Как найти скорость движения планет по орбите

From Wikipedia, the free encyclopedia

In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

The term can be used to refer to either the mean orbital speed (i.e. the average speed over an entire orbit) or its instantaneous speed at a particular point in its orbit. The maximum (instantaneous) orbital speed occurs at periapsis (perigee, perihelion, etc.), while the minimum speed for objects in closed orbits occurs at apoapsis (apogee, aphelion, etc.). In ideal two-body systems, objects in open orbits continue to slow down forever as their distance to the barycenter increases.

When a system approximates a two-body system, instantaneous orbital speed at a given point of the orbit can be computed from its distance to the central body and the object’s specific orbital energy, sometimes called «total energy». Specific orbital energy is constant and independent of position.[1]

Radial trajectories[edit]

In the following, it is thought that the system is a two-body system and the orbiting object has a negligible mass compared to the larger (central) object. In real-world orbital mechanics, it is the system’s barycenter, not the larger object, which is at the focus.

Specific orbital energy, or total energy, is equal to Ek − Ep. (kinetic energy − potential energy). The sign of the result may be positive, zero, or negative and the sign tells us something about the type of orbit:[1]

  • If the specific orbital energy is positive the orbit is unbound, or open, and will follow a hyperbola with the larger body the focus of the hyperbola. Objects in open orbits do not return; once past periapsis their distance from the focus increases without bound. See radial hyperbolic trajectory
  • If the total energy is zero, (Ek = Ep): the orbit is a parabola with focus at the other body. See radial parabolic trajectory. Parabolic orbits are also open.
  • If the total energy is negative, EkEp < 0: The orbit is bound, or closed. The motion will be on an ellipse with one focus at the other body. See radial elliptic trajectory, free-fall time. Planets have bound orbits around the Sun.

Transverse orbital speed[edit]

The transverse orbital speed is inversely proportional to the distance to the central body because of the law of conservation of angular momentum, or equivalently, Kepler’s second law. This states that as a body moves around its orbit during a fixed amount of time, the line from the barycenter to the body sweeps a constant area of the orbital plane, regardless of which part of its orbit the body traces during that period of time.[2]

This law implies that the body moves slower near its apoapsis than near its periapsis, because at the smaller distance along the arc it needs to move faster to cover the same area.[1]

Mean orbital speed[edit]

For orbits with small eccentricity, the length of the orbit
is close to that of a circular one, and the mean orbital speed can be approximated either from observations of the orbital period and the semimajor axis of its orbit, or from knowledge of the masses of the two bodies and the semimajor axis.[3]

{displaystyle vapprox {2pi a over T}approx {sqrt {mu  over a}}}

where v is the orbital velocity, a is the length of the semimajor axis, T is the orbital period, and μ = GM is the standard gravitational parameter. This is an approximation that only holds true when the orbiting body is of considerably lesser mass than the central one, and eccentricity is close to zero.

When one of the bodies is not of considerably lesser mass see: Gravitational two-body problem

So, when one of the masses is almost negligible compared to the other mass, as the case for Earth and Sun, one can approximate the orbit velocity v_o as:[1]

v_{o}approx {sqrt  {{frac  {GM}{r}}}}

or assuming r equal to the radius of the orbit[citation needed]

v_{o}approx {frac  {v_{e}}{{sqrt  {2}}}}

Where M is the (greater) mass around which this negligible mass or body is orbiting, and ve is the escape velocity.

For an object in an eccentric orbit orbiting a much larger body, the length of the orbit decreases with orbital eccentricity e, and is an ellipse. This can be used to obtain a more accurate estimate of the average orbital speed:[4]

{displaystyle v_{o}={frac {2pi a}{T}}left[1-{frac {1}{4}}e^{2}-{frac {3}{64}}e^{4}-{frac {5}{256}}e^{6}-{frac {175}{16384}}e^{8}-cdots right]}

The mean orbital speed decreases with eccentricity.

Instantaneous orbital speed[edit]

For the instantaneous orbital speed of a body at any given point in its trajectory, both the mean distance and the instantaneous distance are taken into account:

v={sqrt  {mu left({2 over r}-{1 over a}right)}}

where μ is the standard gravitational parameter of the orbited body, r is the distance at which the speed is to be calculated, and a is the length of the semi-major axis of the elliptical orbit. This expression is called the vis-viva equation.[1]

For the Earth at perihelion, the value is:

{displaystyle {sqrt {1.327times 10^{20}~{text{m}}^{3}{text{s}}^{-2}cdot left({2 over 1.471times 10^{11}~{text{m}}}-{1 over 1.496times 10^{11}~{text{m}}}right)}}approx 30,300~{text{m}}/{text{s}}}

which is slightly faster than Earth’s average orbital speed of 29,800 m/s (67,000 mph), as expected from Kepler’s 2nd Law.

