Как найти синус угла в квадрате

Синус в квадрате

Синус (sin) — это тригонометрическая функция, геометрически представляющая отношение противолежащего катета к гипотенузе в прямоугольном треугольнике.

sin 2 (x)=sin(x)*sin(x)

Значение синуса находится в диапазоне от -1 до +1.

Смотрите также калькулятор вычисления синуса угла.

Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор вычисления квадрата синуса (синуса в квадрате). С помощью этого калькулятора вы в один клик сможете вычислить квадрат синуса любого угла.

Косинус в квадрате и синус в квадрате

Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате.

Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).

Поэтому для начала вспомним основные понятия прямоугольного треугольника:

Гипотенуза — сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза — это самая длинная сторона треугольника с прямым углом.

Оставшиеся две стороны в прямоугольном треугольнике называются катетами.

Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.

kosinus-v-kvadrate-sinus-v-kvadrate

Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс — «x», что не меняет сути).

Синус угла альфа (sin ∠α) — это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC

Косинус угла альфа (cos ∠α) — отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC

И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза — это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

Косинус в квадрате, синус в квадрате

Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.

Для их вычисления следует запомнить основное тригонометрическое тождество:

sin 2 α + cos 2 α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).

Из тригонометрического тождества делаем выводы о синусе:

sin 2 α = 1 — cos 2 α

или более сложный вариант формулы: синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.

sin 2 α = (1 – cos(2α)) / 2

​​​​​​​Из тригонометрического тождества делаем выводы о косинусе:

cos 2 α = 1 — sin 2 α

или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.

cos 2 α = (1 + cos(2α)) / 2

Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.

Добавить интересную новость

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

Формулы двойного угла в тригонометрии

Формулы двойного угла служат для выражения синусов, косинусов, тангенсов, котангенсов угла со значением 2 α , используя тригонометрические функции угла α . Данная статья познакомит со всеми формулами двойного угла с доказательствами. Будут рассмотрены примеры применения формул. В заключительной части будут показаны формулы тройного, четверного углов.

Список формул двойного угла

Для преобразования формул двойного угла следует помнить о том, что углы в тригонометрии имеют вид n α записи, где n является натуральным числом, значение выражение записывается без скобок. Таким образом, считается, что запись sin n α имеет то же значение, что и sin ( n α ) . При обозначении sin n α имеем аналогичную запись ( sin α ) n . Использование записи применимо для всех тригонометрических функций со степенями n .

Ниже приведены формулы двойного угла:

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α — sin 2 α , cos 2 α = 1 — 2 · sin 2 α , cos 2 α = 2 · cos 2 α — 1 t g 2 α = 2 · t g α 1 — t g 2 α c t g 2 α — c t g 2 α — 1 2 · c t g α

Отметим, что данные формулы sin и cos применимы с любым значением угла α . Формула тангенса двойного угла справедлива при любом значении α , где t g 2 α имеет смысл, то есть α ≠ π 4 + π 2 · z , z является любым целым числом. Котангенс двойного угла существует при любом α , где c t g 2 α определен на α ≠ π 2 · z .

Косинус двойного угла имеет тройную запись двойного угла. Все они являются применимыми.

Доказательство формул двойного угла

Доказательство формул берет начало из формул сложения. Применим формулы синуса суммы:

sin ( α + β ) = sin α · cos β + cos α · sin β и косинуса суммы cos ( α + β ) = cos α · cos β — sin α · sin β . Предположим, что β = α , тогда получим, что

sin ( α + α ) = sin α · cos α + cos α · sin α = 2 · sin α · cos α и cos ( α + α ) = cos α · cos α — sin α · sin α = cos 2 α — sin 2 α

Таким образом доказываются формулы синуса и косинуса двойного угла sin 2 α = 2 · sin α · cos α и cos 2 α = cos 2 α — sin 2 α .

Остальные формулы cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 приводят к виду cos 2 α = cos 2 α = cos 2 α — sin 2 α , при замене 1 на сумму квадратов по основному тождеству sin 2 α + cos 2 α = 1 . Получаем, что sin 2 α + cos 2 α = 1 . Так 1 — 2 · sin 2 α = sin 2 α + cos 2 α — 2 · sin 2 α = cos 2 α — sin 2 α и 2 · cos 2 α — 1 = 2 · cos 2 α — ( sin 2 α + cos 2 α ) = cos 2 α — sin 2 α .

Для доказательства формул двойного угла тангенса и котангенса применим равенства t g 2 α = sin 2 α cos 2 α и c t g 2 α = cos 2 α sin 2 α . После преобразования получим, что t g 2 α = sin 2 α cos 2 α = 2 · sin α · cos α cos 2 α — sin 2 α и c t g 2 α = cos 2 α sin 2 α = cos 2 α — sin 2 α 2 · sin α · cos α . Разделим выражение на cos 2 α , где cos 2 α ≠ 0 с любым значением α , когда t g α определен. Другое выражение поделим на sin 2 α , где sin 2 α ≠ 0 с любыми значениями α , когда c t g 2 α имеет смысл. Чтобы доказать формулу двойного угла для тангенса и котангенса, подставим и получим:

t g 2 α = sin 2 α cos 2 α = 2 · sin α · cos α cos 2 α — sin 2 α = 2 · sin α · cos α cos 2 α cos 2 α — sin 2 α cos 2 α = 2 · sin 2 α cos 2 α 1 — sin 2 α cos 2 α = 2 · t g α 1 — t g 2 α c t g 2 α = cos 2 α sin 2 α = cos 2 α — sin 2 α 2 · sin α · cos = cos 2 α — sin 2 α sin 2 α 2 · sin α · cos α sin 2 α = cos 2 α sin 2 α — 1 2 · cos α sin α = c t g 2 α — 1 2 · c t g α

Примеры использования формул двойного угла

Данный пункт показывает несколько примеров решения с формулами двойного угла. Конкретные примеры помогут глубже понять изучаемый материал. Чтобы убедиться в справедливости формул 2 α для α = 30 ° , применим значения тригонометрических функций для этих углов. Если α = 30 ° , тогда 2 α = 60 ° . Проверим значения sin 60 ° = 2 · sin 30 ° · cos 30 ° , cos 60 ° = cos 2 30 ° — sin 2 30 ° .

Подставив значения, получим t g 60 ° = 2 · t g 30 ° 1 — t g 2 30 ° и c t g 60 ° = c t g 2 30 ° — 1 2 · c t g 30 ° . .

Известно, что sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 и

sin 60 ° = 3 2 , cos 60 ° = 1 2 , t g 60 ° = 3 , c t g 60 ° = 3 3 , тогда отсюда видим, что

2 · sin 30 ° · cos 30 ° = 2 · 1 2 · 3 2 = 3 2 , cos 2 30 ° — sin 2 30 ° = ( 3 2 ) 2 — ( 1 2 ) 2 = 1 2 , 2 · t g 30 ° 1 — t g 2 30 ° = 2 · 3 2 1 — ( 3 3 ) = 3

и c t g 2 30 ° — 1 2 · c t g 30 ° = ( 3 ) 2 — 1 2 · 3 = 3 3

Проведя вычисления, можно сделать вывод, что справедливость для α = 30 ° подтверждена.

Основное использование тригонометрических формул двойного угла – это преобразования тригонометрических выражений. Рассмотрим пример применения двойного угла, года имеем угол, отличный от 2 α . В примере допускается применение формулы двойного угла 3 π 5 . Тогда его необходимо преобразовать, в результате чего получим α = 3 π 5 : 2 = 3 π 10 . Отсюда следует, что формула двойного угла для косинуса будет иметь вид cos 3 π 5 = cos 2 3 π 10 — sin 2 3 π 10 .

Представить sin 2 α 3 через тригонометрические функции, при α 6 .

Заметим, что из условия имеем 2 α 3 = 4 · α 6 . Тогда использовав 2 раза формулу двойного угла, выразим sin 2 α 3 через тригонометрические функции угла α 6 . Применяя формулу двойного угла, получим sin 2 α 3 = 2 · sin α 3 · cos α 3 . После чего к функциям sin α 3 и cos α 3 применим формулы двойного угла: sin 2 α 2 = 2 · sin α 3 · cos α 3 = 2 · ( 2 · sin α 5 · cos α 6 ) · ( cos 2 α 6 — sin α 6 ) = = 4 · sin α 6 · cos 3 α 6 — 4 · sin 3 α 6 · cos α 6

Ответ: sin 2 α 3 = 4 · sin α 6 · cos 3 α 6 — 4 · sin 3 α 6 · cos α 6 .

Формулы тройного, четверного и т.д. угла

Таким же образом выводятся формулы тройного, четверного и т.д. углов. Формулы тройного угла можно вывести из формул сложения двойного угла.

sin 3 α = sin ( 2 α + α ) = sin 2 α · cos α + cos 2 α · sin α = 2 · sin α · cos α · cos α + ( cos 2 α — sin 2 α ) · sin α = = 3 · sin α · cos 2 α — sin 3 α

При замене cos 2 α на 1 — sin 2 α из формулы sin 3 α = 3 · sin α · cos 2 α — sin 3 α , она будет иметь вид sin 3 α = 3 · sin α — 4 · sin 3 α .

Так же приводится формула косинуса тройного угла:

cos 3 α = cos ( 2 α + α ) = cos 2 α · cos α — sin 2 α · sin α = = ( cos 2 α — sin 2 α ) · cos α — 2 · sin α · cos α · sin α = cos 3 α — 3 · sin 2 α · cos α

При замене sin 2 α на 1 — cos 2 α получим формулу вида cos 3 α = — 3 · cos α + 4 · cos 3 α .

При помощи полученных формул преобразуем формулу тройного угла для тангенса и котангенса тройного угла:

t g 3 α = sin 3 α cos 3 α = 3 · sin α · cos 2 α — sin 3 α cos 3 α — 3 · sin 2 α · cos α = 3 · sin α · cos 2 α — sin 3 α cos 3 α cos 3 α — 3 · sin 2 α · cos α cos 3 α = = 3 · sin α cos α — sin 3 α cos 3 α 1 — 3 · sin 2 α cos 2 α = 3 · t g α — t g 3 α 1 — 3 · t g 2 α ; c t g 3 α = cos 3 α sin 3 α = cos 3 α — 3 · sin 2 α · cos α 3 · sin α · cos 2 α — sin 3 α = cos 3 α — 3 · sin 2 α · cos α sin 3 α 3 · sin α · cos 2 α — sin 3 α sin 3 α = = cos 3 α sin 3 α — 3 · cos α sin α 3 · cos 2 α sin 2 α — 1 = c t g 3 α — 3 · c t g α 3 · c t g 2 α — 1

Чтобы выводить формулы четвертой степени, имеет смысл представить 4 α как 2 · 2 α , тогда имеет место использование формулы двойного угла два раза. Для выводы формулы 5 степени, представляем 5 α в виде 3 α + 2 α , что позволит применить формулы тройного и двойного углов для ее преобразования. Таким же образом делаются преобразования разных степеней тригонометрических функций. Их применение достаточно редкое в тригонометрии.

Уравнения разложения тригонометрических функций:квадрат синус альфа, косинус альфа, тангенс альфа, котангенс альфа.

