Как найти скалярное произведение векторов на плоскости

Содержание:

  • Формула
  • Примеры вычисления скалярного произведения векторов

Формула

Для того чтобы найти скалярное произведение двух векторов, заданных своими
координатами, необходимо вычислить сумму произведений
соответствующих координат этих векторов. Для случая, если векторы заданны на плоскости координатами $bar{a}=left(a_{x} ; a_{y}right)$ и $bar{b}=left(b_{x} ; b_{y}right)$, имеет место формула:

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}$$

Если же векторы заданы в пространстве своими координатами: $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$ соответственно, то их скалярное произведение вычисляется по формуле:

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}+a_{z} cdot b_{z}$$

Примеры вычисления скалярного произведения векторов

Пример

Задание. Найти скалярное произведение векторов $bar{a}=(1 ;-3)$ и $bar{b}=(-2 ;-3)$

Решение. Векторы заданны на плоскости, поэтому для вычисления их скалярного произведения воспользуемся формулой

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}$$

Подставляя координаты заданных векторов, получим

$$(bar{a}, bar{b})=1 cdot(-2)+(-3) cdot(-3)=-2+9=7$$

Ответ. $(bar{a}, bar{b})=7$ lt /$>

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В пространстве заданы точки
$A(-1 ;-2 ; 5), B(-3 ; 2 ; 1)$ и $C(0 ; 1 ;-1)$ . Найти скалярное произведение векторов
$overline{A B}$ и
$overline{A C}$

Решение. Найдем сначала координаты векторов
$overline{A B}$ и
$overline{A C}$ . Для этого из координат конца вычислим соответствующие
координаты начала, получим:

$$overline{A B}=(-3-(-1) ; 2-(-2) ; 1-5)=(-2 ; 4 ;-4)$$
$$overline{A C}=(0-(-1) ; 1-(-2) ;-1-5)=(1 ; 3 ;-6)$$

Далее воспользуемся формулой для вычисления скалярного произведения векторов, заданных в пространстве:

$$(bar{a}, bar{b})=a_{x} cdot b_{x}+a_{y} cdot b_{y}+a_{z} cdot b_{z}$$

Получим

$$(overline{A B}, overline{A C})=(-2) cdot 1+4 cdot 3+(-4)(-6)=-2+12+24=34$$

Ответ. $(overline{A B}, overline{A C})=34$

Читать дальше: как найти векторное произведение векторов.

Скалярное произведение

Скалярное произведение — результат операции над двумя векторами, являющийся скаляром, то есть числом, не зависящим от выбора системы координат. Используется в определении длины векторов и угла между ними.
$$ c = |overline a||overline b|cos(theta )$$

Обычно для скалярного произведения векторов $overline a$ и $overline b$ используется одно из следующих обозначений:

$$ c= (overline a,overline b) = overline acdotoverline b$$

Скалярным произведением двух векторов $overline a$ и $overline b$ будет скалярная величина, равная сумме попарного произведения координат векторов $overline a$ и $overline b$.

Для плоскости:
Скалярное произведение векторов $overline a = (a_x, a_y)$ и $overline b = (b_x, b_y)$ можно найти воспользовавшись следующей формулой:
$$ overline acdotoverline b = a_x b_x + a_y b_y $$

Для пространства:
Скалярное произведение двух векторов в пространстве $overline a = (a_x, a_y, a_z)$ и $overline b = (b_x, b_y, b_z)$ можно найти воспользовавшись следующей формулой:
$$ overline acdotoverline b = a_x b_x + a_y b_y + a_z b_z $$

Векторное произведение

Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.