Tangential velocities at altitude[edit]

Orbit Center-to-center
distance
Altitude above
the Earth’s surface
Speed Orbital period Specific orbital energy
Earth’s own rotation at surface (for comparison— not an orbit) 6,378 km 0 km 465.1 m/s (1,674 km/h or 1,040 mph) 23 h 56 min 4.09 sec −62.6 MJ/kg
Orbiting at Earth’s surface (equator) theoretical 6,378 km 0 km 7.9 km/s (28,440 km/h or 17,672 mph) 1 h 24 min 18 sec −31.2 MJ/kg
Low Earth orbit 6,600–8,400 km 200–2,000 km
  • Circular orbit: 6.9–7.8 km/s (24,840–28,080 km/h or 14,430–17,450 mph) respectively
  • Elliptic orbit: 6.5–8.2 km/s respectively
1 h 29 min – 2 h 8 min −29.8 MJ/kg
Molniya orbit 6,900–46,300 km 500–39,900 km 1.5–10.0 km/s (5,400–36,000 km/h or 3,335–22,370 mph) respectively 11 h 58 min −4.7 MJ/kg
Geostationary 42,000 km 35,786 km 3.1 km/s (11,600 km/h or 6,935 mph) 23 h 56 min 4.09 sec −4.6 MJ/kg
Orbit of the Moon 363,000–406,000 km 357,000–399,000 km 0.97–1.08 km/s (3,492–3,888 km/h or 2,170–2,416 mph) respectively 27.27 days −0.5 MJ/kg

The lower axis gives orbital speeds of some orbits

Planets[edit]

The closer an object is to the Sun the faster it needs to move to maintain the orbit. Objects move fastest at perihelion (closest approach to the Sun) and slowest at aphelion (furthest distance from the Sun). Since planets in the Solar System are in nearly circular orbits their individual orbital velocities do not vary much. Being closest to the Sun and having the most eccentric orbit, Mercury’s orbital speed varies from about 59 km/s at perihelion to 39 km/s at aphelion.[5]

Orbital velocities of the Planets[6]

Planet Orbital
velocity
Mercury 47.9 km/s (29.8 mi/s)
Venus 35.0 km/s (21.7 mi/s)
Earth 29.8 km/s (18.5 mi/s)
Mars 24.1 km/s (15.0 mi/s)
Jupiter 13.1 km/s (8.1 mi/s)
Saturn 9.7 km/s (6.0 mi/s)
Uranus 6.8 km/s (4.2 mi/s)
Neptune 5.4 km/s (3.4 mi/s)

Halley’s Comet on an eccentric orbit that reaches beyond Neptune will be moving 54.6 km/s when 0.586 AU (87,700 thousand km) from the Sun, 41.5 km/s when 1 AU from the Sun (passing Earth’s orbit), and roughly 1 km/s at aphelion 35 AU (5.2 billion km) from the Sun.[7] Objects passing Earth’s orbit going faster than 42.1 km/s have achieved escape velocity and will be ejected from the Solar System if not slowed down by a gravitational interaction with a planet.

Velocities of better-known numbered objects that have perihelion close to the Sun

Object Velocity at perihelion Velocity at 1 AU
(passing Earth’s orbit)
322P/SOHO 181 km/s @ 0.0537 AU 37.7 km/s
96P/Machholz 118 km/s @ 0.124 AU 38.5 km/s
3200 Phaethon 109 km/s @ 0.140 AU 32.7 km/s
1566 Icarus 93.1 km/s @ 0.187 AU 30.9 km/s
66391 Moshup 86.5 km/s @ 0.200 AU 19.8 km/s
1P/Halley 54.6 km/s @ 0.586 AU 41.5 km/s

See also[edit]

  • Escape velocity
  • Delta-v budget
  • Hohmann transfer orbit
  • Bi-elliptic transfer

References[edit]

  1. ^ a b c d e Lissauer, Jack J.; de Pater, Imke (2019). Fundamental Planetary Sciences: physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 29–31. ISBN 9781108411981.
  2. ^ Gamow, George (1962). Gravity. New York, NY, USA: Anchor Books, Doubleday & Co. pp. 66. ISBN 0-486-42563-0. …the motion of planets along their elliptical orbits proceeds in such a way that an imaginary line connecting the Sun with the planet sweeps over equal areas of the planetary orbit in equal intervals of time.
  3. ^ Wertz, James R.; Larson, Wiley J., eds. (2010). Space mission analysis and design (3rd ed.). Hawthorne, CA, USA: Microcosm. p. 135. ISBN 978-1881883-10-4.
  4. ^ Stöcker, Horst; Harris, John W. (1998). Handbook of Mathematics and Computational Science. Springer. pp. 386. ISBN 0-387-94746-9.
  5. ^ «Horizons Batch for Mercury aphelion (2021-Jun-10) to perihelion (2021-Jul-24)». JPL Horizons (VmagSn is velocity with respect to Sun.). Jet Propulsion Laboratory. Retrieved 26 August 2021.
  6. ^ «Which Planet Orbits our Sun the Fastest?».
  7. ^ v = 42.1219 1/r − 0.5/a, where r is the distance from the Sun, and a is the major semi-axis.

Наша компания имеет богатый опыт сотрудничества и участия в тендерах с государственными и частными компаниями. Мы предлагаем большой набор готовых решений для образовательных учреждений, а также работаем по индивидуальным техническим заданиям.

Если вы являетесь участником или организатором тендера или госзакупки, заполните, пожалуйста, форму и опишите свой запрос. Наш специалист по работе с корпоративными заказчиками обязательно с вами свяжется. Вы также можете связаться с нами по телефону: +7 (812) 418-29-44 (доб. 117 или доб. 106).

формулы кругового движения планет

При движении планеты по кругу работают следующие величины.
1. расстояние, как радиус орбиты R и путь S пройденный планетой по орбите.
2. Время — это время t в земном исчислении необходимое для прохождении пути по орбите и tr необходимое для прохождения пути по орбите равному расстоянию R.
3. Скорость — условно принятая величина для обозначения быстроты движения и вычисляемая от деления расстояния на время
V = S : t (1)
4. Также используется масса m Земли и масса Солнца M.

