Как найти скорость движения стержня

Будем действовать пошагово. Шаг 1 (связь между скоростями точек A и B при двойном касании) уже сделан выше.

Рис. 3. Силы, действующие на оба конца стержня, в случае, когда он касается и стенки, и пола. Красным показаны силы, вызванные сопротивлением материалов, синим — сила тяжести, зеленым — «наша» cила Four, которая должна удерживать точку B от ускорения. (Рисунок автора задачи)

Шаг 2. Запишем все силы, действующие на точки A и B по горизонтали и по вертикали при двойном касании:

точка A:    х:  –T·cos α + FA = 0, y:  T·sin α – mg = maA,

точка B:    х:  T·cos α + Four = 0, y:  –T·sin α – mg + FB = 0.

Здесь FA и FB — силы реакции опоры со стороны стенки и пола, которые строго перпендикулярны поверхности, T — сила напряжения стержня, которую мы считаем положительной, если стержень сжат, и отрицательной — если он растянут (поэтому мы и говорим «сила напряжения», а не «сила натяжения»). Напомним, что стержень абсолютно жесткий, поэтому действующие в нём силы — будь то сила сдавливания или сила растяжения — не меняют его длины, но влияют на баланс сил на его концах. Наконец, Four — это та «наша» сила, которую мы прикладываем к нижней точке, чтобы она двигалась без ускорения, а лишь с постоянной скоростью v. Эта сила неизвестна, и более того, она переменная: в каждый момент времени она подстраивается так, чтобы скомпенсировать другую силу, действующую на точку B по горизонтали.

Заметим, что если сила напряжения может быть как положительной, так и отрицательной, то сила реакции опоры может быть только положительна. Отрицательная сила реакции опоры FA означала бы, что стержень прилип к стенке, а мы тянем стержень на себя и пытаемся его отодрать. Такого в нашей задаче быть не может, поскольку по условию стержень просто прислонен к стене.

Глядя на эти формулы, легко понять, что происходит в момент, когда стержень перестает касаться стенки. До тех пор пока он на нее опирается, сила FA положительна, и значит, сила напряжения T тоже положительна. Эта же сила напряжения толкает точку B вперед, значит наша внешняя сила Four отрицательна, то есть направлена к стенке. Иными словами, для того чтобы конец стержня двигался с постоянной скоростью, мы должны не тянуть его, а подталкивать против движения, сопротивляясь скатывающей силе, передающейся по стержню.

Как только сила напряжения сменится на отрицательную, в точке касания со стенкой перестанет действовать сила реакции опоры: FA = 0. Тогда никакая больше сила не сможет скомпенсировать горизонтальную проекцию силы T, и точка A в результате начнет двигаться в направлении от стенки. Поэтому именно T = 0 (а следовательно, и Four = 0) и есть тот момент, когда произойдет отрыв.

Шаг 3. Теперь необходимо выяснить, при каком угле наклона это произойдет. Это можно сделать разными способами, но здесь я хочу продемонстрировать несколько необычный прием. Мы сейчас покажем, что наша задача с математической точки зрения полностью эквивалентна другой задаче, совсем непохожей на исходную. Эту задачу мы сможем решить без труда и тем самым получим ответ на интересующий нас вопрос.

Рис. 4. Задача о скольжении стержня о стенку математически эквивалентна задаче о движении материальной точки по полукруглому холму в ослабленном поле тяжести. (Рисунок автора задачи)

Давайте обратим внимание на траекторию, которую описывает центр масс стержня при соскальзывании. Если стержень касается своими концами и стенки, и пола, то центр масс движется по дуге с радиусом R = L/2, показанной на рис. 4, слева. Если стержень касается только пола, то центр масс может находиться где угодно справа от дуги. Забраться «под дугу» центр масс не может никак. Поэтому исходная задача — соскальзывание стержня вдоль стенки, а затем отрыв от нее — с точки зрения движения центра масс выглядит так: центр масс без трения скользит по полукруглому холму и в какой-то момент срывается с него (см. рис. 4, справа).

