Загрузить PDF
Загрузить PDF
Определить площадь плоских фигур в квадратных сантиметрах (также обозначаемых как см2) достаточно просто. В самом легком случае, когда требуется рассчитать площадь квадрата или прямоугольника, она вычисляется произведением длины и ширины. Площадь других фигур (кругов, треугольников и так далее) можно определить с помощью целого ряда специальных математических формул. Также, если потребуется, можно без труда перевести площадь в квадратные сантиметры из других единиц измерения.
-
1
Определите длину измеряемой площади. У квадратов и прямоугольников по четыре стороны, расположенных под прямыми углами относительно друг друга. В случае с прямоугольниками, их противоположные стороны равны между собой, тогда как у квадратов равны все стороны. Измерьте одну из сторон квадрата или большую из сторон прямоугольника, чтобы определить ее длину в сантиметрах.[1]
-
2
Определите ширину измеряемой площади. Далее измерьте в сантиметрах любую из сторон, смежных с той, которую вы измерили в первую очередь. Эта сторона будет находиться под углом в 90 градусов к первой. Вторая мерка будет обозначать ширину квадрата или прямоугольника.[2]
- Так как у квадрата все стороны одинаковы, его длина будет равна ширине. Поэтому у квадрата можно изначально измерить только одну сторону.
-
3
Умножьте длину на ширину. Просто перемножьте длину и ширину фигуры, чтобы определить площадь квадрата или прямоугольника в квадратных сантиматрах.[3]
- Например, допустим, что длина прямоугольника составляет 4 см, а ширина – 3 см. В таком случае площадь фигуры рассчитывается следующим образом: 4 × 3 = 12 квадратных сантиметров.
- В случае с квадратом (по причине равных сторон) можно просто умножить саму на себя длину одной из его сторон (другими словами, возвести ее «в квадрат» или «во вторую степень»), чтобы определить площадь фигуры в квадратных сантиметрах.
Реклама
-
1
Найдите площадь круга по формуле: S = π × r2. Чтобы найти площадь круга в квадратных сантиметрах, необходимо знать расстояние в сантиметрах от центра круга до линии его окружности. Это расстояние называется радиусом окружности. Как только радиус будет известен, обозначьте его буквой r из вышеупомянутой формулы. Умножьте значение радиуса само на себя и на число π (3,1415926…), чтобы узнать площадь круга в квадратных сантиметрах.[4]
- Например, площадь круга с радиусом 4 см составит 50,27 квадратных сантиметра в результате перемножения 3,14 и 16.
-
2
Вычислите площадь треугольника по формуле: S = 1/2 b × h. Площадь треугольника в квадратных сантиметрах вычисляется умножением половины длины его основания b (в сантиметрах) на его высоту h (в сантиметрах). Основанием треугольника выбирается одна из его сторон, тогда как высота треугольника – это перпендикуляр, опущенный к основанию треугольника из противоположной к нему вершины. Площадь треугольника можно вычислить через длину основания и высоту по любой из сторон треугольника и противоположной к ней вершине.[5]
- Например, если длина основания треугольника составляет 4 см, а высота, проведенная к основанию – 3 см, площадь составит: 2 x 3 = 6 квадратных сантиметра.
-
3
Найдите площадь параллелограмма по формуле: S = b × h. Параллелограммы подобны прямоугольникам за одним исключением – их углы не обязательно равны 90 градусам. Соответственно, расчет площади параллелограмма производится аналогичным для прямоугольника способом: длина стороны основания в сантиметрах умножается на высоту параллелограмма в сантиметрах. За основание берут любую из сторон, а высота определяется длиной перпендикуляра к ней из противоположного тупого угла фигуры.[6]
- Например, если длина основания параллелограмма составляет 5 см, а его высота – 4 см, его площадь составит: 5 x 4 = 20 квадратных сантиметров.