Квадрат синуса

Квадрат косинуса

Квадрат тангенса

Квадрат синуса

Формулы преобразования функций двойного угла (2α) в выражение через одинарный угол (α)

sin(2α)- через sin и cos:

все тригонометрические формулы

sin(2α)- через tg и ctg:

все тригонометрические формулы

cos(2α)- через sin и cos:

все тригонометрические формулы

cos(2α)- через tg и ctg:

все тригонометрические формулы

tg(2α) и сtg(2α):

все тригонометрические формулы

все тригонометрические формулы


Формулы преобразования функций (синус, косинус, тангенс, котангенс), тройного угла (3α) в выражение через одинарный угол (α):

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы


Тригонометрические формулы преобразования разности аргументов

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы

все тригонометрические формулы


все тригонометрические формулы

sin(α)=OA

cos(α)=OC

tg(α)=DE

ctg(α)=MK

R=OB=1

Значения функций для некоторых углов, α

все тригонометрические формулы


В таблице показаны формулы приведения для тригонометрических функций (sin, cos, tg, ctg).

формулы приведения для тригонометрических функций

Ниже представлены таблицы с формулами степеней (квадрат, куб, в 4-ой степени) прямых и обратных тригонометрических функций: синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Содержание
скрыть

  • Формулы квадратов

  • Формулы кубов

  • Формулы функций в 4-ой степени

Формулы квадратов

Степень Формула
Синус в квадрате Степени тригонометрических функций
Степени тригонометрических функций
Косинус в квадрате Степени тригонометрических функций
Степени тригонометрических функций
Тангенс в квадрате Степени тригонометрических функций
Котангенс в квадрате Степени тригонометрических функций

microexcel.ru

Формулы кубов

Степень Формула
Синус в кубе Степени тригонометрических функций
Косинус в кубе Степени тригонометрических функций
Тангенс в кубе Степени тригонометрических функций
Котангенс в кубе Степени тригонометрических функций

microexcel.ru

Степень Формула
Синус в 4-ой степени Степени тригонометрических функций
Косинус в 4-ой степени Степени тригонометрических функций
Тангенс в 4-ой степени Степени тригонометрических функций
Котангенс в 4-ой степени Степени тригонометрических функций

microexcel.ru

Формулы тригонометрии

В этой статье мы изучим все тригонометрические формулы, которые могут понадобится на ЕГЭ.

От основного тригонометрического тождества, до формул тройного угла.

Мы решим вместе 22 примера, чтобы «набить руку» и уметь решать любые задачи.

Поехали!

Формулы тригонометрии — коротко о главном

Основные формулы:

Название формулы Формула
Основное тригонометрическое тождество (ночью разбудят — должен вспомнить!) ( displaystyle si{{n}^{2}}a+co{{s}^{2}}a=1)
Выражение тангенса через синус и косинус (по сути альтернативное определение тангенса) ( displaystyle tg alpha =frac{sin alpha }{cos alpha })
Выражение котангенса через синус и косинус или через тангенс (по сути альтернативное определение котангенса) ( displaystyle ctg alpha =frac{cos alpha }{sin alpha }=frac{1}{tg alpha })
Синус суммы и разности: ( displaystyle sin left( alpha pm beta right)=sinalpha cdot cosbeta pm cosalpha cdot sinbeta )
Косинус суммы и разности: ( displaystyle cos left( alpha pm beta right)=cosalpha cdot cosbeta mp sinalpha cdot sinbeta )
Тангенс суммы и разности: ( displaystyle tgleft( alpha pm beta right)=frac{tgalpha pm tgbeta }{1mp tgalpha cdot tgbeta })

Формулы понижения степени:

Данная группа формул позволяет перейти от любого тригонометрического выражения к рациональному.

  • ( displaystyle si{{n}^{2}}alpha =frac{1-cos2alpha }{2})
  • ( displaystyle co{{s}^{2}}alpha =frac{1+cos2alpha }{2})
  • ( displaystyle si{{n}^{3}}alpha =frac{3sinalpha -sin3alpha }{4})
  • ( displaystyle co{{s}^{3}}a=frac{3cosa+cos3a}{4})
  • ( displaystyle t{{g}^{2}}alpha =frac{1-cos2alpha }{1+cos2alpha },alpha ne frac{pi }{2}+pi n,nin Z)

Формулы преобразования функций:

Данная группа формул позволяет преобразовать произведение в сумму и сумму в произведение.

  • ( displaystyle sinalpha pm sinbeta =2sinfrac{alpha pm beta }{2}cosfrac{alpha mp beta }{2})
  • ( displaystyle cosalpha +cosbeta =2cosfrac{alpha +beta }{2}cosfrac{alpha -beta }{2})
  • ( displaystyle cosalpha -cosbeta =-2sinfrac{alpha +beta }{2}sinfrac{alpha -beta }{2})
  • ( displaystyle tgalpha pm tgbeta =frac{text{sin}left( alpha pm beta right)}{cosalpha cosbeta })
  • ( displaystyle ctgalpha pm ctgbeta =frac{text{sin}left( beta pm alpha right)}{sinalpha sinbeta })

Формулы преобразования произведений функций:

  • ( displaystyle sinalpha sinbeta =frac{cos left( alpha -beta right)-text{cos}left( alpha +beta right)}{2})
  • ( displaystyle sinalpha cosbeta =frac{sin left( alpha +beta right)+text{sin}left( alpha -beta right)}{2})
  • ( displaystyle cosalpha cosbeta =frac{cos left( alpha -beta right)+text{cos}left( alpha +beta right)}{2})

Таблица значений тригонометрических функций:

Тригонометрические функции

Как ты уже понял, тригонометрические выражения – это выражения, в котором переменная содержится под знаком тригонометрических функций. 

Стоп! Вот прямо здесь мы и остановимся! Я задам тебе вопрос: какие тригонометрические функции ты знаешь?

Верно! Их всего четыре!

  • Синус ( displaystyle sinleft( x right))
  • Косинус ( displaystyle cosleft( x right))
  • Тангенс ( displaystyle tgleft( x right))
  • Котангенс ( displaystyle ctgleft( x right))

Хотя, положа руку на сердце, я скажу тебе, что знание последней не так уж и обязательно (хотя желательно!), поскольку она легко выражается через тангенс.

Да и сам тангенс, по сути – тоже лишь тригонометрическое выражение, зависящее от синуса и косинуса.

Таким образом, у нас есть две основные тригонометрические функции – синус и косинус и две «второстепенные» – тангенс и котангенс.

Я не буду сейчас определять, что такое синус и косинус, ты и так это уже знаешь из предыдущих разделов. Я лишь скажу пару слов про важность этих понятий.

Итак, пара слов: первые зачатки тригонометрии возникли более 3 тысяч лет назад. Я думаю, что тебе очевидно, что тогда люди не занимались «формулами ради формул».

Так что тригонометрические функции имеют полезные практические свойства. Я не буду их перечислять. Если тебе интересно, ты всегда можешь найти море информации в интернете.

Если все, что я сказал выше, звучало для тебя древним эльфийским языком, то посмотри статью о тригонометрической окружности.

А сейчас я приведу тебе некоторые основные соотношения между тригонометрическими величинами, которые оказываются полезными при решении задач.

Таблица значений тригонометрических функций

Тебе нужно помнить таблицу значений тригонометрических функций для углов хотя бы первой четверти! Я сейчас нарисую здесь эту таблицу, а потом объясню тебе, как сделать ее запоминание проще.

Или ее расширенный вариант для всех «основных углов»:

Я ни в коей мере не настаиваю (и даже не надеюсь), что ты выучишь вторую таблицу. Сказать по правде, я и сам ее не знаю.

Но первую таблицу знать совершенно необходимо.

Не всегда на экзамене у тебя будет время, чтобы вывести самостоятельно, скажем, синус ( displaystyle 60) градусов.

Для того, чтобы запомнить первую таблицу можно поступить так:

Запомнить всего 5 значений для, скажем, синуса. Затем тебе не составит труда заметить, что для косинуса все значения идут «наоборот»:

  • Например, синус ( displaystyle 0) градусов равен нулю значит, косинус ( displaystyle 0) градусов – наоборот: единица.
  • Синус ( displaystyle 90) градусов равен единице, значит косинус ( displaystyle 90) градусов равен нулю.
  • Синус ( displaystyle 30) градусов равен ( displaystyle frac{1}{2}), значит косинус ( displaystyle 30) градусов равен ( displaystyle frac{sqrt{3}}{2}) и т. д.

Тангенс можно получить, разделив синус угла на косинус. Как же всегда вывести большую таблицу, зная малую, я тебе непременно расскажу чуть позднее.

Формулы тригонометрии (основа)

Название формулы Формула
Основное тригонометрическое тождество (ночью разбудят — должен вспомнить!) ( displaystyle si{{n}^{2}}a+co{{s}^{2}}a=1)
Выражение тангенса через синус и косинус (по сути альтернативное определение тангенса) ( displaystyle tg alpha =frac{sin alpha }{cos alpha })
Выражение котангенса через синус и косинус или через тангенс (по сути альтернативное определение котангенса) ( displaystyle ctg alpha =frac{cos alpha }{sin alpha }=frac{1}{tg alpha })
Первое следствие формулы 1: ( displaystyle t{{g}^{2}}alpha +1=frac{1}{co{{s}^{2}}alpha })
Второе следствие формулы 1: ( displaystyle ct{{g}^{2}}alpha +1=frac{1}{si{{n}^{2}}alpha })
Третье следствие формулы 1: ( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha })
Четвертое следствие формулы 1: ( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha })

Уже получилось 7 формул! К сожалению, это еще далеко не предел. Совсем не предел.

Тем не менее последние 4 формулы есть ни что иное, как простое следствие первой. В самом деле, ты заметил, почему это так?

Формула 4 получается делением обеих частей формулы 1 на ( displaystyle co{{s}^{2}}alpha ) и применением формулы 2.

Формула 5 получается аналогично: разделим обе части формулы 1 на ( displaystyle si{{n}^{2}}alpha ) и вместо выражения ( displaystyle frac{co{{s}^{2}}alpha }{si{{n}^{2}}alpha }) запишем ( displaystyle ct{{g}^{2}}alpha ), исходя из определения 3.

Формулы 1 – 5 мы трактуем вполне однозначно. Чего нельзя сказать про формулы 6 и 7. В чем «фишка» формул 6 и 7?

Их особенность заключается в знаке ( displaystyle pm ), который стоит перед корнем.

Как это понимать? А понимать надо так: в некоторых случаях мы ставим плюс, а в некоторых – минус.

Теперь у тебя должен возникнуть вопрос: в каких-таких «некоторых случаях»? Туманность этой формулировки снимается следующим правилом:

Если в формуле
( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha })
угол ( displaystyle alpha ) таков, что ( displaystyle text{sin} text{ }!!alpha!!text{ }<0), то ставим знак «минус», иначе – «плюс».

Если в формуле
( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha })
угол ( displaystyle alpha ) таков, что ( displaystyle text{cos} text{ }!!alpha!!text{ }<0), то ставим знак «минус», иначе – «плюс».

Есть опять некий «запутанный» момент в правиле, не так ли? В чем осталось разобраться?

Осталось понять, как связан угол со знаком тригонометрической функции. Ответом на этот вопрос (если ты, конечно, забыл) служат следующие картинки:

Они подскажут тебе, какой нужно выбирать знак для той или иной функции, так что ты не допустишь досадной ошибки.

К тому же это избавит тебя от мучительных размышлений по поводу того «а зачем в этом примере нужен этот угол?!».

4 примера на тренировку

  • Най­ди­те ( displaystyle text{3cos} text{ }!!alpha!!text{ }), если ( displaystyle sinalpha =-frac{2sqrt{2}}{3}) и ( displaystyle alpha in left( frac{3pi }{2};2pi right)).
  • Най­ди­те ( displaystyle 5sinalpha), если ( displaystyle cosalpha =frac{2sqrt{6}}{5}) и ( displaystyle alpha in left( frac{3pi }{2};2pi right)).
  • Най­ди­те ( displaystyle text{cos} text{ }!!alpha!!text{ }) если ( displaystyle sinalpha =frac{2sqrt{6}}{5}) и ( displaystyle alpha in left( frac{pi }{2};pi right)).
  •  Най­ди­те ( displaystyle text{tg} text{ }!!alpha!!text{ }), если ( displaystyle sinalpha =-frac{5}{sqrt{26}}) и ( displaystyle alpha in left( pi ;frac{3pi }{2} right)).