Определение:
Векторным произведением вектора $overline a$ на вектор $overline b$ в трёхмерном евклидовом пространстве называется вектор $overline c$, удовлетворяющий следующим требованиям:

  • длина вектора $overline c$ равна произведению длин векторов $overline a$ и $overline c$ на синус угла между ними (т. е. площади параллелограмма, образованного векторами $overline a$ и $overline b$
    $$ | overline c| = | overline a| cdot | overline b|cdot sin (theta ),$$
  • вектор $overline c$ ортогонален каждому из векторов $overline a$ и $overline b$;
  • вектор $overline c$ направлен так, что тройка векторов $(overline a,overline b,overline c)$ является правой.

Понятие правой и левой тройки векторов:
Совместим начала векторов в одной точке. Упорядоченная тройка некомпланарных векторов $(overline a,overline b,overline c)$ в трёхмерном пространстве называется правой, если с конца вектора $overline c$ кратчайший поворот от вектора $overline a$ к вектору $overline b$ виден наблюдателю против часовой стрелки. И наоборот, если кратчайший поворот виден по часовой стрелке, то тройка называется левой.

Название правой и левой тройки пошло от определения направления тройки с помощью руки человека:


Правая тройка. Указательный палец к среднему пальцу двигается против часовой стрелки.

Векторное произведение обозначают:

$$overline c = overline a times overline b = [overline a, overline b]$$

Получение координат вектора $overline c$:
Если два вектора $overline a$ и $overline {b}$ представлены в правом ортонормированном базисе координатами $ overline a=(a_x,a_y,a_z), overline b=(b_x,b_y,b_z)$, то их векторное произведение имеет координаты:

$$ overline a timesoverline b = (a_yb_z — a_zb_y,a_zb_x-a_xb_z,a_xb_y-a_yb_x).$$

Для запоминания этой формулы удобно использовать мнемонический определитель:
$$overline a timesoverline b = begin{vmatrix}
i & j & k \
a_x & a_y & a_z \
b_x & b_y & b_z \
end{vmatrix}, $$

где $i=(1,0,0), j=(0,1,0), k=(0,0,1)$.

Псевдоскалярное произведение двух векторов

Псевдоскалярным (или косым) произведением векторов $overline{a}$ и $overline{b}$ на плоскости называют число

$$c = | overline a| cdot | overline b|cdot sin (theta ),$$

где $theta$ — угол вращения (против часовой стрелки) от $overline{a}$ к $overline{b}$. Приставка «псевдо» означает, что объект может менять или не менять знак при отражениях пространства.

Псевдоскалярное произведение обозначают так:
$$c = overline a wedge overline b.$$

Если хотя бы один из векторов нулевой, то полагают $overline a wedge overline b = 0$.

Геометрически псевдоскалярное произведение векторов представляет собой ориентированную площадь параллелограмма, натянутого на эти вектора.

С его помощью удобно работать с площадями многоугольников, выражать условия коллинеарности векторов и находить углы между ними.

Псевдоскалярное произведение существует только для 2-мерных векторов, его аналогом в трехмерном пространстве является смешанное произведение.

Основные свойства:

  1. Линейность: $overline a wedge (lambda overline b + muoverline c ) = lambdaoverline awedgeoverline b + muoverline a wedge overline c$. Где $lambda, mu$ — произвольные вещественные числа.
  2. Антикоммутативность: $overline a wedgeoverline b = -overline bwedgeoverline a$.
  3. Ориентированная площадь треугольника ABC выражается формулой $S = (overline{AB}wedgeoverline{AC}) / 2$, а его площадь равна модулю этой величины.
  4. $overline a wedge overline b = 0$ — необходимое и достаточное условие коллинеарности ненулевых векторов на плоскости.
  5. Пусть заданы вектора $overline a = (a_1, a_2), overline b = (b_1, b_2)$. Тогда их псевдоскалярное произведение равно $overline a wedgeoverline b = a_1b_2 — a_2b_1$.

Использование в геометрических задачах

Пример 1. Определить взаимное расположении точки и прямой: лежит выше прямой, на прямой, под прямой.