-
4
Вычислите площадь трапеции по формуле: S = 1/2 × h × (B+b). Трапеция – это четырехугольник две стороны которого параллельны между собой, а остальные две – нет. Чтобы определить площадь трапеции в квадратных сантиметрах, необходимо знать три мерки (в сантиметрах): длину более длинной параллельной стороны B, длину более короткой параллельной стороны b и высоту трапеции h (определяемую как кратчайшее расстояние между ее параллельными сторонами по перпендикулярному к ним отрезку). Сложите между собой длины двух параллельных сторон, поделите сумму пополам и умножьте на высоту, чтобы получить площадь трапеции в квадратных сантиметрах.[7]
- Например, если более длинная из параллельных сторон трапеции равна 6 см, более короткая – 4 см, а высота – 5 см, площадь фигуры составит: ½ x (6+4) х 5 = 25 квадратных сантиметров.
-
5
Найдите площадь правильного шестиугольника: S = ½ × P × a. Приведенная формула верна только для правильного шестиугольника с шестью равными сторонами и шестью одинаковыми углами. Буквой P обозначается периметр фигуры (или произведение длины одной стороны на шесть, что справедливо для правильного шестиугольника). Буквой a обозначается длина апофемы – расстояние от центра шестиугольника до середины одной из его сторон (точки, расположенной посередине между двумя соседними вершинами фигуры). Перемножьте периметр и апофему в сантиметрах и поделите результат на два, чтобы найти площадь правильного шестиугольника.[8]
- Например, если у правильного шестиугольника шесть равных сторон по 4 см (то есть его периметр P = 6 x 4 = 24 см), а длина апофемы равна 3,5 см, то его площадь составит: ½ x 24 x 3,5 = 42 квадратных сантиметра.
-
6
Вычислите площадь правильного восьмиугольника по формуле: S = 2a² × (1 + √2). Для расчета площади правильного восьмиугольника (с восемью равными сторонами и восемью одинаковыми углами) нужно знать только длину одной из сторон фигуры в сантиметрах (обозначенной в формуле буквой “a”). Подставьте соответствующее значение в формулу и вычислите результат.[9]
- Например, если длина стороны правильного восьмиугольника равна 4 см, то площадь этой фигуры составляет: 2 х 16 x (1 + 1,4) = 32 x 2,4 = 76,8 квадратных сантиметров.
Реклама
-
1
Переведите все мерки в сантиметры, прежде чем производить расчет площади. Чтобы сразу рассчитать площадь в квадратных сантиметрах, необходимо подставлять все параметры в формулу расчета площади также в сантиметрах (это касается, длины, высоты, апофемы и так далее). Поэтому, если ваши исходные данные выражены в других единицах измерения (например, в метрах), сначала их следует перевести в сантиметры. Ниже приведены соотношения наиболее популярных единиц измерения.
- 1 метр = 100 сантиметров
- 1 сантиметр = 10 миллиметров
- 1 дюйм = 2,54 сантиметра
- 1 фут = 30,48 сантиметра
- 1 сантиметр = 0,3937 дюйма
-
2
Чтобы перевести площадь из квадратных метров в квадратные сантиметры, ее следует умножить на 10000 (то есть площадь одного квадратного метра в сантиметрах), или на произведение 100 см на 100 см. Если вы знаете площадь фигуры в квадратных метрах, ее можно перевести в квадратные сантиметры умножением на 10000.[10]
- Например, 0,5 квадратного метра = 0,5 x 10000 = 5000 квадратных сантиметров.
-
3
Чтобы перевести в квадратные сантиметры площадь, выраженную в квадратных дюймах, умножьте ее на 6,4516. Как уже упоминалось, 1 дюйм равен 2,54 сантиметра, тогда как квадратный дюйм составляет 6,4516 квадратных сантиметров (или 2,54 x 2,54). Таким образом, если вам необходимо конвертировать в квадратные сантиметры площадь, равную 10 квадратным дюймам, следует умножить 10 на 6,4516, и у вас получится 64,5 квадратных сантиметров.[11]
- Также следует упомянуть, что в одном гектаре содержится 10000 квадратных метров, тогда как каждый квадратный метр равен 10000 квадратных сантиметров. Поэтому, чтобы выразить один гектар в сантиметрах, следует умножить 10000 на 10000 и получится 100 миллионов квадратных сантиметров.
