Как найти склонение солнца по карте

Работая с ПКЗН вы можете определить вид звездного неба, моменты восхода и захода звезд и их экваториальные координаты.

Работа с подвижной картой звездного неба

Все вы знаете, что звёздные карты представляют собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в определённой системе координат.

Рассмотрим ПКЗН поподробнее. Она состоит из подвижной и неподвижной части. На подвижной части мы можем увидеть рад созвездий.

В наши дни созвездиями называют определённые участки звёздного неба, разделённые между собой строго установленными границами, с характерной наблюдаемой группировкой звёзд.

На ПКЗН мы можем наблюдать ряд созвездий северного полушария, разделенных между собой пунктирной линией. Например, созвездие Ориона.

Как пользоваться звездной картой для определения координат

Рассмотрев подробнее данное созвездие, мы можем заметить, что практически все звезды обозначены греческими буквами и диаметр звезд при нанесении на карту также отличается. Это связанно с тем, что, рассматривая звездное небо не трудно заметить, что все звезды отличаются по яркости.

В 1603 году немецкий астроном Иоганн Байер предложил свою систему обозначения звёзд, которой мы пользуемся до сих пор. В этой системе название звезды состоит из двух частей: названия созвездия, которому принадлежит звезда, и буквы греческого алфавита. Причём буквенное обозначение, как правило, присваивается в порядке убывания яркости звезды в созвездии.

Однако мы знаем, что из любого правила есть исключения: созвездие Большой медведицы, семь ярких звёзд которого образуют известный Большой Ковш. Обозначение этих звёзд велось просто справа на лево и созвездие Ориона, где звезда β ярче, чем α.

Что же еще можно узнать, работая с ПКЗН.

На ПКЗН все объекты нанесены в экваториальной системе координат, т.к. в ней координаты звёзд не связаны с суточным движением небесной сферы и изменяются очень медленно, так как достаточно далеки от нас.

Координатами данной системы служат склонение и прямое восхождение.

Теперь давайте посмотрим, как используя ПКЗН определить экваториальные координаты α Девы.

Как пользоваться звездной картой для определения координат

Для этого найдем созвездие Девы и в нем звезду α. Для определения прямого восхождения нам необходимо провести луч, проходящий через полюс мира и нашу звезду. Его пересечение с краем карты укажет нам значение данной координаты 13,25

Для определения склонения светила обратим внимание на концентрические окружности, изображенные на карте, и имеющие оцифровку от 90 0 до -45 0 на данной карте. Звезда находится между окружностями 0 и -30. С учетом погрешности можно предположить, что склонение данной звезды будет -11 .

А теперь давайте с вами решим обратную задачу, то есть найдём звезду по её координатам. Итак, пусть склонение звезды равно 27 о , а прямое восхождение — 23 ч 00 м . β Пегаса.

Стоит отметить, что картой звёздного неба можно пользоваться не только для нахождения координат звёзд, но и для определения вида звёздного неба в интересующий момент времени. Для этого необходимо совместить на неподвижной части карты дату, а на подвижной время. Например, 25 февраля и 5 часов. Те небесные объекты, которые находятся на белом фоне можно наблюдать, прочие нет.

Как пользоваться звездной картой для определения координат

А также с помощью ПКЗН определять моменты восхода и захода звёзд, в том числе и Солнца. Под восходом понимается явление пересечения светилом восточной части истинного горизонта, а под заходом — западной части этого горизонта.

Для определения момента восхода звезды а Волопаса 30 сентября нам необходимо:

Совместить восточную часть на подвижной части карты и звезду на неподвижной.

Далее на подвижной части звездной карты определить момент восхода. Восход 6,00

Как пользоваться звездной картой для определения координат

Для определения момента захода данной звезды нам необходимо:

Совместить западную часть на подвижной части карты и звезду на неподвижной. Заход 21,50

И опять же на подвижной части карты посмотреть момент времени.

Как пользоваться звездной картой для определения координат

Аналогичные действия можно выполнять и для Солнца, однако следует помнить, Солнце так же, как и другие звёзды, описывает свой путь по небесной сфере.

Для определения положения Солнца следует провести луч из полюса мира, проходящий через заданную дату, и его пересечение с эклиптикой даст нам положение Солнца.

Как пользоваться звездной картой для определения координат

Таким образом работая с ПКЗН вы можете определить вид звездного неба, моменты восхода и захода звезд и их экваториальные координаты.

Ориентирование по звездной карте: Точка севера, юга, востока и запада, а также зенит

О том что представляет собой звездная карта, как и о принципах её составления, мы уже узнали. Сейчас поговори о том, как её использовать для наблюдения звездного неба.

Ответим для начала на два вопроса: Как узнать по карте, какие звезды сейчас видны на небе, какие не видны? Какие звезды видны на востоке и на западе?

Как пользоваться звездной картой для определения координат

Обе задачи решаются сразу, но сначала надо условиться в том, что считать за восток и запад. Обыкновенно мы делим видимый небесный свод и видимую часть земной поверхности на две половины: либо на северную и южную, либо на восточную и западную. Говорят, например: «Солнце восходит на востоке, а заходит на западе». Это верно, но слишком неточно, так как Солнце восходит и заходит каждый день в разных местах. Лучше вместо довольно абстрактных сторон — южной и северной, восточной, и западной взять четыре вполне определенные точки. Их можно наметить таким способом.

Вечером, став под открытым небом, найдите Полярную звезду и встаньте к ней лицом — так вы встанете по направлению точно к северу. Проведите на земле длинную прямую черту прямо вперед, и вообразите, что вы довели эту черту до видимого края неба. Та точка, в которой ваша воображаемая черта встретится с видимой вдали чертой горизонта, будет точка севера.

Пройдя несколько шагов вдоль вашей черты, обернитесь назад и смотрите прямо вдоль черты. Так вы наметите точку юга на линии горизонта.

Проведите другую черту поперек вашей черты так, чтобы получился правильный крест с совершенно ровными, прямыми углами. Станьте в середине креста, в точке пересечения двух проведенных вами линий, и вообразите, что концы поперечной черты креста также доведены до линии горизонта. Те точки, в которых они встречаются с линией горизонта, это будут точка востока и точка запада.

Запомните раз навсегда в вашей местности точки юга, севера, востока и запада, чтобы не намечать их каждый раз. Для этого заметьте в этих точках какое- нибудь дерево, куст, строение, но только выбирайте эти цели как можно дальше от себя: иначе, если вы выберете цели близкие, то стоит вам немного сойти с места, и они уж не совпадут с точками севера, юга, востока и запада.

Припомните еще пятую точку неба — зенит: если вы поставите в середине вашего креста из двух линий высокий прямой отвесный столб и вообразите себе, что вершина этого столба уперлась в небо, то точка, в которую она упрется, это и будет зенит. Наконец, если вы вообразите себе, что ваш столб пророс вниз сквозь землю, прошел сквозь центр земного шара, вышел наружу на той стороне и там уперся в небо, то получится еще пятая точка неба, противоположная зениту, в астрономии она называется надиром.

Определяем положение звезд по звездной карте

Возвратимся к нашей задаче. Какие звезды видны у нас, например, в 11 часов вечера в середине июля, и в какой части неба искать каждую из них?

Северные околополярные звезды, до 30-й северной параллели, изображенные на круглой карте, видны все, как и во всякое время. Поставьте карту в положение 22 июня (Малая Медведица — вверх) и поверните ее против часовой стрелки на два часовых деления: получится положение звезд 22 июля в 9 ч. вечера. Поверните еще на два часовых деления: получится положение звезд в 11 часов. Внизу карты, в точке севера, будет 7-й час, а вверху, в зените, — 19-й час. Между 60-й и 45-й параллелями, то есть в зенитах разных мест от Санкт-Петербурга до Крыма, будут мелкие звездочки созвездия Дракона, а прямо к югу от зенита будет стоять Лира.

Из звезд же, изображенных на четырехугольной карте, будет видна ровно половина. В зените, как вы помните, стоит 19-й час. Положите четырехугольную карту перед собой так, чтобы против вас был 19-ый час (созвездие Стрельца). Здесь и будет точка юга — на нижнем краю карты и на 19-м часовом делении. На юге, и только на юге, над точкой юга, вы увидите на небе всю карту, с верху до низу.

Отсчитайте от точки юга шесть часов влево и шесть часов вправо: там будут точки востока (1-й час) и запада (13-й час). Но эти точки при­дется поставить уж не на нижнем краю карты, а посредине, на экваторе: на востоке и западе уж видны только созвездия севернее экватора, то есть с верху до середины карты.

Отсчитайте еще шесть часов влево от точки востока и вправо от точки запада: тот и другой отсчет сойдутся на 7 часу — там будет точка севера. Ее придется поставить на верхнем краю карты: над точкой севера не видно ни одной из звезд, изображенных на длинной карте под 7 часом, — они все будут ниже горизонта, а над горизонтом на севере будут только звезды, изображенные на круглой карте северных созвездий.

Вот способ еще короче и прямее. Установив точку юга и отметив ее на нижнем краю карты, отсчитайте от нее 12 часовых делении вправо: там будет точка севера, на верхнем краю карты. Проведите на карте прямую черту от точки юга к точке севера. Эта черта будет изображать линию горизонта. Что выше этой черты, то видно на западной стороне неба; что ниже, то скрывается под горизонтом.

Так же чертится и восточная половина линии горизонта, только надо отсчитывать от точки юга 12 часов влево. Все это понятнее на чертеже, особенно если вы сравните этот чертеж с чертежом, изображающим полный глобус, не разложенный на карты, и внутри его круг — горизонт. Этим способом нетрудно рассчитать, какие звезды видны, в какой стороне и на какой высоте над горизонтом.

Особенности ориентирования по звездной карте

Другая задача: где восходят разные звезды, где они заходят, как они идут по видимому небу и сколько времени от их восхода до заката?

Надо запомнить, что линия экватора пересекается с линией горизонта в точках востока и запада, так, например, звезда, находящаяся на Экваторе глобуса (хотя бы бета Ориона), восходит в точке востока, а заходит в точке запада и описывает дугу, наклоненную над точкою юга. Дуга эта и есть линия экватора. В Крыму линия экватора проходит по середине видимого расстояния между зенитом и точкой юга, а в Санкт-Петербурге гораздо ниже — на высоте в одну треть расстояния между зенитом и точкой юга. Звезда, находящаяся на экваторе, идет по видимому нами небу ровно 12 часов — и в Санкт-Петербурге, и в Крыму, и где бы то ни было.

Звезда, помещенная на глобусе южнее экватора, очевидно, восходит уж не на востоке, а где-нибудь на юго-востоке, между точкой востока и точкой юга. Она описывает по южной стороне видимого неба дугу ниже линии экватора и заходит на юго-востоке. Такие звезды видны на небе в течение времени меньше 12 часов. Чем южнее звезда, тем ближе к точке юга она восходит и заходит, и тем ниже, короче и кратче ее видимый путь.

Звезды, находящиеся к северу от экватора, восходят в промежутке между точкой востока и точкой севера, одним словом, — в северо-восточной четверти горизонта. Оттуда они движутся вверх и в то же время к югу, переходят в южную сторону неба, описывают дугу, наклоненную над линией экватора и заходят на северо-западе. Они описывают на видимом небесном своде дугу больше, чем в пол-круга, и остаются на небо дольше двенадцати часов.

