Как найти скалярное произведение суммы векторов

Содержание:

  • Формула
  • Примеры вычисления скалярного произведения векторов

Формула

Для того чтобы найти скалярное произведение двух векторов, заданных своими
координатами, необходимо вычислить сумму произведений
соответствующих координат этих векторов. Для случая, если векторы заданны на плоскости координатами $bar{a}=left(a_{x} ; a_{y}right)$ и $bar{b}=left(b_{x} ; b_{y}right)$, имеет место формула:

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}$$

Если же векторы заданы в пространстве своими координатами: $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$ соответственно, то их скалярное произведение вычисляется по формуле:

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}+a_{z} cdot b_{z}$$

Примеры вычисления скалярного произведения векторов

Пример

Задание. Найти скалярное произведение векторов $bar{a}=(1 ;-3)$ и $bar{b}=(-2 ;-3)$

Решение. Векторы заданны на плоскости, поэтому для вычисления их скалярного произведения воспользуемся формулой

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}$$

Подставляя координаты заданных векторов, получим

$$(bar{a}, bar{b})=1 cdot(-2)+(-3) cdot(-3)=-2+9=7$$

Ответ. $(bar{a}, bar{b})=7$ lt /$>

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В пространстве заданы точки
$A(-1 ;-2 ; 5), B(-3 ; 2 ; 1)$ и $C(0 ; 1 ;-1)$ . Найти скалярное произведение векторов
$overline{A B}$ и
$overline{A C}$

Решение. Найдем сначала координаты векторов
$overline{A B}$ и
$overline{A C}$ . Для этого из координат конца вычислим соответствующие
координаты начала, получим:

$$overline{A B}=(-3-(-1) ; 2-(-2) ; 1-5)=(-2 ; 4 ;-4)$$
$$overline{A C}=(0-(-1) ; 1-(-2) ;-1-5)=(1 ; 3 ;-6)$$

Далее воспользуемся формулой для вычисления скалярного произведения векторов, заданных в пространстве:

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}+a_{z} cdot b_{z}$$

Получим

$$(overline{A B}, overline{A C})=(-2) cdot 1+4 cdot 3+(-4)(-6)=-2+12+24=34$$

Ответ. $(overline{A B}, overline{A C})=34$

Читать дальше: как найти векторное произведение векторов.

Скалярное произведение векторов

Формула

Пусть даны векторы $ overline{a} = (a_x; a_y) $ и $ overline{b} = (b_x; b_y) $. Как найти скалярное произведение векторов? Для того, чтобы найти скалярное произведение векторов необходимо воспользоваться формулой: $$ (overline{a},overline{b}) = a_x cdot b_x + a_y cdot b_y $$ Стоит заметить, что скалярное произведение записывается в скобках, в которых векторы записываются через запятую. Данное обозначение широко применяется в математике и его нужно запомнить.

Если в задаче векторы заданы тремя координатами (в пространстве), то найти скалярное произведение векторов нужно по другой формуле, основанной на предыдущей. Но с тем же смыслом: $$ (overline{a},overline{b}) = a_x cdot b_x + a_y cdot b_y + a_z cdot b_z $$

По сути скалярное произведение – это сумма произведений соответствующих координат данных векторов. Первая координата умножается на первую, вторая на вторую и затем произведения суммируются.

Примеры решений

Пример 1
Найти скалярное произведение векторов $ overline{a} = (-1;2) $ и $ overline{b} = (2;1) $
Решение

В данном примере векторы заданы двумя координатами, поэтому применяем первую формулу для плоской задачи. Умножаем соответствующие координаты, а потом складываем их:

$$ (overline{a},overline{b}) = -1 cdot 2 + 2 cdot 1 = -2 + 2 = 0 $$

Произведение получилось равным нулю, а это кстати означает, что векторы оказались ортогональными (перпендикулярными) друг к другу.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ (overline{a},overline{b}) = 0 $$
Пример 2

В пространстве заданы начала и концы векторов: $$ A = (1;3;-2), B = (-1;4;1), C = (2; 1; -2) $$ Требуется найти скалярное произведение векторов $ overline{AB} $ и $ overline{AC} $.

Решение

В примеры решения данной задачи даны только точки и сразу вычислить произведение векторов не представляется возможным. Сначала нужно найти сами векторы $ overline{AB} $ и $ overline{AC} $. Вычисляются они с помощью разности соответствующих координат точек (из конца вычитается начало вектора):

$$ overline{AB} = (-1 — 1; 4-3; 1-(-2)) = (-2; 1; 3) $$

$$ overline{AC} = (2 — 1; 1 — 3; -2 — (-2)) = (1; -2; 0) $$

Теперь, когда необходимые векторы найдены, то вычисляем их произведение:

$$ (overline{AB},overline{AC}) = -2 cdot 1 + 1 cdot (-2) + 3 cdot 0 = -2-2+0 = -4 $$

Ответ
$$ (overline{AB},overline{AC}) = -4 $$

В статье мы ответили на вопрос: «Как найти скалярное произведение векторов?», а так же привели формулы и примеры решений задач.

