектор задан координатами

В случае, когда направляющие расположены на двухмерной плоскости с заданными координатами в виде (overrightarrow a=left(a_x;a_yright)) и (overrightarrow b=left(b_x;b_yright)), то угол между ними можно найти следующим образом:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|}=frac{a_xcdot b_x+a_ycdot b_y}{sqrt{a_x^2+a_y^2}cdotsqrt{b_x^2+b_y^2}})

Если же координаты находятся в трехмерном пространстве и заданы в виде:

(overrightarrow a=left(a_x;a_y;a_zright))

( overrightarrow b=left(b_x;b_y;b_zright))

то формула принимает такой вид:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|}=frac{a_xcdot b_x+a_ycdot b_y+a_zcdot b_z}{sqrt{a_x^2+a_y^2+a_z^2}cdotsqrt{b_x^2+b_y^2+b_z^2}})

Расчет угла, если заданы три точки в прямоугольной системе координат

В этом случае проще будет разобраться с объяснениями сразу на примере.

Допустим, нам известны три точки и их координаты: A(3,-2), B(2,1), C (6,-1). Нужно найти косинус угла между (overrightarrow{AC}) и (overrightarrow{BC}).

Решение

Для начала найдем их координаты по известным координатам заданных точек:

(overrightarrow{AC}=(6-3, -1-(-2))=(3,1))

(overrightarrow{BC}=(6-2, -1-1)=(4,-2))

После этого уже можем применить формулу для определения косинуса угла на плоскости и подставить известные значения:

(cosleft(widehat{overrightarrow{AC};overrightarrow{BC}}right)=frac{(overrightarrow{AC};;overrightarrow{BC})}{left|overrightarrow{AC}right|cdotleft|overrightarrow{BC}right|}=frac{3cdot4+1cdot(-2)}{sqrt{3^2+1^2}cdotsqrt{4^2+{(-2)}^2}}=frac{10}{sqrt{10}cdot2sqrt5}=frac{10}{10sqrt2}=frac1{sqrt2})

Ответ: (cosleft(widehat{overrightarrow{AC};overrightarrow{BC}}right)=frac1{sqrt2}.)

Примеры решения задач

Для наглядности, взглянем на примеры решения задач по данной теме.

Задача 1

Известно, что (overrightarrow a) и (overrightarrow b). Их длины равны 3 и 6 соответственно, а скалярное произведение равно -9. Нужно найти cos угла между векторами и его величину.

Решение

Применим формулу:

( cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|})

Подставим известные значения:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{-9}{3cdot6}=-frac12)

Далее найдем угол между данными векторами:

(arccosleft(-frac12right)=frac{3pi}4)

Ответ: (left(widehat{overrightarrow a;overrightarrow b}right)=-frac12,;left(widehat{overrightarrow a;overrightarrow b}right)=frac{3pi}4.)

Задача 2

В пространстве даны координаты (overrightarrow a=(8; -11; 7)) и (overrightarrow b=(-2; -7; 8)). Вычислить угол α между ними.

Решение

Используем формулу для нахождения косинуса угла между направляющими в трехмерной системе координат:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|}=frac{a_xcdot b_x+a_ycdot b_y+a_zcdot b_z}{sqrt{a_x^2+a_y^2+a_z^2}cdotsqrt{b_x^2+b_y^2+b_z^2}})

Подставляем значения и получаем:

(cosleft(alpharight)=frac{8cdot(-2)+(-11)cdot(-7)+7cdot8}{sqrt{8^2+{(-11)}^2+7^2}cdotsqrt{{(-2)}^2+{(-7)}^2+8^2}}=frac{117}{sqrt{234}cdotsqrt{117}}=frac{sqrt{117}}{sqrt{234}}=frac1{sqrt2}=frac2{sqrt2})

Теперь находим угол α:

(alpha=arccosleft(frac2{sqrt2}right)=45^circ)

Ответ: (45^circ).

Задача 3

Известны (overrightarrow a=(3; 4)) и (overrightarrow b=(2; 5)). Найти угол между ними.

Решение

Для расчета используем формулу:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|}=frac{a_xcdot b_x+a_ycdot b_y}{sqrt{a_x^2+a_y^2}cdotsqrt{b_x^2+b_y^2}})

Подставим известные значения и получим:

(cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{left(overrightarrow a;overrightarrow bright)}{left|overrightarrow aright|timesleft|overrightarrow bright|}=frac{a_xcdot b_x+a_ycdot b_y}{sqrt{a_x^2+a_y^2}cdotsqrt{b_x^2+b_y^2}}=frac{3cdot2+4cdot5}{sqrt{3^2+4^2}cdotsqrt{2^2+5^2}}=frac{26}{sqrt{25}cdotsqrt{29}}=frac{26}{5sqrt{29}})

Ответ: (cosleft(widehat{overrightarrow a;overrightarrow b}right)=frac{26}{5sqrt{29}})

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1.  В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2.  В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и :

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму.

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

.

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

;

.

Выразим C и B через A и подставим в третье уравнение:

.

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

  

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти айфон если не включен локатор
  • Как найти сумму всех углов шестиугольника
  • Как найти плановый объем реализованной продукции
  • Как решить задачу найдите объем прямоугольного параллелепипеда
  • Как найти свой айди инстаграм