Ускорение a возникающее при круговом движение называется центростремительным и вычисляется по формуле:
a = V2 : R (2) квадрат скорости деленный на радиус.
Напишем эту формулу относительно величин пути и времени:
Если взять расстояние по орбите равное радиусу и время необходимое для его прохождения то получим
R tr : R tr : R = R : tr 2 (3) — радиус деленное на квадрат времени.

это будет формулы центростремительного ускорения при круговом движении.
Помноженная на массу Земли, она даст силу, которая противодействует силе притяжения Солнца
m M : R2 (4) и удерживает планету на орбите.

R : tr 2 х m = m M : R2 (5)

сделав сокращения получим:
R R R : tr2 = M (6) или
R V2 = M (7) — это уже известное нам произведение квадрата скорости планеты умноженное на радиус орбиты.

Это величина — постоянная для всех планет Солнечной системы и она, как видно из формулы, эквивалентна массе Солнца.

И здесь,в этой полученной формуле R х V2 = M (7)
без гравитационной постянной у нас не совпадают единицы измерения.

Но, Масса Солнца это эквивалент энергии и R V2 = M или R R R : tr2 которую можно выразить, как X Y Z : R R = тоже.

В одном случае энергия это масса, в другом случае энергия это движение.
Таким образом энергия движения планет R V2 (торсионная энергия) эквивалента энергии массы центрального тела системы вращения.

Орбитальные скорости планет Солнечной системы: характеристики и траектории

Опытные астрономы прекрасно знают о том, что орбитальная скорость планет напрямую связана с их расстоянием от центра системы – Солнца. Ну, а людям, которые только начинают изучать удивительную науку о небесных телах, наверняка было бы интересно узнать об этом побольше.

Что такое орбитальная скорость?

Орбитой называют траекторию, по которой конкретная планета движется вокруг Солнца. Она вовсе не представляет собой идеальную окружность, как думают некоторые люди, не разбирающиеся в астрономии. Более того, она даже не слишком напоминает овал – ведь существует большое количество факторов за исключением силы притяжения Солнца, которые могут повлиять на движение небесных тел.

Также стоит сразу развеять другой известный миф – Солнце вовсе не всегда находится ровно в центре орбиты планет, вращающихся вокруг него.

Наконец, следует отметить, что не все орбиты планет лежат в одной плоскости. Некоторые значительно выбиваются из нее – например, если изобразить стандартные орбиты Земли и Венеры на астрономической карте, то можно убедиться в том, что они имеют всего несколько точек пересечения.

Теперь, когда с орбитами более или менее разобрались, можно вернуться к определению термина орбитальной скорости планет. Именно так астрономы называют скорость, с которой планета движется по своей траектории. Она может немного изменяться – в зависимости от того, какие небесные тела проходят поблизости. Особенно это заметно на примере Марса: каждый раз, когда он проходит в сравнительной близости от Юпитера, он немного замедляется, притягиваясь гравитационным полем этого гиганта.

Ученые давно установили зависимость скорости движения планет вокруг Солнца от расстояния до него.

То есть самая ближайшая к Солнцу планета – Меркурий – движется быстрее всего, в то время как скорость Плутона является самой маленькой в Солнечной системе.

С чем это связано?

Дело в том, что скорость каждой планеты соответствует той силе, с которой Солнце притягивает ее на определенном расстоянии. Если скорость будет меньше, то планета будет постепенно приближаться к звезде и в результате сгорит. Если же скорость слишком большая, то планета просто улетит от центра нашей Солнечной системы.

Каждый астроном, даже начинающий, прекрасно знает, что сила притяжения уменьшается по мере удаления от Солнца. Именно поэтому, чтобы сохранить свое место в Солнечной системе, Меркурий вынужден носиться с бешеной скоростью, Марс может двигаться помедленнее, а Плутон и вовсе едва перемещается.

Меркурий

Самая близкая к Солнцу планета – Меркурий. Вот с него и начнем изучение скорости планет Солнечной системы.

Он может похвастать не только самым малым радиусом орбиты, но и небольшими размерами. В нашей системе это самая маленькая полноценная планета. Расстояние от Меркурия до Солнца – менее 58 миллионов километров, благодаря чему температура на его экваторе жарким днем может дорасти до 400 градусов по Цельсию и даже больше.

Кроме того, чтобы удержаться на своей орбите при такой близости Солнца, планете приходится двигаться с огромной скоростью – около 47 километров в секунду. Так как протяженность орбиты из-за малого радиуса совсем невелика, то полный оборот вокруг звезды он совершает всего за 88 суток. То есть Новый год там можно встречать значительно чаще, чем на Земле. А вот скорость вращения планеты вокруг собственной оси очень небольшая – полный оборот Меркурий делает почти за 59 земных суток. Так, сутки здесь не намного короче года.

Венера

Следующая планета в нашей системе – Венера. Единственная, на которой Солнце встает на западе и садится на востоке. Расстояние до центра системы – 108 миллионов километров. Благодаря этому скорость движения планеты по орбите значительно меньше, чем у Меркурия (всего 35 километров в секунду). Причем это единственная планета, у которой орбита действительно представляет собой практически идеальную окружность – погрешность (или, как говорят эксперты, эксцентриситет) крайне мала.

Правда, протяженность орбиты (по сравнению с Меркурием) у нее значительно больше, из-за чего полный путь Венера проделывает только за 225 дней. Кстати, еще один интересный факт, отличающий Венеру от всех других планет Солнечной системы: период вращения вокруг оси (одни сутки) здесь составляет 243 земных дня. Следовательно, год здесь длится меньше, чем сутки.