Наконец, звезды, которые находятся еще ближе к полюсу, описывают на небесном своде полные круги около Полярной звезды и совсем не заходят, так что их можно видеть на небе во всякое время года, ночи и дня, если у вас есть телескоп.

В Крыму Полярная звезда видна посередине расстояния между зенитом и точкой севера, так что там круг, проходящий своим нижним краем через точку севера, верхним краем проходит через зенит. Этот круг, описывают звезды Капелла и Денеб: они помещаются на глобусе на 45-ой параллели, следовательно, на середине расстояния между экватором и полюсом, и сам Крым находится на середине расстояния между экватором и полюсом, приблизительно 5000 километров от того и другого.

Санкт-Петербурге ближе к полюсу, он стоит под 60-й параллелью. Здесь Полярная звезда видна на высоте в две трети расстояния от точки севера до зенита. Потому-то в Санкт-Петербурге круг незаходящих околополярных звезд в полтора раза шире, чем в Крыму.

Круги, описываемые незаходящими звездами на здешнем небе, помещаются внутри 30-й северной параллели. Они переходят своим верхним краем в южную сторону небосклона, южнее зенита, и представляются на ней в виде дуг, проходящих выше экватора. Только одна Малая Медведица здесь никогда не переходит в южную сторону неба и, даже протянувшись вверх, не достает до зенита.

Итак, на южной стороне неба все звезды описывают дуги, наклоненные серединой над точкой юга. На северной стороне неба немногие звезды, близкие к Полярной, описывают полные круги, более отдаленные звезды — тоже полные круги, но часть этих кругов проходит дугой через верх южной стороны неба.

Звезды, самые отдаленные от Полярной и близкие к экватору, чертят наклонные линии — начала и концы больших дуг, середина которых проходит по южной стороне неба выше экватора. Так изображаются пути звезд на бумаге. А на настоящем небе, как мы его видим, пути звезд представляются в виде кругов и дуг, поднимающихся наклонно от севера к югу и параллельных друг другу.

Конспект урока «Небесные координаты и звёздные карты»

Все мы не раз с вами видели, как каждое утро в восточной стороне неба восходит Солнце. Оно появляется из-за далёких предметов или неровностей земной поверхности. Затем постепенно поднимается над горизонтом и, наконец, в полдень достигает наивысшего положения на небе. В это момент человек, находящийся в северном полушарии Земли, будет видеть Солнце на юге, а находящийся в южном полушарии — на севере. После полудня Солнце постепенно опускается, приближаясь к горизонту, и заходит в западной части неба.

Такое же движение по небу в течение суток можно заметить и у других светил: Луны, звёзд и планет. В целом нам кажется, что небосвод вращается как единое целое вокруг некоторой оси, называемой нами осью мира.

При наблюдении звёзд ясной ночью в северной части неба, можно увидеть, как они, двигаясь с востока на запад, описывают концентрические круги, центр которых располагается около Полярной звезды (альфа Малой Медведицы). Эта точка называется северным полюсом мира. В южном полушарии можно найти диаметрально противоположную ей точку — южный полюс мира. Давайте также вспомним, что большой круг небесной сферы, проходящий через полюсы мира и светило, называется кругом склонения.

Как пользоваться звездной картой для определения координат

А большой круг, проходящий через центр небесной сферы и перпендикулярный оси мира, называется небесным экватором. Он делит небесную сферу на две части: Северное полушарие с вершиной в Северном полюсе мира и Южное — с вершиной в Южном полюсе мира.

Помимо этого, на небесной сфере принято указывать и видимый годовой путь Солнца среди звёзд. Он называется эклиптикой. Она наклонена к небесному экватору под углом 23 о 27′ и пересекает его в двух точках — точке весеннего (около 21 марта) и осеннего (около 23 сентября) равноденствия.

Как пользоваться звездной картой для определения координат

Сейчас же мы знаем, что вращения небосвода — это кажущееся явление, вызванное вращением Земли вокруг своей оси с запада на восток.

Видимое движение светил, происходящее из-за вращения Земли вокруг оси, называется суточным движением, а период вращения Земли вокруг оси — сутками.

На одном из первых уроков мы с вами говорили о том, что наблюдателю, находящемуся на поверхности Земли, кажется, что все звёзды расположены на некоторой сферической поверхности неба и одинаково удалены от него. Напомним, что такая воображаемая сфера произвольного радиуса была названа небесной сферой.

Для указания положения светил на небе используют систему координат, аналогичную той, которая используется в географии.

Вы уже знаете, что в географии определить положение точки на поверхности Земли нам помогают географические координаты — широта и долгота. Географическая долгота отсчитывается вдоль экватора от начального (Гринвичского) меридиана. А географическая широта — по меридианам от экватора к полюсам Земли.

Такая система координат называется экваториальной.

Аналогичную, экваториальную, систему координат удобно использовать и в астрономии, для указания положения светил на небе. В этой системе координат основным кругом небесной сферы является небесный экватор. А координатами служат склонение и прямое восхождение.

Склонение светила — это угловое расстояние светила от небесного экватора, измеренное вдоль круга склонения. Обозначается склонение малой греческой буквой δ и оно аналогично географической широте. Единственное отличие состоит в том, что у светил, расположенных к северу от экватора, склонение считается положительным, а расположенных к югу от экватора — отрицательным. При этом за начальную точку отсчёта склонения на небесном экваторе принимается точка весеннего равноденствия.

Вторая координата — прямое восхождение — указывает положение светила на небе. То есть это угловое расстояние, измеренное вдоль небесного экватора, от точки весеннего равноденствия до точки пересечения небесного экватора с кругом склонения светила.

Как пользоваться звездной картой для определения координат

Обозначается склонение малой греческой буквой α. А отсчитывается оно в сторону, противоположную суточному вращению небесной сферы, в пределах от 0 до 360 градусов или от 0 до 24 часов. Хотя в астрономии склонение принято выражать не в градусной мере, а в часовой. Если учесть, что 360 градусам соответствуют 24 часа или 1440 минут, то одному градусу соответствует 4 минуты.

У вас может возникнуть вопрос: «В чём принципиальное отличие горизонтальной системы координат (о которой мы говорили в одном из первых уроков) от экваториальной?»

Ответ достаточно прост. Вспомните, что в горизонтальной системе координаты светила на небесной сфере со временем изменяются. Следовательно, они имеют определённое значение только для известного момента времени.

В экваториальной же системе координаты звёзд не связаны с суточным движением небесной сферы и изменяются очень медленно, так как достаточно далеки от нас. Поэтому именно эта система координат применяется для составления звёздных глобусов, карт и каталогов.

Звёздные карты представляют собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в определённой системе координат.

Набор звёздных карт смежных участков неба, покрывающих всё небо или некоторую его часть, называется звёздным атласом.

А в специальных списках звёзд, называемых звёздными каталогами, указываются координаты их места на небесной сфере, звёздная величина и другие параметры. Например, в каталоге опорных звёзд-два, который также известен как Ориентировочный Каталог Космического Телескопа Хаббла, содержится более 945,5 миллионов звёзд.

Давайте остановимся и рассмотрим карту звёздного неба поподробнее. Итак, в центре нашей звёздной карты располагается северный полюс мира. Рядом с ним Полярная звезда.

Как пользоваться звездной картой для определения координат

Сетка экваториальных координат представлена на карте радиально расходящимися от центра лучами и концентрическими окружностями. На краю карты, возле каждого луча, написаны числа, обозначающие прямое восхождение (от 0 до 23 часов).

Луч, от которого начинается отсчёт прямого восхождения, проходит через точку весеннего равноденствия, обозначенную на карте символом овна. Склонение отсчитывается по этим лучам от окружности, которая изображает небесный экватор и имеет обозначение ноль градусов. Остальные окружности также имеют оцифровку, которая показывает, какое склонение имеет объект, расположенный на этой окружности.

В зависимости от звёздной величины звёзды изображают на карте кружками различного диаметра. Те из них, которые образуют характерные фигуры созвездий, соединены сплошными линиями. А границы созвездий обозначены пунктиром.

Теперь давайте посмотрим, как пользоваться звёздной картой. Для этого определим экваториальные координаты Альтаира (это альфа Орла), Сириуса (это альфа Большого Пса) и Веги (это альфа Лиры).

Как пользоваться звездной картой для определения координат

А теперь давайте с вами решим обратную задачу, то есть найдём звезду по её координатам. Итак, пусть склонение звезды равно 35 о , а прямое восхождение — 1 ч 6 м .

Для того, чтобы найти ответ на поставленный вопрос, мы с вами должны выполнить все те же действия, что и в прошлый раз, но только в обратном порядке. То есть сначала на карте мы находим заданное нам прямое восхождение светила. Далее строим мысленный отрезок (или прикладываем линейку) так, чтобы он соединил нашу точку с центром карты звёздного неба. Теперь находим окружность, обозначающую склонение в 30 о и откладываем от неё примерно 5 о вверх. Как видим, мы попали на звезду бета Андромеды.

Стоит отметить, что картой звёздного неба можно пользоваться не только для нахождения координат звёзд, но и для определения вида звёздного неба в интересующий момент времени определённой даты. А также определять моменты восхода и захода звёзд, Солнца или планет.

Склонение (астрономия)

  • Склонение (δ) в астрономии — одна из двух координат экваториальной системы координат. Равняется угловому расстоянию на небесной сфере от плоскости небесного экватора до светила и обычно выражается в градусах, минутах и секундах дуги. Склонение положительно к северу от небесного экватора и отрицательно к югу от него.

    * Объект на небесном экваторе имеет склонение 0°

    * Склонение северного полюса небесной сферы равно +90°

    Склонение южного полюса равно −90°У склонения всегда указывается знак, даже если оно положительно.

    Склонение небесного объекта, проходящего через зенит, равно широте наблюдателя (если считать северную широту со знаком +, а южную со знаком −).

    В северном полушарии Земли для заданной широты φ небесные объекты со склонением δ > 90° − φ не заходят за горизонт, поэтому называются незаходящими. Если же склонение объекта δ < −90° + φ, то объект называется невосходящим, то есть он не наблюдаем на широте φ. В южном полушарии Земли незаходящими являются небесные объекты со склонением δ < −90° − φ, а невосходящими — со склонением δ > 90° + φ (φ для южного полушария берётся со знаком минус).

Источник: Википедия

Связанные понятия

Прямое восхождение (α, R. A. — от англ. right ascension) — длина дуги небесного экватора от точки весеннего равноденствия до круга склонения светила. Прямое восхождение — одна из координат второй экваториальной системы (есть ещё и первая, в которой используется часовой угол). Вторая координата — склонение.

Небе́сный эква́тор — большой круг небесной сферы, плоскость которого перпендикулярна оси мира и совпадает с плоскостью земного экватора. Небесный экватор делит небесную сферу на два полушария: северное полушарие, с вершиной в северном полюсе мира, и южное полушарие, с вершиной в южном полюсе мира. Созвездия, через которые проходит небесный экватор, называют экваториальными.

Небе́сная сфе́ра — воображаемая сфера произвольного радиуса, на которую проецируются небесные тела: служит для решения различных астрометрических задач. За центр небесной сферы принимают глаз наблюдателя; при этом наблюдатель может находиться как на поверхности Земли, так и в других точках пространства (например, он может быть отнесён к центру Земли). Для наземного наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе.

