Как найти скорость через время физика


Загрузить PDF


Загрузить PDF

Скорость является функцией времени и определяется как абсолютной величиной, так и направлением.[1]
Часто в задачах по физике требуется найти начальную скорость (ее величину и направление), которой изучаемый объект обладал в нулевой момент времени. Для вычисления начальной скорости можно использовать различные уравнения. Основываясь на данных, приведенных в условии задачи, вы можете выбрать наиболее подходящую формулу, которая позволит легко получить искомый ответ.

  1. Изображение с названием Find Initial Velocity Step 1

    1

    Используйте подходящее уравнение. При решении физической задачи необходимо знать, какая формула вам понадобится. Для этого первым делом следует записать все данные, приведенные в условии задачи. Если известны конечная скорость, ускорение и время, для определения начальной скорости удобно использовать следующее соотношение:

    • Vi = Vf — (a * t)
    • В эту формулу входят следующие величины:
      • Vi — начальная скорость
      • Vf — конечная скорость
      • a — ускорение
      • t — время
    • Обратите внимание, что это стандартная формула, используемая для вычисления начальной скорости.
  2. Изображение с названием Find Initial Velocity Step 2

    2

    Подставьте в формулу известные величины. Выписав все исходные данные и записав необходимое уравнение, можно подставить в него известные величины. Важно внимательно изучить условие задачи и аккуратно записывать каждый шаг при ее решении.

    • Если вы где-либо допустили ошибку, то легко сможете найти ее, просмотрев свои записи.
  3. Изображение с названием Find Initial Velocity Step 3

    3

    Решите уравнение. Подставив в формулу известные значения, воспользуйтесь стандартными преобразованиями для получения искомого результата. Если можно, используйте калькулятор, чтобы снизить вероятность просчетов при вычислениях.

    • Предположим, что объект, двигаясь на восток с ускорением 10 метров в секунду в квадрате в течение 12 секунд, разогнался до конечной скорости 200 метров в секунду. Необходимо найти начальную скорость объекта.
      • Запишем исходные данные:
      • Vi = ?, Vf = 200 м/с, a = 10 м/с2, t = 12 с
    • Умножим ускорение на время: a * t = 10 * 12 =120
    • Вычтем полученное значение из конечной скорости: Vi = Vf – (a * t) = 200 – 120 = 80 Vi = 80 м/с на восток
    • Запишите ответ в правильном виде. Необходимо указать единицы измерения, в нашем случае метры в секунду, или м/с, а также направление движения объекта. Если вы не укажете направление, ответ будет неполным, содержа лишь величину скорости без информации о том, в каком направлении движется объект.

    Реклама

  1. Изображение с названием Find Initial Velocity Step 4

    1

    Используйте подходящую формулу. При решении какой-либо физической задачи необходимо выбрать соответствующее уравнение. Для этого первым делом следует записать все данные, приведенные в условии задачи. Если известны пройденное расстояние, время и ускорение, для определения начальной скорости можно использовать следующее соотношение:

    • Vi = (d / t) — [(a * t) / 2]
    • В эту формулу входят следующие величины:
      • Vi — начальная скорость
      • d — пройденное расстояние
      • a — ускорение
      • t — время
  2. Изображение с названием Find Initial Velocity Step 5

    2

    Подставьте в формулу известные величины. После того, как вы выписали все исходные данные и записали необходимое уравнение, можно подставить в него известные величины. Важно внимательно изучить условие задачи и аккуратно записывать каждый шаг при ее решении.

    • Допустив ошибку в решении, вы сможете без труда найти ее, просмотрев свои записи.
  3. Изображение с названием Find Initial Velocity Step 6

    3

    Решите уравнение. Подставив в формулу известные значения, воспользуйтесь стандартными преобразованиями для нахождения ответа. Если возможно, используйте калькулятор, чтобы уменьшить вероятность просчетов при вычислениях.