Земля

Теперь можно рассмотреть и планету, которая стала домом для человечества – Землю. Среднее расстояние до Солнца – почти 150 миллионов километров. Именно это расстояние принято называть одной астрономической единицей – их используют при подсчете небольших (по меркам Вселенной) расстояний в космосе.

Сложно поверить, но пока вы читаете эту статью, вы движетесь вместе с Землей на скорости почти 30 километров в секунду. Но даже при столь внушительной скорости, чтобы сделать полный оборот вокруг Солнца, планета тратит на это больше 365 суток или 1 год. Зато вокруг своей оси вращается довольно быстро – всего за 24 часа. Впрочем, эти и многие другие факты о Земле очевидны всем, поэтому подробно рассматривать нашу родную планету не станем. Перейдем сразу к следующей.

Эта планета названа в честь грозного бога войны. По всем показателям Марс максимально приближен к Земле. Например, скорость планеты по орбите составляет 24 километра в секунду. Расстояние до Солнца – около 228 миллионов километров, из-за чего на поверхности большую часть времени довольно прохладно – только днем она прогревается до -5 градусов по Цельсию, а ночью здесь холодает до -87 градусов.

Зато сутки здесь практически равны земным – 24 часа и 40 минут. Для упрощения даже был придуман новый термин, обозначающий марсианские сутки – сол.

Так как расстояние до Солнца довольно большое, а траектория движения значительно длиннее, чем у Земли, год здесь длится довольно долго – целых 687 дней.

Эксцентриситет у планеты не слишком большой – около 0,09, поэтому орбиту можно считать условно круглой с Солнцем, расположенным почти в центре описываемой окружности.

Юпитер

Свое название Юпитер получил в честь самого могущественного древнеримского бога. Неудивительно, именно эта планета может похвастать самыми большими размерами в Солнечной системе – его радиус составляет почти 70 тысяч квадратных километров (у Земли, например, всего 6 371 километр).

Удаленность от Солнца позволяет Юпитеру вращаться довольно медленно – всего 13 километров в секунду. Из-за этого на то, чтобы сделать полный круг, у планеты уходит почти 12 земных лет!

Зато сутки здесь самые короткие в нашей системе – 9 часов и 50 минут. Наклон оси вращения здесь крайне мал – лишь 3 градуса. Для сравнения — у нашей планеты этот показатель составляет 23 градуса. Из-за этого на Юпитере совершенно не бывает смен времен года. Всегда стоит одинаковая температура, изменяющаяся лишь в течение коротких суток.

Эксцентриситет у Юпитера довольно маленький – меньше 0,05. Поэтому он равномерно наматывает круги строго вокруг Солнца.

Сатурн

Эта планета не слишком уступает Юпитеру по размерам, являясь вторым по размеру космическим телом в нашей солнечной системе. Его радиус – 58 тысяч километров.

Скорость планеты по орбите, как уже говорилось выше, продолжает падать. Для Сатурна этот показатель составляет всего 9,7 километра в секунду. А пройти со столь малой скоростью приходится действительно большое расстояние – дистанция до Солнца равна почти 9,6 астрономических единицы. Всего на этот путь уходит 29,5 лет. Зато сутки одни из самых коротких в системе – всего 10,5 часов.

Эксцентриситет планеты почти такой же, как у Юпитера – 0,056. Поэтому окружность получается довольно ровной – перигелий и афелий различаются всего на 162 миллиона километров. Если учитывать огромное расстояние до Солнца, то разница совсем небольшая.

Интересно, что кольца Сатурна тоже вращаются вокруг планеты. Причем скорость внешних слоев значительно меньше, чем внутренних.

Еще один гигант Солнечной системы. Только Юпитер и Сатурн превосходят его по размерам. Правда, по весу его обходит еще и Нептун, но это благодаря высокой плотности ядра. Среднее расстояние до Солнца действительно огромно – целых 19 астрономических единиц. Движется он довольно медленно – вполне может позволить себе это при столь большом расстоянии. Скорость движения планеты по орбите не превышает 7 километров в секунду. Из-за такой неспешности на то, чтобы пройти огромное расстояние вокруг Солнца, у Урана уходит целых 84 земных года! Весьма приличный срок.

А вот вокруг своей оси он вращается удивительно быстро – полный оборот совершается всего за 18 часов!

Удивительной особенностью планеты является то, что вращается она вокруг себя не вертикально, а горизонтально. Другими словами, все другие планеты Солнечной системы делают оборот «стоя» на полюсе, а Уран просто «катится» по своей орбите, будто лежа на боку. Ученые объясняют это тем, что во времена формирования планета столкнулась с каким-то крупным космическим телом, из-за чего просто завалилась на бок. Поэтому, хотя в общепринятом смысле сутки здесь очень короткие, на полюсах день длится 42 года, а потом столько же лет стоит ночь.

Нептун

Свое гордое название Нептуну подарил древнеримский повелитель морей и океанов. Недаром даже символом планеты стал его трезубец. По размерам Нептун является четвертой планетой в Солнечной системе, лишь совсем немного уступая Урану – его средний радиус составляет 24 600 км против 25 400.

От Солнца он держится на расстоянии в среднем 4,5 миллиарда километров или 30 астрономических единиц. Поэтому путь, который он проделывает, проходя орбиту, действительно огромен. А если учесть, что круговая скорость планеты составляет всего 5,4 километра в секунду, то нет ничего удивительного в том, что один год здесь приравнивается к 165 земным.