Для того чтобы эта словесная аналогия стала полным математическим эквивалентом, перепишем потенциальную и кинетическую энергию стержня в исходной задаче

через массу центра масс (mcm = 2m), горизонтальную (vx = vB/2) и вертикальную (vy = vA/2) скорости центра масс, а также его высоту:

Обратите внимание на лишнюю двойку в кинетической энергии; она возникла потому, что кроме движения центра масс стержень еще и вращается, и в нашем простом случае кинетическая энергия вращения равна кинетической энергии движения центра масс. Это означает, что задачу нельзя просто так сводить к движению центра масс. Однако если переписать эти энергии вот так

где M = 2mcm = 4m, а = g/2, а скорость

то все формулы становятся привычными. Таким образом, мы приходим к выводу: наша задача математически эквивалентна задаче о скольжении одной-единственной материальной точки с массой M = 4m по полукруглому холму радиуса R = L/2 в ослабленном поле тяжести с ускорением свободного падения a = g/2. Всё это происходит также под действием дополнительной горизонтальной силы (аналог Four), которая обеспечивает постоянство горизонтальной скорости точки (vx = v/2). Из геометрии видно, что тот угол α, при котором точка срывается с холма, как раз равен углу, при котором стержень отрывается от стенки в исходной задаче. Этот угол и требуется найти.

Эту задачу решить уже несложно. Для того чтобы тело массы M двигалось по окружности радиуса R со скоростью u, надо, чтобы центростремительная сила равнялась Mu2/R. Эта сила в нашем случае складывается из проекции силы тяжести Ma·sin α, а также силы реакции опоры и проекции силы Four. В момент отрыва две последние силы исчезают, и это позволяет нам наконец-то записать условие на угол α:

Отсюда получаем:

Поскольку синус не бывает больше единицы, а v и L задаются в условии независимо, мы получаем два разветвления задачи: если скорость велика, отрыв произойдет сразу же, и дальше стержень будет падать свободно. Если же скорость достаточно мала (что и предполагалось в условии), то отрыв произойдет не сразу, а при угле α, задаваемом найденной формулой. Стоит также отметить, что ту же самую формулу можно было найти, рассматривая исходную задачу в системе отсчета точки B (рис. 2, справа) и записав центростремительное ускорение для точки A

Шаг 4. Осталось обсчитать свободное падение стержня с начального угла α. Проще всего это сделать, вновь перейдя в (инерциальную) систему отсчета, где точка B покоится (рис. 2, справа, но только без стенки). В этой системе отсчета сила Four приложена к неподвижной точке, и поэтому она работы не совершает. Значит, в этой системе отсчета можно воспользоваться законом сохранения энергии:

Скорость u1 — это (вертикальная) скорость точки A в этой системе отсчета в момент удара об пол. Возвращаясь обратно в исходную систему отсчета, получаем окончательный ответ:

В любой момент времени скорости
любых двух точек плоской фигуры
исвязаны равенством

Рис. 2.3

(a)

Вектор
представляет собой скорость, полученную
точкойпри вращении плоской фигуры вокруг оси,
проходящей через полюсперпендикулярно плоской фигуре. Этот
вектор направлен перпендикулярно
отрезку(по касательной к окружности, которую
описывает точкапри вращении тела вокруг оси),
причем в сторону вращения тела (Рис.
2.3). В соответствии с формулой Эйлера

Пример 2.4

Пластина совершает плоскопараллельное
движение. В данный момент времени угловая
скорость пластины равна
,
проекция на осьскорости точкипластины равна.
Скорость точкиобразует с осьюугол(Рис. 2.4). Определить модули скоростей
точеки,
если.

Рис. 2.4

Запишем уравнение (a)
в проекциях на координатные оси:

или

Учитывая данные задачи, получаем:

или

Отсюда:

Следует заметить, что прямое
использование формулы (a)
целесообразно в довольно небольшом
числе случаев. В некоторых задачах имеет
смысл использовать так называемую
теорему о проекциях. Поскольку векторперпендикулярен отрезку,
из формулы (a) получаем
утверждение:

проекции скоростей концов отрезка,
соединяющего две точки абсолютно
твердого тела, на направление этого
отрезка равны.

