Как найти скорость брошенного тела на высоте


1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту

Формулы высоты, скорости, времени тела брошенного вверх

h max
— максимальная высота достигнутая телом за время t

Vк — конечная скорость тела на пике, равная нулю

Vн — начальная скорость тела

t — время подъема тела на максимальную высоту h

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула максимальной высоты (h max):

Формула времени за которое тело достигло максимальную высоту (t):

2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести

Формулы  при свободном падении

h — расстояние пройденное телом за время t

Vн — начальная скорость тела

V — скорость тела в момент времени t

t — время подъема за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула скорости тела в момент времени t (V):

Формула начальной скорости тела (Vн):

Формулы высоты тела в момент времени t (h):

Формулы времени, за которое тело достигло высоту h (t):

Подробности

Опубликовано: 04 августа 2015

Обновлено: 13 августа 2021

Если тело бросить горизонтально с некоторой высоты, оно будет одновременно падать и двигаться вперед. Это значит, что оно будет менять положение относительно двух осей: ОХ и ОУ. Относительно оси ОХ тело будет двигаться с постоянной скоростью, а относительно ОУ — с постоянным ускорением.

Кинематические характеристики движения

Важные факты!

Графически движение горизонтально брошенного тела описывается следующим образом:

  1. Вектор скорости горизонтально брошенного тела направлен по касательной к траектории его движения.
  2. Проекция начальной скорости на ось ОХ равна v0: vox = v0. Ее проекция на ось ОУ равна нулю: voy = 0.
  3. Проекция мгновенной скорости на ось ОХ равна v0: vx = v0. Ее проекция на ось ОУ равна нулю: vy = –gt.
  4. Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.

Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:

Подставив в эту формулу значения проекций мгновенной скорости в момент времени t, получим:

Минимальная скорость в течение всего времени движения равна начальной скорости: vmin = v0.

Максимальной скорости тело достигает в момент приземления. Поэтому максимальной скоростью тела в течение всего времени движения является его конечная скорость: vmax = v.

Время падения — время, в течение которого перемещалось тело до момента приземления. Его можно выразить через формулу высоты при равноускоренном прямолинейном движении:

h0 — высота, с которой тело бросили в горизонтальном направлении.

Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:

l = sx = v0tпад

Выразив время падения через высоту и ускорение свободного падения, формула для определения дальности полета получает следующий вид:

Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:

Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости есть модуль этой скорости, данная формула принимает вид:

x = v0t

Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:

Пример №1. Из окна, расположенного 5 м от земли, горизонтально брошен камень, упавший на расстоянии 8 м от дома. С какой скоростью был брошен камень?

Так как нам известна высота места бросания и дальность полета, начальную скорость тела можно вычислить по формуле:

Выразим начальную скорость и вычислим ее:

Горизонтальный бросок тела с горы

Горизонтальный бросок тела с горы — частный случай горизонтального броска. От него он отличается увеличенным расстоянием между местом бросания и местом падения. Это увеличение появляется потому, что плоскость находится под наклоном. И чем больше этот наклон, тем больше времени требуется телу, чтобы приземлиться.

График горизонтального броска тела с горы

α — угол наклона плоскости к горизонту, s — расстояние от места бросания до места падения

Дальность полета — смещение тела относительно оси ОХ от места бросания до места падения. Она равна произведению расстояния от места бросания до места падения и косинуса угла наклона плоскости к горизонту:

l = s • cosα

Начальная высота — высота, с которой было брошено тело. Обозначается h0. Начальная высота равна произведению расстояния от места бросания до места падения и синусу угла наклона плоскости к горизонту:

h0 = s sinα

Пример №2. На горе с углом наклона 30о бросают горизонтально мяч с начальной скоростью 15 м/с. На каком расстоянии от точки бросания вдоль наклонной плоскости он упадет?