    • Допустим, объект движется в западном направлении с ускорением 7 метров в секунду в квадрате в течение 30 секунд, пройдя при этом 150 метров. Необходимо вычислить его начальную скорость.
      • Запишем исходные данные:
      • Vi = ?, d = 150 м, a = 7 м/с2, t = 30 с
    • Умножим ускорение на время: a * t = 7 * 30 = 210
    • Поделим произведение на два: (a * t) / 2 = 210 / 2 = 105
    • Поделим расстояние на время: d / t = 150 / 30 = 5
    • Вычтем первую величину из второй: Vi = (d / t) — [(a * t) / 2] = 5 – 105 = -100 Vi = -100 м/с в западном направлении
    • Запишите ответ в правильном виде. Необходимо указать единицы измерения, в нашем случае метры в секунду, или м/с, а также направление движения объекта. Если вы не укажете направление, ответ будет неполным, содержа лишь величину скорости без информации о том, в каком направлении движется объект.

    Реклама

  1. Изображение с названием Find Initial Velocity Step 7

    1

    Используйте подходящее уравнение. Для решения физической задачи необходимо выбрать соответствующую формулу. Первым делом следует записать все начальные данные, указанные в условии задачи. Если известны конечная скорость, ускорение и пройденное расстояние, для определения начальной скорости удобно использовать следующее соотношение:

    • Vi = √ [Vf2 — (2 * a * d)]
    • Эта формула содержит следующие величины:
      • Vi — начальная скорость
      • Vf — конечная скорость
      • a — ускорение
      • d — пройденное расстояние
  2. Изображение с названием Find Initial Velocity Step 8

    2

    Подставьте в формулу известные величины. После того, как вы выписали все исходные данные и записали необходимое уравнение, можно подставить в него известные величины. Важно внимательно изучить условие задачи и аккуратно записывать каждый шаг при ее решении.

    • Допустив где-либо ошибку, вы сможете без труда найти ее, просмотрев ход решения.
  3. Изображение с названием Find Initial Velocity Step 9

    3

    Решите уравнение. Подставив в формулу известные значения, воспользуйтесь необходимыми преобразованиями для получения ответа. По возможности используйте калькулятор, чтобы уменьшить вероятность просчетов при вычислениях.

    • Предположим, объект движется в северном направлении с ускорением 5 метров в секунду в квадрате и, преодолев 10 метров, имеет конечную скорость 12 метров в секунду. Необходимо найти его начальную скорость.
      • Запишем исходные данные:
      • Vi = ?, Vf = 12 м/с, a = 5 м/с2, d = 10 м
    • Возведем в квадрат конечную скорость: Vf2= 122 = 144
    • Умножим ускорение на пройденное расстояние и на 2: 2 * a * d = 2 * 5 * 10 = 100
    • Вычтем результат умножения из квадрата конечной скорости: Vf2 — (2 * a * d) = 144 – 100 = 44
    • Извлечем квадратный корень из полученного значения: = √ [Vf2 — (2 * a * d)] = √44 = 6,633 Vi = 6,633 м/с в северном направлении
    • Запишите ответ в правильном виде. Необходимо указать единицы измерения, то есть метры в секунду, или м/с, а также направление движения объекта. Если вы не укажете направление, ответ будет неполным, содержа лишь величину скорости без информации о том, в каком направлении движется объект.

    Реклама

  1. Изображение с названием Find Initial Velocity Step 10

    1

    Выберите подходящую формулу. При решении физической задачи необходимо использовать соответствующее уравнение. Прежде всего следует записать все данные, приведенные в условии задачи. Если известны конечная скорость, время и пройденное расстояние, для определения начальной скорости можно использовать следующее соотношение:

    • Vi = Vf + 2 (t — d)
    • В данную формулу входят следующие величины:
      • Vi — начальная скорость
      • Vf — конечная скорость
      • t — время
      • d — пройденное расстояние
  2. Изображение с названием Find Initial Velocity Step 11

    2

    Подставьте в формулу известные значения. После того, как вы выписали все исходные данные и записали необходимое уравнение, можно подставить в него известные величины. Внимательно изучите условие задачи и аккуратно записывайте каждый шаг при ее решении.

    • Допустив ошибку, вы сможете без труда найти ее, просмотрев решение.
  3. Изображение с названием Find Initial Velocity Step 12

    3

    Решите уравнение. Подставив в формулу известные значения, воспользуйтесь необходимыми преобразованиями для получения ответа. Если можно, используйте калькулятор, чтобы уменьшить вероятность просчетов при вычислениях.