Интересный факт: здесь имеется довольно плотная атмосфера (правда, состоит она преимущественно из метана), и иногда бывают ветра удивительной силы. Их скорость может достигать 2100 километров в час – на Земле даже одиночный порыв такой мощи моментально разрушил бы любой город, не оставив там камня на камне.

Плутон

Наконец, последняя планета в нашем списке. Точнее, даже не планета, а планетоид – недавно его вычеркнули из списка планет из-за малых размеров. Средний радиус составляет всего 1187 километров – даже у нашей Луны этот показатель 1737 километров. Тем не менее название у него довольно грозное – его присвоили в честь бога подземного царства мертвых у древних римлян.

В среднем расстояние от Плутона до Солнца составляет около 32 астрономических единиц. Это позволяет ему чувствовать себя в безопасности и двигаться со скоростью лишь 4,7 километра в секунду – на раскаленную звезду Плутон все равно не свалится. А вот, чтобы сделать полный оборот вокруг Солнца со столь огромным радиусом, эта крохотная планета тратит 248 земных лет.

Вокруг своей оси он вращается тоже очень медленно – на это уходит 152 земных часа или больше 6 суток.

К тому же эксцентриситет самый большой в Солнечной системе – 0,25. Поэтому Солнце находится далеко не в центре орбиты, а смещено почти на четверть.

Заключение

На этом можно заканчивать статью. Теперь вы знаете про скорость планет нашей Солнечной системы, а также узнали множество других факторов. Наверняка теперь вы разбираетесь в астрономии значительно лучше, чем раньше.

Периоды полного оборота планет в астрологии

Рассмотрим, за какое время происходит полный оборот планет, когда они возвращаются на ту же точку зодиака, в которой были.

Периоды полного оборота планет

Солнце — 365 дней 6 часов;

Меркурий — примерно 1 год;

Венера — 255 дней;

Луна — 28 дней (по эклиптике);

Марс — 1 год 322 дня;

Юпитер — 11 лет 313 дней;

Сатурн — 29 лет 155 дней;

Уран — 83 года 273 дня;

Нептун — 163 года 253 дня;

Плутон — примерно 250 лет;

Прозерпина — около 650 лет.

Чем дальше от Солнца расположена планета, тем длиннее путь, который она описывает вокруг него. Планеты, которые делают полный оборот вокруг Солнца за время большее, чем человеческая жизнь, в астрологии называются высокими планетами.

Если время полного оборота осуществляется за среднюю продолжительность жизни человека, — это низкие планеты. Соответственно и влияние у них разное: низкие планеты оказывают в основном влияние на личность, на каждого человека, а высокие преимущественно влияют на много жизней, на группы людей, народы, страны.

Как происходит полный оборот планет

Движение планет вокруг Солнца совершается не по кругу, а по эллипсу. Поэтому во время своего движения планета находится на разных расстояниях от Солнца: более близкое расстояние называется перигелием (планета в этом положении движется скорее), более дальнее — афелием (скорость движения планеты замедляется).

Для упрощения вычисления движения планет и расчета средней скорости их движения астрономы условно принимают траекторию их движения по кругу. Таким образом, условно принято, что движение планет по орбите имеет постоянную скорость.

Учитывая разные скорости движения планет Солнечной системы и разные их орбиты, наблюдателю они кажутся разбросанными по звездному небу. Создается впечатление, что они расположены на одном уровне. На самом же деле это не так.

Следует помнить, что созвездия планет — не то же, что знаки Зодиака. Созвездия образованы на небосводе скоплениями звезд, а знаки Зодиака являются условными обозначениями участка сферы Зодиака в 30 градусов.

Созвездия могут занимать на небосводе площадь меньше 30° (в зависимости от угла, под которым они видны), а знак Зодиака занимает эту площадь полностью (зона влияния начинается с 31-го градуса).

Что такое парад планет

Бывают редкие случаи, когда местоположение многих планет при проекции на Землю находится вблизи прямой линии (вертикала), образуя скопления планет Солнечной системы на небосводе. Если такое происходит с ближними планетами, — это называется малым парадом планет, если с дальними (они могут присоединяться к ближним), — это большой парад планет.

При «параде» планеты, собранные в одном месте небосвода, как бы «собирают» свою энергию в пучок, который оказывает на Землю мощное влияние: более часто и намного выраженнее происходят природные катаклизмы, мощные и коренные преобразования в обществе, увеличивается смертность (железнодорожные катастрофы, аварии и т. д.)

Особенности движения планет

Если представить себе Землю, неподвижно расположенную в центре, вокруг которой вращаются планеты Солнечной системы, то резко нарушится траектория планет, принятая в астрономии. Солнце вращается вокруг Земли, а расположенные между Землей и Солнцем планеты Меркурий и Венера будут вращаться вокруг Солнца, периодически меняя свое направление на противоположное — это «попятное» движение обозначается «Р» (R) (ретроградное).

Нахождение Меркурия и Венеры между Марсом и Солнцем называется нижним противостоянием, а на противоположной орбите за Солнцем — верхним противостоянием.

Полный оборот планет. Планеты, у которых орбиты вращения больше земной, будут восприниматься наблюдателем как вращающиеся вокруг Земли с постоянно изменяющейся скоростью и расстоянием:

Марс, Юпитер, Сатурн, Уран, Нептун, Плутон

Воображаемая горизонтальная линия между видимой и невидимой частями неба называется горизонтом. Воображаемая линия, проходящая полукругом и соединяющая через небесный свод над нашей головой две точки горизонта впереди и позади нас, называется меридианом.