Выразим это расстояние через дальность полета:

Дальность полета выражается по формуле:

Подставим ее в формулу для вычисления расстояния от точки бросания до точки падения:

Выразим с учетом формулы начальной высоты:

Преобразуем:

Поделим обе части выражения на общий множитель s:

Подставим известные значения:

Задание EF18083

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

В другом опыте на этой же установке шарик массой 2m бросают со скоростью 2υ0.

Что произойдёт при этом с временем полёта, дальностью полёта и ускорением шарика? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости и массы.
  3. Определить характер изменения физической величины при увеличении начальной скорости и массы шарика.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости и массы тела. Поэтому оно при увеличении начальной скорости и массы вдвое никак не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет увеличена вдвое, дальность полета тоже увеличится (вдвое). От массы дальность полета никак не зависит.

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 313.

Ответ: 313

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18048

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

Что произойдёт с временем полёта, дальностью полёта и ускорением шарика, если на этой же установке уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости.
  3. Определить характер изменения физической величины при уменьшении начальной скорости.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости. Поэтому оно при уменьшении начальной скорости вдвое не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет уменьшена вдвое, дальность полета тоже уменьшится (вдвое).

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 323.

Ответ: 323

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 18.2k

Движение тела, брошенного вертикально вверх

Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением
a = -g.

Перемещение тела за время t представляет собой высоту подъема h.
Для этого движения справедливы формулы:

Если:
u0 — начальная скорость движения тела ,
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота на которую поднимется тело за время t,
t — время,
То, движение тела, брошенного вертикально вверх описывается следующими формулами:

Высота подъема тела за некоторое время, зная конечную скорость

[ h = frac{u_0 + u}{2} t ]

Высота подъема тела за некоторое время, зная ускорение свободного падения

[ h = u_0 t — frac{g t^2}{2} ]

Скорость тела через некоторое время, зная ускорение свободного падения

[ u = u_0 — gt ]

Скорость тела на некоторой высоте, зная ускорение свободного падения

[ u = sqrt{ u_0^2 — 2gh} ]

Максимальная высота подъема тела, зная первоначальную скорость и ускорение свободного падения

Тело, брошенное вертикально вверх, достигает максимальной высоты в тот момент, когда его скорость обращается в ноль. Поднявшись на максимальную высоту тело начинает свободное падение вниз.

[ h_{max} = frac{u_0^2}{2g} ]

Время подъема на максимальную высоту подъема тела, зная первоначальную скорость и ускорение свободного падения

[ t_{hmax} = frac{u_0}{g} ]

Примечание к статье: Движение тела, брошенного вертикально вверх

  • Сопротивление воздуха в данных формулах не учитывается.
  • Ускорение свободного падения имеет приведенное значение (9.81 (м/с²)) вблизи земной поверхности. Значение g на других расстояниях от поверхности Земли изменяется!

Движение тела, брошенного вертикально вверх

стр. 409

Движение горизонтально брошенного тела:

Рассмотрим движение шара, движущегося прямолинейно по поверхности стола с высотой Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

При достаточно малом сопротивлении воздуха, которым можно пренебречь, тело будет двигаться в горизонтальном направлении равномерно со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами. Поэтому перемещение
в горизонтальном направлении в любой момент времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами, или длина полета, определяется следующей формулой: 

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Проекции скорости тела на оси Движение горизонтально брошенного тела в физике - формулы и определение с примерами и Движение горизонтально брошенного тела в физике - формулы и определение с примерами определятся следующими соотношениями:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

В вертикальном же направлении, двигаясь равноускоренно без начальной скорости, тело будет свободно падать с высоты Движение горизонтально брошенного тела в физике - формулы и определение с примерами. Следовательно, положение тела в вертикальном направлении после произвольного времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами будет определяться формулой:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Из соотношений (1.21) и (1.22) уравнение траектории движения горизонтально брошенного тела на плоскости Движение горизонтально брошенного тела в физике - формулы и определение с примерами будет иметь следующий вид:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Выражение (1.24) является уравнением параболы. Значит, горизонтально брошенное тело будет двигаться по параболической линии. Время полета тела, брошенного горизонтально с высоты Движение горизонтально брошенного тела в физике - формулы и определение с примерами, определяется выражением:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