    • Допустим, объект преодолел расстояние 15 метров (49,2 фута) в течение 45 секунд, и его конечная скорость составляет 17 метров (55,8 фута) в секунду. Найдем начальную скорость объекта.
      • Запишем исходные данные:
      • Vi = ?, Vf = 17 м/с, t = 45 с, d = 15 м
    • Вычтем расстояние из времени: (t – d) = (45 – 15) = 30
    • Умножим полученное значение на 2: 2 ( t – d) = 2 (45 – 15) = 60
    • Прибавим к этой величине конечную скорость: Vf + 2 (t – d) = 17 + 60 = 77 Vi = 77 м/с в южном направлении
    • Запишите ответ в правильном виде. Необходимо указать единицы измерения, то есть метры в секунду, или м/с, а также направление движения объекта. Если вы не укажете направление, ответ будет неполным, содержа лишь величину скорости без информации о том, в каком направлении движется объект.

    Реклама

Что вам понадобится

  • Карандаш
  • Бумага
  • Калькулятор (необязательно)

Об этой статье

Эту страницу просматривали 149 915 раз.

Была ли эта статья полезной?

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

Рассмотрим движение тела из точки (A) в точку (B) (рис. (1)). Траектория (AB) является криволинейной.

Введём понятие «средняя скорость».

На рисунке (1) показаны вектора перемещений тела (Delta{vec{r_3}}), (Delta{vec{r_2}}) и (Delta{vec{r_1}}) за различные сокращающиеся промежутки времени (Delta{t_3}), (Delta{t_2}) и (Delta{t_1}).

криволинейноекоп.png

Рис. (1). Перемещения тела при криволинейном движении

Средняя скорость  равна отношению перемещения за конечный промежуток времени:

 Средняя скорость является векторной величиной:

  • направление средней скорости υ ср→↑↑Δr→ находится согласно математической формуле определения данной физической величины (сравни математическое выражение (vec{a}) (=) (frac{vec{b}}{2}) и формулу средней скорости);
  • числовое значение средней скорости (модуль, проекции на координатные оси) определяется согласно геометрическим правилам работы с векторами;
  • физические понятия отличаются от математических понятий наличием единиц измерения ([(v_{ср})] (=) [(frac{м}{с})]).

Участки траектории (AB), (AD) и (AE) (рис. (1)) характеризуются, соответственно, средними скоростями:

(vec{v_{ср3}}), (vec{v_{ср2}}), (vec{v_{ср1}}).

(vec{v_{ср3}}) = (frac{Delta{vec{r_3}}}{Delta{t_3}}) (vec{v_{ср2}}) = (frac{Delta{vec{r_2}}}{Delta{t_2}}) (vec{v_{ср1}}) = (frac{Delta{vec{r_1}}}{Delta{t_1}})

Если уменьшать неограниченно промежуток времени (Delta{t}), то быстрота движения тела характеризуется понятием «мгновенная скорость» (или «скорость»).

Математическая запись уменьшения промежутка времени:

Δt→0

 (в математике существует понятие «предел», символ данного понятия — «lim»).

Физический смысл принципа уменьшения промежутка времени: на определённом этапе данной процедуры значения средней скорости будут приблизительно одинаковыми и определение физического понятия «средняя скорость» изменится на физическое понятие «мгновенная скорость»

υ→=limΔt→0υ ср→=limΔt→0Δr→Δt

.

Мгновенная скорость является векторной величиной:

  • вектор мгновенной скорости (далее — скорости) направлен по касательной к траектории в исследуемой точке (проверь, как на рисунке (1) «хорды — перемещения (Delta{vec{r_3}}), (Delta{vec{r_2}}) и (Delta{vec{r_1}})» при уменьшении промежутков времени (Delta{t_3}), (Delta{t_2}) и (Delta{t_1}) изображаются касательными, которые соответствуют векторам скоростей (vec{v_3}), (vec{v_2}), (vec{v_1})).