Решения:

1. Так как ( displaystyle cosalpha =pm sqrt{1-si{{n}^{2}}alpha }), то подставим сюда значение( displaystyle sinalpha =-frac{2sqrt{2}}{3}), тогда ( displaystyle cosalpha =pm sqrt{1-{{left( -frac{2sqrt{2}}{3} right)}^{2}}}=pm sqrt{1-frac{4cdot 2}{9}}=pm sqrt{1-frac{8}{9}}=)

( displaystyle=pm sqrt{frac{1}{9}}=pm frac{1}{3}.)

Теперь дело за малым: разобраться со знаком. Что нам для этого нужно? Знать, в какой четверти находится наш угол.

По условию задачи: ( displaystyle alpha in left( frac{3pi }{2};2pi right)). Смотри на картинку. Какая это четверть? Четвертая.

Каков знак косинуса в четвертой четверти? На картинке стоит знак «плюс», значит косинус в четвертой четверти положительный.

Тогда нам остается выбрать знак «плюс» перед ( displaystyle frac{1}{3}). ( displaystyle text{cos} text{ }!!alpha!!text{ }=frac{1}{3}), тогда ( displaystyle 3cosalpha =3cdot frac{1}{3}=1).

Ответ: ( displaystyle 1).

Ну вот видишь, ничего сложного. Абсолютно ничего. Нужно лишь запомнить знаки синуса, косинуса и тангенса (котангенса) по четвертям. Ну а как это делать автоматически описано в статье, посвященной тригонометрической окружности.

Давай разберем оставшиеся примеры.

2. Так как ( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha }), то все, что нам нужно – это подставить ( displaystyle cosalpha =frac{2sqrt{6}}{5}) в нашу формулу. Что мы с тобой и сделаем:

( displaystyle sinalpha =pm sqrt{1-{{left( frac{2sqrt{6}}{5} right)}^{2}}}=pm sqrt{1-left( frac{4cdot 6}{25} right)}=pm sqrt{frac{1}{25}}=pm frac{1}{5}).

Опять нужно определиться со знаком. Смотрим на рисунок. Четверть – снова четвертая. Знак синуса четвертой четверти – отрицательный. Ставим знак «минус». ( displaystyle sinalpha =-frac{1}{5}), тогда ( displaystyle 5sinalpha =-5cdot frac{1}{5}=-1).

Ответ: ( displaystyle -1).

3. Ничего нового. Скорее для закрепления. Снова подставляем в формулу ( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha }) значение ( displaystyle sinalpha =frac{2sqrt{6}}{5}):

( displaystyle cosalpha =pm sqrt{1-{{left( frac{2sqrt{6}}{5} right)}^{2}}}=pm sqrt{1-left( frac{4cdot 6}{25} right)}=pm sqrt{frac{1}{25}}=pm frac{1}{5}).

Смотрим на знак косинуса при ( displaystyle alpha in left( frac{pi }{2};pi right)). Какая это четверть? Вторая. Косинус второй четверти отрицательный. Тогда выбираем знак «минус».

Ответ: ( displaystyle -0,2).

4. Здесь перед нами стоит задачка чуть сложнее. Однако, не стоит огорчаться. Давай вспомним, что такое тангенс. Это ведь отношение синуса к косинусу. Синус нам уже дан.

Давай вначале найдем косинус. Как это сделать, ты уже знаешь. ( displaystyle cosalpha =pm sqrt{1-{{left( -frac{5}{sqrt{26}} right)}^{2}}}=pm sqrt{1-frac{25}{26}}=pm sqrt{frac{1}{26}}=pm frac{1}{sqrt{26}}).

Так как ( displaystyle alpha in left( pi ;frac{3pi }{2} right)) (это угол в третьей четверти, а косинус в третьей четверти имеет знак «минус»), то ( displaystyle cosalpha =-frac{1}{sqrt{26}}).

Теперь все, что нам осталось, это воспользоваться определением тангенса:

( displaystyle tgalpha =frac{sinalpha }{cosalpha }=frac{-frac{5}{sqrt{26}}}{-frac{1}{sqrt{26}}}=5.)

Ответ: ( displaystyle 5).

Уф, выдохнули! Ну вот мы с тобой решили некоторые (довольно типичные и распространенные) примеры. Ты спросишь: «И что, это все?». Я отвечу, что, увы нет. Это далеко не все.

Далее нам потребуются более сложные формулы тригонометрии.

Формулы тригонометрии (более сложные)

Название формулы Формула
Синус суммы и разности: ( displaystyle sin left( alpha pm beta right)=sinalpha cdot cosbeta pm cosalpha cdot sinbeta )
Косинус суммы и разности: ( displaystyle cos left( alpha pm beta right)=cosalpha cdot cosbeta mp sinalpha cdot sinbeta )
Тангенс суммы и разности: ( displaystyle tgleft( alpha pm beta right)=frac{tgalpha pm tgbeta }{1mp tgalpha cdot tgbeta })
Синус двойного угла (следствие формулы 1) ( displaystyle sin2a=2sinacdot cosa)
Косинус двойного угла (следствие формулы 2) ( displaystyle cos2a=co{{s}^{2}}a-si{{n}^{2}}a)
( displaystyle cos2a=2co{{s}^{2}}a-1=1-2si{{n}^{2}}a)
Тангенс двойного угла: ( displaystyle tg2a=frac{2tga}{1-t{{g}^{2}}a})

Как распознать, что тебе требуются именно эти, а не какие-нибудь другие формулы?

Очень просто: если ты видишь косинус, синус, тангенс от суммы двух углов или двойных углов, то это должно служить тебе индикатором – мне нужно применить одну из формул для суммы/разности или для двойного угла.

Звучит несколько путано? Давай посмотрим на примеры. Заодно я дам еще ряд важных комментариев.

9 примеров на тренировку

  • ( displaystyle frac{12sin11{}^circ cos11{}^circ }{sin22{}^circ })
  • ( displaystyle frac{24left( si{{n}^{2}}17{}^circ -co{{s}^{2}}17{}^circ right)}{cos34{}^circ })
  • ( displaystyle 36sqrt{6} ctg frac{pi}{6} sin frac{pi }{4})
  •  Най­ди­те ( displaystyle -47cos2a), если ( displaystyle cosa=-0,4)
  •  Най­ди­те ( displaystyle frac{10sin6a}{3cos3a}), если ( displaystyle sin3a=0,6)
  • Най­ди­те ( displaystyle 26text{cos}left( frac{3pi }{2}+a right)), если ( displaystyle cosa=frac{12}{13}) и ( displaystyle alpha in left( frac{3pi }{2};2pi right))
  •  Най­ди­те ( displaystyle t{{g}^{2}}a), если ( displaystyle 5si{{n}^{2}}a+13co{{s}^{2}}a=6)
  •  Най­ди­те ( displaystyle frac{10cosa+4sina+15}{2sina+5cosa+3}), если ( displaystyle tga=-2,5)
  • Най­ди­те ( displaystyle 7cos left( pi +beta right)-2text{sin}left( frac{pi }{2}+beta right)), если ( displaystyle cosbeta =-frac{1}{3})

Список этих заданий можно продолжать бесконечно… Но я выбрал здесь: а) не самые сложные формулы; б) не самые «страшные» углы.

Страшные углы я припас нам напоследок 🙂

Решения:

Кстати, здесь тебе понадобится знание также тех формул, которые я привел в самом начале. Поехали!

1. ( displaystyle frac{12sin11{}^circ cos11{}^circ }{sin22{}^circ })

Ни ты, ни я не знаем, чему в точности равен синус или косинус ( displaystyle 11) градусов, и чему равен синус ( displaystyle 22) градусов.

Но что мы должны заметить?

Верно! ( displaystyle 22{}^circ =2cdot 11{}^circ ). Значит, снизу записан синус двойного угла! Тогда применим формулу синуса двойного угла:

( displaystyle sin22{}^circ =2sin11{}^circ cdot cos11{}^circ )

Подставим это значение в знаменатель нашей дроби и сократим!

( displaystyle frac{12sin11{}^circ cdot cos11{}^circ }{sin22{}^circ }=frac{12sin11{}^circ cdot cos11{}^circ }{2sin11{}^circ cdot cos11{}^circ }=6).

Ответ: ( displaystyle 6).

Ну вот, ничего страшного не случилось? Пример решился в одну строчку с применением одной единственной формулы. Другое дело, иногда не совсем очевидно, какую из формул применять.

Тут тебе нужен опыт. Нужно, как говорится, «набить руку» на таких примерах.

2. ( displaystyle frac{24left( si{{n}^{2}}17{}^circ -co{{s}^{2}}17{}^circ right)}{cos34{}^circ })

Опять-таки, сразу можно заметить, что ( displaystyle 34{}^circ =2cdot 17{}^circ ). ( displaystyle 34) градуса стоит в косинусе. Это говорит о том, что в примере спрятан косинус двойного угла. Вспомним его определение:

( displaystyle cos2a=co{{s}^{2}}a-si{{n}^{2}}a)

Что же у нас есть в числителе? А там все наоборот: синус в квадрате вычитается из косинуса в квадрате. Тогда в числителе у нас написана формула чего?

3. ( displaystyle 36sqrt{6}ctgfrac{pi }{6}sinfrac{pi }{4})

Здесь нет ничего сложного, абсолютно ничего! Но есть одно «но!».

Это «но» заключается в том, что тебе нужно помнить таблицу значений тригонометрических функций для углов хотя бы первой четверти! (Как ее запомнить я рассказал ранее, а сейчас просто приведу ее еще раз).

Или ее расширенный вариант для всех «основных углов»:

И посмотрим в таблицу:

( displaystyle ctgfrac{pi }{6}=sqrt{3}), ( displaystyle sinfrac{pi }{4}=frac{sqrt{2}}{2}). Подставим эти значения в нашу формулу:

( displaystyle 36sqrt{6} ctgfrac{pi }{6}sinfrac{pi }{4}=36sqrt{6}cdot sqrt{3}cdot frac{sqrt{2}}{2}=frac{36cdot sqrt{6}cdot sqrt{6}}{2}=frac{36cdot 6}{2}=36cdot 3=108).

Ответ: ( displaystyle 108)

Вот видишь, знание первой таблицы совершенно необходимо! Без нее – вообще нет никакой тригонометрии. Так что, пожалуйста, будь добр, выучи.

Это не потребует от тебя значительных усилий и избавит от массы глупых ошибок в будущем. Еще раз специально скажу: большую таблицу учить не надо!!!

4. По условию (cosa=-0,4), нам же надо найти (-47cos2a).

Что тогда надо сделать?

Верно, наша цель – выразить косинус двойного угла через угол «одинарный». Есть ли такая формула? Конечно, есть! Вот она:

5. ( displaystyle frac{10sin6a}{3cos3a}) – это то, что надо вычислить, а ( displaystyle sin3a=0,6) – это то, что есть.

Ну что же, надо отталкиваться от того, что есть. Вроде бы этого должно быть достаточно. Здесь все опять несложно!

Нужно лишь заметить, что ( displaystyle sin6alpha =2sin3alpha cdot cos3alpha ). Давай это и подставим в числитель исходной дроби. Что же мы имеем?

6. ( displaystyle 26text{cos}left( frac{3pi }{2}+a right)) – то, что нужно найти, а ( displaystyle cosa=frac{12}{13}) и ( displaystyle alpha in left( frac{3pi }{2};2pi right)) – то, что мы имеем.