В этом случае формула для расчета длины полета тела будет иметь вид:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Горизонтально брошенное тело, одновременно двигаясь в горизонтальном направлении равномерно и в вертикальном направлении равноускоренно, свободно падает. К концу движения (после истечения времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами) скорости в горизонтальном и вертикальном направлении будут Движение горизонтально брошенного тела в физике - формулы и определение с примерами и Движение горизонтально брошенного тела в физике - формулы и определение с примерами соответственно. Таким образом, скорость тела при падении на землю определяется выражением:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

или

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Перемещение и траектория тела при криволинейном движении неравны между собой. Модуль вектора и направление движения горизонтально брошенного тела на протяжении движения меняются непрерывно.

Образец решения задачи:

Тело брошено горизонтально на высоте 35 м со скоростью 30м/с. Найти скорость тела при падении на землю.
Дано:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Найти:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Формула:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Решение:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Ответ: 40 м/c.

Движение тела, брошенного горизонтально и под углом к горизонту

Если материальная точка участвует одновременно в нескольких движениях, то такое движение называют сложным.

Примером сложного движения является движение под действием силы тяжести в том случае, если падающему телу сообщена начальная скорость, непараллельная вектору ускорения свободного падения.

Рассмотрим движение тела, брошенного горизонтально со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами Выберем систему координат так, что ее начало находится на поверхности Земли, направив ось Ох горизонтально, а ось Оу — вертикально (рис. 23).

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Это сложное движение можно представить в виде суммы двух независимых движений — равномерного с постоянной скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами вдоль горизонта (оси Ох) и свободного падения в вертикальном направлении с ускорением Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение тела в горизонтальном направлении будет описываться уравнением

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
а в вертикальном — уравнением

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Здесь Движение горизонтально брошенного тела в физике - формулы и определение с примерами — координата тела по оси Оу в начальный момент времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами Если тело брошено с высоты Движение горизонтально брошенного тела в физике - формулы и определение с примерами то время падения Движение горизонтально брошенного тела в физике - формулы и определение с примерами определяется из

условия Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Для получения уравнения траектории движения у(х) необходимо исключить время из уравнений движения (1) и (2). Из уравнения (1) выражаем время t и подставляем в уравнение (2). Получаем Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Это уравнение параболы, ветви которой направлены вниз, так как коэффициент перед множителем Движение горизонтально брошенного тела в физике - формулы и определение с примерами отрицательный.

Скорость вдоль направления оси Ох остается неизменной и равной Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Вдоль оси Оу движение равноускоренное. В начальный момент времени вертикальная составляющая скорости равна нулю Движение горизонтально брошенного тела в физике - формулы и определение с примерами поэтому мгновенная скорость вдоль оси Оу находится из соотношения Движение горизонтально брошенного тела в физике - формулы и определение с примерами Модуль мгновенной скорости определяется по теореме Пифагора (см. рис. 23):

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Угол между начальной скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами и мгновенной скоростью и в момент времени t можно найти из соотношения

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
В приведенных формулах сопротивление воздуха не учитывается.

Рассмотрим теперь движение тела, брошенного со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами под некоторым углом Движение горизонтально брошенного тела в физике - формулы и определение с примерами к горизонту (рис. 24).

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Это сложное движение можно представить в виде суммы двух независимых движений — равномерного в горизонтальном направлении со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

и равноускоренного в вертикальном направлении с ускорением Движение горизонтально брошенного тела в физике - формулы и определение с примерами и начальной
скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
В том случае, если система координат выбрана так, что начальные координаты Движение горизонтально брошенного тела в физике - формулы и определение с примерами уравнение траектории движения имеет вид
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Как и при движении тела, брошенного горизонтально, траектория представляет собой параболу, ветви которой направлены вниз, поскольку коэффициент перед Движение горизонтально брошенного тела в физике - формулы и определение с примерами отрицателен. Вершина параболы при этом имеет координаты Движение горизонтально брошенного тела в физике - формулы и определение с примерами

где l — дальность полета тела, Движение горизонтально брошенного тела в физике - формулы и определение с примерами — максимальная высота его подъема в процессе полета.