Реклама
Об этой статье
Эту страницу просматривали 154 010 раз.
Была ли эта статья полезной?
Сосчитай сколько квадратных сантиметров в каждой фигуре (рис. 1, 2).
reshalka.com
ГДЗ учебник по математике 3 класс Моро. Часть 1. Страница 58. Номер №?
Решение
Первая фигура − это квадрат, каждая сторона которого равна 2 см, тогда:
1) 2 * 2 = 4
(
с
м
2
)
− площадь первой фигуры;
Вторая фигура − это прямоугольник, стороны которого равны 4 и 2 см, тогда:
2) 2 * 4 = 8
(
с
м
2
)
− площадь второй фигуры.
Ответ: 4
с
м
2
и 8
с
м
2
площади фигур.
Перейти к содержимому
- Ответы к учебнику Моро 4 класс 1 часть (2015 г)
- Ответы к учебнику Моро 4 класс 2 часть (2015 г)
- Главная страница
Будем учиться измерять площади фигур в квадратных сантиметрах.
Площадь квадрата, сторона которого 1 см, — это единица площади — квадратный сантиметр.
Слова «квадратный сантиметр» при числах записывают так: 4 кв.см, 12 кв.см.
В прямоугольнике ABCD поместилось 7 квадратных сантиметров. Значит, площадь прямоугольника ABCD равна 7 кв.см.
1. Сосчитай, сколько квадратных сантиметров в каждой фигуре. Сравни площади этих фигур.
2. Каждое из чисел 72, 56, 48, 64 уменьши на 40, а результат уменьши в 4 раза.
(72 — 40) : 4 = 8
(56 — 40) : 4 = 4
(48 — 40) : 4 = 2
(64 — 40) : 4 = 6
3. Каждое из чисел 12, 20, 28, 36 уменьши в 4 раза, а результат увеличь в 7 раз.
12 : 4 • 7 = 21
20 : 4 • 7 = 35
28 : 4 • 7 = 49
36 : 4 • 7 = 63
4. На 4 дня лошади нужно 32 кг овса. (Ежедневная норма выдачи овса одна и та же.) Сколько килограммов овса нужно лошади на 6 дней, если норма выдачи в день не изменится?
1) 32 : 4 = 8 кг — норма выдачи на день.
2) 8 • 6 = 48 кг — овёс на 6 дней.
Ответ: 48 кг.
5. Из 21 кг свежей малины получается 3 кг сухой. Сколько взяли свежей малины, если получили 5 кг сухой?
1) 21 : 3 = 7 — во столько раз меньше.
2) 5 • 7 = 35 кг — взяли свежей малины.
Ответ: 35 кг.
Задание на полях
72 -> 9 -> 36-> 42 -> 6
- Ответы к учебнику Моро 4 класс 1 часть (2015 г)
- Ответы к учебнику Моро 4 класс 2 часть (2015 г)
- Главная страница
План урока:
Понятие площади фигур
Сравнение площадей фигур
Квадратный сантиметр, дециметр, метр
Площадь прямоугольника
Преобразование величин
Здравствуйте, друзья! Давайте познакомимся. Я — Сова — Мудрая голова.
Масса моего мозга больше, чем у других птиц. Я, как все учителя, терпелива, замечаю все вокруг, слышу шорохи, обдумываю свои шаги. У многих народов меня считают символом знаний.
Сегодня на уроке мы познакомимся с различными способами сравнения и измерения геометрических фигур, а я поделюсь с вами своей мудростью.
Будь внимателен, дружок!
Начинаем наш урок.
Понятие площади фигур
Распределите фигуры на группы.
Какие фигуры вы видите?
Прямые и кривые линии, прямые и кривые, овалы, круг, прямоугольники, квадраты, треугольники.
Чем похожи данные фигуры?
Их можно начертить на плоскости.
Чем они отличаются?
Из бумаги можно вырезать только плоские фигуры, у которых кроме длин сторон, можно вычислить и новую величину — площадь.
Для чего это надо нам знать? Когда может пригодиться?