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Угол между векторами

Рассмотрим два данных вектора $overrightarrow{a}$ и $overrightarrow{b}$. Отложим от произвольно выбранной точки $O$ векторы $overrightarrow{a}=overrightarrow{OA}$ и $overrightarrow{b}=overrightarrow{OB}$, тогда угол $AOB$ называется углом между векторами $overrightarrow{a}$ и $overrightarrow{b}$ (рис. 1).

Рисунок 1.

Отметим здесь, что если векторы $overrightarrow{a}$ и $overrightarrow{b}$ сонаправлены или один из них является нулевым вектором, тогда угол между векторами равен $0^0$.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Обозначение: $widehat{overrightarrow{a},overrightarrow{b}}$

Понятие скалярного произведения векторов

Определение 1

Скалярное произведение двух векторов – это скаляр (число), равный произведению длин двух векторов на косинус угла между этими векторами.

Математически это определение можно записать следующим образом:

Скалярное произведение может равняться нулю в двух случаях:

  1. Если один из векторов будет нулевым вектором (Так как тогда его длина равна нулю).

  2. Если векторы будут взаимно перпендикулярны (то есть $cos{90}^0=0$).

Отметим также, что скалярное произведение больше нуля, если угол между этими векторами острый (так как ${cos left(widehat{overrightarrow{a},overrightarrow{b}}right) } >0$), и меньше нуля, если угол между этими векторами тупой (так как ${cos left(widehat{overrightarrow{a},overrightarrow{b}}right) }

С понятием скалярного произведения связано понятие скалярного квадрата.

«Как найти скалярное произведение векторов» 👇

Определение 2

Скалярным квадратом вектора $overrightarrow{a}$ называется скалярное произведение этого вектора самого на себя.

Получаем, что скалярный квадрат равен

[overrightarrow{a}overrightarrow{a}=left|overrightarrow{a}right|left|overrightarrow{a}right|{cos 0^0 }=left|overrightarrow{a}right|left|overrightarrow{a}right|={left|overrightarrow{a}right|}^2]

Вычисление скалярного произведения по координатам векторов

Помимо стандартного способа нахождения значения скалярного произведения, который вытекает из определения, существует еще один способ.

Рассмотрим его.

Пусть векторы $overrightarrow{a}$ и $overrightarrow{b}$ имеют координаты $left(a_1,b_1right)$ и $left(a_2,b_2right)$, соответственно.

Скалярное произведение векторов $overrightarrow{a}$ и $overrightarrow{b}$ равно сумме произведений соответствующих координат.

Математически это можно записать следующим образом

[overrightarrow{a}overrightarrow{b}=a_1a_2+b_1b_2]

Доказательство.

  1. Пусть один из векторов будет нулевым вектором. К примеру, $overrightarrow{a}=(0,0)$.

    Тогда $overrightarrow{a}overrightarrow{b}=0$. С другой стороны $a_1a_2+b_1b_2=0cdot a_2+0cdot b_2=0$, значит

    [overrightarrow{a}overrightarrow{b}=a_1a_2+b_1b_2]

  2. Оба вектора не будут нулевыми векторами.

    Отложим от произвольной точки $O$ векторы $overrightarrow{OA}$ и $overrightarrow{OB}$ (рис. 2).

    Иллюстрация теоремы 1

    Рисунок 2. Иллюстрация теоремы 1

    По теореме косинусов, получим:

    [{AB}^2={OA}^2+{OB}^2-2OAcdot OBcosO]

    Так как $overrightarrow{AB}=overrightarrow{OB}-overrightarrow{OA}$, получим

    [{|overrightarrow{OB}-overrightarrow{OA}|}^2={|overrightarrow{OA}|}^2+{|overrightarrow{OB}|}^2-2left|overrightarrow{OA}right||overrightarrow{OB}|] [overrightarrow{OA}overrightarrow{OB}=frac{1}{2}left({|overrightarrow{OA}|}^2+{|overrightarrow{OB}|}^2-{|overrightarrow{OB}-overrightarrow{OA}|}^2right)]

    Так как векторы $overrightarrow{OA}$ и $overrightarrow{OB}$ имеют координаты $left(a_1,b_1right)$ и $left(a_2,b_2right)$, соответственно, то $overrightarrow{OB}-overrightarrow{OA}=left(a_2-a_1,b_2-b_1right)$. Тогда равенство примет вид

    [overrightarrow{OA}overrightarrow{OB}=frac{1}{2}left(a^2_1+b^2_1+a^2_2+b^2_2-{(a_2-a_1)}^2-{(b_2-b_1)}^2right)=a_1a_2+b_1b_2]

Теорема доказана.