Косое произведение двух векторов положительно, если поворот от первого вектора ко второму идет против часовой стрелки, равно нулю, если векторы коллинеарны и отрицательно, если поворот идет по часовой стрелки. Поэтому достаточно посчитать косое произведение векторов $overline{P_1P_2}$ и $overline{P_1M}$ и по его знаку сделать вывод.

Пример 2. Определить, принадлежит ли точка отрезку.

Пусть точки $P_1(x_1, y_1), P_2(x_2, y_2)$ — концы заданного отрезка. Необходимым условием принадлежности точки отрезку является ее принадлежность прямой проходящей через $P_1, P_2$. Далее нужно определить лежит ли точка между точками $P_1$ и $P_2$. Для этого используем скалярное произведение векторов $overline{MP_1}, overline{MP_2}$. Если оно меньше либо равно нуля, то точка лежит на отрезке, иначе вне отрезка.

Итак, для того чтобы точка M(x, y) лежала на отрезке с концами P1(x1, y1), P2(x2, y2) необходимо и достаточно выполнения условий:
1. $overline{P_1P_2} wedge overline{P_1M} = 0$ – косое произведение (точка лежит на прямой);
2. $(overline{MP_1}, overline{MP_2}) ≤ 0$ – скалярное произведение (точка лежит между $P_1$ и $P_2$).

Пример 3. Определить, пересекаются ли две прямые (прямые не совпадают).

Если прямые заданы точками $P_1(x_1, y_1), P_2(x_2, y_2), M_1(x_3, y_3), M_2(x_4, y_4)$, то условие их параллельности заключается в проверки косого произведения векторов $overline{P_1P_2}$ и $overline{M_1M_2}$: если оно равно нулю, то прямые параллельны, иначе — пересекаются.

Пример 4. Определить, пересекаются ли два отрезка.

Отрезки пересекаются тогда, когда, концы каждого отрезка лежат по разные стороны от другого отрезка. Посмотрим на рисунок:

Необходимо проверить, лежат ли концы каждого из отрезков по разные стороны относительного концов другого отрезка. Применим косое произведение векторов. Посмотрим на первый рисунок: $overline{P_1P_2}wedge overline{P_1M_2} * overline{P_1P_2}wedge overline{P_1M_1} < 0$ и $overline{M_1M_2}wedge overline{M_1P_1} * overline{M_1M_2}wedge overline{M_1P_2} < 0$. Важно обратить внимание на строгое неравенство, потому что возможен случай, при котором произведение равно нулю, но отрезки не пересекаются (отрезки лежат на одной прямой, но не имеют общих точек). Поэтому необходимо проверить, принадлежит ли хотя бы один конец каждого отрезка другому.

Еще примеры:

  • https://foxford.ru/wiki/informatika/primenenie-skalyarnogo-i-vektornogo-proizvedeniya
  • https://habr.com/en/post/147691/

План урока:

Угол между векторами

Понятие скалярного произведения векторов

Скалярное произведение в координатах

Определение перпендикулярности векторов и прямых

Вычисление угла между векторами

Свойства скалярного произведения

Угол между векторами

Любую пару векторов можно отложить от одной точки. Если при этом вектора не сонаправлены друг с другом, то они образуют некоторый угол. Его и именуют углом между векторами.

1 skalyarnoe proizvedenie

Если же пара векторов сонаправлена, то принято считать, что угол между такими векторами составляет 0°.

На рисунке показаны два вектора, a и b. Чтобы определить угол между и b, надо отложить их от одной и той же точки:

2 skalyarnoe proizvedenie

В приведенном примере угол составил 135°. Для обозначения этого угла может быть использована такая запись:

3 skalyarnoe proizvedenie

Задание. В квадрате АВСD проведены диагонали, они пересекаются в точке О. Определите, какой угол образуют вектора:

4 skalyarnoe proizvedenie

Так как в квадрате диагонали пересекаются под углом 90°, а со сторонами образуют угол 45°, то мы легко определим, что