Пример 2.5

Стержень
движется в плоскости рисунка, причём
его конецвсё время находится на полуокружности,
а сам стержень всё время касается
неподвижного выступа,
расположенного на диаметре(Рис. 2.5). Определить скоростьточки стержня, касающейся выступа, в
тот момент времени, когда радиусперпендикулярен,
если известно, что скорость точкив этот момент.

Рис. 2.5

Заметим, что направления скоростей
точекив данный момент времени известны.
Скорость точкинаправлена по касательной к траектории,
т.е. по касательной к окружности в нижней
точке. Скорость точкинаправлена вдоль стержня, т.к. по условию
задачи стержень не отрывается от выступа.
Таким образом, для заданного положения
стержня известны углы, которые образуют
векторы скоростей точекис отрезком.
В таком случае целесообразно использовать
теорему о проекциях скоростей:

Решение задач с помощью мгновенного
центра скоростей.
Основной способ
определения поля скоростей при
плоскопараллельном движении твёрдого
тела основан на использовании мгновенного
центра скоростей.

Как уже говорилось, за полюс можно
принять любую точку плоской фигуры. В
данный момент времени различные точки
тела имеют разные скорости. За полюс
имеет смысл принимать точку, скорость
которой в данный момент времени равна
нулю.

Точка, принадлежащая плоской фигуре
или неизменно с ней связанная, скорость
которой в данный момент времени равна
нулю, называется мгновенным центром
скоростей.

Рис. 2.6

Скорость любой точкиплоской фигуры определяется так же, как
если бы тело вращалось вокруг оси,
проходящей через мгновенный центр
скоростей перпендикулярно плоскости
движения плоской фигуры (Рис. 2.6):

Пример 2.6

Кривошипн0-шатунный механизм связан
шарнирно в середине
шатуна со стержнем,
а последний – со стержнем,
который может вращаться вокруг оси.
Определить угловую скорость стержняв указанном на Рис. 2.7 положении механизма,
если точкиирасположены на одной вертикали; угловая
скоростькривошипаравна 8 рад/с,

Рис. 2.7

Стерженьвращается вокруг неподвижной оси.
Скорость точкиопределяем по формуле Эйлера:

Движение стержня
плоскопараллельное. Мгновенный центр
скоростей находится в точке.
Учитывая, что скорости точек тела
пропорциональны расстояниям до
мгновенного центра скоростей, получаем:

Отсюда:

Движение стержня
плоскопараллельное. Скорость точкинаправлена по касательной к окружности
радиуса,
которая является траекторией точки.
При заданном положении механизма
направление скорости точкисовпадает с направлением стержня.
Для определения скорости точкиимеет смысл использовать теорему о
проекциях скоростей:

Остаётся определить угловую скорость
стержня
.
Поскольку движение этого стержня
вращательное, используем формулу Эйлера:

Пример 2.7

Колесо радиуса
катится без скольжения по неподвижной
поверхности (Рис. 2.8). Скорость центра
колеса.
Определить скорости точеки

Рис. 2.8

Мгновенный центр скоростейнаходится в точке касания колеса и
дороги. Зная скорость центра, находим
угловую скорость колеса:

Скорости точек колеса определяем по
формуле Эйлера:

Качение колеса представляет интерес
еще и в том отношении, что позволяет
проиллюстрировать смысл формулы (a).
Пусть колесо, движение которого мы
рассматриваем, – ведущее колесо, т.е.
оно принудительно вращается некоторым
приводом. Рассмотрим возможные
режимы движения.

Может случиться так, что колесо
вращается, но автомобиль не перемещается
– буксует. В этом случае движение колеса
представляет собой вращение вокруг
неподвижной оси
.
Все точки колеса будут описывать
окружности с центром в точке,
радиусы которых равны расстояниям от
этих точек до оси колеса. Скорость любой
точки направлена по касательной к этой
окружности и определяется по формуле
Эйлера.