Величины нужны не только для решения математических задач, но и в жизни. Чтобы сделать поделку, надо определить, какое количество бумаги потребуется. При ремонте квартиры мы считаем, сколько купить рулонов обоев, чтобы оклеить стены комнаты. Величина понадобится при постройке дома, при изготовлении какой-либо продукции в промышленности. Даже в саду и огороде хозяйки считают, хватит ли места на грядке.
Как можно объяснить слово площадь? Значение понятий мы узнаем в толковых словарях.
Прочитайте, какой смысл нового термина в словаре С.И. Ожегова.
Первое объяснение:
Как называется главное место столицы нашей страны?
Красная площадь в Москве.
Вторая формулировка:
Общую и полезную площадь имеют разные помещения:
Квартира, в которой вы живете.
Классная комната, где вы учитесь.
Спортивный зал, столовая, бассейн школы.
Разные объекты, занимающие место на земле, можно встретить в любом городе.
Игровая площадка
Строительная площадка
Интересно, что некоторые люди заводят дома ушастых сов. Но держать птиц в клетке не рекомендуется: для них требуется более просторная комната, где они могли бы летать.
Жилая площадь квартиры
Любым диким животным лучше жить на воле. Сова – это хищная птица. Она питается грызунами, мышами, полевками, насекомыми и птицами. В этом отношении колоссальная польза от совы состоит в том, что за одно лето она может уничтожить около одной тысячи полевых мышей. Каждый грызун уничтожает более килограмма зерна на посевных площадях страны.
Поле с зерновыми культурами
Понятие площади фигуры:
В математике говорят — площадь фигуры. Это величина пространства, ограниченного замкнутым контуром (периметром фигуры).
Ее можно посчитать математическими методами. С этой целью еще в далекой древности была создана целая наука под названием геометрия. Она применялась для деления поля на земельные участки, но потом ее стали использовать для измерения различных фигур. Поэтому их называют геометрическими фигурами, их место на плоскости — площадью.
Сравнение площадей фигур
Мы можем площади плоских фигур сравнить на глазок. Посмотрите на иллюстрацию.
Картина на стене занимает меньше места, потому говорят, что ее площадь меньше, чем стена. Книги, тетради меньше площади крышки стола. Их как бы наложили сверху, и еще осталось место.
Перечислите способы сравнения фигур по площади.
Можно сравнить на глазок или накладывая предметы, фигуры друг на друга.
Расставьте в порядке уменьшения:
Если получилось так: 3, 1, 2, 4, то вы отлично справились.
Теперь сравните треугольник с кругом:
Круг меньше площади треугольника.
Сравнить можно с помощью любых мерок. На рисунке прямоугольники измеряли заданной меркой — треугольником.
В левый прямоугольник их поместилось 18, а в правый — 20. Делаем вывод, что площадь левой фигуры меньше, чем правой.
Хороший способ сравнения — это подсчет клеток.
Чтобы сравнить площади клетчатых фигур, надо пересчитать количество клеток:
Фигура 3 самая маленькая по площади – 6 клеток. Фигура 2 имеют большую площадь, чем 3. В ней 7 клеток. Площади фигур 1,4,5,6 равновеликие. Они равны 8 клеткам, по площади больше фигур 2 и 3.
Разностное сравнение площадей фигур — это нахождение разницы между большей и меньшей величиной.
Сравните площади фигур 3 и 1. Запишите результаты сравнения.
Проверьте себя:
8 – 6 = 2
Ответ: 2 клетки
Квадратный сантиметр, дециметр, метр
Какой меркой лучше измерить площадь фигуры квадрата и прямоугольника?
В 18 веке на Руси вводилась основная мера измерения площади — десятина и четь. Но поля крестьян были неровными, поэтому часто мерками служила урожайная копна. Народ изобретал особые мерки: выть, соха, обжа, коробь, веревка, жеребья. Сейчас мы не используем этих мер.
Начертите прямоугольник со сторонами 5см и 4см. Какими мерками можно измерить фигуру?
Посмотрите на рисунок, утенок измерил прямоугольник с помощью треугольников, ежонок — квадратами, а котенок — прямоугольниками.
Посчитаем, сколько единичных мерок находится в прямоугольнике. У животных получились разные величины: 40, 20, 10.