5 skalyarnoe proizvedenie

Здесь нам помог тот факт, что вектора из пунктов а) и б) изначально отложены из одной точки. С пунктом в) ситуация сложнее. Надо отложить от точки А вектор ОА и определить угол, образующийся при этом:

6 skalyarnoe proizvedenie

Пусть после откладывания вектора ОА от А получился вектора АА’. Нам надо найти ∠ВАА’. Нам уже известен ∠ОАВ, который является смежным с ∠ВАА’, поэтому можно записать равенство:

7 skalyarnoe proizvedenie

Ответ: а) 45°; б) 90°; в) 135°.

Понятие скалярного произведения векторов

Большое распространение в науке получила математическая операция, именуемая скалярным произведением векторов. В геометрии оно помогает находить угол между векторами, а в физике вычислять некоторые физические величины. В рамках школьной программы его используют для нахождения работы, совершенной той или иной силой. В рамках же более сложных дисциплин, с которыми мало кто сталкивается, оно применяется в квантовой механике и специальных разделах математики – тензорной алгебре, теории многообразий и т. п. Ввел его в науку Уильям Гамильтон в 1846 г, который разрабатывал теорию особых чисел – кватерионов. Они, кстати, используются компьютерами для расчетов трехмерной графики в играх и других приложениях.

Прежде, чем мы научимся применять на практике скалярное произведение, сначала сформулируем правило, позволяющее вычислить его.

8 skalyarnoe proizvedenie

Например, пусть есть вектора a и b, причем даны их длины:

9 skalyarnoe proizvedenie

Угол между и b тоже известен и составляет 60°, это записывается таким образом:

10 skalyarnoe proizvedenie

Задание. Вычислите скалярное произведение векторов d и f, если их длины составляют 6 и 10 соответственно, а угол между векторами равен 45°.

Решение. Просто подставляем числа из условия в формулу:

11 skalyarnoe proizvedenie

Задание. АВС – равносторонний треугольник со стороной 4. Каково скалярное произведение векторов АВ и АС?

Решение. Все углы в равностороннем треугольнике равны 60°, поэтому и угол между АВ и АС также составляет 60°.

12 skalyarnoe proizvedenie

Ответ: 8.

Напомним, что косинус, взятый от острого угла – это положительная величина, а косинус тупого угла – это отрицательное число. У прямого же угла косинус равен нулю. Это означает, что по знаку скалярного произведения можно определить тип угла между векторами.

13 skalyarnoe proizvedenie

Часто скалярное произведение применяется в физике. Например, с его помощью рассчитывается работа, совершаемая силой при перемещении того или иного тела. И сила, и перемещение – это векторные величины. Чтобы найти работу силы, надо скалярно перемножить вектора силы и перемещения:

14 skalyarnoe proizvedenie

Эта формула отражает физический смысл скалярного произведения.

Задание. Под воздействием силы 10Н тело переместилось в горизонтальном направлении на 3 метра. При этом сила образует угол 60° с направлением перемещения тела. Какую работу совершила сила?

Решение.

15 skalyarnoe proizvedenie

Скалярное произведение в координатах

Оказывается, что для перемножения векторов достаточно знать только их координаты.

16 skalyarnoe proizvedenie

Докажем эту формулу. Сначала рассмотрим случай, когда один из перемножаемых векторов, например a, является нулевым. Тогда у него нулевая длина и нулевые координаты:

17 skalyarnoe proizvedenie

Теперь рассмотрим случай, когда оба перемножаемых вектора ненулевые. Тогда отложим их от некоторой точки О и, если вектора неколлинеарны, то мы получим ∆ОАВ:

18 skalyarnoe proizvedenie

Для частных случаев, когда a и b коллинеарны (то есть либо сонаправлены, либо противоположно направлены), эта формула также справедлива. Если aи b сонаправлены, то угол α принимается равным нулю (и cosα = 1):