Эпоха в астрономии (от греч. έποχή — «остановка») — момент времени, для которого определены астрономические координаты или элементы орбиты. Астрономические координаты могут быть пересчитаны из одной эпохи в другую с учётом прецессии, а также собственного движения.

Полюс мира — точка на небесной сфере, вокруг которой происходит видимое суточное движение звёзд из-за вращения Земли вокруг своей оси. Направление на Северный полюс мира совпадает с направлением на географический север, а на Южный полюс мира — с направлением на географический юг. Северный полюс мира находится в созвездии Малой Медведицы с поляриссимой — Полярной звездой, южный — в созвездии Октант. В результате прецессии земной оси полюса мира смещаются примерно на 20 » в год.

Упоминания в литературе

Экваториальную систему координат, которая строится на небесном экваторе, астрологи тоже применяют. Прямое восхождение (ά) и склонение (δ) – это две координаты, которые в данной системе определяют местонахождение небесного тела.

Вообще собственные движения звезд хоть и малы, но для ближайших звезд весьма заметны на больших промежутках времени. Например, нынешнее угловое склонение той же Альфы Центавра равно примерно минус 60°, то есть увидеть ее невозможно не только из средних, но и из субтропических северных широт. Однако древним египтянам эта звезда была хорошо знакома: в IV тысячелетии до н. э. она располагалась на небе всего в 30° южнее небесного экватора. Небесные объекты с таким склонением можно прекрасно наблюдать даже Крыму, не то что в Египте.

Локьер оставил достаточно практических советов для будущих астроархеологов. Он составил целый набор четких графиков для определения склонения звезды (для широт от 49° до 59°) от определенного азимута (рис. 11). Он справедливо отметил, какое значение имеет линия горизонта и как рефракция влияет на расчеты. По его мнению, линию горизонта можно примерно определить по контурным линиям на 1-дюймовых военно-топографических картах или их эквивалентах. Другими полезными цифрами являются изменения склонений самых ярких звезд, встречающиеся в расчетах древних жрецов-астрономов. Они показывают изменения склонения звезд (связанные с прецессией), рассчитанные на период от –2150 до –150. Изучение этих цифр подчеркивает одну из проблем, о которой уже упоминалось ранее (выше), то есть предварительно необходимо знать приблизительную дату(ы), когда именно проводилось какое-либо наблюдение за звездами. Например, если звезда № 26 (Спика, альфа Девы) и звезда № 25 (Бетельгейзе, альфа Ориона) находились на значительном расстоянии друг от друга в своем склонении в –2000, то примерно в –650 значения их склонения были такими же.

Чтобы пользоваться чертежом, надо знать, как велико угловое расстояние («склонение») Солнца от экватора в ту или иную сторону для различных дней года. Соответствующие данные указаны в табличке на стр. 23.

Чтобы пользоваться чертежом, надо знать, как велико угловое расстояние («склонение») Солнца от экватора в ту или иную сторону для различных дней года. Соответствующие данные указаны в табличке на стр. 28.

Связанные понятия (продолжение)

Галактическая система координат — это система небесных координат, имеющая начало отсчёта в Солнце и направление отсчёта от центра галактики Млечный Путь. Плоскость галактической системы координат совпадает с плоскостью галактического диска. Подобно географическим, галактические координаты имеют широту и долготу.

Экли́птика (от лат. (linea) ecliptica, от др.-греч. ἔκλειψις — затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. Соответственно плоскость эклиптики — плоскость обращения Земли вокруг Солнца (земной орбиты). Современное, более точное определение эклиптики — сечение небесной сферы плоскостью орбиты барицентра системы Земля — Луна.

Эклиптическая система координат, или эклиптикальные координаты:49 — это система небесных координат, в которой основной плоскостью является плоскость эклиптики, а полюсом — полюс эклиптики. Она применяется при наблюдениях за движением небесных тел Солнечной системы, плоскости орбит многих из которых, как известно, близки к плоскости эклиптики, а также при наблюдениях за видимым перемещением Солнца по небу за год:30.

Система небесных координат используется в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, система небесных координат является сферической системой координат, в которой третья координата — расстояние — часто неизвестна и не играет роли.

Астрономи́ческая едини́ца (русское обозначение: а.е.; международное: с 2012 года — au; ранее использовалось обозначение ua) — исторически сложившаяся единица измерения расстояний в астрономии. Исходно принималась равной большой полуоси орбиты Земли, которая в астрономии считается средним расстоянием от Земли до Солнца:126.

Пятьдесят восемь навигационных звёзд имеют особый статус в области астрономической навигации. Из приблизительно 6000 звёзд, видимых невооруженным глазом в оптимальных условиях, выбранные звёзды являются одними из самых ярких и охватывают 38 созвездий на небесной сфере от склонения -70° до +89 °. Многие из навигационных звёзд были названы в древности вавилонянами, греками, римлянами и арабами.

Сидери́ческий пери́од обраще́ния (от лат. sidus, звезда; род. падеж sideris) — промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звёзд. Понятие «сидерический период обращения» применяется к обращающимся вокруг Земли телам — Луне (сидерический месяц) и искусственным спутникам, а также к обращающимся вокруг Солнца планетам, кометам и др.

Галактическая плоскость — плоскость, в которой расположена большая часть массы дисковой галактики. Перпендикулярные к галактической плоскости направления указывают на полюса галактики. Наиболее часто термины «галактическая плоскость» и «полюса галактики» применяются для обозначения плоскости и полюсов Млечного Пути.

Угловой размер (иногда также угол зрения) — это угол между прямыми линиями, соединяющими диаметрально противоположные крайние точки измеряемого (наблюдаемого) объекта и глаз наблюдателя.

Окта́нт (лат. Octans) — маленькое и очень тусклое созвездие южного полушария неба, включающее Южный полюс мира.

Предварение равноденствий (лат. praecessio aequinoctiorum) — историческое название для постепенного смещения точек весеннего и осеннего равноденствий (то есть точек пересечения небесного экватора с эклиптикой) навстречу видимому годичному движению Солнца. Другими словами, каждый год весеннее равноденствие наступает немного раньше, чем в предыдущем году — примерно на 20 минут 24 секунды. В угловых единицах смещение составляет сейчас примерно 50,3″ в год, или 1 градус каждые 71,6 года. Это смещение…

Радиа́нт (лат. radians, род. п. лат. radiantis — излучающий) — область небесной сферы, кажущаяся источником метеоров, которые наблюдаются при встрече Земли с роем метеорных тел, движущихся вокруг Солнца по общей орбите.

Преце́ссия — явление, при котором момент импульса тела меняет своё направление в пространстве.

Покры́тие — это астрономическое явление, во время которого, с точки зрения наблюдателя из определённой точки, одно небесное тело проходит перед другим небесным телом, заслоняя его часть.

Кульминация (астрономия) — прохождение центра светила через небесный меридиан в процессе его суточного движения. Иначе — прохождение центром светила точки пересечения суточной параллели светила и небесного меридиана.

В списке приведены самые яркие звёзды, наблюдаемые с Земли, в оптическом диапазоне по видимой звёздной величине. Для кратных звёзд приведена суммарная звёздная величина.

Подробнее: Список самых ярких звёзд

Звёздная величина́ (блеск) — безразмерная числовая характеристика яркости объекта, обозначаемая буквой m (от лат. magnitudo «величина, размер»). Обычно понятие применяется к небесным светилам. Звёздная величина характеризует поток энергии от рассматриваемого светила (энергию всех фотонов в секунду) на единицу площади. Таким образом, видимая звёздная величина зависит и от физических характеристик самого объекта (то есть светимости), и от расстояния до него. Чем меньше значение звёздной величины, тем…

Зодиакальные созвездия (от греч. ζωδιακός, «звериный») — 13 созвездий, расположенных вдоль эклиптики, видимого годового пути Солнца среди звёзд. Название связано с тем, что большинство зодиакальных созвездий с древних времён носит названия животных.

Ма́сса Земли́ (в астрономии обозначается M⊕, где ⊕ — символ Земли) — масса планеты Земля, в астрономии используется как внесистемная единица массы. 1 M⊕ = (5,9722 ± 0,0006) × 1024 кг.

Фе́никс (лат. Phoenix, Phe) — созвездие южного полушария неба. Занимает на небе площадь в 469,3 квадратного градуса, содержит 68 звёзд, видимых невооружённым глазом.

Спектрально-двойной — называют систему двойных звёзд, если двойственность обнаруживается при помощи спектральных наблюдений. Обычно это системы, у которых скорости компонентов достаточно велики, а расположены они настолько близко, что увидеть их раздельно с использованием современных телескопов невозможно. В результате орбитального движения звёзд вокруг центра масс одна из них приближается к нам, а другая от нас удаляется, их лучевые скорости (вдоль направления на наблюдателя) неодинаковы и, как…

Подробнее: Спектрально-двойные звёзды

Науго́льник (лат. Norma) — созвездие южного полушария неба, лежит к юго-западу от Скорпиона, севернее Южного Треугольника, в контакте с Циркулем. Через него проходят обе ветви Млечного Пути, но эта область неба бедна яркими звёздами. Созвездие не содержит звёзд ярче 4,0 визуальной звёздной величины, 42 звезды, видимые невооружённым глазом, площадь на небе 165,3 квадратного градуса. Наилучшие условия для наблюдений в мае — июне, частично наблюдается в южных районах России (к югу от 48 С.Ш). В созвездии…

Же́ртвенник (лат. Ara) — созвездие южного полушария неба. Площадь 237,0 кв. градуса, 60 звёзд, видимых невооружённым глазом. На юге России (южнее широты 44° 30′) небольшая часть созвездия (но без ярких звёзд) восходит совсем низко над горизонтом в мае-июне. Звезда α Жертвенника (звёздная величина 2,95) в России не наблюдается, но при благоприятных условиях заметна вблизи линии горизонта в южных городах постсоветского пространства, расположенных южнее широты 40° 08′ (Бухаре, Самарканде, Нахичевани…

Золота́я Ры́ба (порт. Dorado от лат. Doradus) — созвездие южного полушария неба. Занимает на небе площадь в 179,2 квадратного градуса. Содержит 32 звезды, видимых невооружённым глазом.

В этот список ближайших к Земле звёзд, отсортированный в порядке увеличения расстояния, вошли звёзды, расположенные в радиусе 5 пк (16,308 св. года) от Земли. Включая Солнце, в настоящее время известны 57 звёздных систем, которые могут находиться в пределах этого расстояния. Эти системы содержат в общей сложности 64 звезды и 13 коричневых карликов.

Прохожде́ние, или астрономи́ческий транзи́т — это астрономическое явление, во время которого с точки зрения наблюдателя из определённой точки одно небесное тело проходит перед другим небесным телом, заслоняя его часть.

Противостояние (оппозиция) — такое положение небесного тела Солнечной системы, в котором разница эклиптических долгот его и Солнца равна 180°. Таким образом, это тело находится примерно на продолжении линии «Солнце — Земля» и видно с Земли примерно в противоположном Солнцу направлении. Противостояние возможно только для верхних планет и других тел, находящихся дальше от Солнца, чем Земля.