Эта теорема имеет несколько следствий:

Следствие 1: Векторы $overrightarrow{a}$ и $overrightarrow{b}$ перпендикулярны тогда и только тогда, когда $a_1a_2+b_1b_2=0$

Следствие 2: Косинус угла между векторами равен $cosalpha =frac{a_1a_2+b_1b_2}{sqrt{a^2_1+b^2_1}cdot sqrt{a^2_2+b^2_2}}$

Свойства скалярного произведения векторов

Для любых трех векторов и действительного числа $k$ справедливо:

  1. ${overrightarrow{a}}^2ge 0$

    Данное свойство следует из определения скалярного квадрата (определение 2).

  2. Переместительный закон: $overrightarrow{a}overrightarrow{b}=overrightarrow{b}overrightarrow{a}$.

    Данное свойство следует из определения скалярного произведения (определение 1).

  3. Распределительный закон:

    $left(overrightarrow{a}+overrightarrow{b}right)overrightarrow{c}=overrightarrow{a}overrightarrow{c}+overrightarrow{b}overrightarrow{c}$.
    end{enumerate}

    По теореме 1, имеем:

    [left(overrightarrow{a}+overrightarrow{b}right)overrightarrow{c}=left(a_1+a_2right)a_3+left(b_1+b_2right)b_3=a_1a_3+a_2a_3+b_1b_3+b_2b_3==overrightarrow{a}overrightarrow{c}+overrightarrow{b}overrightarrow{c}]

  4. Сочетательный закон: $left(koverrightarrow{a}right)overrightarrow{b}=k(overrightarrow{a}overrightarrow{b})$.
    end{enumerate}

    По теореме 1, имеем:

    [left(koverrightarrow{a}right)overrightarrow{b}=ka_1a_2+kb_1b_2=kleft(a_1a_2+b_1b_2right)=k(overrightarrow{a}overrightarrow{b})]

Пример задачи на вычисление скалярного произведения векторов

Пример 1

Найти скалярное произведение векторов $overrightarrow{a}$ и $overrightarrow{b}$, если $left|overrightarrow{a}right|=3$ и $left|overrightarrow{b}right|=2$, а угол между ними равен ${{30}^0, 45}^0, {90}^0, {135}^0$.

Решение.

Используя определение 1, получаем

Для ${30}^0:$

[overrightarrow{a}overrightarrow{b}=6{cos left({30}^0right) }=6cdot frac{sqrt{3}}{2}=3sqrt{3}]

Для ${45}^0:$

[overrightarrow{a}overrightarrow{b}=6{cos left({45}^0right) }=6cdot frac{sqrt{2}}{2}=3sqrt{2}]

Для ${90}^0:$

[overrightarrow{a}overrightarrow{b}=6{cos left({90}^0right) }=6cdot 0=0]

Для ${135}^0:$

[overrightarrow{a}overrightarrow{b}=6{cos left({135}^0right) }=6cdot left(-frac{sqrt{2}}{2}right)=-3sqrt{2}]

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Почему скалярное произведение векторов называется именно скалярным и что представляет собой? Чем оно отличается от результатов других операций над векторами? Что такое скаляр? Скаляр — это число.

И скалярное произведение векторов — это тоже число. Этим оно и отличается от уже рассмотренной суммы векторов, и от векторного произведения векторов, которое ещё предстоит рассмотреть.

Скалярное произведение векторов: теория и решения задач

Как найти скалярное произведение векторов, примеры решений

В отличие от скалярного произведения, сумма векторов — это вектор, и векторное произведение — тоже вектор.

Определение 1. Скалярным произведением векторов называется число (скаляр), равное произведению длин (модулей) этих векторов на косинус угла между ними. Формула скалярного произведения векторов согласно определению 1. Можно встретить и другое название этой операции: внутреннее произведение.

Скалярное произведение вектора на себя называется скалярным квадратом. На этом уроке будем решать распространённые задачи не только на непосредственное вычисление скалярного произведения, но и на выяснение ортогональности (перпендикулярности) векторов, вида угла (тупой, острый, прямой) между векторами, вычисление скалярного произведения векторов, которые даны в координатах, вычисление длин диагоналей параллелограма, построенного на вектора.

Но все по порядку. Перед каждым видом задач будем обращать внимание на то, что на этот счёт гласит теория. По ходу урока вам пригодится онлайн-калькулятор для проверки решения задач на скалярное произведение векторов.