19 skalyarnoe proizvedenie

Если же a и b направлены противоположно, то α = 180° (и cosα = – 1):

20 skalyarnoe proizvedenie

Итак, мы убедились, что в любой ситуации формула (1) справедлива. При этом вектор АВ можно представить как разность a и b:

21 skalyarnoe proizvedenie

Если вектор а имеет координаты {x1; у1}, а координаты b– это {x2; у2},то координаты их разности a – b будут записываться в виде {х1 – х21 – у2}. С учетом этого (2) примет вид

22 skalyarnoe proizvedenie

В результате нам удалось доказать формулу скалярного произведения через координаты:

23 skalyarnoe proizvedenie

Задание. Перемножьте скалярно вектораa и b, если определены их координаты:

24 skalyarnoe proizvedenie

Ответ: а) 23; б) 0; в) 5.

Определение перпендикулярности векторов и прямых

Напомним, что скалярное произведение оказывается нулевым исключительно в случае перпендикулярности векторов. Это позволяет использовать его для проверки перпендикулярности векторов.

Задание. Проверьте, являются ли перпендикулярными вектора:

25 skalyarnoe proizvedenie

Решение. В каждом случае мы должны скалярно перемножить пару векторов. Если результат окажется нулевым, то можно сделать вывод о перпендикулярности векторов. В противном случае они не перпендикулярны. Первый вектор будет обозначать буквой а, а второй – буквой b:

26 skalyarnoe proizvedenie

Ответ: а) да; б) нет; в) да; г) нет.

Задание. При каком значении переменной х вектора а{4; 5} и b{x; – 6} окажутся перпендикулярными?

Решение. Перемножим скалярно вектора и получим некоторое выражение с переменной x:

27 skalyarnoe proizvedenie

Найдем, при каком х это выражение обращается в нуль, то есть вектора становятся перпендикулярными:

28 skalyarnoe proizvedenie

Задание. Определите, перпендикулярны ли прямые АВ и CD, если даны координаты точек: А(3; 8), В(4; 10), С(7;12) и D(5;13).

Решение. В этой задаче сначала надорассчитать координаты векторов АВ и CD по координатамих начальной и конечной точки:

29 skalyarnoe proizvedenie

Мы вычислили координаты векторов: АВ{1; 2} и CD{– 2; 1}. Теперь мы можем проверить их перпендикулярность, скалярно перемножив вектора:

30 skalyarnoe proizvedenie

Мы получили ноль. Это означает, что АВ и CD – перпендикулярные вектора. Значит, и прямые, на которых они лежат, также перпендикулярны.

Ответ: перпендикулярны.

Задание. Перпендикулярны ли друг другу прямые, задаваемые уравнениями

31 skalyarnoe proizvedenie

Названия точкам в данном примере присвоены произвольно. На следующем шаге по координатам точек мы находим координаты векторов, лежащих на исследуемых прямых:

32 skalyarnoe proizvedenie

Полученный ноль показывает, что исходные прямые перпендикулярны.

Ответ: перпендикулярны.

В случае, когда прямые заданы уравнениями, необязательно проделывать столь длительные вычисления для определения их перпендикулярности. Есть теорема, сокращающая объем вычислений.

33 skalyarnoe proizvedenie

Докажем это утверждение. Пусть две прямые заданы уравнениями

34 skalyarnoe proizvedenie

Найдем какие-нибудь точки этих прямых. Для этого подставим в уравнения значения х = 0 и х = 1:

35 skalyarnoe proizvedenie

Прямые окажутся перпендикулярными исключительно в том случае, если это выражение будет нулевым. Это условие перпендикулярности можно записать как уравнение:

36 skalyarnoe proizvedenie

В результате мы получили доказываемую нами формулу.