источники:

http://fb.ru/article/394296/orbitalnyie-skorosti-planet-solnechnoy-sistemyi-harakteristiki-i-traektorii

http://www.astromeridian.ru/astro/astrologija461.html

Если мы подбросим камень в воздух – он упадет на Землю. Если у самолета на высоте 10 километром отключаться двигатели – он тоже упадет на Землю. Но спутники и космические корабли, что мы запускаем в космос, не падают. Почему?

Все дело в том, с какой скоростью тот или иной объект удаляется от планеты. Хватит ли этому объекту энергии преодолеть притяжение планеты.

Оглавление

  • 1 Первая космическая скорость
    • 1.1 Расчет
  • 2 Вторая космическая скорость
    • 2.1 Расчет
  • 3
  • 4 Третья космическая скорость
    • 4.1 Расчет
  • 5 Четвертая космическая скорость
  • 6 Пятая космическая скорость
  • 7 Почему спутники не падают на Землю

Первая космическая скорость

Это та самая минимальная скорость для выхода корабля или спутника на круговую орбиту, равную радиуса планеты, без учета вращения планеты и сопротивления ее атмосферы.

Если скорость будет превышать первую, но не достигнет второй космической скорости, то траектория тела из круговой начнет переходить в эллиптическую.

Впервые такую скорость смог достичь первый искусственный спутник Земли «Спутник-1» СССР 4 октября 1957 года.

Расчет

Расчет первой космической скорости

Расчет первой космической скорости

Расчет первой космической скорости

Первая космичсекая скорость

Вторая космическая скорость

Это минимальная скорость, которую следует придать телу для того, чтобы оно покинуло замкнутую орбиту и смогло улететь от небесного тела за пределы его гравитационного поля.

Иными словами, для Земли, это та скорость, с которой должны двигаться космические аппараты (КА) для полетов к другим объектам Солнечной системы: Луны, Марса и т.д.

Движение тела на второй космической скорости происходит по параболической траектории.

Впервые такую скорость развил Советский космический аппарат Луна-1 2 января 1959 года, чтобы преодолеть расстояние от Земли до Луны и изучить наш естественный спутник.

Расчет

Расчет второй космической скорости

Расчет второй космической скорости

Вторая космическая скорость

Третья космическая скорость

Такую скорость необходимо придать телу, чтобы оно смогло покинуть Солнечную систему. Так как 99,8% массы Солнечной системы приходится на Солнце, то можно сказать, что КА надо преодолеть гравитационное притяжение Солнца.

Расчет

Расчет третьей космической скорости

Расчет третьей космической скоростиРасчет третьей космической скорости

Для Солнечной системы это величина равна 16,650 км/с.

Самое выгодное расположение космодрома для подобного запуска – максимально близко к экватору, так как на экваторе самая большая скорость собственного вращения Земли вокруг своей оси и направление движения в сторону вращения Земли и в сторону орбитального движения Земли по орбите.

КА «Новые горизонты» покинул атмосферу Земли со скоростью близкой к третьей космической – 16,26 км /с. Относительно Солнца он имел скорость 45 км/с. Такой скорости недостаточно, чтобы покинуть Солнечную систему. Но благодаря гравитационному маневру у Юпитера, «Новые горизонты» добавил еще 4 км/с, что позволило ему покинуть Солнечную системы, предварительно показав нам карликовую планету Плутон.

Четвертая космическая скорость

Комические скорости

Эта та скорость, которая позволит покинуть галактику в данной точке.

Четвертая космическая в основном не зависит от месторасположения Земли в Млечном пути. Она зависит от расположения и плотности звездного вещества в окрестностях Солнечной системы. А эти данные пока мало изучены.
Для нашей части галактики четвертая космическая скорость примерно равна 550 км/с.

Пятая космическая скорость

Эта скорость редко применима и является больше «фантазией», так как такую скорость необходимо развить для путешествия на другую планету в другую звездную систему, независимо от их взаимного расположения, с траекторией перпендикулярно плоскости эклиптики.

Для Земли эта скорость будет равна 43,6 км/с.

Почему спутники не падают на Землю

Спутник на орбите

Этот вопрос поднимался в самом начале статьи. Теперь давайте на него ответим.

На спутник на орбите действует сила тяжести со стороны Земли. И под действием этой силы спутнику логичнее упасть.
Но, он летит вокруг Земли с первой космической скоростью – 7,9 км/с. Вспомните, чем больше скорость – тем сложнее затормозить. Вот и здесь, спутник и хотел бы упасть, но он не может затормозить и просто пролетает мимо Земли по инерции, тем самым продолжая бесконечное падение.

То есть, спутники падают, но промахиваются и не попадают в Землю.

Еще больше космоса и интересных фактов в телеграмм-канале.

Опытные астрономы прекрасно знают о том, что орбитальная скорость планет напрямую связана с их расстоянием от центра системы – Солнца. Ну, а людям, которые только начинают изучать удивительную науку о небесных телах, наверняка было бы интересно узнать об этом побольше.

Что такое орбитальная скорость?

Орбитой называют траекторию, по которой конкретная планета движется вокруг Солнца. Она вовсе не представляет собой идеальную окружность, как думают некоторые люди, не разбирающиеся в астрономии. Более того, она даже не слишком напоминает овал – ведь существует большое количество факторов за исключением силы притяжения Солнца, которые могут повлиять на движение небесных тел.