Если в задаче и длины векторов, и угол между ними преподнесены «на блюдечке с голубой каёмочкой», то условие задачи и её решение выглядят так:

Пример 1. Даны векторы . Найти скалярное произведение векторов , если их длины и угол между ними представлены следующими значениями:

Как найти скалярное произведение векторов, примеры решений

Решение:

Как найти скалярное произведение векторов, примеры решений

Справедливо и другое определение, полностью равносильное определению 1.

Определение 2. Скалярным произведением векторов называется число (скаляр), равное произведению длины одного их этих векторов на проекцию другого вектора на ось, определяемую первым из указанных векторов. Формула согласно определению 2:

  •    (2)
  • или
  •    (3)

Задачу с применением этой формулы решим после следующего важного теоретического пункта.

Определение скалярного произведения векторов через координаты

То же самое число можно получить, если перемножаемые векторы заданы своими координатами.

Определение 3. Скалярное произведение векторов — это число, равное сумме попарных произведений их соответствующих координат.

На плоскости

Если два вектора и на плоскости определены своими двумя декартовыми прямоугольными координатами и, то скалярное произведение этих векторов равно сумме попарных произведений их соответствующих координат:

Как найти скалярное произведение векторов, примеры решений

Пример 2. Найти численную величину проекции вектора на ось, параллельную вектору. Решение. Находим скалярное произведение векторов, складывая попарные произведения их координат:

Как найти скалярное произведение векторов, примеры решений

Теперь нам требуется приравнять полученное скалярное произведение произведению длины вектора на проекцию вектора на ось, параллельную вектору (в соответствии с формулой ). Находим длину вектора как квадратный корень из суммы квадратов его координат:

Как найти скалярное произведение векторов, примеры решений

Составляем уравнение и решаем его:

Как найти скалярное произведение векторов, примеры решений

Ответ. Искомая численная величина равна минус 8.

В пространстве

Если два вектора и в пространстве определены своими тремя декартовыми прямоугольными координатами

Как найти скалярное произведение векторов, примеры решений

и

Как найти скалярное произведение векторов, примеры решений

то скалярное произведение этих векторов также равно сумме попарных произведений их соответствующих координат, только координат уже три.

Задача на нахождение скалярного произведения рассмотренным способом — после разбора свойств скалярного произведения. Потому что в задаче потребуется определить, какой угол образуют перемножаемые векторы.

Свойства скалярного произведения векторов

  1. переместительное свойство: от перемены местами перемножаемых векторов величина их скалярного произведения не меняется).
  2. сочетательное относительно числового множителя свойство: скалярное произведение вектора, умноженного на некоторый множитель, и другого вектора, равно скалярному произведению этих векторов, умноженному на тот же множитель).
  3. распределительное относительно суммы векторов свойство: скалярное произведение суммы двух векторов на третий вектор равно сумме скалярных произведений первого вектора на третий вектор и второго вектора на третий вектор).
  4. скалярный квадрат вектора больше нуля), если — ненулевой вектор, и , если — нулевой вектор.

В определениях изучаемой операции мы уже касались понятия угла между двумя векторами. Пора уточнить это понятие. На рисунке выше видны два вектора, которые приведены к общему началу. И первое, на что нужно обратить внимание: между этими векторами существуют два угла — φ1 и φ2.

Какой из этих углов фигурирует в определениях и свойствах скалярного произведения векторов? Сумма рассмотренных углов равна 2π и поэтому косинусы этих углов равны. В определение скалярного произведения входит только косинус угла, а не значение его выражения.

Но в свойствах рассматривается только один угол. И это тот из двух углов, который не превосходит π, то есть 180 градусов. На рисунке этот угол обозначен как φ1:

  1. Два вектора называют ортогональными и угол между этими векторами — прямой (90 градусов или π/2), если скалярное произведение этих векторов равно нулю. Ортогональностью в векторной алгебре называется перпендикулярность двух векторов.
  2. Два ненулевых вектора составляют острый угол (от 0 до 90 градусов, или, что тоже самое — меньше π/2) тогда и только тогда, когда их скалярное произведение положительно.
  3. Два ненулевых вектора составляют тупой угол (от 90 до 180 градусов, или, что то же самое — больше π/2) тогда и только тогда, когда их скалярное произведение отрицательно.

Источник: https://function-x.ru/vectors_scalar.html

Понравилась статья? Поделить с друзьями:
  • Как найти запись к врачу через интернет
  • Как составить письменную претензию в банк
  • Как найти тему разговора с любым человеком
  • Гта 5 не на весь экран как исправить
  • Как найти угол 90гр