Задание. Проверьте, какие из этих пар прямых перпендикулярны:

37 skalyarnoe proizvedenie

Решение. В каждом случае надо просто перемножить угловые коэффициенты прямых, то есть числа, стоящие перед переменной х. Другие числа в этих уравнениях (свободные коэффициенты) никак не влияют на перпендикулярность. Если вычисленное произведение окажется равным (– 1), то из этого будет вытекать перпендикулярность прямых.

38 skalyarnoe proizvedenie

Вычисление угла между векторами

Мы научились по координатам векторов определять, перпендикулярны ли они. Однако в более общем случае можно рассчитать угол и между двумя неперпендикулярными векторами.

В самом деле, по известным координатам векторов легко как рассчитать длину каждого из них, так и скалярно перемножить вектора. Тогда из формулы скалярного произведения можно выразить значение косинуса угла между векторами:

39 skalyarnoe proizvedenie

Зная же косинус, можно рассчитать и сам угол, используя специальные таблицы либо функцию арккосинуса на калькуляторе.

Задание. Вычислите угол между векторами а{3; 4} и b{8; 15}.

Решение. Сначала рассчитываем длины векторов:

40 skalyarnoe proizvedenie

Задание. Точки А(2; 8), В(– 1; 5) и С(3; 1) соединили отрезками и получили ∆АВС. Вычислите угол ∠А в ∆АВС.

Решение.∠А данного треугольника представляет собой угол между двумя векторами АВ и АС. Вычислим координаты этих векторов:

41 skalyarnoe proizvedenie

Осталось лишь с помощью калькулятора найти сам ∠А:

42 skalyarnoe proizvedenie

Свойства скалярного произведения

Существует несколько важных свойств скалярного произведения. Эти свойства очень схожи с законами алгебры, которые используются при работе с обычными числами.

43 skalyarnoe proizvedenie

Переместительный закон легко доказать, опираясь только на определение операции скалярного произведения:

44 skalyarnoe proizvedenie

Задание. Известно, что угол между векторами a и с составлет 60°, так же как и угол между векторами b и с. Определены и длины векторов:

45 skalyarnoe proizvedenie

Задание. Найдите скалярное произведение векторов p и q, если

46 skalyarnoe proizvedenie

Решение. Сначала надо перемножить вектора и раскрыть при этом скобки также, как они раскрываются при перемножении обычных чисел:

47 skalyarnoe proizvedenie

Примечание. Иногда скалярное произведение вектора на самого себя именуют скалярным квадратом.

Тогда выражение (1) примет вид:

48 skalyarnoe proizvedenie

В сегодняшнем уроке мы узнали, что такое скалярное произведение. Оно имеет много приложений в физике и других науках, в частности, с его помощью вычисляется работа. В геометрии оно помогает вычислять углы между векторами, а значит, и между прямыми. В будущем, при более углубленном изучении геометрии, вы узнаете о существовании других типов произведений векторов – векторном и смешанном.

Два вектора

a→

и

b→

 всегда образуют угол.

Угол между векторами может принимать значения от

до

180°

включительно.

Если векторы не параллельны, то их можно расположить на пересекающихся прямых.

Векторы могут образовать:

1. острый угол;

Lenkis_vekt4.png

2. тупой угол;

Lenkis_vekt5.png

3. прямой угол (векторы перпендикулярны).

Lenkis_vekt2.png

Если векторы расположены на параллельных прямых, то они могут образовать:

4. угол величиной

 (векторы сонаправлены);

Lenkis_vekt1.png

5. угол величиной

180°

 (векторы противоположно направлены).

Lenkis_vekt3.png

Если один из векторов или оба вектора нулевые, то угол между ними будет равен

.

Угол между векторами записывают так:

Скалярное произведение векторов

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

a→⋅b→=a→⋅b→⋅cosa→b→ˆ

.

Результат скалярного произведения векторов является числом (в отличие от результата рассмотренных ранее действий с векторами — сложения, вычитания и умножения на число. В таких случаях результатом был вектор). При умножении вектора на вектор получается число, так как длины векторов — это числа, косинус угла — число — соответственно, их произведение также будет являться числом.