На самом деле здесь можно поступать двояко. Но о втором способе я скажу тебе чуть позже. А пока давай подумаем, что нужно найти.

А найти нужно по сути косинус от суммы двух углов. Причем один из них известен. Давай не будем долго думать и разложим косинус суммы на произведение:

( displaystyle cos left( frac{3pi }{2}+alpha right)=cosfrac{3pi }{2}cosalpha -sinfrac{3pi }{2}sinalpha )

Вспомни единичную окружность (ну или на худой конец посмотри в расширенную таблицу).

Косинус углов: ( displaystyle frac{pi }{2}=90{}^circ ,~frac{3pi }{2}=270{}^circ ) равен нулю!

Тогда…

7. Нужно найти: ( displaystyle t{{g}^{2}}a), а дано: ( displaystyle 5si{{n}^{2}}a+13co{{s}^{2}}a=6).

Тут все можно сделать только зная, что такое тангенс и основное тригонометрическое тождество. По порядку:

( displaystyle t{{g}^{2}}alpha =frac{si{{n}^{2}}alpha }{co{{s}^{2}}alpha }),
( displaystyle si{{n}^{2}}a+co{{s}^{2}}a=1)

Тогда решить задачу можно вот как: найти по отдельности значения синуса в квадрате и косинуса в квадрате, а затем при помощи полученных значений найти тангенс. Так мы с тобой и сделаем:

Вначале найдем синус в квадрате.

8. Надо найти ( displaystyle frac{10cosa+4sina+15}{2sina+5cosa+3}), зная, что ( displaystyle tga=-2,5).

На какую мысль тебя это должно было натолкнуть?

А на ту, что если нам дан тангенс, то и наше выражение нужно привести к такому виду, чтобы оно зависело от тангенсов, которые мы потом в него и подставим. Напомню тебе, что

( displaystyle tgalpha =frac{sinalpha }{cosalpha })

У меня же в выражении есть просто косинусы и синусы. Что нам нужно сделать?

Давай возьмем и «насильно» разделим числитель и знаменатель дроби на ( displaystyle cosalpha ). Это поможет мне «выделить» тангенс в чистом виде:

( displaystyle frac{10cosalpha +4sinalpha +15}{2sinalpha +5cosalpha +3}=frac{frac{10cosalpha +4sinalpha +15}{cosalpha }}{frac{2sinalpha +5cosalpha +3}{cosalpha }}=frac{10+4tgalpha +frac{15}{cosalpha }}{2tgalpha +5+frac{3}{cosalpha }}).

Конечно, есть одна неприятность: у нас появились дроби с косинусами. Но есть надежда, что мы с ними справимся! А пока что давай подставим вместо ( displaystyle tga) его числовое значение ( displaystyle -2,5). Тогда получим:

9. Нужно найти ( displaystyle 7cos left( pi +beta right)-2text{sin}left( frac{pi }{2}+beta right)), если дано ( displaystyle cosbeta =-frac{1}{3}).

Давай опять проанализируем, что нам нужно вычислить: искомая формула состоит из разности косинуса от суммы двух углов и синуса от суммы двух углов.

Давай упрощать: раскроем каждую из сумм (опять-таки повторюсь, что далее я опишу способ, который позволит обходиться без раскрытия такого рода сумм):

( displaystyle cos left( pi +beta right)=cospi cdot cosbeta -sinpi cdot sinbeta )

Опять-таки, тебе должно быть известно, что ( displaystyle cospi =-1,~~sinpi =0).

Если тебе это неизвестно, то настоятельно рекомендую тебе повторить тему тригонометрическая окружность.

Тогда моя формула примет вид:

( displaystyle cos left( pi +beta right)=-cosbeta =-left( -frac{1}{3} right)=frac{1}{3})

Теперь с синусом:

Формулы приведения

Теперь мы знаем уже почти что все. Осталось совсем немного. Последнее, на что я хочу обратить внимание, это обещанный мною метод «легкого» перехода от большой таблицы значений углов к маленькой.

Этот переход обеспечивают так называемые формулы приведения. Еще раз поясню, зачем они используются: ты будешь их применять в том случае, когда тебе нужно найти синус, косинус или тангенс угла, большего чем ( displaystyle 90) градусов.

Например, найти синус угла ( displaystyle 855) градусов.

Здесь мы поступаем следующим образом. Во-первых, нам понадобятся следующие знания:

Синус и косинус имеют период ( displaystyle 2pi ) (( displaystyle 360) градусов), то есть ( displaystyle sinleft( 2pi k+x right)=sinx)
( displaystyle cosleft( 2pi k+x right)=cosx)
Тангенс (котангенс) имеют период ( displaystyle pi ) (( displaystyle 180) градусов) ( displaystyle tgleft( pi k+x right)=tgx)
( displaystyle ctgleft( pi k+x right)=ctgx)
( displaystyle k) – любое целое число
Синус и тангенс – функции нечетные, а косинус – четная: ( displaystyle sinleft( -x right)=-sinx)
( displaystyle tgleft( -x right)=-tgleft( x right))
( displaystyle cosleft( -x right)=cosleft( x right))

Алгоритм использования формул приведения

Шаг 1. Если мы вычисляем значение тригонометрической функции от отрицательного угла – делаем его положительным при помощи группы формул (2).

Например:

( displaystyle sinleft( -855{}^circ right)=-sin855{}^circ ,~cosleft( -855{}^circ right)=cos855{}^circ )

Шаг 2. Отбрасываем для синуса и косинуса его периоды: ( displaystyle 2pi k) (по ( displaystyle 360) градусов), а для тангенса – «половинки» ( displaystyle pi k) (( displaystyle 180) градусов).

Например:

( displaystyle sin 855{}^circ =sinleft( 2cdot 360{}^circ +135{}^circ right)=sin 135{}^circ ) 

( displaystyle tg 225{}^circ =tgleft( 180{}^circ +45{}^circ right)=tg 45{}^circ )

Шаг 3. Если оставшийся «уголок» меньше ( displaystyle 90) градусов, то задача решена: ищем его в «малой таблице»

Шаг 4. Иначе ищем, в какой четверти лежит наш угол ( displaystyle alpha ): это будет 2, 3 или 4 четверть. Смотрим, какой знак имеет искомая функция в четверти. Запомнили этот знак!!!

Шаг 5. Представляем угол ( displaystyle alpha ) в одной из следующих форм:

  • ( displaystyle alpha =90+beta ) (если во второй четверти),
  • ( displaystyle alpha =180-beta ) (если во второй четверти),
  • ( displaystyle alpha =180+beta ) (если в третьей четверти),
  • ( displaystyle alpha =270-beta ) (если в третьей четверти),
  • ( displaystyle alpha =270+beta ) (если в четвертой четверти),
  • ( displaystyle alpha =360-beta ) (если в четвертой четверти).

…так, чтобы оставшийся угол ( displaystyle beta ) был больше нуля и меньше ( displaystyle 90) градусов.

Например: ( displaystyle 135{}^circ =180{}^circ -45{}^circ )

( displaystyle 135{}^circ =90{}^circ +45{}^circ )

( displaystyle 315{}^circ =270{}^circ+45{}^circ )

( displaystyle 240{}^circ =180{}^circ +60{}^circ )

( displaystyle 240{}^circ =270{}^circ -30{}^circ )…

В принципе не важно, в какой из двух альтернативных форм для каждой четверти ты представишь угол. На конечном результате это не скажется.

Шаг 6. Теперь смотрим, что у нас получилось:  

  • если ты выбрал запись через ( displaystyle 180) или ( displaystyle 360) градусов плюс минус что-либо, то знак функции меняться не будет: ты просто убираешь ( displaystyle 180) или ( displaystyle 360) и записываешь синус, косинус или тангенс оставшегося угла.
  • eсли же ты выбрал запись через ( displaystyle 90) или ( displaystyle 270) градусов, то синус меняем на косинус, косинус на синус, тангенс на котангенс, котангенс – на тангенс.

Шаг 7. Ставим перед получившимся выражением знак из пункта 4.

3 примера на тренировку

  • Вычислить ( displaystyle sin 2130{}^circ )
  • Вычислить ( displaystyle sqrt{2}cosfrac{21pi }{4})
  • Най­ди­те зна­че­ние вы­ра­же­ния: ( displaystyle 12sin 150{}^circ cos 120{}^circ )

Решения:

1. ( displaystyle sin 2130{}^circ )

Действуем согласно нашему алгоритму. Выделяем целое число кругов для ( displaystyle 2130{}^circ ):

( displaystyle frac{2130{}^circ }{360{}^circ }=5,91ldots )

В общем, делаем вывод, что в угол ( displaystyle 2130{}^circ ) помещается целиком 5 раз по ( displaystyle 360{}^circ ), а сколько осталось? Осталось ( displaystyle 2130{}^circ -5cdot 360{}^circ =330{}^circ ). Тогда:

( displaystyle sin~ 2130{}^circ =sinleft( 5cdot 360{}^circ +330{}^circ right)=sin 330{}^circ )

Ну вот, лишнее мы отбросили. Теперь разбираемся со знаком.

( displaystyle 330{}^circ ) лежит в 4 четверти. Синус четвертой четверти имеет знак «минус», его я и не должен забыть поставить в ответе. Далее, представляем ( displaystyle 330{}^circ ) согласно одной из двух формул пункта 5 правил приведения. Я выберу: ( displaystyle 330{}^circ =270{}^circ +60{}^circ )

( displaystyle sin 330{}^circ =sinleft( 270{}^circ +60{}^circ right))

Теперь смотрим, что получилось: у нас случай с ( displaystyle 270) градусами, тогда отбрасываем ( displaystyle 270{}^circ ) и синус меняем на косинус. И ставим перед ним знак «минус»!

( displaystyle sinleft( 270{}^circ +60{}^circ right)=-cos60{}^circ )

( displaystyle 60) градусов – угол в первой четверти. Мы знаем (ты мне обещал выучить малую таблицу!) его значение:

( displaystyle cos 60{}^circ =0,5)

Тогда получим окончательный ответ:

( displaystyle sin~ 2130{}^circ =-0,5)

Ответ: ( displaystyle -0,5)

2. ( displaystyle sqrt{2}cosfrac{21pi }{4}) 

Все то же самое, но вместо градусов – радианы. Ничего страшного. Главное помнить, что

( displaystyle pi ~рад.=180{}^circ )

Но можно и не заменять радианы на градусы. Это вопрос твоего вкуса. Я не буду ничего менять. Начну опять-таки с отбрасывания целых кругов:

( displaystyle frac{21pi }{4}=5frac{1}{4}pi =4pi +1frac{1}{4}pi )

Отбрасываем ( displaystyle 4pi ) – это два целых круга. Осталось вычислить ( displaystyle cos 1frac{1}{4}pi ). 

3. ( displaystyle 12sin 150{}^circ cos 120{}^circ ).

Нужно проделать все то же самое, но уже с двумя функциями.

Я буду несколько более краток: ( displaystyle 150{}^circ ) и ( displaystyle 120{}^circ ) градусов – углы второй четверти. Косинус второй четверти имеет знак «минус», а синус – «плюс».

( displaystyle 150{}^circ ) можно представить как: ( displaystyle 150{}^circ =90{}^circ +60{}^circ ), а ( displaystyle 120{}^circ ) как ( displaystyle 90{}^circ +30{}^circ ), тогда:

10 примеров на тренировку

Реши эти 10 заданий, и ты научишься пользоваться формулами тригонометрии!

Ну вот, теперь на мой взгляд, ты готов к решению всех оставшихся «за бортом» задач. Страшные углы теперь тебе более не помеха. Попробуй прорешать примеры самостоятельно, а потом мы с тобой сравним результаты.