Модули горизонтальной Движение горизонтально брошенного тела в физике - формулы и определение с примерами и вертикальной Движение горизонтально брошенного тела в физике - формулы и определение с примерами составляющих мгновенной скорости Движение горизонтально брошенного тела в физике - формулы и определение с примерами движения определяются из следующих соотношений:
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Мгновенную скорость Движение горизонтально брошенного тела в физике - формулы и определение с примерами и движения тела в произвольной точке Л траектории можно найти как векторную сумму горизонтальной Движение горизонтально брошенного тела в физике - формулы и определение с примерами и вертикальной Движение горизонтально брошенного тела в физике - формулы и определение с примерамимгновенных скоростей движения (см. рис. 24).

Время подъема тела можно найти из условия Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Если сопротивление воздуха при движении не учитывается, то время подъема равно времени падения: Движение горизонтально брошенного тела в физике - формулы и определение с примерами (докажите это самостоятельно).

Таким образом, время полета тела можно найти как
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Определив вертикальную составляющую скорости Движение горизонтально брошенного тела в физике - формулы и определение с примерами в искомый момент времeни, по формуле Движение горизонтально брошенного тела в физике - формулы и определение с примерами можно найти высоту, на которой находится тело.

Максимальная высота подъема тела Движение горизонтально брошенного тела в физике - формулы и определение с примерами легко определяется из условия, что вертикальная составляющая скорости в этой точке равна пулю Движение горизонтально брошенного тела в физике - формулы и определение с примерами Тогда
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Дальность полета l — расстояние, пройденное телом за время полета Движение горизонтально брошенного тела в физике - формулы и определение с примерами вдоль оси Ох с постоянной скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами (см. рис. 24). Она определяется по формуле

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Таким образом, дальность полета определяется модулем начальной скорости Движение горизонтально брошенного тела в физике - формулы и определение с примерамитела и углом его бросания Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Заметим, что согласно формуле (9) при неизменном модуле начальной скорости тела максимальная дальность Движение горизонтально брошенного тела в физике - формулы и определение с примерами полета достигается при Движение горизонтально брошенного тела в физике - формулы и определение с примерами т. е. при угле бросания Движение горизонтально брошенного тела в физике - формулы и определение с примерами = 45°.

  • Движение тела, брошенного под углом к горизонту
  • Принцип относительности Галилея
  • Движение в гравитационном поле
  • Зависимость веса тела от вида движения
  • Вертикальное движение тел в физик
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Взаимная передача вращательного и поступательного движения

Вторник, а это значит, что сегодня мы снова решаем задачи. На это раз, на тему «свободное падение тел».

Присоединяйтесь к нам в телеграм и получайте актуальную рассылку каждый день!

Задачи на свободное падение тел с решением

Задача №1. Нахождение скорости при свободном падении

Условие

Тело падает с высоты 20 метров. Какую скорость оно разовьет перед столкновением с Землей?

Решение

Высота нам известна по условию. Для решения применим формулу для скорости тела в момент падения и вычислим:

Задача №1. Нахождение скорости при свободном падении

Ответ: примерно 20 метров в секунду.

Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.

Условие

Индеец выпускает стрелу из лука вертикально вверх с начальной скоростью 25 метров в секунду. За какое время стрела окажется в наивысшей точке и какой максимальной высоты она достигнет стрела?

Решение

Сначала запишем формулу из кинематики для скорости. Как известно, в наивысшей точке траектории скорость стрелы равна нулю:

Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.

Теперь запишем закон движения для вертикальной оси, направленной вертикально вверх.

Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.