На рисунке (1) тело движется из точки (E) в точку (D), изменяя скорость от (v_2) до (v_3). Параллельным переносом перенесём вектор (vec{v_{3}}) к (vec{v_{2}}), тогда изменение скорости за промежуток времени (Delta{t}) равно разности векторов

((vec{v_{3}})(-)(vec{v_{2}})), что на рисунке (1) соответствует вектору ускорения (vec{a_{2}}).

 Среднее ускорение равно отношению изменения скорости к промежутку времени:

Примечание:

1) в физических задачах при написании символа aср → индекс «ср», как правило, не прописывается;

2)  в ситуации прямолинейного неравномерного движения используется термин «ускорение».

Характеристики физического понятия «среднее ускорение»:

  • направление вектора среднего ускорения определяется согласно правилу aср→↑↑Δυ→;
  • числовое значение ускорения (модуль, проекции на координатные оси) определяется согласно геометрическим правилам работы с векторами;
  • единица измерения ([(a_{ср})] (=) [(frac{м}{с^2})]).

Участки траектории (AB), (AD) и (AE) (рис. (1)) характеризуются, соответственно, средними ускорениями (vec{a_{3}}), (vec{a_{2}}), (vec{a_{1}}).

(vec{a_{3}}) (=) (frac{Delta{vec{v_3}}}{Delta{t_3}}) (vec{a_{2}}) (=) (frac{Delta{vec{v_2}}}{Delta{t_2}}) (vec{a_{1}}) (=) (frac{Delta{vec{v_1}}}{Delta{t_1}})

Если уменьшать неограниченно промежуток времени (Delta{t}), то изменение скорости движения тела в конкретный момент времени характеризуется физическим понятием «мгновенное ускорение».

Вектор мгновенного ускорения при движении тела по криволинейной траектории представляет векторную сумму компонентов данного вектора, которые направлены по касательной и нормали (перпендикуляр к касательной).

Векторное и скалярное уравнения скорости материальной точки

1)  Общий вид:

  • векторное уравнение — (vec{v}) (=) (vec{v}(t));
  • числовые (скалярные) уравнения — (v_x)  (=)  (v_x(t)), (v_y)  (=)  (v_y(t)), (v_z)  (=)  (v_z(t)).

2)  Прямолинейное равноускоренное движение:

  • векторное уравнение — (vec{v}(t))  (=)  (vec{v}{_0})  (+)  (vec{a}(t — t_0)),

где (vec{v}{_0}) — скорость тела в начальный момент времени ({t_0}), (vec{v}(t)) — скорость тела в произвольный момент

времени (t);

  • числовые (скалярные) уравнения  — (v_x(t))  (=)  (v_{0x})  (+)  (a_x(t — t_0)), (v_y(t))  (=)  (v_{0y})  (+)  (a_y(t — t_0)),  

(v_z(t))  (=)  (v_{0z})  (+)  (a_z(t — t_0)).

Графическое изображение зависимости проекции скорости от времени ({v_х}(t))

При движении тела с постоянным ускорением проекция скорости изменяется по линейному закону в зависимости от времени (t): (v_x(t))  (=)  (v_{0x})  (+)  (a_x(t — t_0)) (рис. (2)).

 

скорость равноускореннокоп.png

Рис. (2). График зависимости проекции скорости от времени

Значение проекции ускорения по графику определяется как тангенс угла: (a_x) (=) (tgα) (=) (frac{Delta{v}}{Delta{t}}).

Перемещение

Проекции перемещений при равнопеременном движении в момент времени (t) определяются формулами:

 (s_x(t)=x(t) — x_0), (s_y(t)=y(t) -y_0), (s_z(t)=z(t) — z_0).

перемещениетреугкоп.png

                            (A)

перемещениетрапкоп.png

                            (B)

Рис. (3). Определение модуля и проекций перемещения по графику зависимости проекции скорости от времени

Модуль и проекции перемещения тела определяются графическим способом с 

использованием графика зависимости (v_x(t)).

Рисунок (3) (A) ((v_0) (=) (0))

Рисунок (3) (B) ((v_0) (≠) (0))

Модуль перемещения определяется как площадь прямоугольного треугольника (ABC) с катетами 

(c) и (b), где (b) (=) (t), (c) (=) (at).