1. Если угол между векторами острый, то скалярное произведение будет положительным числом (так как косинус острого угла — положительное число). 

Если векторы сонаправлены, то угол между ними будет равен

, а косинус равен (1), скалярное произведение также будет положительным.

2. Если угол между векторами тупой, то скалярное произведение будет отрицательным (так как косинус тупого угла — отрицательное число). 

Если векторы направлены противоположно, то угол между ними будет равен

180°

. Скалярное произведение также отрицательно, так как косинус этого угла равен (-1).

Справедливы и обратные утверждения:

1. Если скалярное произведение векторов — положительное число, то угол между данными векторами острый.

2. Если скалярное произведение векторов — отрицательное число, то угол между данными векторами тупой.

Особенный третий случай!

Обрати внимание!

3. Если угол между векторами прямой, то скалярное произведение векторов равно нулю, так как косинус прямого угла равен (0).

Обратное суждение: если скалярное произведение векторов равно нулю, то эти векторы перпендикулярны.

Вектор, умноженный на самого себя, будет числом, которое называется скалярным квадратом вектора. Скалярный квадрат вектора  равен квадрату длины данного вектора и обозначается как 

a→2

.

Свойства скалярного произведения

Для любых векторов и любого числа справедливы следующие свойства:

1.

a→2≥0

, к тому же

a→2>0

, если

a→≠0→

.

2. Переместительный, или коммутативный, закон скалярного произведения:

a→⋅b→=b→⋅a→

.

3. Распределительный, или дистрибутивный, закон скалярного произведения:

a→+b→⋅c→=a→⋅c→+b→⋅c→

.

4. Сочетательный, или ассоциативный, закон скалярного произведения:

k⋅a→⋅b→=k⋅a→⋅b→

.

Использование скалярного произведения

Удобно использовать скалярное произведение векторов для определения углов между прямыми и между прямой и плоскостью.

Угол между прямыми

Ознакомимся с ещё одним определением.

Вектор называют направляющим вектором прямой, если он находится на прямой или параллелен этой прямой.

Taisne_vektors.png

Чтобы определить косинус угла между прямыми, надо определить косинус угла между направляющими векторами этих прямых, то есть найти векторы, параллельные прямым, и определить косинус угла между векторами.

Для этого необходимо рассмотреть определение скалярного произведения, если векторы даны в координатной системе.

Если

a→x1;y1;z1

,

b→x2;y2;z2

, то

a→⋅b→=x1⋅x2+y1⋅y2+z1⋅z2

.

Прежде была рассмотрена формула определения длины вектора в координатной форме.

Теперь, объединив эти формулы, получим формулу для определения косинуса угла между векторами в координатной форме. Так как из формулы скалярного произведения следует, что

cosα=a→⋅b→a→⋅b→

, то

cosα=x1⋅x2+y1⋅y2+z1⋅z2x12+y12+z12 ⋅x22+y22+z22

.

Угол между прямой и плоскостью

Введём понятие о нормальном векторе плоскости.

Нормальный вектор плоскости — это любой ненулевой вектор, лежащий на прямой, перпендикулярной к данной плоскости.

Plakne_vektors.png

Используя следующий рисунок, легко доказать, что косинус угла

β

между нормальным вектором

n→

 данной плоскости и неким вектором

b→

 равен синусу угла

α

между прямой и плоскостью, так как

α

и

β

 вместе образуют угол в

90°

.

Plakne_vektors_lenkis.png

При нахождении косинуса угла между

n→

и

b→

можно использовать это число как синус угла между прямой, на которой лежит вектор

b→

, и плоскостью.

Понравилась статья? Поделить с друзьями:
  • Как найти загрузочную папку
  • Как найти аргумент при известной функции
  • Как найти площадь проводника через силу тока
  • Как найти друга для дочери
  • Как найти количество вещества сульфата натрия