Ответ: 2,5 секунды, 46 метров.

Задача №3. Нахождение времени движения тела, брошенного вертикально вверх

Условие

Мячик бросили вертикально вверх с начальной скоростью 30 метров в секунду. Через какое время мяч окажется на высоте 25 метров?

Решение

Запишем уравнение для движения мячика:

Задача №3. Нахождение времени движения тела, брошенного вертикально вверх

Мы получили квадратное уравнение. Упростим его и найдем корни:

Задача №3. Нахождение времени движения тела, брошенного вертикально вверх

Как видим, уравнение имеет два решения. Первый раз мячик побывал на высоте через 1 секунду (когда поднимался), а второй раз через 5 секунд (когда падал обратно).

Ответ: 1с, 5с.

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Условие

Камень, брошенный с крыши дома под углом альфа к горизонту, через время t1=0,5c достиг максимальной высоты, а еще через время t2=2,5c упал на землю. Определите высоту Н дома. Сопротивлением воздуха пренебречь. Ускорение свободного падения g = 10 м/с2.

Решение

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Камень брошен со скоростью v0 под углом α к горизонту с дома высотой Н. Эту скорость можно разложить на две составляющие: v0X (горизонтальная) и v0Y (вертикальная). В горизонтальном направлении на камень не действует никаких сил (сопротивлением воздуха пренебрегаем), поэтому горизонтальная составляющая скорости неизменна на протяжении всего времени полета камня (равномерное движение). Максимальная точка траектории камня над уровнем земли (исходя из кинематических соотношений):

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Здесь t1 – время подъема камня с высоты Н на высоту h; g – ускорение свободного падения.

Вертикальную составляющую скорости можно вычислить исходя из геометрических соображений:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

         
Подставив выражение для скорости в первое уравнение, получим:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Также высоту h можно выразить через время t2 падения камня с высоты h на землю (исходя из кинематических соотношений и учитывая, что с вертикальная составляющая скорости в наивысшей точке равна нулю):

Задача №4. Нахождение высоты при движении тела под углом к горизонту

         
Для высоты дома можно записать:

Задача №4. Нахождение высоты при движении тела под углом к горизонту         
Так как вертикальная составляющая скорости камня в максимальной точке траектории равна нулю:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Подставляем в формулу для высоты H и вычисляем:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Ответ: H = 30 м.

Задача №5. Нахождение закона движения тела

Условие

Найти закон движения тела против силы тяжести, при начальной скорости V0. И на какую максимальную высоту поднимется тело? Тело бросили под углом 90 градусов.

Решение

Задача №5. Нахождение закона движения тела

Тело брошено под углом α=90° к горизонту. Другими словами, тело брошено вертикально вверх с начальной скоростью V0. Направим координатную ось х вертикально вверх, так ее направление совпадает с вектором начальной скорости. F – сила тяжести, направленная вниз. В начальный момент тело находится в точке А.

В задаче нужно найти закон движения тела, то есть зависимость координаты тела от времени. В общем случае этот закон задается кинематическим соотношением:

Задача №5. Нахождение закона движения тела

где х0 – начальная координата тела; a – ускорение.

Так как мы поместили начало координат в точку А,  х0=0. Тело движется с ускорением свободного падения g, при этом сила тяжести направлена против начальной скорости, поэтому в проекции на вертикальную ось a=-g. Таким образом, искомый закон движения перепишется в виде:

Задача №5. Нахождение закона движения тела

Далее будем использовать еще одно общее кинематическое соотношение:

Задача №5. Нахождение закона движения тела

где V – конечная скорость.

Максимальная высота подъема тела указана на рисунке точной B, в этот момент конечная скорость V равна нулю, а координата х равна максимальной высоте Н подъема тела. Отсюда можно найти выражение для этой величины:

Задача №5. Нахождение закона движения тела

Полезные формулы для решения задач на свободное падение

Свободное падение описывается формулами кинематики. Мы не будем приводить их вывод, но запишем самые полезные.