Возни́чий (лат. Auriga) — созвездие северного полушария неба. Самая яркая звезда — Капелла, 0,1 визуальной звёздной величины. Наиболее благоприятные условия видимости в декабре — январе. Видно на всей территории России.

Синоди́ческий пери́од обраще́ния (от греч. σύνοδος — соединение) — промежуток времени между двумя последовательными соединениями Луны или какой-нибудь планеты Солнечной системы с Солнцем при наблюдении за ними с Земли. При этом соединения планет с Солнцем должны происходить в фиксированном линейном порядке, что существенно для внутренних планет: например, это будут последовательные верхние соединения, когда планета проходит за Солнцем.

Микроско́п (лат. Microscopium) — небольшое созвездие южного полушария неба. Лежит к югу от Козерога, к северу от Индейца, восточнее Стрельца и западнее Южной Рыбы и Журавля.

Орёл (лат. Aquila) — экваториальное созвездие. Западная его часть лежит в восточной ветви Млечного Пути, южнее Стрелы. Площадь созвездия — 652,5 квадратного градуса, число звёзд ярче 6m — 70.

Кассиопе́я (лат. Cassiopeia) — созвездие Северного полушария неба. Ярчайшие звёзды Кассиопеи (от 2,2 до 3,4 звёздной величины) образуют фигуру, похожую на буквы «М» или «W». Созвездие занимает на небе площадь в 598,4 квадратного градуса и содержит около 90 звёзд ярче 6m (то есть видимых невооружённым глазом). Большая часть созвездия лежит в полосе Млечного Пути и содержит много рассеянных звёздных скоплений.

Переменные звезды имеют специальные обозначения, если они ещё не были обозначены буквой греческого алфавита, в формате обозначения Байера, в сочетании с именем созвездия в родительном падеже, в котором эта звезда находится. (см. Список созвездий и их латинское название (родительный падеж)).

Подробнее: Обозначения переменных звёзд

Большая полуось — один из основных геометрических параметров объектов, образованных посредством конического сечения.

Ове́н (лат. Aries) — одно из наиболее известных зодиакальных созвездий, хотя в нём нет звёзд ярче второй величины. Три главные звезды — Хамаль («голова барана»), Шератан («след» или «знак») и Мезартим (соответственно α, β, и γ Овна) легко найти: они лежат к югу от Треугольника. Звезда четвёртой величины Мезартим стала одной из первых двойных звезд, открытых при помощи телескопа (Робертом Гуком в 1664 году).

Астрономический объект или Небесное тело — естественное физическое тело, ассоциация, или структура, которую современная наука определяет как расположенную в наблюдаемой Вселенной. Термин «астрономический объект» нередко используется наравне с термином «тело». Как правило, «небесное тело» представляет собой обособленную, единую, связанную гравитацией (а иногда и электромагнетизмом) структуру. Например: астероиды, спутники, планеты и звёзды. «Астрономические объекты» — гравитационно связанные структуры…

Звёздные су́тки — период вращения какого-либо небесного тела вокруг собственной оси в инерциальной системе отсчёта, за которую обычно принимается система отсчёта, связанная с удалёнными звёздами. Для Земли это время, за которое Земля совершает один оборот вокруг своей оси по отношению к далёким звёздам.

Абсолютная звёздная величина — физическая величина, характеризующая светимость астрономического объекта. Для разных типов объектов используются разные определения абсолютной величины.

Живопи́сец (лат. Pictor) — маленькое созвездие южного полушария неба. Занимает на небе площадь в 247,7 квадратного градуса, содержит 49 звёзд, видимых невооружённым глазом. На юге России (южнее широты +47°) восходит небольшая часть созвездия (но без ярких звёзд). Первая относительно яркая звезда созвездия — β Живописца (её звёздная величина 3,85) восходит южнее широты +38°56′ (в пределах территории бывшего СССР она восходит в Душанбе, Астаре, Ашхабаде, Кушке). В созвездии Живописца находится звезда…

Се́тка (лат. Reticulum, Ret) — созвездие южного полушария неба. Занимает на небе площадь в 113,9 квадратного градуса, содержит 22 звезды, видимые невооружённым глазом.

Компас (лат. Pyxis, Pyx) — созвездие южного полушария неба. Занимает на небе площадь в 220,8 квадратного градуса, содержит 43 звёзды, видимые невооружённым глазом. На территории России полностью наблюдается в южных районах, а также на юге центральных. Лучшее время года для наблюдения — февраль-март.

Единоро́г (лат. Monoceros от греч. μονόκερως), экваториальное созвездие. Занимает на небе площадь в 481,6 квадратного градуса и содержит 146 звёзд, видимых невооружённым глазом. Лежит в Млечном пути, однако ярких звёзд не содержит. Местонахождение созвездия — внутри зимнего треугольника, образованного яркими звёздами — Сириусом, Проционом и Бетельгейзе, по которым его легко найти. Единорог — одно из 15 созвездий, через которые проходит линия небесного экватора. Видно в центральных и южных районах…

Тука́н (лат. Tucana, Tuc) — созвездие южного полушария неба. Занимает на небе площадь в 294,6 квадратного градуса, содержит 44 звезды, видимые невооружённым глазом.

Накло́н о́си враще́ния — угол отклонения оси вращения небесного тела от перпендикуляра к плоскости его орбиты. Другими словами — угол между плоскостями экватора небесного тела и его орбиты.

Упоминания в литературе (продолжение)

Для удобства описания границ созвездий их решено было проводить в виде ломаных линий, проходящих точно по сетке постоянных небесных координат – склонений и прямых восхождений. При этом созвездия стали напоминать некоторые африканские страны и американские штаты, границы которых проведены по параллелям и меридианам. Ну что же, это вполне рациональный способ, позволяющий легко закрепить границы в математической форме. Однако со временем в этой изящной идее стал проявляться один мелкий недостаток.

Земного экватора на небесной сфере) полосой ? 30°, звезды бога Ану (бог Неба) – по склонению от + 30° до + 60° и звезды бога Энлиля (бог Земли) – околополярные звезды со склонениями больше + 60°. Астрологический сборник «Энума, Ану, Энлиль» был самым основным и важным руководством для практического применения.

Род определяется по окончаниям им. п. ед. ч., свойственным определенному роду в пределах данного склонения. Следовательно, для того чтобы определить род любого существительного III склонения, надо учитывать три момента:

Существительные III склонения встречались крайне редко, например: os, corpus, caput, foramen, dens. Такой методический подход был абсолютно оправдан. III склонение – самое трудное для усвоения и имеет ряд особенностей, отличающих его от остальных склонений.

Часы, изготовленные человеком, измеряют пренебрежимо малые с эволюционной точки зрения доли – часы, минуты, секунды – и поэтому основаны на быстрых динамических процессах: качании маятника, раскручивании пружины, колебаниях кристаллов, горении свечи, вытекании воды из сосуда или высыпании песка, вращении Земли (определяемом по движению солнечной тени). Эти процессы протекают с известной постоянной скоростью. Маятник качается с известной частотой, определяемой, по крайней мере в теории, только его длиной, но не амплитудой колебаний и не массой груза на его конце. Напольные часы работают благодаря присоединению маятника к анкеру, передающему движение зубчатому колесу, которое при помощи системы шестеренок обеспечивает ход секундной, минутной и часовой стрелок. Пружинные часы работают почти так же. Кварцевые часы работают при помощи эквивалента маятника – колебаний кристаллов определенного вида под воздействием энергии, поставляемой батарейкой. Водяные и огненные часы обладают куда меньшей точностью, но ими широко пользовались до изобретения часов, основанных на постоянстве хода. Они основаны не на подсчете отрезков времени, как маятниковые или цифровые часы, а на измерении объема. Солнечные часы – неточный способ измерения времени. Однако вращение Земли позволяет создать более точные, хотя и медленные часы, которые мы называем календарем. Это происходит именно потому, что при таком масштабе часы становятся не измеряющими (как солнечные часы, измеряющие постоянно меняющееся склонение солнца), а счетными (подсчитывающими число циклов день/ночь).

Группа артиклевых слов выделяется также и авторами коллективного труда «Grundzüge einer deutschen Grammatik», однако это не означает отказа от местоимения как части речи. Они отмечают, что артиклевые слова (местоимения) характеризуются тем, что они влияют на флексию последующего прилагательного: следующее за ними прилагательное изменяется по слабому склонению. К подобного рода словам они относят: diese, alle, jede, welche и другие. Они ведут себя так же, как и определенный артикль. Как видно, критерии выделения артиклевых слов разные: у Фатера Г., Гримма Г. – невозможность перестановки артикля без существительного, невозможность употребления другого слова перед артиклем, а у авторов «Grundzüge einer deutschen Grammatik» – влияние артикля на следующее за ним прилагательное.

Обновлено: 28.05.2023

  • Склонение (δ) в астрономии — одна из двух координат экваториальной системы координат. Равняется угловому расстоянию на небесной сфере от плоскости небесного экватора до светила и обычно выражается в градусах, минутах и секундах дуги. Склонение положительно к северу от небесного экватора и отрицательно к югу от него.

* Объект на небесном экваторе имеет склонение 0°

* Склонение северного полюса небесной сферы равно +90°

Склонение южного полюса равно −90°У склонения всегда указывается знак, даже если оно положительно.

Склонение небесного объекта, проходящего через зенит, равно широте наблюдателя (если считать северную широту со знаком +, а южную со знаком −).

Связанные понятия

Прямое восхождение (α, R. A. — от англ. right ascension) — длина дуги небесного экватора от точки весеннего равноденствия до круга склонения светила. Прямое восхождение — одна из координат второй экваториальной системы (есть ещё и первая, в которой используется часовой угол). Вторая координата — склонение.

Небе́сный эква́тор — большой круг небесной сферы, плоскость которого перпендикулярна оси мира и совпадает с плоскостью земного экватора. Небесный экватор делит небесную сферу на два полушария: северное полушарие, с вершиной в северном полюсе мира, и южное полушарие, с вершиной в южном полюсе мира. Созвездия, через которые проходит небесный экватор, называют экваториальными.

Небе́сная сфе́ра — воображаемая сфера произвольного радиуса, на которую проецируются небесные тела: служит для решения различных астрометрических задач. За центр небесной сферы принимают глаз наблюдателя; при этом наблюдатель может находиться как на поверхности Земли, так и в других точках пространства (например, он может быть отнесён к центру Земли). Для наземного наблюдателя вращение небесной сферы воспроизводит суточное движение светил на небе.

Полюс мира — точка на небесной сфере, вокруг которой происходит видимое суточное движение звёзд из-за вращения Земли вокруг своей оси. Направление на Северный полюс мира совпадает с направлением на географический север, а на Южный полюс мира — с направлением на географический юг. Северный полюс мира находится в созвездии Малой Медведицы с поляриссимой — Полярной звездой, южный — в созвездии Октант. В результате прецессии земной оси полюса мира смещаются примерно на 20 » в год.

Упоминания в литературе

Экваториальную систему координат, которая строится на небесном экваторе, астрологи тоже применяют. Прямое восхождение (ά) и склонение (δ) – это две координаты, которые в данной системе определяют местонахождение небесного тела.