Планеты Солнечной системы

Также стоит сразу развеять другой известный миф – Солнце вовсе не всегда находится ровно в центре орбиты планет, вращающихся вокруг него.

Наконец, следует отметить, что не все орбиты планет лежат в одной плоскости. Некоторые значительно выбиваются из нее – например, если изобразить стандартные орбиты Земли и Венеры на астрономической карте, то можно убедиться в том, что они имеют всего несколько точек пересечения.

Теперь, когда с орбитами более или менее разобрались, можно вернуться к определению термина орбитальной скорости планет. Именно так астрономы называют скорость, с которой планета движется по своей траектории. Она может немного изменяться – в зависимости от того, какие небесные тела проходят поблизости. Особенно это заметно на примере Марса: каждый раз, когда он проходит в сравнительной близости от Юпитера, он немного замедляется, притягиваясь гравитационным полем этого гиганта.

Ученые давно установили зависимость скорости движения планет вокруг Солнца от расстояния до него.

То есть самая ближайшая к Солнцу планета – Меркурий – движется быстрее всего, в то время как скорость Плутона является самой маленькой в Солнечной системе.

С чем это связано?

Оборот за 1 год

Дело в том, что скорость каждой планеты соответствует той силе, с которой Солнце притягивает ее на определенном расстоянии. Если скорость будет меньше, то планета будет постепенно приближаться к звезде и в результате сгорит. Если же скорость слишком большая, то планета просто улетит от центра нашей Солнечной системы.

Каждый астроном, даже начинающий, прекрасно знает, что сила притяжения уменьшается по мере удаления от Солнца. Именно поэтому, чтобы сохранить свое место в Солнечной системе, Меркурий вынужден носиться с бешеной скоростью, Марс может двигаться помедленнее, а Плутон и вовсе едва перемещается.

Меркурий

Самая близкая к Солнцу планета – Меркурий. Вот с него и начнем изучение скорости планет Солнечной системы.

Он может похвастать не только самым малым радиусом орбиты, но и небольшими размерами. В нашей системе это самая маленькая полноценная планета. Расстояние от Меркурия до Солнца – менее 58 миллионов километров, благодаря чему температура на его экваторе жарким днем может дорасти до 400 градусов по Цельсию и даже больше.

Кроме того, чтобы удержаться на своей орбите при такой близости Солнца, планете приходится двигаться с огромной скоростью – около 47 километров в секунду. Так как протяженность орбиты из-за малого радиуса совсем невелика, то полный оборот вокруг звезды он совершает всего за 88 суток. То есть Новый год там можно встречать значительно чаще, чем на Земле. А вот скорость вращения планеты вокруг собственной оси очень небольшая – полный оборот Меркурий делает почти за 59 земных суток. Так, сутки здесь не намного короче года.

Венера

Следующая планета в нашей системе – Венера. Единственная, на которой Солнце встает на западе и садится на востоке. Расстояние до центра системы – 108 миллионов километров. Благодаря этому скорость движения планеты по орбите значительно меньше, чем у Меркурия (всего 35 километров в секунду). Причем это единственная планета, у которой орбита действительно представляет собой практически идеальную окружность – погрешность (или, как говорят эксперты, эксцентриситет) крайне мала.

Орбиты Земли и Венеры

Правда, протяженность орбиты (по сравнению с Меркурием) у нее значительно больше, из-за чего полный путь Венера проделывает только за 225 дней. Кстати, еще один интересный факт, отличающий Венеру от всех других планет Солнечной системы: период вращения вокруг оси (одни сутки) здесь составляет 243 земных дня. Следовательно, год здесь длится меньше, чем сутки.

Земля

Теперь можно рассмотреть и планету, которая стала домом для человечества – Землю. Среднее расстояние до Солнца – почти 150 миллионов километров. Именно это расстояние принято называть одной астрономической единицей – их используют при подсчете небольших (по меркам Вселенной) расстояний в космосе.

Сложно поверить, но пока вы читаете эту статью, вы движетесь вместе с Землей на скорости почти 30 километров в секунду. Но даже при столь внушительной скорости, чтобы сделать полный оборот вокруг Солнца, планета тратит на это больше 365 суток или 1 год. Зато вокруг своей оси вращается довольно быстро – всего за 24 часа. Впрочем, эти и многие другие факты о Земле очевидны всем, поэтому подробно рассматривать нашу родную планету не станем. Перейдем сразу к следующей.

Марс

Эта планета названа в честь грозного бога войны. По всем показателям Марс максимально приближен к Земле. Например, скорость планеты по орбите составляет 24 километра в секунду. Расстояние до Солнца – около 228 миллионов километров, из-за чего на поверхности большую часть времени довольно прохладно – только днем она прогревается до -5 градусов по Цельсию, а ночью здесь холодает до -87 градусов.

Красная планета

Зато сутки здесь практически равны земным – 24 часа и 40 минут. Для упрощения даже был придуман новый термин, обозначающий марсианские сутки – сол.

Так как расстояние до Солнца довольно большое, а траектория движения значительно длиннее, чем у Земли, год здесь длится довольно долго – целых 687 дней.

Эксцентриситет у планеты не слишком большой – около 0,09, поэтому орбиту можно считать условно круглой с Солнцем, расположенным почти в центре описываемой окружности.

Юпитер

Свое название Юпитер получил в честь самого могущественного древнеримского бога. Неудивительно, именно эта планета может похвастать самыми большими размерами в Солнечной системе – его радиус составляет почти 70 тысяч квадратных километров (у Земли, например, всего 6 371 километр).