Формула для максимальной высоты подъема тела, брошенного вертикально вверх c некоторой начальной скоростью:

Полезные формулы для решения задач на свободное падение

Кстати, как выводится именно эта формула можно посмотреть в последней задаче.

Формула для времени подъема и падения тела, брошенного вертикально вверх:

Полезные формулы для решения задач на свободное падение

Скорость тела в момент падения с высоты h:

Полезные формулы для решения задач на свободное падение

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

Вопросы с ответами на свободное падение тел

Вопрос 1. Как направлен вектор ускорения свободного падения?

Ответ: можно просто сказать, что ускорение g направлено вниз. На самом деле, если говорить точнее, ускорение свободного падения направлено к центру Земли.

Вопрос 2. От чего зависит ускорение свободного падения?

Ответ: на Земле ускорение свободного падения зависит от географической широты, а также от высоты h подъема тела над поверхностью. На других планетах эта величина зависит от массы M и радиус R небесного тела. Общая формула для ускорения свободного падения:

Вопросы с ответами на свободное падение тел
Вопрос 3. Тело бросают вертикально вверх. Как можно охарактеризовать это движение?

Ответ: В этом случае тело движется равноускоренно. Причем время подъема и время падения тела с максимальной высоты равны.

Вопрос 4. А если тело бросают не вверх, а горизонтально или под углом к горизонту. Какое это движение?

Ответ: можно сказать, что это тоже свободное падение. В данном случае движение нужно рассматривать относительно двух осей: вертикальной и горизонтальной. Относительно горизонтальной оси тело движется равномерно, а относительно вертикальной – равноускоренно с ускорением g.

Баллистика – наука, изучающая особенности и законы движения тел, брошенных под углом к горизонту.

Вопрос 5. Что значит «свободное» падение.

Ответ: в данном контексте понимается, что тело при падении свободно от сопротивления воздуха.

Свободное падение тел: определения, примеры

Свободное падение – равноускоренное движение, происходящее под действием силы тяжести.

Первые попытки систематизированно и количественно описать свободное падение тел относятся к средневековью. Правда, тогда было широко распространено заблуждение, что тела разной массы падают с разной скоростью. На самом деле, в этом есть доля правды, ведь в реальном мире на скорость падения сильно влияет сопротивление воздуха.

Однако, если им можно пренебречь, то скорость падающих тел разной массы будет одинакова. Кстати, скорость при свободном падении возрастает пропорционально времени падения.

Ускорение свободно падающих тел не зависит от их массы.

Рекорд свободного падения для человека на данный момент принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который в 2012 году прыгнул с высоты 39 километров и находился в свободном падении 36 402,6 метра. 

Примеры свободного падения тел:

  • яблоко летит на голову Ньютона;
  • парашютист выпрыгивает из самолета;
  • перышко падает в герметичной трубке, из которой откачан воздух.

При свободном падении тела возникает состояние невесомости. Например, в таком же состоянии находятся предметы на космической станции, движущейся по орбите вокруг Земли. Можно сказать, что станция медленно, очень медленно падает на планету.

Конечно, свободное падение возможно не только не Земле, но и вблизи любого тела, обладающего достаточной массой. На других комических телах падения также будет равноускоренным, но величина ускорения свободного падения будет отличаться от земной. Кстати, раньше у нас уже выходил материал про гравитацию.

При решении задач ускорение g принято считать равным 9,81 м/с^2. В реальности его величина варьируется от 9,832 (на полюсах) до 9,78 (на экваторе). Такая разница обусловлена вращением Земли вокруг своей оси.

Нужна помощь в решении задач по физике? Обращайтесь в профессиональный студенческий сервис в любое время.

Понравилась статья? Поделить с друзьями:
  • Как найти вектор равный сумме трех векторов
  • Принтер не печатает ставит в очередь как исправить
  • Как найти угол сферического треугольника
  • Как найти степень кривой
  • Как найти порядковое числительное в английском языке