Вообще собственные движения звезд хоть и малы, но для ближайших звезд весьма заметны на больших промежутках времени. Например, нынешнее угловое склонение той же Альфы Центавра равно примерно минус 60°, то есть увидеть ее невозможно не только из средних, но и из субтропических северных широт. Однако древним египтянам эта звезда была хорошо знакома: в IV тысячелетии до н. э. она располагалась на небе всего в 30° южнее небесного экватора. Небесные объекты с таким склонением можно прекрасно наблюдать даже Крыму, не то что в Египте.

Локьер оставил достаточно практических советов для будущих астроархеологов. Он составил целый набор четких графиков для определения склонения звезды (для широт от 49° до 59°) от определенного азимута (рис. 11). Он справедливо отметил, какое значение имеет линия горизонта и как рефракция влияет на расчеты. По его мнению, линию горизонта можно примерно определить по контурным линиям на 1-дюймовых военно-топографических картах или их эквивалентах. Другими полезными цифрами являются изменения склонений самых ярких звезд, встречающиеся в расчетах древних жрецов-астрономов. Они показывают изменения склонения звезд (связанные с прецессией), рассчитанные на период от –2150 до –150. Изучение этих цифр подчеркивает одну из проблем, о которой уже упоминалось ранее (выше), то есть предварительно необходимо знать приблизительную дату(ы), когда именно проводилось какое-либо наблюдение за звездами. Например, если звезда № 26 (Спика, альфа Девы) и звезда № 25 (Бетельгейзе, альфа Ориона) находились на значительном расстоянии друг от друга в своем склонении в –2000, то примерно в –650 значения их склонения были такими же.

Связанные понятия (продолжение)

Галактическая система координат — это система небесных координат, имеющая начало отсчёта в Солнце и направление отсчёта от центра галактики Млечный Путь. Плоскость галактической системы координат совпадает с плоскостью галактического диска. Подобно географическим, галактические координаты имеют широту и долготу.

Экли́птика (от лат. (linea) ecliptica, от др.-греч. ἔκλειψις — затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца. Соответственно плоскость эклиптики — плоскость обращения Земли вокруг Солнца (земной орбиты). Современное, более точное определение эклиптики — сечение небесной сферы плоскостью орбиты барицентра системы Земля — Луна.

Эклиптическая система координат, или эклиптикальные координаты:49 — это система небесных координат, в которой основной плоскостью является плоскость эклиптики, а полюсом — полюс эклиптики. Она применяется при наблюдениях за движением небесных тел Солнечной системы, плоскости орбит многих из которых, как известно, близки к плоскости эклиптики, а также при наблюдениях за видимым перемещением Солнца по небу за год:30.

Система небесных координат используется в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, система небесных координат является сферической системой координат, в которой третья координата — расстояние — часто неизвестна и не играет роли.

Астрономи́ческая едини́ца (русское обозначение: а.е.; международное: с 2012 года — au; ранее использовалось обозначение ua) — исторически сложившаяся единица измерения расстояний в астрономии. Исходно принималась равной большой полуоси орбиты Земли, которая в астрономии считается средним расстоянием от Земли до Солнца:126.

Пятьдесят восемь навигационных звёзд имеют особый статус в области астрономической навигации. Из приблизительно 6000 звёзд, видимых невооруженным глазом в оптимальных условиях, выбранные звёзды являются одними из самых ярких и охватывают 38 созвездий на небесной сфере от склонения -70° до +89 °. Многие из навигационных звёзд были названы в древности вавилонянами, греками, римлянами и арабами.

Угловой размер (иногда также угол зрения) — это угол между прямыми линиями, соединяющими диаметрально противоположные крайние точки измеряемого (наблюдаемого) объекта и глаз наблюдателя.

Окта́нт (лат. Octans) — маленькое и очень тусклое созвездие южного полушария неба, включающее Южный полюс мира.

Предварение равноденствий (лат. praecessio aequinoctiorum) — историческое название для постепенного смещения точек весеннего и осеннего равноденствий (то есть точек пересечения небесного экватора с эклиптикой) навстречу видимому годичному движению Солнца. Другими словами, каждый год весеннее равноденствие наступает немного раньше, чем в предыдущем году — примерно на 20 минут 24 секунды. В угловых единицах смещение составляет сейчас примерно 50,3″ в год, или 1 градус каждые 71,6 года. Это смещение.

Радиа́нт (лат. radians, род. п. лат. radiantis — излучающий) — область небесной сферы, кажущаяся источником метеоров, которые наблюдаются при встрече Земли с роем метеорных тел, движущихся вокруг Солнца по общей орбите.

Покры́тие — это астрономическое явление, во время которого, с точки зрения наблюдателя из определённой точки, одно небесное тело проходит перед другим небесным телом, заслоняя его часть.

Кульминация (астрономия) — прохождение центра светила через небесный меридиан в процессе его суточного движения. Иначе — прохождение центром светила точки пересечения суточной параллели светила и небесного меридиана.

В списке приведены самые яркие звёзды, наблюдаемые с Земли, в оптическом диапазоне по видимой звёздной величине. Для кратных звёзд приведена суммарная звёздная величина.

Ма́сса Земли́ (в астрономии обозначается M⊕, где ⊕ — символ Земли) — масса планеты Земля, в астрономии используется как внесистемная единица массы. 1 M⊕ = (5,9722 ± 0,0006) × 1024 кг.

Фе́никс (лат. Phoenix, Phe) — созвездие южного полушария неба. Занимает на небе площадь в 469,3 квадратного градуса, содержит 68 звёзд, видимых невооружённым глазом.

Спектрально-двойной — называют систему двойных звёзд, если двойственность обнаруживается при помощи спектральных наблюдений. Обычно это системы, у которых скорости компонентов достаточно велики, а расположены они настолько близко, что увидеть их раздельно с использованием современных телескопов невозможно. В результате орбитального движения звёзд вокруг центра масс одна из них приближается к нам, а другая от нас удаляется, их лучевые скорости (вдоль направления на наблюдателя) неодинаковы и, как.

Науго́льник (лат. Norma) — созвездие южного полушария неба, лежит к юго-западу от Скорпиона, севернее Южного Треугольника, в контакте с Циркулем. Через него проходят обе ветви Млечного Пути, но эта область неба бедна яркими звёздами. Созвездие не содержит звёзд ярче 4,0 визуальной звёздной величины, 42 звезды, видимые невооружённым глазом, площадь на небе 165,3 квадратного градуса. Наилучшие условия для наблюдений в мае — июне, частично наблюдается в южных районах России (к югу от 48 С.Ш). В созвездии.

Же́ртвенник (лат. Ara) — созвездие южного полушария неба. Площадь 237,0 кв. градуса, 60 звёзд, видимых невооружённым глазом. На юге России (южнее широты 44° 30′) небольшая часть созвездия (но без ярких звёзд) восходит совсем низко над горизонтом в мае-июне. Звезда α Жертвенника (звёздная величина 2,95) в России не наблюдается, но при благоприятных условиях заметна вблизи линии горизонта в южных городах постсоветского пространства, расположенных южнее широты 40° 08′ (Бухаре, Самарканде, Нахичевани.

Золота́я Ры́ба (порт. Dorado от лат. Doradus) — созвездие южного полушария неба. Занимает на небе площадь в 179,2 квадратного градуса. Содержит 32 звезды, видимых невооружённым глазом.

В этот список ближайших к Земле звёзд, отсортированный в порядке увеличения расстояния, вошли звёзды, расположенные в радиусе 5 пк (16,308 св. года) от Земли. Включая Солнце, в настоящее время известны 57 звёздных систем, которые могут находиться в пределах этого расстояния. Эти системы содержат в общей сложности 64 звезды и 13 коричневых карликов.

Прохожде́ние, или астрономи́ческий транзи́т — это астрономическое явление, во время которого с точки зрения наблюдателя из определённой точки одно небесное тело проходит перед другим небесным телом, заслоняя его часть.

Возни́чий (лат. Auriga) — созвездие северного полушария неба. Самая яркая звезда — Капелла, 0,1 визуальной звёздной величины. Наиболее благоприятные условия видимости в декабре — январе. Видно на всей территории России.

Синоди́ческий пери́од обраще́ния (от греч. σύνοδος — соединение) — промежуток времени между двумя последовательными соединениями Луны или какой-нибудь планеты Солнечной системы с Солнцем при наблюдении за ними с Земли. При этом соединения планет с Солнцем должны происходить в фиксированном линейном порядке, что существенно для внутренних планет: например, это будут последовательные верхние соединения, когда планета проходит за Солнцем.

Микроско́п (лат. Microscopium) — небольшое созвездие южного полушария неба. Лежит к югу от Козерога, к северу от Индейца, восточнее Стрельца и западнее Южной Рыбы и Журавля.

Орёл (лат. Aquila) — экваториальное созвездие. Западная его часть лежит в восточной ветви Млечного Пути, южнее Стрелы. Площадь созвездия — 652,5 квадратного градуса, число звёзд ярче 6m — 70.

International Celestial Reference System (ICRS, Международная небесная система координат или Международная система астрономических координат) — с 1998 года стандартная небесная система координат. Принята на 23-м съезде МАС в 1997 году. Началом отсчёта является барицентр Солнечной системы. Координаты в этой системе максимально приближены к экваториальным эпохи J2000.0 (расхождение составляет доли секунды дуги).

Переменные звезды имеют специальные обозначения, если они ещё не были обозначены буквой греческого алфавита, в формате обозначения Байера, в сочетании с именем созвездия в родительном падеже, в котором эта звезда находится. (см. Список созвездий и их латинское название (родительный падеж)).

Большая полуось — один из основных геометрических параметров объектов, образованных посредством конического сечения.

Звёздные су́тки — период вращения какого-либо небесного тела вокруг собственной оси в инерциальной системе отсчёта, за которую обычно принимается система отсчёта, связанная с удалёнными звёздами. Для Земли это время, за которое Земля совершает один оборот вокруг своей оси по отношению к далёким звёздам.

Абсолютная звёздная величина — физическая величина, характеризующая светимость астрономического объекта. Для разных типов объектов используются разные определения абсолютной величины.

Живопи́сец (лат. Pictor) — маленькое созвездие южного полушария неба. Занимает на небе площадь в 247,7 квадратного градуса, содержит 49 звёзд, видимых невооружённым глазом. На юге России (южнее широты +47°) восходит небольшая часть созвездия (но без ярких звёзд). Первая относительно яркая звезда созвездия — β Живописца (её звёздная величина 3,85) восходит южнее широты +38°56′ (в пределах территории бывшего СССР она восходит в Душанбе, Астаре, Ашхабаде, Кушке). В созвездии Живописца находится звезда.

Се́тка (лат. Reticulum, Ret) — созвездие южного полушария неба. Занимает на небе площадь в 113,9 квадратного градуса, содержит 22 звезды, видимые невооружённым глазом.

Компас (лат. Pyxis, Pyx) — созвездие южного полушария неба. Занимает на небе площадь в 220,8 квадратного градуса, содержит 43 звёзды, видимые невооружённым глазом. На территории России полностью наблюдается в южных районах, а также на юге центральных. Лучшее время года для наблюдения — февраль-март.

Единоро́г (лат. Monoceros от греч. μονόκερως), экваториальное созвездие. Занимает на небе площадь в 481,6 квадратного градуса и содержит 146 звёзд, видимых невооружённым глазом. Лежит в Млечном пути, однако ярких звёзд не содержит. Местонахождение созвездия — внутри зимнего треугольника, образованного яркими звёздами — Сириусом, Проционом и Бетельгейзе, по которым его легко найти. Единорог — одно из 15 созвездий, через которые проходит линия небесного экватора. Видно в центральных и южных районах.