Модуль перемещения определяется как площадь трапеции (ABCD) с основаниями (d) (=) (v_0), (b) (=) (v_0+at) и высотой (h) (=) (t).

S=12b+dh⇒S=υ0⋅t+a⋅t22

Проекция перемещения: (s_x)  (=)  (S)

Проекция перемещения: (s_x)  (=)  (S)

Примечание: если график проекции скорости состоит из участков, где площадь трапеции имеет отрицательное значение (например, (s_{x1})  (>)  (0), (s_{x2})  (<)  (0)), то модуль перемещения тела равен:

s=sx1+sx2

.

Источники:

Рис. 1. Перемещения тела при криволинейном движении. © ЯКласс.

Рис. 2. График зависимости проекции скорости от времени. © ЯКласс.

Рис. 3. Определение модуля и проекций перемещения по графику зависимости проекции скорости от времени. © ЯКласс.

«Формула времени. Решение задач»

Скорость, время и расстояние — физические величины, взаимосвязаны процессом движения. Виды движений: 1) равномерное (прямолинейное, криволинейное и по окружности), 2) равноускоренное (с постоянным ускорением), 3) гармоническое. Для каждого вида движения своя формула времени.

Время обозначается как t. Единица измерения времени – с (секунды).

Самая простая формула при равномерном прямолинейном движении. Время, необходимое для прохождения пути равняется частному от деления пути на скорость равномерного прямолинейного движения: t = S / v.

При равноускоренном движении время равняется частному от деления разницы конечной и начальной скорости на ускорение: t = (v — v0) / a  или частному от деления пути на разность конечной и начальной скорости: t = S / (v — v0).

формула времени

Решение задач через формулу времени

Задача № 1.

Конькобежец может развивать скорость до 13 м/с. За какое время он пробежит дистанцию длиной 2,6 км?

задача Ответ: 200 с.


Задача № 2.

Двигаясь с ускорением 5 м/с2 скорость космической ракеты увеличилась на 100 м/с. За какое время произошло такое изменение скорости?

 Ответ: 20 с.


Задача № 3.

Пункты А и В находятся на берегу реки на некотором расстоянии друг от друга. Моторная лодка проходит расстояние АВ вниз по течению реки за время t1 = 3 ч, а плот то же расстояние – за время t0 =12 ч. Какое время t2 затратит моторная лодка на обратный путь?

Решение. Обозначим расстояние между пунктами А и В через L, скорость моторной лодки относительно воды через vл , а скорость течения через vт. Тогда t0 = L / vт ,  t1L / (vл +  vт) ,  t2L / (vл —  vт) . Исключая из записанной системы уравнений L, vл и  vт
находим 

Ответ: 6 ч.


Конспект урока «Формула времени. Решение задач».

Следующая тема: «».

Скорость, ускорение и время являются основными величинами для вывода уравнения движения. В общем, производная скорости по времени дает ускорение.

В кинематике скорость можно найти, используя ускорение и время. С скорость и ускорение связаны с величиной и направлением, для определения скорости мы используем как алгебраический метод, так и интегральное исчисление. В этом посте обсуждается, как найти скорость с учетом ускорения и времени, используя оба метода.

Представим, что тело движется с ускорением «а», преодолевая определенное расстояние в момент «t».

Алгебраическим методом:

Из кинематического определения ускорение — скорость изменения скорости движущегося тела.

а=в/т

Здесь мы считаем; первоначально тело обладает минимальной скоростью; следовательно, начальная скорость можно считать примерно равной нулю.

Переставляя члены, мы получаем скорость тела как;

v = а * т

Методом интегрального исчисления:

Производная по времени от скорость дает ускорение тела. Это определяется следующим уравнением.

d/dt[v(t)]= а(t)

Преобразуя приведенное выше уравнение

dv (t) = a (t) dt

Интегрируя приведенное выше уравнение по времени t

∫d/dt[v(t)]=∫a(t) dt+C

Где; C — интегральная постоянная.

Следовательно; v = при + C

Вышеприведенное уравнение дает скорость; таким образом, умножение ускорения на время дает скорость.

Кредиты изображения: Изображение предоставлено Долоресбарриослуа от Pixabay 

Как найти скорость по графику ускорения и времени?