  • ( displaystyle frac{5cos29{}^circ }{sin61{}^circ })
  • ( displaystyle frac{8}{sin left( -frac{27pi }{4} right)text{cos}left( frac{31pi }{4} right)})
  • ( displaystyle -4sqrt{3}text{cos}left( -750{}^circ right))
  • ( displaystyle 2sqrt{3}tgleft( -300{}^circ right))
  • ( displaystyle frac{14sin409{}^circ }{sin49{}^circ })
  • ( displaystyle frac{12}{si{{n}^{2}}27{}^circ +co{{s}^{2}}207{}^circ })
  • ( displaystyle frac{5sin74{}^circ }{cos37{}^circ cos53{}^circ })
  • ( displaystyle sqrt{3}co{{s}^{2}}frac{5pi }{12}-sqrt{3}si{{n}^{2}}frac{5pi }{12})
  • Най­ди­те зна­че­ние вы­ра­же­ния ( displaystyle 5tgleft( 5pi -gamma right)-tgleft( -gamma right)), если ( displaystyle tggamma =7).
  • Най­ди­те ( displaystyle sin left( frac{7pi }{2}-alpha right)), если ( displaystyle sinalpha =0,8) и ( displaystyle alpha in left( frac{pi }{2};pi right)).

Решения:

1. ( displaystyle frac{5cos29{}^circ }{sin61{}^circ }) 

Ключ к успеху – заметить, что:

( displaystyle 29{}^circ +61{}^circ =90{}^circ )!!! 

Тогда, например ( displaystyle 90{}^circ -61{}^circ =29{}^circ ):

( displaystyle frac{5cos29{}^circ }{sin61{}^circ }=frac{5text{cos}left( 90{}^circ -61{}^circ right)}{sin61{}^circ })

( displaystyle 90{}^circ -61{}^circ )– угол первой четверти. Косинус первой четверти – положительный. Поскольку мы вычитаем из ( displaystyle 90) градусов, то косинус меняется на синус:

( displaystyle frac{5text{cos}left( 90{}^circ -61{}^circ right)}{sin61{}^circ }=frac{5sin61{}^circ }{sin61{}^circ }=5)

Ответ: ( displaystyle 5).

2. ( displaystyle frac{8}{sin left( -frac{27pi }{4} right)text{cos}left( frac{31pi }{4} right)})

( displaystyle frac{8}{sin left( -frac{27pi }{4} right)text{cos}left( frac{31pi }{4} right)})

Опять задача целиком на формулы приведения. Вначале….

( displaystyle frac{8}{sin left( -frac{27pi }{4} right)text{cos}left( frac{31pi }{4} right)}=frac{8}{-frac{sqrt{2}}{2}cdot frac{sqrt{2}}{2}}=frac{8}{-frac{2}{4}}=-8:left( frac{2}{4} right)=-16)

…избавимся от минуса, вынеся его перед синусом (поскольку синус – функция нечетная!!!). Затем рассмотрим углы:

( displaystyle frac{27pi }{4}=frac{26pi }{4}+frac{pi }{4}=6pi +frac{pi }{4})

Отбрасываем целое количество кругов – то есть три круга (( displaystyle 6pi )). Остается вычислить: ( displaystyle sinfrac{pi }{4}=frac{sqrt{2}}{2})

Так же поступаем и со вторым углом:

( displaystyle frac{31pi }{4}=7frac{3}{4}pi =7pi +frac{3}{4}pi )

Удаляем целое число кругов –3 круга (( displaystyle 6pi )) тогда:

( displaystyle text{cos}left( frac{31pi }{4} right)=cos left( 7pi +frac{3}{4}pi right)=cos left( pi +frac{3}{4}pi right))

Теперь думаем: в какой четверти лежит оставшийся угол?

3. ( displaystyle -4sqrt{3}text{cos}left( -750{}^circ right))

Стандартно: убираем минус из косинуса, пользуясь тем, что ( displaystyle cosleft( -x right)=cosleft( x right)).

Осталось сосчитать косинус ( displaystyle 750) градусов. Уберем целые круги: ( displaystyle 750{}^circ =2cdot 360{}^circ +30{}^circ ).

Тогда:

4. ( displaystyle 2sqrt{3}tgleft( -300{}^circ right))

( displaystyle 2sqrt{3}tgleft( -300{}^circ right))

Действуем так же, как в предыдущем примере.

( displaystyle tgleft( -300{}^circ right)=-tg300{}^circ )

Поскольку ты помнишь, что период у тангенса – ( displaystyle 180) градусов (или ( displaystyle pi )) в отличие от косинуса или синуса, у которых он в 2 раза больше, то удалим целое количество ( displaystyle pi ).

5. ( displaystyle frac{14sin409{}^circ }{sin49{}^circ })

Снизу у нас все хорошо – маленький уголок первой четверти. Наверху же – все плохо.

Угол большой, надо его упростить по формулам приведения:

6. ( displaystyle frac{12}{si{{n}^{2}}27{}^circ +co{{s}^{2}}207{}^circ })

Вся проблема, как ты понимаешь, в косинусе. Но не беда, решим.

Смотри, на знак нам все равно, поскольку косинус-то у нас в квадрате и знак всегда будет «плюс».То есть на четверти можно не смотреть.

В то же время:

7. ( displaystyle frac{5sin74{}^circ }{cos37{}^circ cos53{}^circ })

Пример немного похитрее. Прежде всего заметим, что ( displaystyle 74{}^circ =2cdot 37{}^circ ). Тогда давай представим числитель как синус двойного угла!

( displaystyle frac{5sin74{}^circ }{cos37{}^circ cos53{}^circ }=frac{5cdot 2sin37{}^circ cos37{}^circ }{cos37{}^circ cos53{}^circ }=frac{10sin37{}^circ }{cos53{}^circ })

Тебе это ничего не напоминает? Задача в точности такая же, как в номере 1. Я тогда так и поступлю, заметив, что у меня опять:

8. ( displaystyle sqrt{3}co{{s}^{2}}frac{5pi }{12}-sqrt{3}si{{n}^{2}}frac{5pi }{12})

Опять задание комбинированное! Легко увидеть и вынести за скобки общий множитель ( displaystyle sqrt{3}):

( displaystyle sqrt{3}co{{s}^{2}}frac{5pi }{12}-sqrt{3}si{{n}^{2}}frac{5pi }{12}=sqrt{3}left( co{{s}^{2}}frac{5pi }{12}-si{{n}^{2}}frac{5pi }{12} right))

Как называется формула внутри скобок? Пробегись глазами по списку наших формул! Нашел? Это косинус двойного угла!

9. Най­ди­те зна­че­ние вы­ра­же­ния ( displaystyle 5tgleft( 5pi -gamma right)-tgleft( -gamma right)), если ( displaystyle tggamma =7).

У тангенса период – ( displaystyle pi ), так что не задумываясь отбрасываем его:

( displaystyle 5tgleft( 5pi -gamma right)=5tgleft( -gamma right) =-5tggamma )

Здесь мы использовали еще и тот факт, что тангенс – функция нечетная.

10. Най­ди­те ( displaystyle sin left( frac{7pi }{2}-alpha right)), если ( displaystyle sinalpha =0,8) и ( displaystyle alpha in left( frac{pi }{2};pi right))

Вначале упростим выражение, используя формулы приведения (вначале отбросим целые круги и уберем минус):

( displaystyle sin left( frac{7pi }{2}-alpha right)=sin left( 2pi -frac{pi }{2}-alpha right)=sin left( -frac{pi }{2}-alpha right)=-text{sin}left( frac{pi }{2}+alpha right))

Наш оставшийся угол – во третьей четверти (посмотри на условия для угла в условии задачи!!!).

Средний уровень сложности

В некоторых (не очень тривиальных) случаях, следующие формулы помогут тебе выйти из затруднительной ситуации.

Первая группа формул является универсальной: она позволяет перейти от любого тригонометрического выражения к рациональному.

Это, конечно, имеет важное приложение при решении уравнений, но здесь мы рассмотрим, как эти формулы помогают при упрощении тригонометрических выражений.

Формулы понижения степени

  • ( displaystyle {sin^{2}}alpha =frac{1-cos2alpha }{2})
  • ( displaystyle {cos^{2}}alpha =frac{1+cos2alpha }{2})
  • ( displaystyle t{{g}^{2}}alpha =frac{1-cos2alpha }{1+cos2alpha },alpha ne frac{pi }{2}+pi n,nin Z)

Универсальная тригонометрическая подстановка

  • ( displaystyle sinalpha =frac{2tgfrac{alpha }{2}}{1+t{{g}^{2}}frac{alpha }{2}})
  • ( displaystyle cosalpha =frac{1-t{{g}^{2}}frac{alpha }{2}}{1+t{{g}^{2}}frac{alpha }{2}})
  • ( displaystyle tgalpha =frac{2tgfrac{alpha }{2}}{1-t{{g}^{2}}frac{alpha }{2}})
  • ( displaystyle ctgalpha =frac{1-t{{g}^{2}}frac{alpha }{2}}{2tgfrac{alpha }{2}})

В чем прелесть этих формул? Первые две позволяют «убрать степени», то есть понизить порядок выражения (или повысить, за счёт снижения кратности угла), вторая группа формул позволяет свести любое тригонометрическое выражение к виду, зависящему только от тангенсов!

Иногда это единственный способ решить ту или иную задачу.

Разбор 3 примеров

1. Доказать тождество: ( displaystyle frac{3-4cos2alpha +cos4alpha }{3+4cos2alpha +cos4alpha }=t{{g}^{4}}alpha )

С виду тождество угрожающе! Но разберёмся по порядку. Формулы понижения степени, конечно, если их прочитать задом наперёд повышают степень!

И вообще, приглядись внимательно: первые две формулы есть ничто иное, как косинус двойного угла, записанный в несколько странной форме!

Вот и распишем по правилам:

( displaystyle begin{array}{l}frac{3-4cos2alpha +cos4alpha }{3+4cos2alpha +cos4alpha }=frac{3-4cos2alpha +left( 2{cos^{2}}2alpha -1 right)}{3+4cos2alpha +left( 2{cos^{2}}2alpha -1 right)}=\=frac{2-4cos2alpha +2{cos^{2}}2alpha }{2+4cos2alpha +2{cos^{2}}2alpha }=frac{1-2cos2alpha +{cos^{2}}2alpha }{1+2cos2alpha +{cos^{2}}2alpha }end{array})

Тебе ничего по форме не напоминают числитель и знаменатель дроби? Приглядись внимательно, здесь «зарыта» хорошо известная тебе формула. Увидел её? Это же квадрат разности и квадрат суммы! (Подробнее об этом читай в статье о  формулах сокращенного умножения)

( displaystyle frac{1-2cos2alpha +{cos^{2}}2alpha }{1+2cos2alpha +{cos^{2}}2alpha }=frac{{{left( 1-cos2alpha right)}^{2}}}{{{left( 1+cos2alpha right)}^{2}}}={{left( frac{1-cos2alpha }{1+cos2alpha } right)}^{2}})

А выражение в скобках есть ничто иное, как ( displaystyle t{{g}^{2}}alpha ), окончательно получим:

( displaystyle {{left( frac{1-cos2alpha }{1+cos2alpha } right)}^{2}}={{left( t{{g}^{2}}alpha right)}^{2}}=t{{g}^{4}}alpha )

Тождество доказано!

Следующий пример очень схож с предыдущим, постарайся решить его самостоятельно.