Тука́н (лат. Tucana, Tuc) — созвездие южного полушария неба. Занимает на небе площадь в 294,6 квадратного градуса, содержит 44 звезды, видимые невооружённым глазом.

Накло́н о́си враще́ния — угол отклонения оси вращения небесного тела от перпендикуляра к плоскости его орбиты. Другими словами — угол между плоскостями экватора небесного тела и его орбиты.

Упоминания в литературе (продолжение)

Для удобства описания границ созвездий их решено было проводить в виде ломаных линий, проходящих точно по сетке постоянных небесных координат – склонений и прямых восхождений. При этом созвездия стали напоминать некоторые африканские страны и американские штаты, границы которых проведены по параллелям и меридианам. Ну что же, это вполне рациональный способ, позволяющий легко закрепить границы в математической форме. Однако со временем в этой изящной идее стал проявляться один мелкий недостаток.

Род определяется по окончаниям им. п. ед. ч., свойственным определенному роду в пределах данного склонения. Следовательно, для того чтобы определить род любого существительного III склонения, надо учитывать три момента:

Существительные III склонения встречались крайне редко, например: os, corpus, caput, foramen, dens. Такой методический подход был абсолютно оправдан. III склонение – самое трудное для усвоения и имеет ряд особенностей, отличающих его от остальных склонений.

Часы, изготовленные человеком, измеряют пренебрежимо малые с эволюционной точки зрения доли – часы, минуты, секунды – и поэтому основаны на быстрых динамических процессах: качании маятника, раскручивании пружины, колебаниях кристаллов, горении свечи, вытекании воды из сосуда или высыпании песка, вращении Земли (определяемом по движению солнечной тени). Эти процессы протекают с известной постоянной скоростью. Маятник качается с известной частотой, определяемой, по крайней мере в теории, только его длиной, но не амплитудой колебаний и не массой груза на его конце. Напольные часы работают благодаря присоединению маятника к анкеру, передающему движение зубчатому колесу, которое при помощи системы шестеренок обеспечивает ход секундной, минутной и часовой стрелок. Пружинные часы работают почти так же. Кварцевые часы работают при помощи эквивалента маятника – колебаний кристаллов определенного вида под воздействием энергии, поставляемой батарейкой. Водяные и огненные часы обладают куда меньшей точностью, но ими широко пользовались до изобретения часов, основанных на постоянстве хода. Они основаны не на подсчете отрезков времени, как маятниковые или цифровые часы, а на измерении объема. Солнечные часы – неточный способ измерения времени. Однако вращение Земли позволяет создать более точные, хотя и медленные часы, которые мы называем календарем. Это происходит именно потому, что при таком масштабе часы становятся не измеряющими (как солнечные часы, измеряющие постоянно меняющееся склонение солнца), а счетными (подсчитывающими число циклов день/ночь).

Чем больше вы узнаете о звездах и их движениях, тем больший интерес будут представлять их наблюдения. Небесный глобус поможет вам найти объекты на небе, так же как земной глобус помогает отыскать нужные места на Земле.

Вспомните, как работают с картой Земли. Мы рисуем земную поверхность и наносим на ней воображаемую координатную сетку. Местоположения всех точек отсчитываются от двух основных нулевых линий. Одна из них — экватор — это большой круг на полпути между северным и южным полюсами, который делит глобус на два равных полушария. Другая — начальный меридиан — проходит от полюса до полюса через Гринвич (Англия).

Воображаемые линии, параллельные экватору, называются линиями равных широт или параллелями. Такие же линии, проходящие через полюса, называются линиями равных долгот или меридианами. Расстояния на земной сфере измеряются в градусах путем деления круга на 360 частей.

На Земле можно найти любой город, если известны его координаты (широта и долгота).

глобус земли

Глобус Земли

Подобно тому как наносят на земной глобус линии широт и долгот, астрономы наносят воображаемые вертикальные и горизонтальные линии на небесную сферу. Угловые расстояния вверх и вниз от небесного экватора называются склонениями (δ). Угловое расстояние от нулевой точки на небесном экваторе (точки весеннего равноденствия), отсчитываемое в восточном направлении, называется прямым восхождением (α). Прямое восхождение обычно измеряется в часах, причем 1 h = 15°.

Так же как на Земле любой город может быть найден по его земным координатам — широте и долготе, любой небесный объект может быть найден по его небесным координатам — прямому восхождению и склонению.

небесный глобус

Небесный глобус

Каждая звезда занимает на небесной сфере вполне определенное место. Прямые восхождения и склонения звезд с течением времени изменяются очень мало и могут быть определены с помощью звездного глобуса или звездных атласов (см. таблицу: «Двадцать самых ярких звезд в порядке уменьшения блеска»).

Таблица — Двадцать самых ярких звезд в порядке уменьшения блеска

Двадцать самых ярких звезд

Положение Солнца, Луны и планет на небесной сфере постоянно изменяется. Их координаты приводятся в периодических астрономических изданиях.

Можете ли вы объяснить, почему на протяжении любого достаточно длительного промежутка времени звезды могут быть найдены на небесной сфере по тем же самым координатам, в то время как Солнце, Луна и планеты постоянно изменяют свое положение?

— Звезды слишком далеки от Земли, чтобы их движение было заметно невооруженным глазом, хотя они двигаются в различных направлениях со скоростями во много километров в секунду. Солнце же, Луна и планеты гораздо ближе к Земле. Мы видим их перемещение на фоне далеких звезд.

2. Видимое суточное движение звёзд. При наблюдении звёздного неба на протяжении одного-двух часов мы убеждаемся в том, что оно вращается как единое целое таким образом, что с одной стороны звёзды поднимаются, а с другой — опускаются. Для нас, жителей Северного полушария, звёзды поднимаются с восточной части горизонта и смещаются вправо. Далее они достигают наивысшего положения в южной части неба и затем опускаются в западной части горизонта. В течение суток звёздное небо со всеми находящимися на нём светилами совершает один оборот. Таким образом, видимое суточное вращение звёздного неба происходит с востока на запад, если стоять лицом к югу, т. е. по часовой стрелке.

В северной части неба можно отыскать Полярную звезду. Кажется, что всё небо вращается вокруг неё (рис. 10). На самом же деле вокруг своей оси вращается Земля с запада на восток, а весь небосвод вращается в обратном направлении с востока на запад. Полярная звезда для данной местности остаётся почти неподвижной и на одной и той же высоте над горизонтом. Очевидно, что суточное движение звёзд (светил) — наблюдаемое кажущееся явление вращения небесного свода — отражает действительное вращение земного шара вокруг оси.

Фильм. Небесная сфера, координаты.

3. Основные точки, линии и плоскости небесной сферы. Нам кажется, что все звёзды расположены на некоторой сферической поверхности неба и одинаково удалены от наблюдателя. На самом деле они находятся от нас на различных расстояниях. Поэтому воображаемую поверхность небосвода стали называть небесной сферой.
Небесная сфера — это воображаемая сфера произвольного радиуса, центр которой в зависимости от решаемой задачи совмещается с той или иной точкой пространства. Центр небесной сферы может быть выбран в месте наблюдения (глаз наблюдателя), в центре Земли или Солнца и т. д. Понятием небесной сферы пользуются для угловых измерений, для изучения взаимного расположения и движения космических объектов на небе.

Рис. 11. Схема проецирования звезд в созвездии Большой Медведицы на небесной сфере

Прямая, проходящая через центр небесной сферы (рис. 12) и совпадающая с направлением нити отвеса в месте наблюдения, называется отвесной или вертикальной линией . Она пересекает небесную сферу в точках зенита (верхняя точка пересечения отвесной линии с небесной сферой) и надира (точка небесной сферы, противоположная зениту). Плоскость, проходящая через центр небесной сферы и перпендикулярная отвесной линии, называется плоскостью истинного или математического горизонта.

Большой круг небесной сферы, проходящий через зенит, светило и надир, называется кругом высоты , вертикальным кругом или просто вертикалом светила .

Ось мира — прямая, проходящая через центр небесной сферы параллельно оси вращения Земли, пересекающая небесную сферу в двух диаметрально противоположных точках.

Рисунок 12 — Небесная сфера: О — центр небесной сферы (местонахождение наблюдателя); PN — Северный полюс мира; РS — Южный полюс мира; PNPS — ось мира; Z — зенит; Z’ — надир; E — восток; W — запад; N — север; S — юг; Q — верхняя точка небесного экватора; Q’ — нижняя точка небесного экватора; ZZ’ — вертикальная линия; PNMPS — круг склонения; NS — полуденная линия; M — светило на небесной сфере

Рисунок 13 — Эклиптика

Точка пересечения оси мира с небесной сферой, вблизи которой находится Полярная звезда, называется Северным полюсом мира, противоположная точка — Южным полюсом мира . Полярная звезда отстоит от Северного полюса мира на угловом расстоянии около 1° (точнее 44′).
Большой круг, проходящий через центр небесной сферы и перпендикулярный оси мира, называют небесным экватором. Он делит небесную сферу на две части: Северное полушарие с вершиной в Северном полюсе мира и Южное — с вершиной в Южном полюсе мира.

Круг склонения светила — большой круг небесной сферы, проходящий через полюсы мира и светило.

Суточная параллель — малый круг небесной сферы, плоскость которого перпендикулярна оси мира.

Большой круг небесной сферы, проходящий через точки зенита, надира и полюсы мира, называется небесным меридианом . Небесный меридиан пересекается с истинным горизонтом в двух диаметрально противоположных точках. Точка пересечения истинного горизонта и небесного меридиана, ближайшая к Северному полюсу мира, называется точкой севера . Точка пересечения истинного горизонта и небесного меридиана, ближайшая к Южному полюсу мира, называется точкой юга . Линия, соединяющая точки севера и юга, называется полуденной линией . Она лежит на плоскости истинного горизонта. По направлению полуденной линии падают тени от предметов в полдень.

С небесным экватором истинный горизонт также пересекается в двух диаметрально противоположных точках — точке востока и т очке запада . Для наблюдателя, стоящего в центре небесной сферы лицом к точке севера, точка востока будет расположена справа, а точка запада — слева. Помня это правило, легко ориентироваться на местности.

Видимый годовой путь Солнца среди звёзд называется эклиптикой. В плоскости эклиптики лежит путь Земли вокруг Солнца, т. е. её орбита. Она наклонена к небесному экватору под углом 23° 27′ и пересекает его в точках весеннего (ϒ, около 21 марта) и осеннего (Ω, около 23 сентября) равноденствия (рис. 13).

§ 3. Небесные координаты

1. Системы координат. Положение светил определяется по отношению к точкам и кругам небесной сферы (см. рис. 12). Для этого введены небесные координаты, подобные географическим координатам на поверхности Земли.

В астрономии применяется несколько систем координат. Отличаются они друг от друга тем, что строятся по отношению к разным кругам небесной сферы. Небесные координаты отсчитываются дугами больших кругов или центральными углами, охватывающими эти дуги.

Небесные координаты — центральные углы или дуги больших кругов небесной сферы, с помощью которых определяют положение светил по отношению к основным кругам и точкам небесной сферы.