Построен график ускорения в зависимости от времени, что позволяет определить различные физические величины, такие как рывки и удары. скорость. Область, покрытая графиком «ускорение – время», показывает скорость.

Например, машина движется с начальной скоростью 16 м / с. Как со временем, машина начинает разгоняться. В ускорение автомобиля постоянна во времени. Через некоторое время машина внезапно останавливается, что показано на приведенном ниже графике.

как найти скорость с ускорением и временем

График, чтобы показать, как найти скорость с ускорением и графиком времени

Пунктирная линия используется как контрольная линия, когда тело останавливается.

Площадь, занимаемая в график ускорение – время представляет собой прямоугольник. Площадь прямоугольника определяется как

А = l × b

Из приведенного выше графика длина прямоугольника — это ускорение, а ширина — время; следовательно, уравнение

А = а * т

Но площадь графика at — это скорость, тогда

v = а * т

v = 7 × 8

v = 56 м / с.

Следовательно, по определению На графике времени разгона площадь — это не что иное, как скорость.

Как найти начальную скорость с ускорением и временем?

Когда тело начинает двигаться из одной точки в другую, вначале оно обладает некоторой скоростью. Тело не нуждается постоянная скорость пока не достигнет конечного пункта назначения. Скорость тела изменяется со временем по мере его прохождения, и, следовательно, тело приобретает ускорение.

Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.

Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.

Начальную скорость можно рассчитать тремя способами.

Используя алгебраический метод:

Ускорение из-за изменения скорости определяется выражением

а = (vf-vi)/т

а * т = vf — vi

О перестановке

vi = Vf — в

Вышеприведенное уравнение дает начальную скорость движущегося тела.

По расчетам:

Исходя из определения ускорения, уравнение имеет вид

а=дв/дт

Изменение условий;

адт = дв

Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.

а (t — 0) = (vf — vi)

при = vf — vi

Преобразуя приведенное выше уравнение, мы получаем начальную скорость.

vi = Vf — в

Графическим методом:

Построен график зависимости скорости от времени, наклон которого дает ускорение — затем, найдя наклон, можно вычислить начальную скорость.

vt график показать, как найти скорость с ускорением и время

Исходя из приведенного выше графика, мы можем сказать это.

  • В единый интервал времени скорость тела изменяется.
  • OD — время, затрачиваемое телом на путешествие, а BD — конечная скорость тела.
  • Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.

На приведенном выше графике показано, что

Начальная скорость тела vi = ОА

Конечная скорость тела vf = БД

На графике BD = BC + DC

Следовательно, vf = ВС + ПОС

Но DC = OA = vi

vf = до нашей эры + ви

На графике наклон = ускорение a

а=ВС/АС

Но AC = t (из графика)

а=БК/т

при = BC

Подставляя значение BC

vf = при + vi

vi = Vf — в

Как найти изменение скорости в зависимости от ускорения и времени

В общем, изменение скорости со временем дает ускорение.

Пусть тело движется с ускорением ‘a’ со временем ‘t’, изначально скорость объекта равна vi, а в конечной точке имеет скорость vf. Тогда изменение скорости определяется по уравнению:

∆a=(Δv/Δt)

Где ∆v — изменение скорости, а ∆t — изменение во времени.

∆v = ∆a∆t

Но изменение скорости определяется разница между начальной и конечной скоростью. Это дается уравнением ниже.

∆v = vf -vi

Изменение в скорость можно рассчитать с помощью графика «ускорение – время». Площадь под графиком at показывает изменение скорости.

Давайте ясно поймем это, рассмотрев пример, представленный графиком, приведенным ниже.

Площадь на графике времени ускорения представляет собой треугольник. Следовательно, вычисляя изменение скорости дается путем вычисления площади треугольника. Формула для определения площади треугольника:

А=(1/2)чб

Здесь h — высота треугольника, ускорение считается высотой, а b — основание треугольника, которое определяется осью времени. Таким образом, изменение скорости равно

∆v=(1/2)*6*9

∆v = 29 м / с.

По изменению скорости мы можем узнать начальную и конечную скорость тела.

Решены задачи о том, как найти скорость с ускорением и временем.