Всегда ли удобно определять площадь фигуры произвольными мерками?
Конечно, нет.
Вывод: значение величины зависит от выбранной мерки. Чтобы сравнить, нужно договориться об одинаковом способе измерения.
Всегда ли для определения площади фигуры подходит клетка?
Да.
Какого размера должна быть клетка?
Я предлагаю измерять как ежик, квадратами по 2 клеточки.
Измерьте длину и ширину этого квадратика. Что получилось?
Длина и ширина равна 1 см.
Единицей измерения площади еще 4-5 тысяч лет тому назад жители древнего города Вавилона считали квадрат, так как именно квадрат имеет превосходные признаки: четыре стороны равны межу собой, четыре прямых угла; можно провести ось и найти центр симметрии. Форма квадрата без изъянов, совершенна, поэтому его легко начертить и плотно покрыть фигуры любой формы.
Если у квадратика сторона 1см – площадь его равна квадратному сантиметру.
1 квадратный сантиметр сравним с ноготком взрослого человека.
Записывается площадь 1 квадратного сантиметра так:
S = 1 кв. см или S = 1 см2
Латинская буква «эс» обозначает площадь, двойка в правом верхнем углу — две величины: длину и ширину.
Начертите квадрат со стороной 10 сантиметров.
Квадратный дециметр (1 дм 2) — это квадрат со стороной 1 дм или 10 см.
Квадратный метр (1 м 2) — это квадрат со стороной 1 м или 10 дм. В квадратных метрах обозначается площадь в жилых помещениях, например: в комнатах, коридорах. Эта мерка подойдет для измерения дачного участка, спортивного зала, территории сквера.
А при строительстве школ важно учитывать, сколько квадратных метров должно быть в классе, если для одного ученика по санитарным правилам нужно 4 квадратных метра.
Вы хорошо справляетесь с заданиями. Спине, голове, всему телу нужен отдых. Встаньте на физкультурную минутку.
Физкультминутка
Поднимитесь, вверх потянитесь,
Вперед наклонитесь.
Ниже, ниже тянитесь,
Достаньте мизинцем до пятки.
Получилось? Тогда все в порядке.
Выпрямитесь, грудью вздохните,
Руки шире в стороны разведите.
Соедините в замок на лопатках.
Получилось? Тогда все в порядке.
Глазки зажмурьте, спокойно постойте.
Отдохнули? Теперь посчитайте площадки.
Площадь прямоугольника
Площади простых фигур, таких как квадратов и прямоугольников рассчитывать научились быстро. Для этого измеряют стороны прямоугольника.
Площадь прямоугольника находится по формуле: S = a ∙ b, где длину надо умножить на ширину фигуры.
Задание 1.
Постройте прямоугольник, длина которого 50 мм, а ширина 30 мм.
Можно ли длину и ширину данного прямоугольника выразить в сантиметрах?
Можно.
50 мм = 5 см |
30 мм = 3 см |
Найдите периметр прямоугольника. Р = (a + b) ∙ 2
Р = (5 + 3) ∙ 2 = 16 (см)
Ответ: 16 см
Имеет ли построенная вами фигура площадь?
Да. Прямоугольник имеет длину 5 см и ширину 3 см. Найдем, чему равна площадь прямоугольника по формуле S = a ∙ b.
S = 5 ∙ 3 = 15 см2
Ответ: площадь прямоугольника равна 15 кв.см.
Задание 2.
Чему равна площадь прямоугольника со сторонами 5 см и 4 см? Рассуждаем так. Нам известна длина и ширина прямоугольника. Площадь равна произведению этих величин.
S = 5 ∙ 4 = 20 см2
Ответ: 20 кв.см.
Задание 3.
Рассмотрите следующий рисунок:
Как называется данная геометрическая фигура?
Многоугольник.
Как найти площадь этого многоугольника?
Найти площади отдельных прямоугольников.
Найдите площадь этого многоугольника разными способами.
Первый способ.
Решение.
Измеряем стороны большого прямоугольника.
Длина равна 3 см, а ширина 3 + 1 = 4 (см).