Рисунок 14 — Горизонтальная система координат: h — высота светила й над горизонтом; z — зенитное расстояние; А — азимут

Горизонтальная система координат . При астрономических наблюдениях удобно определять положение светил по отношению к горизонту. Горизонтальная система координат использует в качестве основного круга истинный горизонт. В этой системе координатами являются высота (h) и азимут (А).

Высота светила — угловое расстояние светила М от истинного горизонта, измеренное вдоль вертикального круга (рис. 14). Высота определяется в градусах, минутах и секундах. Она отсчитывается в пределах от 0 до +90° к зениту, если светило находится в видимой части небесной сферы, и от 0 до -90° к надиру, если светило находится под горизонтом.

Для измерения азимутов за начало отсчёта принимается точка юга. Азимут светила — угловое расстояние, измеренное вдоль истинного горизонта, от точки юга до точки пересечения горизонта с вертикальным кругом, проходящим через светило М (см. рис. 14). Азимут отсчитывается к западу от точки юга в пределах от 0 до 360°.

Горизонтальная система координат используется при топографической съёмке, в навигации. Вследствие суточного вращения небесной сферы высота и азимут светила со временем изменяются. Следовательно горизонтальные координаты имеют определённое значение только для известного момента времени.

Угловое расстояние от зенита до светила, измеренное вдоль вертикального круга, называется зенитным расстоянием (z). Оно отсчитывается в пределах от 0 до +180° к надиру. Высота и зенитное расстояние связаны соотношением: z + h = 90°.

Рисунок 15 — Экваториальная система небесных координат: δ — склонение светила М; α — прямое восхождение; t — часовой угол

Экваториальная система координат. Для построения звёздных карт и составления звёздных каталогов за основной круг небесной сферы удобно принять круг небесного экватора (рис. 15). Небесные координаты, в системе которых основным кругом является небесный экватор, называются экваториальной системой координат. В этой системе координатами служат склонение ( δ ) и прямое восхождение ( α ).
Склонение светила — угловое расстояние светила М от небесного экватора, измеренное вдоль круга склонения. Склонение отсчитывается в пределах от 0 до +90° к Северному полюсу мира и от 0 до -90° к Южному полюсу мира.

За начальную точку отсчёта на небесном экваторе принимается точка весеннего равноденствия γ , где Солнце бывает около 21 марта.

Прямое восхождение светила — угловое расстояние, измеренное вдоль небесного экватора, от точки весеннего равноденствия до точки пересечения небесного экватора с кругом склонения светила. Прямое восхождение отсчитывается в сторону, противоположную суточному вращению небесной сферы, в пределах от 0 до 360° в градусной мере или от 0 до 24 ч в часовой мере.

Для некоторых астрономических задач (связанных с измерением времени) вместо прямого восхождения (а) вводится часовой угол (t) (см. рис. 15). Часовой угол — это угловое расстояние, измеренное вдоль небесного экватора, от верхней точки небесного экватора до круга склонения светила. Отсчитывается часовой угол по направлению видимого суточного вращения небесной сферы, т. е. к западу, в пределах от 0 до 24 ч в часовой мере.

Координаты звёзд (α, δ) в экваториальной системе координат не связаны с суточным движением небесной сферы и изменяются очень медленно. Поэтому они применяются для составления звёздных карт и каталогов. Звёздные карты представляют собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в определённой системе координат. Онлайн карта звёздного неба. Набор звёздных карт смежных участков неба, покрывающих всё небо или некоторую его часть, называется звёздным атласом. В специальных списках звёзд, называемых звёздными каталогами, указываются координаты их места на небесной сфере, звёздная величина и другие параметры. Например, каталог Hubble Guide Star Catalog (GSC) содержит почти 19 млн объектов.

Рисунок 16 — Высота полюса мира над горизонтом

2. Лунно-солнечная прецессия. Ось вращения Земли наклонена к плоскости орбиты под углом 66°33′. Под воздействием притяжения Луны и Солнца из-за неоднородности распределения плотности массы внутри Земли ось описывает конус. Так как направление оси Земли изменяется, то перпендикулярная ей плоскость экватора также будет смещаться, что приводит к перемещению точки весеннего равноденствия. Это явление называется лунно-солнечной прецессией. Точка весеннего равноденствия перемещается навстречу видимому годичному движению Солнца на 50,3″ в год или на 1° в 71,6 года, совершая полный оборот по эклиптике за 25 770 лет. Полюса мира также перемещаются среди звёзд. В настоящее время Северный полюс мира находится возле Полярной звезды, а через 10 тыс. лет он переместится к Веге ( a Лиры).

3. Высота полюса мира над горизонтом. Мы уже знаем, что Полярная звезда, находящаяся вблизи Северного полюса мира, остаётся почти на одной высоте над горизонтом на данной широте при суточном вращении звёздного неба. При перемещении наблюдателя с севера на юг, где географическая широта меньше, Полярная звезда опускается к горизонту, т. е. существует зависимость между высотой полюса мира и географической широтой места наблюдения.

На рисунке 16 земной шар и небесная сфера изображены в сечении плоскостью небесного меридиана места наблюдения. Наблюдатель из точки О видит полюс мира на высоте Ð NOP = hP. Направление оси мира ОР параллельно земной оси. Угол при центре Земли Ð OO’q соответствует географической широте места наблюдения ф. Так как радиус Земли в точке наблюдения перпендикулярен плоскости истинного горизонта, а ось мира перпендикулярна плоскости географического экватора, то Ð NOP и Ð OO’q равны между собой как углы с взаимно перпендикулярными сторонами. Таким образом, угловая высота полюса мира над горизонтом равна географической широте места наблюдения:

С другой стороны, из рисунка 16 следует, что Ð QOZ определяет собой величину склонения зенита dZ. Поэтому можно записать, что

Равенство (2) характеризует зависимость между географической широтой места наблюдения и соответствующими горизонтальной и экваториальной координатами светила.

Суточное вращение звёздного неба на средних широтах

Суточное вращение звёздного неба на земном экваторе

По мере перемещения наблюдателя к Северному полюсу Земли Северный полюс мира поднимается над горизонтом. На полюсе Земли полюс мира будет находиться в зените. Звёзды здесь движутся по кругам, параллельным горизонту, который совпадает с небесным экватором. Становится неопределённым небесный меридиан, теряют смысл точки севера, юга, востока и запада.

На средних географических широтах ось мира и небесный экватор наклонены к горизонту, суточные пути звёзд также наклонены к горизонту. Поэтому наблюдаются восходящие и заходящие звёзды. Под восходом понимается явление пересечения светилом восточной части горизонта, а под заходом — западной части горизонта. В средних широтах, например на территории Республики Беларусь, наблюдаются звёзды северных околополярных созвездий, которые никогда не опускаются под горизонт. Они называются незаходящими . Звёзды, расположенные около Южного полюса мира, у нас никогда не восходят. Их называют невосходящими .

На экваторе Земли ось мира совпадает с полуденной линией, а полюсы мира — с точками севера и юга. Небесный экватор проходит через точки востока, запада, точки зенита и надира. Суточные пути всех звёзд перпендикулярны горизонту, и каждая из них половину суток находится над горизонтом.

Подвижная карта звездного неба позволяет определить вид звездного неба в любой момент суток произвольного дня года и быстро решать ряд практических задач на условия видимости небесных светил. На карте показаны созвездия, состоящие из ярких звезд до 3-ей звездной величины, а также некоторые более слабые звезды, дополняющие первичные очертания созвездий. Звезды изображены черными кружечками разных размеров. Основные звезды созвездий обозначены буквами греческого алфавита. Крупными тесно расположенных точек представлены яркие звездные скопления, а штриховой – яркие туманности. Полоса, выполненная в виде точек, изображает МЛЕЧНЫЙ ПУТЬ. В центре карты расположен Северный полюс мира и рядом с ним Полярная звезда (α Малой медведицы) . От Северного полюса мира расходятся радиусы, изображающие прямое восхождение (α), выраженное в часах. Начальный круг склонения, оцифрованный нулем (0)”, проходит через точку весеннего равноденствия, обозначенная знаком ¡. Диаметрально противоположный круг склонения с прямым восхождением α = 12 ч проходит через точку осеннего равнодействия . Концентрические окружности на карте изображают небесные параллели, а числа у точек их пересечения с нулевым (0 ч) и 12-ти часовым кругами склонения показывают их склонение (δ), выраженное в градусах. Третья по счету от Полюса мира окружность, оцифрованная 00, представляет собой небесный экватор, внутри которого расположена северная небесная полусфера, а вне его – пояс южной небесной полусферы до склонения δ = (-450). Так как в действительности диаметры небесных параллелей меньше диаметра небесного экватора, а на карте небесные параллели южной полусферы вынужденно изображены больших размеров, то вид созвездий южного неба несколько искажен, что следует иметь в виду при изучении звездного неба. Эклиптика изображена на карте эксцентрическим овалом, пересекающимся с небесным экватором в двух равнодействующих точках. На обрезе карты нанесены названия месяцев года и даты. Направление счета месяцев, дат и прямого восхождения – по вращению часовой стрелки. В этом же направлении следует изображать перемещение Солнца по эклиптике. В карте приложен накладной круг, внутри которого начерчены оцифрованные пересекающиеся овалы, а по обрезу нанесен часовой лимб, изображающий часы суток по среднему солнечному времени T l. Направление счета времени на этом лимбе – против часовой стрелки. Внутренний вырез в накладном круге делается по овалу, оцифрованному числом наиболее близким к географической широте местности, в которой карта будет использоваться. Контур овального выреза в наклонном круге изображает горизонт, и его основные точки обозначены буквами Ю (точка юга) , З (точка запада) , С (точка севера) и В (точка востока) . Между точками Ю и С необходимо натянуть темную нить, который изображают небесный меридиан. При работе с картой, накладной круг накладывается на карту всегда концентрично, причем нить (небесный меридиан) должна обязательно проходить через Северный полюс мира. Тогда отрезок нити, расположенный между Северным полюсом мира и точкой Ю, представит южную половину небесного меридиана, а остальной ее отрезок – северную ее половину. Наложив круг концентрично на карту, необходимо на нити отметить (хотя бы узелком) точку ее пересечения с небесной параллелью, склонение которой равно географической широте (или близко к ней) места наблюдений. Эта точка, лежащая вблизи центра накладного круга, изобразит зенит. Чтобы определить вид звездного неба на интересующий момент суток определенного дня года (даты) , достаточно наложить круг концентрично на карту (нить – меридиан проходит через Полюс мира) так, чтобы штрих момента времени совпадал со штрихом заданной карты, и тогда звезды, находящиеся в данный момент над горизонтом, окажутся расположенными внутри овального выреза.

Для определения склонения небесного светила необходимо месяц, число на звездной карте, совместить с часом наблюдения на накладной карте.

Для определения склонения небесного светила необходимо месяц, число на звездной карте, совместить с часом наблюдения на накладной карте

Читайте также:

      

  • Оккультизм что это кратко
  •   

  • Почему важно чтобы каждый человек был ответственным кратко
  •   

  • Чем близок чацкому князь федор ответ кратко
  •   

  • Титульный лист календарного плана в доу по фгос
  •   

  • Отчет куратора о работе с курируемой школой участницей проекта 500

Работа с ПКЗН.