Задача 1) Лодка движется с начальной скоростью 11 м / с. Лодка развивает ускорение 3 м / с.2 каждые 10 секунд. Затем рассчитайте изменение скорости и конечную скорость лодки.

Решение:

Данные приведены для расчета:

Начальная скорость лодки vi = 11 м / с.

Изменение ускорения, достигаемого лодкой a = 3 м / с2.

Изменение по времени t = 10 сек.

∆v = ∆a∆t

∆v = 3 × 10

∆v = 30 м / с

Чтобы найти окончательную скорость, уравнение

∆v = vf -vi

vf = ∆v + vi

vf = 30 + 11

vf = 41 м / с.

Задача 2) График ускорение – время приведен ниже. Найдите изменение скорости и вычислите начальную скорость, если конечная скорость равна 54 м / с.

График ускорения-времени

Решение:

Приведенные данные:

Конечная скорость vf = 54 м / с. На графике ускорение-время покрытая область представляет собой трапецию. Таким образом, площадь трапеции определяется выражением

А=[(а+б)/2)]*ч

Где a и b — прилегающее основание трапеции, h — высота. Из графика; a = 9 единиц, b = 5 единиц, h = 4 единицы.

А=[(9+5)/2]*4

А = 28 шт.

Изменение скорости равно площади трапеции.

∆v = 28 м / с.

Чтобы найти начальную скорость

∆v = vf -vi

vi = Vf — ∆v

vi = 54 — 28

vi = 26 м / с.

Задача 3) дается график ускорение – время для определения изменения скорости.

Решение:

Приведенный выше график можно разделить на три части, представленные пунктирной линией, как показано на рисунке ниже.

На приведенном выше графике можно понять следующие термины.

OAD и BCE — треугольник; площадь треугольника задается формулой

а=(1/2)чб

ABCD — прямоугольник; площадь прямоугольника определяется выражением

А = l × b

Чтобы найти изменение скорости, необходимо вычислить сумму площадей всех геометрических структур.

∆v = A=(1/2)hb+lb+(1/2)hb

Изменение скорости ∆v = 180 м / с.

Задача 4) Найдите начальную скорость мяча, который ускоряется со скоростью 6 м / с.2 со временем 8 сек. Конечная скорость мяча составляет 100 м / с.

Решение:

Приведены данные: ускорение мяча a = 6 м / с2.

Время t = 8 сек.

Конечная скорость vf = 100 м / с.

Для нахождения начальной скорости тела задается уравнение

vi = Vf — в

vi = 100 — (6 × 8)

vi = 100 — 48

vi = 52 м / с.

Задача 5) Рассчитайте изменение скорости движущегося объекта, имеющего начальную скорость 34 м / с. Ускорение объекта 12 м / с.2, а изменение по времени — 7 сек.

Решение:

Данный:

Начальная скорость объекта vi = 34 м / с.

Ускорение объекта a = 12 м / с2.

Изменение по времени t = 7 сек.

Конечная скорость объекта определяется выражением;

vf = Vi + в

vf = 34 + (12 * 7)

vf = 34 + 84

vf = 118 м / с.

Изменение скорости определяется выражением;

∆v = vf — vi

∆v = 118 — 34

∆v = 84 м / с.

Задача 6) Диск движется с начальной скоростью 25 м / с. Диск меняет свою скорость каждые 10 секунд. Изменение ускорения 5 м / с.2. Рассчитайте конечную скорость диска.

Решение:

Приведенные данные:

Начальная скорость диска vi = 25 м / с.

Изменение ускорения ∆a = 5 м / с2.

Изменение времени ∆t = 10 сек.

Изменение скорости равно

∆v = ∆a∆t

∆v = 5 × 10

∆v = 50 м / с.

Конечная скорость диска может быть рассчитана по формуле, приведенной ниже.

∆v = vf — vi

50 = вf -25

vf = 50 + 25

vf = 75 м / с.

Понравилась статья? Поделить с друзьями:
  • Как составить задачу по уголовному кодексу
  • Как найти девушку для несерьезных отношений
  • Как найти вирус dll
  • Как найти взаимо обратное число для дроби
  • Найти такую же картинку как на фото