2. Доказать тождество: ( displaystyle frac{1+sin2alpha +cos2alpha }{1+sin2alpha -cos2alpha }=ctgalpha )

Решение (хотя может и отличаться от твоего):

Опять «повысим степень» у косинуса: ( displaystyle cos2alpha =2{cos^{2}}alpha -1)

( displaystyle frac{1+sin2alpha +cos2alpha }{1+sin2alpha -cos2alpha }=frac{1+sin2alpha +2{cos^{2}}alpha -1}{1+sin2alpha -2{cos^{2}}alpha +1}=frac{sin2alpha +2{cos^{2}}alpha }{2+sin2alpha -2{cos^{2}}alpha })

Надо сокращать дальше! Что делать? Ясно, что надо избавляться от двойных углов у синуса. Действуем по формуле синуса двойного угла и сокращаем двойки:

( displaystyle frac{sin2alpha +2{cos^{2}}alpha }{2+sin2alpha -2{cos^{2}}alpha }=frac{2sin{alpha} cos{alpha} +2{cos^{2}}alpha }{2+2sin{alpha} cos{alpha}-2{cos^{2}}alpha }=frac{sinalpha cosalpha +{cos^{2}}alpha }{1+sinalpha cos{alpha}-{cos^{2}}alpha })

Числитель раскладывается на множители. Знаменатель –пока нет. До тех пор, пока мы не применим основное тригонометрическое тождество:

( displaystyle 1-{cos^{2}}alpha ={sin^{2}}alpha )

( displaystyle frac{sinalpha cosalpha +{cos^{2}}alpha }{1+sinalpha cosalpha -{cos^{2}}alpha }=frac{sinalpha cosalpha +{cos^{2}}alpha }{{sin^{2}}alpha +sinalpha cosalpha }=frac{cosalpha left( sinalpha +cosalpha right)}{sinalpha left( sinalpha +cosalpha right)}=ctgalpha )

Вот ещё один пример, но не такой простой.

3. Доказать, что если ( displaystyle 0<alpha <frac{pi }{2}), то ( displaystyle sqrt{1+sinalpha }-sqrt{1-sinalpha }=2sinfrac{alpha }{2})

Зачем нам дан угол? Наверное, чтобы оценить выражения: синус ( displaystyle alpha )будет положительным, ( displaystyle sinfrac{alpha }{2}>0,~1+sinalpha >1,~0<1-sinalpha <1)

Тогда и левая, и правая части тождества больше нуля. Это даёт мне право без задней мысли возвести их в квадрат:

( displaystyle {{left( sqrt{1+sinalpha }-sqrt{1-sinalpha } right)}^{2}}=4{sin^{2}}frac{alpha }{2}) – вот такое тождество нам нужно теперь доказать.

Раскроем скобки в левой части по формуле квадрата разности!

( displaystyle begin{array}{l}{{left( sqrt{1+sin alpha }-sqrt{1-sin alpha } right)}^{2}}=1+sin alpha -2sqrt{1+sin alpha }cdot sqrt{1-sin alpha }+1-\-sin alpha =2-2sqrt{1+sin alpha }cdot sqrt{1-sin alpha }=2left( 1-sqrt{1+sin alpha }cdot sqrt{1-sin alpha } right)=\2left( 1-sqrt{1+{{sin }^{2}}alpha } right)=2left( 1-sqrt{{cos^{2}}}alpha right)end{array})

Я не сомневаюсь в твоей грамотности и поэтому даже не упоминаю про использованные мною формулы в выкладках. 

Теперь надо бы убрать корень из косинуса. Но мы знаем, что просто так это делать нельзя, ибо ( displaystyle sqrt{{{a}^{2}}}=left| a right|). 

В то же время вспоминаем про четверть: наш угол лежит в первой четверти, тогда косинус имеет знак «плюс» и мы просто убираем корень: 

( displaystyle 2left( 1-sqrt{{cos^{2}}}alpha right)=2left( 1-cosalpha right))

Тогда нам надо доказать, что

( displaystyle 2left( 1-cosalpha right)=4{sin^{2}}frac{alpha }{2})

( displaystyle left( 1-cosalpha right)=2{sin^{2}}frac{alpha }{2})

Справа применим формулу понижения степени:

( displaystyle {sin^{2}}frac{alpha }{2}=frac{1-cosalpha }{2}), тогда ( displaystyle 2{sin^{2}}frac{alpha }{2}=1-cosalpha )

Тождество доказано!

Конечно, можно привести ещё массу примеров, где применяются формулы понижения степени, ты их и сам без труда отыщешь.

Теперь вторая (и заключительная в этом обзоре) группа формул – формулы преобразования произведения в сумму и суммы в произведение.

Формулы преобразования суммы функций

  • ( displaystyle sinalpha pm sinbeta =2sinfrac{alpha pm beta }{2}cosfrac{alpha mp beta }{2})
  • ( displaystyle cosalpha +cosbeta =2cosfrac{alpha +beta }{2}cosfrac{alpha -beta }{2})
  • ( displaystyle cosalpha -cosbeta =-2sinfrac{alpha +beta }{2}sinfrac{alpha -beta }{2})
  • ( displaystyle tgalpha pm tgbeta =frac{sinleft( alpha pm beta right)}{cosalpha cosbeta })
  • ( displaystyle ctgalpha pm ctgbeta =frac{sinleft( beta pm alpha right)}{sinalpha sinbeta })

Иногда бывают полезны и обратные преобразования.

Формулы преобразования произведений функций

  • ( displaystyle sinalpha sinbeta =frac{cos left( alpha -beta right)-cosleft( alpha +beta right)}{2})
  • ( displaystyle sinalpha cosbeta =frac{sin left( alpha +beta right)+sinleft( alpha -beta right)}{2})
  • ( displaystyle cosalpha cosbeta =frac{cos left( alpha -beta right)+cosleft( alpha +beta right)}{2})

Решение 5 примеров

1. Доказать тождество: ( displaystyle frac{sinalpha +sin3alpha }{cosalpha +cos3alpha }=tg2alpha )

Давай не будем долго думать, а, как говорится, пойдём в лобовую атаку: в числителе и знаменателе перейдём от суммы к произведению:

( displaystyle begin{array}{l}~frac{sinalpha+sin3alpha}{cosalpha+cos3alpha}=frac{2sinfrac{alpha+3alpha}{2}cosfrac{alpha-3alpha}{2}}{2cosfrac{alpha+3alpha}{2}cosfrac{alpha-3alpha}{2}}=frac{2cdot sin2alphacdot cosleft( -alpha right)}{2cdot cos2alphacdot cosleft( -alpha right)}=\=frac{sin2alpha}{cos2alpha}=tg2alphaend{array})

И минуты не прошло, а пример уже решён!

Теперь попробуй сам.

2. Доказать тождество: ( displaystyle frac{sin2alpha +sin4alpha }{cos2alpha -cos4alpha }=ctgalpha )

Решение – опять лобовая атака:

( displaystyle begin{array}{l}frac{sin2alpha+sin4alpha}{cos2alpha-cos4alpha}=frac{2sinfrac{2alpha+4alpha}{2}cosfrac{2alpha-4alpha}{2}}{-2sinfrac{2alpha+4alpha}{2}sinfrac{2alpha-4alpha}{2}}=frac{2sin3alphacdot cosleft( -alpha right)}{-2sin3alphacdot sinleft( -alpha right)}=frac{cosleft( -alpha right)}{-sinleft( -alpha right)}end{array})

Так как синус – функция нечётная, а косинус – чётная, то:

( displaystyle frac{cosleft( -alpha right)}{-sinleft( -alpha right)}=frac{cosalpha }{-left( -sinalpha right)}=frac{cosalpha }{sinalpha }=ctgalpha )

Этот пример чуть похитрее, будь внимателен!

3. Доказать тождество: ( displaystyle frac{sin2alpha +sin5alpha -sin3alpha }{cosalpha +1-2{sin^{2}}2alpha }=2sinalpha )

Я не хочу трогать синус двойного угла. Уж больно он удобно раскладывается на множители, чего не скажешь о синусе тройного и тем более пятикратного угла.

Поэтому я сверну в произведение последние 2 слагаемых в числителе:

( displaystyle begin{array}{l}frac{sin2alpha +sin5alpha -sin3alpha }{cosalpha +1-2{sin^{2}}2alpha }=frac{sin2alpha +2sinfrac{5alpha -3alpha }{2}cosfrac{5alpha +3alpha }{2}}{cosalpha +1-2{sin^{2}}2alpha }=\=frac{2sinalpha cosalpha +2sinalpha cos4alpha }{cosalpha +1-2{sin^{2}}2alpha }=frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +1-2{sin^{2}}2alpha }end{array})

Конечно, теперь можно было бы и свернуть числитель ещё раз, но я пойду иным путём. В знаменателе у меня тоже спрятана формула, вот она: 

( displaystyle 1-2{sin^{2}}2alpha ). 

Что это за формула? Это косинус двойного угла!

( displaystyle 1-2{sin^{2}}2alpha =cosleft( 2cdot 2alpha right)=cos4alpha )

( displaystyle frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +1-2{sin^{2}}2alpha }=frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +cos4alpha }=2sinalpha )

Тождество доказано!

Теперь попробуй решить вот этот пример для закрепления пройденного материала.

4. Доказать тождество: ( displaystyle {cos^{4}}alpha -{sin^{4}}alpha +sin2alpha =sqrt{2}cosleft( 2alpha -frac{pi }{4} right))

Проверяем!

( displaystyle begin{array}{l}{cos^{4}}alpha -{sin^{4}}alpha +sin2alpha =left( {cos^{2}}alpha -{sin^{2}}alpha right)left( {cos^{2}}alpha +{sin^{2}}alpha right)+sin2alpha =\=cos2alpha +sin2alpha end{array})

C другой стороны:

( displaystyle begin{array}{l}sqrt{2}cos left( 2alpha-frac{pi }{4} right)=sqrt{2}left( cos{2alpha}cos{frac{pi }{4}}+sin{2alpha}sin{frac{pi }{4}} right)=\=sqrt{2}left( frac{sqrt{2}}{2}cos2alpha+frac{sqrt{2}}{2}sin2alpha right)=sqrt{2}cdot frac{sqrt{2}}{2}left( cos2alpha+sin2alpha right)=\=cos2alpha+sin2alphaend{array})

Тождество доказано!

На этом примере я буду закругляться потихоньку.

Сразу оговорюсь: не переживай и не волнуйся, если у тебя что-то сразу не выходит. Тригонометрия – сложная и очень обширная тема. Здесь все зависит не только от знания формул, но и от мастерства и смекалки. На их выработку тебе понадобится время и усердие.

Более того, скажу тебе вот что: изначально я хотел вставить другой пример в качестве заключительного. Однако на его решение мне понадобилось около 20 минут, причём я использовал ещё более сложную методику его решения. Так что не только ты сталкиваешься с трудностями при решении примеров, трудности бывают у всех! 

Все-таки я приведу здесь этот трудный пример, вдруг да и получится у тебя решить его, может, я что-то упустил. Вот он:

5. Упростить: ( displaystyle frac{1+sinalpha -cos2alpha -sin3alpha }{2{sin^{2}}alpha +sinalpha -1})

А вот какой у меня получился в итоге ответ: ( displaystyle 2sinalpha.)

Дерзай!

В следующей части статьи я рассмотрю его решение, но прибегну к ещё более изощрённой технике нежели та, что рассматривалась здесь! Удачи!

Повышенный уровень сложности

В дополнение к уже изложенному материалу, я бы хотел рассмотреть еще небольшую группку формул, которая осталась «за бортом».

Эти формулы – некоторое обобщение уже рассмотренных ранее формул понижения степени, но вот понижаемые степени у них повыше.