Все вы знаете, что звёздные карты представляют собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в определённой системе координат.

Рассмотрим ПКЗН поподробнее. Она состоит из подвижной и неподвижной части. На подвижной части мы можем увидеть рад созвездий.

В наши дни созвездиями называют определённые участки звёздного неба, разделённые между собой строго установленными границами, с характерной наблюдаемой группировкой звёзд.

На ПКЗН мы можем наблюдать ряд созвездий северного полушария, разделенных между собой пунктирной линией. Например, созвездие Ориона.

Рассмотрев подробнее данное созвездие, мы можем заметить, что практически все звезды обозначены греческими буквами и диаметр звезд при нанесении на карту также отличается. Это связанно с тем, что, рассматривая звездное небо не трудно заметить, что все звезды отличаются по яркости.

В 1603 году немецкий астроном Иоганн Байер предложил свою систему обозначения звёзд, которой мы пользуемся до сих пор. В этой системе название звезды состоит из двух частей: названия созвездия, которому принадлежит звезда, и буквы греческого алфавита. Причём буквенное обозначение, как правило, присваивается в порядке убывания яркости звезды в созвездии.

Однако мы знаем, что из любого правила есть исключения: созвездие Большой медведицы, семь ярких звёзд которого образуют известный Большой Ковш. Обозначение этих звёзд велось просто справа на лево и созвездие Ориона, где звезда β ярче, чем α.

Что же еще можно узнать, работая с ПКЗН.

На ПКЗН все объекты нанесены в экваториальной системе координат, т. К. в ней координаты звёзд не связаны с суточным движением небесной сферы и изменяются очень медленно, так как достаточно далеки от нас.

Координатами данной системы служат склонение и прямое восхождение.

Теперь давайте посмотрим, как используя ПКЗН определить экваториальные координаты α Девы.

Для этого найдем созвездие Девы и в нем звезду α. Для определения прямого восхождения нам необходимо провести луч, проходящий через полюс мира и нашу звезду. Его пересечение с краем карты укажет нам значение данной координаты 13,25

Для определения склонения светила обратим внимание на концентрические окружности, изображенные на карте, и имеющие оцифровку от +900 до -450 на данной карте. Звезда находится между окружностями 0 и -30. С учетом погрешности можно предположить, что склонение данной звезды будет -11 .

А теперь давайте с вами решим обратную задачу, то есть найдём звезду по её координатам. Итак, пусть склонение звезды равно +27о, а прямое восхождение — 23ч00м. β Пегаса.

Стоит отметить, что картой звёздного неба можно пользоваться не только для нахождения координат звёзд, но и для определения вида звёздного неба в интересующий момент времени. Для этого необходимо совместить на неподвижной части карты дату, а на подвижной время. Например, 25 февраля и 5 часов. Те небесные объекты, которые находятся на белом фоне можно наблюдать, прочие нет.

А также с помощью ПКЗН определять моменты восхода и захода звёзд, в том числе и Солнца. Под восходом понимается явление пересечения светилом восточной части истинного горизонта, а под заходом — западной части этого горизонта.

Для определения момента восхода звезды а Волопаса 30 сентября нам необходимо:

  1. Совместить восточную часть на подвижной части карты и звезду на неподвижной.

  2. Далее на подвижной части звездной карты определить момент восхода. Восход 6,00

Для определения момента захода данной звезды нам необходимо:

  1. Совместить западную часть на подвижной части карты и звезду на неподвижной. Заход 21,50

  2. И опять же на подвижной части карты посмотреть момент времени.

Аналогичные действия можно выполнять и для Солнца, однако следует помнить, Солнце так же, как и другие звёзды, описывает свой путь по небесной сфере.

Для определения положения Солнца следует провести луч из полюса мира, проходящий через заданную дату, и его пересечение с эклиптикой даст нам положение Солнца.

Таким образом работая с ПКЗН вы можете определить вид звездного неба, моменты восхода и захода звезд и их экваториальные координаты.

Все мы не раз с вами видели,
как каждое утро в восточной стороне неба восходит Солнце. Оно появляется из-за
далёких предметов или неровностей земной поверхности. Затем постепенно
поднимается над горизонтом и, наконец, в полдень достигает наивысшего положения
на небе. В это момент человек, находящийся в северном полушарии Земли, будет
видеть Солнце на юге, а находящийся в южном полушарии — на севере. После
полудня Солнце постепенно опускается, приближаясь к горизонту, и заходит в
западной части неба.

Такое же движение по небу в
течение суток можно заметить и у других светил: Луны, звёзд и планет. В целом
нам кажется, что небосвод вращается как единое целое вокруг некоторой оси,
называемой нами осью мира.

При наблюдении звёзд ясной
ночью в северной части неба, можно увидеть, как они, двигаясь с востока на
запад, описывают концентрические круги, центр которых располагается около
Полярной звезды (альфа Малой Медведицы). Эта точка называется северным
полюсом мира
. В южном полушарии можно найти диаметрально противоположную ей
точку — южный полюс мира. Давайте также вспомним, что большой круг
небесной сферы, проходящий через полюсы мира и светило, называется кругом
склонения
.

А большой круг, проходящий
через центр небесной сферы и перпендикулярный оси мира, называется небесным
экватором.
Он делит небесную сферу на две части: Северное полушарие с
вершиной в Северном полюсе мира и Южное — с вершиной в Южном полюсе мира.

Помимо этого, на небесной
сфере принято указывать и видимый годовой путь Солнца среди звёзд. Он называется
эклиптикой. Она наклонена к небесному экватору под углом 23о27′
и пересекает его в двух точках — точке весеннего (около 21 марта) и осеннего
(около 23 сентября) равноденствия.

Сейчас же мы знаем, что
вращения небосвода — это кажущееся явление, вызванное вращением Земли вокруг
своей оси с запада на восток.

Видимое движение светил,
происходящее из-за вращения Земли вокруг оси, называется суточным движением,
а период вращения Земли вокруг оси — сутками.

На одном из первых уроков мы с
вами говорили о том, что наблюдателю, находящемуся на поверхности Земли,
кажется, что все звёзды расположены на некоторой сферической поверхности неба и
одинаково удалены от него. Напомним, что такая воображаемая сфера произвольного
радиуса была названа небесной сферой.

Для указания положения светил
на небе используют систему координат, аналогичную той, которая используется в
географии.

Вы уже знаете, что в географии
определить положение точки на поверхности Земли нам помогают географические
координаты — широта и долгота. Географическая долгота отсчитывается вдоль
экватора от начального (Гринвичского) меридиана. А географическая широта — по
меридианам от экватора к полюсам Земли.

Такая система координат
называется экваториальной.

Аналогичную, экваториальную,
систему координат удобно использовать и в астрономии, для указания положения
светил на небе. В этой системе координат основным кругом небесной сферы
является небесный экватор. А координатами служат склонение и прямое восхождение.

Склонение светила — это
угловое расстояние светила от небесного экватора, измеренное вдоль круга
склонения.
Обозначается склонение
малой греческой буквой δ и оно аналогично географической широте. Единственное
отличие состоит в том, что у светил, расположенных к северу от экватора,
склонение считается положительным, а расположенных к югу от экватора —
отрицательным. При этом за начальную точку отсчёта склонения на небесном
экваторе принимается точка весеннего равноденствия.

Вторая координата — прямое
восхождение
— указывает положение светила на небе. То есть это угловое расстояние,
измеренное вдоль небесного экватора, от точки весеннего равноденствия до точки
пересечения небесного экватора с кругом склонения светила.

 Обозначается склонение малой
греческой буквой α. А отсчитывается оно в сторону, противоположную
суточному вращению небесной сферы, в пределах от 0 до 360 градусов или от 0 до
24 часов. Хотя в астрономии склонение принято выражать не в градусной мере, а в
часовой. Если учесть, что 360 градусам соответствуют 24 часа или 1440 минут, то
одному градусу соответствует 4 минуты.

У вас может возникнуть вопрос:
«В чём принципиальное отличие горизонтальной системы координат (о которой мы
говорили в одном из первых уроков) от экваториальной?»

Ответ достаточно прост.
Вспомните, что в горизонтальной системе координаты светила на небесной сфере со
временем изменяются. Следовательно, они имеют определённое значение только для
известного момента времени.

В экваториальной же системе координаты
звёзд не связаны с суточным движением небесной сферы и изменяются очень
медленно, так как достаточно далеки от нас. Поэтому именно эта система
координат применяется для составления звёздных глобусов, карт и каталогов.

Звёздные карты представляют
собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в
определённой системе координат.

Набор звёздных карт смежных
участков неба, покрывающих всё небо или некоторую его часть, называется
звёздным атласом.

А в специальных списках звёзд,
называемых звёздными каталогами, указываются координаты их места на
небесной сфере, звёздная величина и другие параметры. Например, в каталоге
опорных звёзд-два, который также известен как Ориентировочный Каталог
Космического Телескопа Хаббла, содержится более 945,5 миллионов звёзд.

Давайте остановимся и
рассмотрим карту звёздного неба поподробнее. Итак, в центре нашей звёздной
карты располагается северный полюс мира. Рядом с ним Полярная звезда.

Сетка экваториальных координат
представлена на карте радиально расходящимися от центра лучами и
концентрическими окружностями. На краю карты, возле каждого луча, написаны
числа, обозначающие прямое восхождение (от 0 до 23 часов).

Луч, от которого начинается
отсчёт прямого восхождения, проходит через точку весеннего равноденствия,
обозначенную на карте символом овна. Склонение отсчитывается по этим лучам от
окружности, которая изображает небесный экватор и имеет обозначение ноль
градусов. Остальные окружности также имеют оцифровку, которая показывает, какое
склонение имеет объект, расположенный на этой окружности.

В зависимости от звёздной
величины звёзды изображают на карте кружками различного диаметра. Те из них,
которые образуют характерные фигуры созвездий, соединены сплошными линиями. А
границы созвездий обозначены пунктиром.

Теперь давайте посмотрим, как
пользоваться звёздной картой. Для этого определим экваториальные координаты
Альтаира (это альфа Орла), Сириуса (это альфа Большого Пса) и Веги (это альфа
Лиры).

А теперь давайте с вами решим
обратную задачу, то есть найдём звезду по её координатам. Итак, пусть склонение
звезды равно +35о, а прямое восхождение — 1ч 6м.

Для того, чтобы найти ответ на
поставленный вопрос, мы с вами должны выполнить все те же действия, что и в
прошлый раз, но только в обратном порядке. То есть сначала на карте мы находим
заданное нам прямое восхождение светила. Далее строим мысленный отрезок (или
прикладываем линейку) так, чтобы он соединил нашу точку с центром карты
звёздного неба. Теперь находим окружность, обозначающую склонение в 30о
и откладываем от неё примерно 5о вверх. Как видим, мы попали на
звезду бета Андромеды.

Стоит отметить, что картой
звёздного неба можно пользоваться не только для нахождения координат звёзд, но
и для определения вида звёздного неба в интересующий момент времени
определённой даты. А также определять моменты восхода и захода звёзд, Солнца
или планет.

Понравилась статья? Поделить с друзьями:
  • Как найти длину отрезка в трапеции решение
  • Как найти далеко на рыбалку
  • Как найти нечетные числа в php
  • Как найти высоту цилиндра если известна радиус
  • Как найти ноты по фото