1) 4 · 3 = 12 (см2) – площадь большого прямоугольника.
Длина маленького прямоугольника 3 см, а ширина 1 см. Перемножим эти величины.
2) 3 · 1 = 3 (см2) – площадь маленького прямоугольника.
Теперь из большей фигуры вырезаем два маленьких белых прямоугольника.
3) S = 12 – 3 – 3 = 6 (см2) – площадь многоугольника.
Второй способ.
Решение.
1) 3 · 1 = 3 (см2) – площадь верхнего прямоугольника.
2) 3 · 1 = 3 (см2) – площадь второго прямоугольника.
3) S = 3 + 3 = 6 (см2) – общая площадь многоугольника.
Ответ: S = 6 см2
Преобразование величин
По формуле S = a ∙ b квадратные сантиметры можно выразить в квадратных метрах. Давайте вспомним, что один метр равен сто сантиметрам.
1 м = 100 см
Мы выполним умножение сторон, и найдем квадратную величину.
Значит: 1 м2 = 100 ∙ 100 = 10000 см2
Задание 4.
Вычислите сколько кв.дм в 1 м2. Во сколько раз 1 кв. м. больше 1 кв. дм?
Как преобразовать квадратные дециметры в квадратные метры? Давайте рассуждать так. Квадрат со стороной 1 м разделим на 10 столбиков. В каждом таком столбике по 10 кв. дм, то есть всего в кв. м 10 десятков, или 100 дм2.
Второй вариант размышлений отталкивается от формулы. Умножаем длину на ширину. 10 дм на 10 дм, получится 100 дм2.
1 м2 = 10 ∙ 10 = 100 дм2
Ответ: в 1 кв. м содержится 100 кв.дм. 1 кв.м. в сто раз больше одного квадратного дециметра.
Задание 5.
Сколько кв. см в 1 кв. дм? Во сколько раз 1 кв. дм. больше 1 кв. см?
Выражаем квадратные дециметры в квадратных сантиметрах.
1 дм = 10 см
1 дм2 = 10 ∙ 10 = 100 см2
Ответ: 1 кв.дм равен 100 кв.см. 1 кв.дм в сто раз больше одного квадратного сантиметра.
Выполните упражнение:
Найдите, сколько квадратных дециметров в 8 м2, в 25 м2, в 45 м2 9 дм2
Мы знаем, что 1 м2 – это 100 дм2, то есть число м2 в 100 раз больше числа дм2, поэтому умножим 8 на 100, получим 800 дм2.
25 м2 : умножим 25 на 100 = 2500 дм2.
45 м2 9 дм2 : это 45 ∙ 100 + 9 = 3100 + 9 = 4509 мм2.
Наш урок подходит к концу.
Продолжите фразу:
сегодня я научился
было интересно
было трудно
Вы хорошо потрудились, поэтому сможете справиться с самостоятельными заданиями.
До новых встреч!
Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Площадь квадрата
Запомните!
Для вычисления площади квадрата нужно умножить его длину на саму себя.
S = a · a
Пример:
SEKFM = EK · EK
SEKFM = 3 · 3 = 9 см2
Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:
S = a2
Площадь прямоугольника
Запомните!
Для вычисления площади прямоугольника нужно умножить его длину на ширину.
S = a · b
Пример:
SABCD = AB · BC
SABCD = 3 · 7 = 21 см2
Запомните!
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.
Площадь сложных фигур
Запомните!
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2
Ответ: S = 65 м2 — площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Запомните!
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
Рассмотрим прямоугольник:
АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
ABC и
ACD
Вначале найдём площадь прямоугольника по формуле.
SABCD = AB · BC
SABCD = 5 · 4 = 20 см2
S
ABC = SABCD : 2
S
ABC = 20 : 2 = 10 см2
S
ABC =
S
ACD = 10 см2
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
3 декабря 2015 в 22:54
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
как написать правильно площадь треугольника?
0
Спасибо
Ответить
9 декабря 2015 в 19:41
Ответ для Ирина Петренко
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
S(рисуешь мини треугольник) = ,,,,,
0
Спасибо
Ответить