Формулы понижения 3-й степени

  • ( displaystyle si{{n}^{3}}alpha =frac{3sinalpha -sin3alpha }{4})
  • ( displaystyle co{{s}^{3}}a=frac{3cosa+cos3a}{4})

Из данных формул можно вывести формулы тройного угла.

Формулы тройного угла

  • ( displaystyle sin3alpha =3sinalpha -4si{{n}^{3}}alpha )
  • ( displaystyle cos3a=4co{{s}^{3}}a-3cosa)
  • ( displaystyle tg3alpha =frac{3tgalpha -t{{g}^{3}}alpha }{1-3t{{g}^{2}}alpha })
  • ( displaystyle ctg3alpha =frac{3ctgalpha -ct{{g}^{3}}alpha }{1-3ct{{g}^{2}}alpha })

Ты мне можешь задать резонный вопрос: как часто эти формулы используются? Я отвечу: постарайся избегать прибегать к ним. Они нужны на тот случай, когда ничего другого уже не можешь придумать.

В частности, они могут быть полезными при решении сложных уравнений, которые встречаются во вступительных экзаменах на математические специальности. 

Однако уравнениям у нас будет посвящена отдельная статья, так что здесь я рассмотрю случаи, когда данные формулы позволяют упрощать тригонометрические выражения.

Пример 1

Упростить: ( displaystyle A=frac{1}{3}co{{s}^{3}}alpha cdot sin3alpha +frac{1}{3}si{{n}^{3}}alpha cdot cos3alpha )

Решение:

Подставим вместо ( displaystyle sin3alpha ) и ( displaystyle cos3alpha ) их представления согласно формулам тройного угла, тогда:

( displaystyle begin{array}{l}A=frac{1}{3}co{{s}^{3}}alpha left( 3sinalpha -4si{{n}^{3}}alpha right)+frac{1}{3}si{{n}^{3}}alpha left( 4co{{s}^{3}}alpha -3cosalpha right)=\=co{{s}^{3}}alpha cdot sinalpha -frac{4}{3}co{{s}^{3}}alpha cdot si{{n}^{3}}alpha +frac{4}{3}co{{s}^{3}}alpha cdot si{{n}^{3}}alpha -si{{n}^{3}}alpha cdot cosalpha =\=co{{s}^{3}}alpha cdot sinalpha -si{{n}^{3}}alpha cdot cosalpha end{array})

Теперь вынесем в оставшемся выражении общий множитель за скобки:

( displaystyle co{{s}^{3}}alpha cdot sinalpha -si{{n}^{3}}alpha cdot cosalpha =sinalpha cdot cosalpha left( co{{s}^{2}}alpha -si{{n}^{2}}alpha right))

По формулам двойного угла: ( displaystyle sinalpha cdot cosalpha =frac{1}{2}sin2alpha ), ( displaystyle co{{s}^{2}}alpha -si{{n}^{2}}alpha =cos2alpha ):

( displaystyle sinalpha cdot cosalpha left( co{{s}^{2}}alpha -si{{n}^{2}}alpha right)=frac{1}{2}sin2alpha cdot cos2alpha )

Ну а здесь снова спрятан синус двойного угла:

( displaystyle frac{1}{2}sin2alpha cdot cos2alpha =frac{1}{4}sin4alpha )

Ответ: ( displaystyle A=frac{1}{4}sin4alpha )

Следующий пример попробуй решить самостоятельно. Не уверен, что в нем обязательно использовать формулу тройного угла, но можно сделать и с ее помощью.

Пример 2

Упростить: ( displaystyle frac{1+sinalpha -cos^2{alpha}-cos2alpha -sin3alpha }{2si{{n}^{2}}alpha +sinalpha -1})

Решение:

Моя цель – свести числитель дроби к выражению, зависящему только от синусов одиночного угла. Для этого я преобразую

( displaystyle cos^2 {alpha} =1-si{{n}^{2}}alpha )

( displaystyle cos2alpha =1-2si{{n}^{2}}alpha )

( displaystyle sin3alpha =3sinalpha -4si{{n}^{3}}alpha )

Имеем:

( displaystyle begin{array}{l}frac{1+sinalpha -cos2alpha -sin3alpha }{2si{{n}^{2}}alpha +sinalpha -1}=frac{1+sinalpha -left( 1-si{{n}^{2}}alpha right) -left( 1-2si{{n}^{2}}alpha right)-left( 3sinalpha -4si{{n}^{3}}alpha right)}{2si{{n}^{2}}alpha +sinalpha -1}=\=frac{4si{{n}^{3}}alpha +3si{{n}^{2}}alpha -2sinalpha -1}{2si{{n}^{2}}alpha +sinalpha -1}end{array})

Казалось бы, стало еще хуже. Но это так кажется. Давай для удобства вычислений заменим ( displaystyle sinalpha =t), тогда мне надо упростить дробь

( displaystyle frac{4{{t}^{3}}+3{{t}^{2}}-2t-1}{2{{t}^{2}}+t-1})

Нижнее выражение разложим на множители:

( displaystyle 2{{t}^{2}}+t-1=left( t+1 right)left( 2t-1 right))

С верхним фокус сложнее. Мы не умеем с тобой решать кубические уравнения. Но мы хорошо играем в «угадайку».

Угадай-ка один корень уравнения ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1=0). Угадал? Я угадал ( displaystyle -1).

Тогда по теореме Безу (которую ты, быть может, знаешь, а если не знаешь, то без проблем отыщешь сам) выражение ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1) делится без остатка на ( displaystyle t+1)

Разделим столбиком ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1) на ( displaystyle t+1). Я получу:

( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1=left( t+1 right)left( 4{{t}^{2}}-t-1 right))

В свою очередь ( displaystyle 4{{t}^{2}}-t-1=4left( t-frac{1}{2} right)left( t+frac{1}{4} right))

Окончательно получим:

( displaystyle begin{array}{l}frac{4{{t}^{3}}+3{{t}^{2}}-2t-1}{2{{t}^{2}}+t-1}=frac{4left( t+1 right)left( t-frac{1}{2} right)left( t+frac{1}{4} right)}{left( t+1 right)left( 2t-1 right)}=frac{left( t+1 right)left( 2t-1 right)left( 2t+0,5 right)}{left( t+1 right)left( 2t-1 right)}=\=2t+0,5end{array})

Тогда исходное выражение можно упростить до: ( displaystyle 2sinx+0,5)

В завершение я приведу тебе пример одного уравнения, которое было предложено на психологический (???!!!) факультет одного из ВУЗов в 1990 году. Такие задачи называются задачи-гробы (никакая смекалка без знания конкретной формулы не позволит их решить):

Решить уравнение: ( displaystyle sqrt{3}co{{s}^{3}}x-3co{{s}^{2}}x-3sqrt{3}cosx+1=0)

Не сделав вот такую странную замену: ( displaystyle cosx=tgalpha ) решить его очень сложно. А с такой заменой у нас получится вот что:

( displaystyle sqrt{3}t{{g}^{3}}alpha -3t{{g}^{2}}alpha -3sqrt{3}tgalpha +1=0)

( displaystyle sqrt{3}t{{g}^{3}}alpha -3sqrt{3}tgalpha =3t{{g}^{2}}alpha -1)

( displaystyle sqrt{3}(t{{g}^{3}}alpha -3tgalpha )=3t{{g}^{2}}alpha -1)

( displaystyle -sqrt{3}left( 3tgalpha -t{{g}^{3}}alpha right)=-left( 1-3t{{g}^{2}}alpha right))

( displaystyle frac{left( 3tgalpha -t{{g}^{3}}alpha right)}{left( 1-3t{{g}^{2}}alpha right)}=frac{1}{sqrt{3}})

А вот ради чего весь этот сыр-бор: ( displaystyle frac{left( 3tgalpha -t{{g}^{3}}alpha right)}{left( 1-3t{{g}^{2}}alpha right)}=tg3alpha )

( displaystyle tg3alpha =frac{1}{sqrt{3}})

Это уравнение уже несказанно легче решается. Скоро мы вместе в этом убедимся. Но тут проблема в обратной замене… Тем не менее, эта задача почти нерешаема без знания формулы тангенса тройного угла. Вот так вот.

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ 9. Тригонометрическая окружность, табличные значения

На этом уроке мы узнаем, что такое тригонометрическая окружность и насколько она важна для тригонометрии. М

ы увидим, что она — основной инструмент в тригонометрии: с её помощью можно вывести любую формулу и найти любые значения.

Мы поймем, как «работает» окружность — а значит, поймём тригонометрию в целом.

ЕГЭ 13б. Тригонометрическая окружность

Тригонометрическая окружность — это очень простой и эффективный инструмент для решения любой тригонометрической задачи. На этом уроке вы узнаете как пользоваться тригонометрической окружностью для решения пункта «б» из задачи №13 профильного ЕГЭ.

Пункт “б” задачи №13 ЕГЭ 2020 В 2020 году на ЕГЭ в пункте «б» необходимо было указать корни тригонометрического уравнения принадлежащие отрезку.

Вообще-то решать пункт “б” можно двумя способами: — отметить корни уравнения на единичной окружности (способ разобранный в этом видео); — через двойное неравенство.

И вы должны знать, что второй способ чуть дольше, чем первый, но зато вы сможете проще описать все ваши рассуждения и вам будет сложнее ошибиться.

И еще один плюс второго способа — его проще оформить, так, чтобы к вам не придрались на ЕГЭ.

Мы считаем второй способ (через двойное неравенство) более предпочтительным на ЕГЭ по математике, но теме не менее для глубокого понимания темы (что может выручить на ЕГЭ) необходимо разобраться и с первым способом

Подготовка к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Основные понятия. Тригонометрия довольно древняя наука, и ее первые упоминания связаны с необходимостью в практичной жизни, в земледелии, астрономии и строительстве. Впервые именно астрономы вывели такие понятия как отношение сторон треугольника.  А официальные названия функций стали появляться позже, например, синус, который получил свое название первым, получил свое название от греческих математиков уже в третьем веке до н.э.. а косинус является относительно молодым, и был выведен как дополнение к синусу. История тригонометрии обширна и интересна, из древней науки о треугольниках она перешла в известную нам науку о тригонометрических функциях. Для того чтобы разобраться в формулах двойного угла, необходимо вспомнить основные понятия тригонометрии. Начнём:

основные понятия тригонометрии

Тригонометрические функции:

  • Синус угла — отношение катета напротив угла к гипотенузе:
  • Косинус — деление прилежащей стороны треугольника на гипотенузу;
  • Тангенс — отношение синуса к косинусу или катета напротив угла к прилежащему;
  • Котангенс — деление косинуса на синус, или стороны прилежащей к углу на противолежащую.

Определение

Тригонометрическая окружность — это окружность нанесённая на систему координат, имеющая радиус равный единице и центр в начале координат.

Тригонометрическая окружность

При помощи такой окружность можно наглядно разобраться в тригонометрических формулах и значениях. Например, найти числовые значения функций тригонометрии на системе координат, такие как:

[ sin 60^{circ}=frac{sqrt{3}}{2} ]; [ sin 30^{circ}=frac{1}{2} ]

Данные примеры будут использоваться далее по тексту. Мы можем посмотреть их значение на окружности на рисунке ниже.

Числовые значения функций тригонометрии

Основное  тождество в тригонометрии, звучит так:

  • Синус в квадрате угла плюс косинус в квадрате угла равны единице;
  • Произведение тангенса и котангенса угла равно единице;
  • Тангенс угла равен, делению, синуса этого угла на косинус, а котангенс наоборот косинуса на синус.

Данные тождества также будут применены для выведения формул двойного, тройного и т.д. углов.

Тождества для выведения формул углов

Формулы двойного угла в тригонометрии

Формулы двойного угла тригонометрических функций, необходимы для того чтобы выразить их, при этом угол должен иметь значение 2а, а также используя ТФ этого угла. Для отражения её на графике используют координаты с окружностью.