Удаленность от Солнца позволяет Юпитеру вращаться довольно медленно – всего 13 километров в секунду. Из-за этого на то, чтобы сделать полный круг, у планеты уходит почти 12 земных лет!

Зато сутки здесь самые короткие в нашей системе – 9 часов и 50 минут. Наклон оси вращения здесь крайне мал – лишь 3 градуса. Для сравнения — у нашей планеты этот показатель составляет 23 градуса. Из-за этого на Юпитере совершенно не бывает смен времен года. Всегда стоит одинаковая температура, изменяющаяся лишь в течение коротких суток.

Эксцентриситет у Юпитера довольно маленький – меньше 0,05. Поэтому он равномерно наматывает круги строго вокруг Солнца.

Сатурн

Эта планета не слишком уступает Юпитеру по размерам, являясь вторым по размеру космическим телом в нашей солнечной системе. Его радиус – 58 тысяч километров.

Скорость планеты по орбите, как уже говорилось выше, продолжает падать. Для Сатурна этот показатель составляет всего 9,7 километра в секунду. А пройти со столь малой скоростью приходится действительно большое расстояние – дистанция до Солнца равна почти 9,6 астрономических единицы. Всего на этот путь уходит 29,5 лет. Зато сутки одни из самых коротких в системе – всего 10,5 часов.

Эксцентриситет планеты почти такой же, как у Юпитера – 0,056. Поэтому окружность получается довольно ровной – перигелий и афелий различаются всего на 162 миллиона километров. Если учитывать огромное расстояние до Солнца, то разница совсем небольшая.

Орбиты планет Солнечной системы

Интересно, что кольца Сатурна тоже вращаются вокруг планеты. Причем скорость внешних слоев значительно меньше, чем внутренних.

Уран

Еще один гигант Солнечной системы. Только Юпитер и Сатурн превосходят его по размерам. Правда, по весу его обходит еще и Нептун, но это благодаря высокой плотности ядра. Среднее расстояние до Солнца действительно огромно – целых 19 астрономических единиц. Движется он довольно медленно – вполне может позволить себе это при столь большом расстоянии. Скорость движения планеты по орбите не превышает 7 километров в секунду. Из-за такой неспешности на то, чтобы пройти огромное расстояние вокруг Солнца, у Урана уходит целых 84 земных года! Весьма приличный срок.

А вот вокруг своей оси он вращается удивительно быстро – полный оборот совершается всего за 18 часов!

Удивительной особенностью планеты является то, что вращается она вокруг себя не вертикально, а горизонтально. Другими словами, все другие планеты Солнечной системы делают оборот «стоя» на полюсе, а Уран просто «катится» по своей орбите, будто лежа на боку. Ученые объясняют это тем, что во времена формирования планета столкнулась с каким-то крупным космическим телом, из-за чего просто завалилась на бок. Поэтому, хотя в общепринятом смысле сутки здесь очень короткие, на полюсах день длится 42 года, а потом столько же лет стоит ночь.

Нептун

Свое гордое название Нептуну подарил древнеримский повелитель морей и океанов. Недаром даже символом планеты стал его трезубец. По размерам Нептун является четвертой планетой в Солнечной системе, лишь совсем немного уступая Урану – его средний радиус составляет 24 600 км против 25 400.

От Солнца он держится на расстоянии в среднем 4,5 миллиарда километров или 30 астрономических единиц. Поэтому путь, который он проделывает, проходя орбиту, действительно огромен. А если учесть, что круговая скорость планеты составляет всего 5,4 километра в секунду, то нет ничего удивительного в том, что один год здесь приравнивается к 165 земным.

Интересный факт: здесь имеется довольно плотная атмосфера (правда, состоит она преимущественно из метана), и иногда бывают ветра удивительной силы. Их скорость может достигать 2100 километров в час – на Земле даже одиночный порыв такой мощи моментально разрушил бы любой город, не оставив там камня на камне.

Плутон

Наконец, последняя планета в нашем списке. Точнее, даже не планета, а планетоид – недавно его вычеркнули из списка планет из-за малых размеров. Средний радиус составляет всего 1187 километров – даже у нашей Луны этот показатель 1737 километров. Тем не менее название у него довольно грозное – его присвоили в честь бога подземного царства мертвых у древних римлян.

Земля и Плутон

В среднем расстояние от Плутона до Солнца составляет около 32 астрономических единиц. Это позволяет ему чувствовать себя в безопасности и двигаться со скоростью лишь 4,7 километра в секунду – на раскаленную звезду Плутон все равно не свалится. А вот, чтобы сделать полный оборот вокруг Солнца со столь огромным радиусом, эта крохотная планета тратит 248 земных лет.

Вокруг своей оси он вращается тоже очень медленно – на это уходит 152 земных часа или больше 6 суток.

Орбита Плутона

К тому же эксцентриситет самый большой в Солнечной системе – 0,25. Поэтому Солнце находится далеко не в центре орбиты, а смещено почти на четверть.

Заключение

На этом можно заканчивать статью. Теперь вы знаете про скорость планет нашей Солнечной системы, а также узнали множество других факторов. Наверняка теперь вы разбираетесь в астрономии значительно лучше, чем раньше.

Понравилась статья? Поделить с друзьями:
  • Как составить договор для сдачи квартиры квартирантам образец
  • Как исправить переперченный суп супа
  • Как составить представление команды
  • Как найти объем шестиугольной пирамиды формула
  • Как составить синквейн по теме семья