Список формул двойного угла

Прежде чем преступить к образованию формул двойного угла тригонометрии, давайте вспомним, что в тригонометрии углы принято писать в виде na, в такой записи п — обозначение натурального числа, а а — угол альфа. Обычно такая запись в тригонометрии используется без скобок, значит sin an, это тоже самое что sin (an). А также если рассмотреть запись sinn a, то она тоже имеет аналогичную запись вида (sin а)n . такое правило записи касается всех  тригонометрических функций со степенями.

Рассмотрим какие же формулы двойного угла существуют на примерах.

Синус двойного угла формула:

sin  2 α = 2 * sin α * cos α;

Формула косинуса двойного угла:

cos 2 α = cos2α —  sin2α,  cos 2α = 1 − 2 * sin2α ,   cos  2α = 2 * cos2α−1;

Тангенс двойного угла формула:

[ operatorname{tg} 2 alpha=frac{2^{*} operatorname{tg} alpha}{1-operatorname{tg}^{2} alpha} ]

Котангенса:

[ operatorname{ctg} 2 alpha=frac{operatorname{ct}^{2} a-1}{2^{*} operatorname{ct} a} ]

Стоит не забывать, что выше приведённые формулы sin и cos, можно применять для любого значения угла.  А вот если рассмотреть,  формулы для тангенса, то при любых альфа где, tg 2a , имеет смысл, то есть при [a neq frac{pi}{4}+frac{pi}{2} cdot z], где z любое целое число. Что же касается формулы двойного угла котангенса, то при любом a, где ctg 2α определён на α ≠ 2 * z .

Как мы видим косинус с таким видом угла, наделён тремя вариантами записи формул, все они равноправны, а это значит, что результат их применения будет абсолютно одинаковым.

Доказательство формул двойного угла

Для того чтобы, формулы двойного угла были доказаны, вернёмся к истокам, формулам сложения. Сначала рассмотрим формулу синуса суммы, которая выглядит следующим образом:

[ operatorname{Sin}(a+b)=operatorname{Sin} a * cos b+cos a * sin b ]

Косинуса суммы:

[ operatorname{Cos}(a+b)=cos a * cos b-sin a * sin b ]

Если считать что a = b, тогда выходит:

[ operatorname{Sin}(a+a)=sin a * cos a+cos a * sin a=2 * cos a * sin a ]

И также для косинуса:

[ cos (a+a)=cos a * cos a-sin a * sin a=cos ^{2} alpha-sin ^{2} alpha ]

Таким способом мы доказали формулы синуса и косинуса двойного угла.

Формулы которые остались: cos 2α = 1 − 2 * sin2α ,   cos  2α = 2 * cos2α−1, выразили в таком виде благодаря приведению вместо единицы тождества  суммы квадратов, cos2α +sin2α = 1. Поэтому вышло следующее:

Формулы приведения двойного угла: 1 − 2 * sin2α =  cos2α +sin2α — 2 * sin2α = cos2α — sin2α.

И так же с третьих примеров формулы двойного угла.
2 * cos2α−1 = 2 * cos2α -( cos2α +sin2α ) = cos2α — sin2α.

Для того, чтобы выполнить доказательство формул для тангенса и котангенса двойного угла тоже применяется равенство следующего вида:

[ operatorname{tg} 2 alpha=frac{sin 2 alpha}{cos 2 alpha} text { и } operatorname{ctg} 2 alpha=frac{cos 2 alpha}{sin 2 alpha} . ]

Сделав замену на данные равенства получим следующие выражения:

[ operatorname{tg} 2 alpha=frac{sin 2 alpha}{cos 2 alpha}=frac{2 cdot sin alpha cdot cos alpha}{cos ^{2} alpha-sin ^{2} alpha} text { и } operatorname{ctg} 2 alpha=frac{cos 2 alpha}{sin 2 alpha}=frac{cos ^{2} alpha-sin ^{2} alpha}{2 cdot sin alpha cdot cos alpha} ]

Представленные выше выражения мы разделим на cos2α, при котором cos2α ≠ 0, а альфа имеет любое значение, когда тангенс угла альфа определён. Со вторым представленным выражением мы также произведём деление, только на sin2α, и он так же не равен нулю, и альфа имеет любое значение, при котором котангенс имеет смысл.

Получим следующие формулы:

Формулы для тангенса и котангенса

Нет времени решать самому?

Наши эксперты помогут!

Как использовать формулы двойного угла

Рассмотрим, как применяются формулы двойного угла в решении на примерах. Такие примеры помогут закрепить и понять материалы рассмотренный ранее.

Чтобы проверить справедлива ли формула двойного угла для при значении угла альфа в тридцать градусов, необходимо применить функции тригонометрии для этих углов. Если α = 30°, тогда 2α = 60°.

Проверим: sin60° = 2 * sin30° * cos30°cos60° = cos230° — sin230°.

Следующим шагом, подставим эти значения в :

[ operatorname{tg} 60^{circ}=frac{2 cdot operatorname{tg} 30^{circ}}{1-operatorname{tg}^{2} 30^{circ}} text { и } operatorname{ctg} 60^{circ}=frac{operatorname{ctg}^{2} 30^{circ}-1}{2 cdot operatorname{ctg} 30^{circ}} ]

Так как мы знаем, что синус тридцати градусов равен одной второй, косинус этого угла, равен корню из трёх, который поделен на два, тангенс заданного угла это корень из трёх на три, котангенс корень из трёх.

Получается, что синус двойного угла, то есть шестидесяти градусов, равен корню из трёх, который поделен на два; косинус — одной второй; тангенс корню из трёх; а котангенс корню из трёх делённому на три.

Получаем следующие выражения:

Пример решения задачи 1

Сделав все операции по вычислению, можно прийти к выводу, что справедливость для угла альфа тридцати градусов, подтверждена.

Теперь мы понимаем, что применение формул тригонометрии двойного угла, это видоизменение тригонометрических выражений.  Стоит также рассмотреть пример применения формул двойного угла, в случае, когда угол не равен 2a. К примеру возьмём значение [frac{5 pi}{6}].  Имея такое значение, для решения задания, его необходимо преобразовать, поэтому получаем следующее:

[a=frac{5 pi}{6}: 2=frac{5 pi}{12}], применив данное выражение формула двойного угла для косинуса получит следующий вид:

[ cos frac{5 pi}{6}=cos ^{2} frac{5 pi}{12}-sin ^{2} frac{5 pi}{12} ]

Пример:

Необходимо, через тригонометрические функции представить [sin frac{2 a}{3} text { при } frac{a}{6}].

Решение:

Так как в условии уже [frac{2 a}{3}=4 * frac{a}{6}], то применив дважды выше обозначенную формулу удвоенного угла, что выражая [sin frac{2 a}{3}], через функции угла [frac{a}{6}], с применением формулы двойного угла, выходит , [sin frac{2 a}{3}=2 * sin frac{a}{3} * cos frac{a}{3}], затем к [sin frac{a}{3} text { и } cos frac{a}{3}]в данном примере подставим снова данную формулу удвоенного угла и получим следующее выражение:

Пример решения задачи 2

Формулы тройного угла и более углов

Так как зачастую в тригонометрии возникает необходимость вычисления не только двойного угла, но и больше, например тройного, четверного и тд. Стоит рассмотреть примеры их вычисления. Выведение их формул аналогично с выведением формул двойного угла, но для этого будем применять формулы сложения (суммы) двойного угла.

Пример:

sin 3α = sin ( 2 α + α ) = sin 2α * cos α + cos  2 α * sin α = 2 * sin  α ⋅ cos α * cos  α +  ( cos2α — sin2α ) * sin α =

=3 * sin α * cos2α — sin3α

Заменим cos2α, на выражение 1 — sin2α, и теперь получившаяся ранее формула тройного угла sin 3α =3 * sin α * cos2α — sin3α, примет следующий вид: sin 3α =  3 * sin α * cos2α — sin3α = 3 *sin α — 4* sin3α

Аналогично поступим и с формулами cos тройного угла:

cos 3α = cos ( 2 α + α ) = cos 2α * cos α − sin 2α *sin α = ( cos2α — sin2α  ) * cos α − 2* sin α * cos  α * sin α =

= cos3α − 3* sin2α * cos α

Заменяем sin2α  на выражение разности единицы и косинуса, 1 — cos2α,  выходит следующая формула : cos 3α =

= -3 * cos α + 4* cos3α

Так как теперь у нас есть формулы тройного угла синуса и косинуса, мы можем вывести формулы тройного угла для тангенса и котангенса, подставив полученные выражения в первичные формулы:

Формула тройного угла

И так далее…

К примеру, чтобы привести формулу угла четыре альфа, для удобства лучше 4а представить, как 2 * 2а,  и в результате мы получим, что для выведения формулы для 4а, нужно использовать две формулы двойного угла.

А для выведения формулы угла пятой степени, 5а, необходимо выполнить 5а как сумму тройного и двойного угла, то есть 2а+3а.

В результате мы получим выражение из суммы двух формул двойного и тройного угла. Стоит отметить, что такое же правило будет действовать если необходимо вывести формулу половинного угла.

Область применения

Для того чтобы найти значение тригонометрических функций, берётся окружность на оси координат, у которой радиус равен единице, а диаметры у неё находятся в перпендикулярном положении.

Для такого вычисления нам понадобится отложить от точки, которая принадлежит окружности различные дуги, любой длины. Соответственно если мы отложим их против часовой стрелки они примут положительное значение, а если по часовой, то отрицательное.

Допустим конец дуги имеет некую длину s, в таком случае проекция радиуса в любом выбранном значении диаметра станет значением косинуса данной дуги. Выбранная длина s, или радианная мера угла, будет считаться числом аргумента. А если этот самый аргумент, это тригонометрическая функция угла, то мы знаем, что значение может быть и в градусах.

Мы знаем, что острый угол имеет значения больше нуля, но меньше п2. В таком случае тригонометрическая функция рассматривается как катет делённый на гипотенузу. Такие названия сторон связаны с прямоугольным треугольником, в котором величина угла равна 90 градусов.

Чтобы решить задачи с функциями тригонометрии, используют теорему Пифагора. Такая теорема основана на свойствах того самого прямоугольного треугольника, в котором квадрат гипотенузы равен сумму квадратов катетов.

Так как дуга делит окружность на несколько частей, то мы можем увидеть, что углы лежащие в первой четверти больше нуля. А во второй синус меньше, а косинус больше нуля, а в третьей все функции будут меньше нуля, то есть отрицательными, четвёртая имеет значения противоположные второй. Не стоит забывать, что для построения окружности вам понадобится циркуль.

Как мы видим формулы двойного угла, не так трудно вывести, для этого необходимо знать основные тригонометрические тождества и разобраться в единичной окружности на оси координат. Также необходимо отметить, что формулы двойного угла, как и другие формулы тригонометрии используются в разных сферах жизни:

  • В астрономии, учёные с помощью формул вычисляют положение небесных тел, а также расстояние до них;
  • Для различного вида навигации, к примеру, морской и воздушной;
  • В медицине и биологии, при построении биоритма живых организмов, а также тригонометрия служит основой работы некоторой медицинской техники;
  • Архитекторам она важна при создании планов строений;
  • но и это не всё, тригонометрия важна и для экономики, в производстве и создании электроники, в различных аналитических вычислениях, акустических построениях и многом другом.

Понравилась статья? Поделить с друзьями:
  • Как найти вес мрамора
  • Как найти периметр клетки в тетради
  • Как найти многоугольник если известен угол
  • Эта программа не отвечает как это исправить
  • Как найти печень трески