Другое возможное движение колеса
представляет собой качение с
проскальзыванием. Автомобиль при этом
перемещается, но колеса вращаются
несоразмерно быстро. Скорость оси колеса
отлична от нуля и вступает в свои права
формула (a). Скорость,
например, точки,
которая в первом случае была ее полной
скоростью, становится скоростью,
полученной точкойпри вращении колеса вокруг оси.
Полная же скорость точкитеперь геометрически складывается из
скорости точкии скорости, полученной точкойпри вращении колеса вокруг оси

Заметим, что в этом случае движение
оси (т.е. автомобиля) и вращение колеса
происходят независимо друг от друга и
каждое из них должно быть задано.

Последний режим движения колеса –
качение без скольжения. Именно этот
случай рассмотрен в примере 2.7. Движение
оси и вращение колеса оказываются
взаимосвязанными. В каждое мгновение
очевидно положение точки, скорость
которой равна нулю. В такой ситуации
при определении скоростей точек колеса
удобнее за полюс брать не точку
,
а мгновенный центр скоростей.

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В
АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

Из сборника задач И.В.Мещерского: 16.3;
16.10; 16.15; 16.16; 16.19; 16.24; 16.28; 16.29; 16.31;
16.32; 16.33; 16.34; 16.35; 16.36; 16.38; 16.39.

Из учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА —
теория и практика»: комплект СР-20.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 6

Пример 2.8

Определить скорость и ускорение ползуна
кривошипного механизма, а также угловую
скорость и угловое ускорение шатунав положении, изображенном на Рис. 2.9.
Кривошипвращается замедленно, имея в данный
момент времени угловую скоростьи угловое ускорение.
Ползун движется по криволинейной
направляющей, имеющей в данном положении
механизма радиус кривизны.
Дано:.

Зная направления скоростей точек
и,
построим мгновенный центр скоростейстержня,
после чего определим угловую скорость
стержня

и скорость точки

Попытка определить угловое ускорение
стержня
,
используя определение

закончится неудачей, поскольку зависимость
неизвестна.

Для определения ускорения точки
принимаем за полюс точку.
Поскольку известны траектории всех
точек во всех их движениях, представим
ускорения точек их составляющими:

Вычислим векторы, входящие в уравнение
.

Рис. 2.9

Точка
принадлежит вращающемуся телу.
Определяем модули составляющих ускорения
этой точки:

направления векторов показаны на
Рис. 2.9.

Точка
движется по криволинейной направляющей.
Касательное и нормальное ускорения
точкиопределяются по формулам:

направления составляющих ускорения
показаны на Рис. 2.9. По приведенной
формуле не удается вычислить касательное
ускорение точки
,
поскольку неизвестны зависимости
расстоянийиот времени.

Находим составляющие ускорения,
полученного точкой
при вращении шатунавокруг оси.
Заметим, что вращательное ускорение
остается неизвестным по модулю, поскольку
неизвестно угловое ускорение шатуна:

Таким образом, из шести векторов,
входящих в равенство
,
только два неизвестны по модулю. Определим
эти неизвестные из уравнения.
Это уравнение можно решить аналитически
или геометрически. Рассмотрим оба
способа решения.

Имеет смысл выбрать координатные
оси так, чтобы в каждое уравнение в
проекциях входила только одна неизвестная.
Направим ось
вдоль(перпендикулярно),
а осьпо направлению(перпендикулярно).
Записывая уравнениев проекциях на ось,
получаем:

Отсюда

Отрицательный знак говорит о том,
что предполагаемое направление вектора
было выбрано ошибочно; в действительности
этот вектор направлен в противоположную
сторону.

Записывая уравнение
в проекциях на ось,
получаем:

Отсюда

Рис. 2.10

Вычислив,
можем определить угловое ускорение
стержня:

Рассмотрим геометрический способ
решения уравнения
.
Построим в масштабе сумму векторов,
стоящих в правой части уравнения.
От некоторой точкиотложим,
от его конца отложим,
а затем(Рис. 2.10). Остается построить,
модуль которого неизвестен. Проведем
через конецпунктирную прямую, параллельную.
Конец суммы векторов, стоящих в правой
части уравнения,
лежит на этой прямой.

Обратимся к левой части уравнения
.
Отложим от точкиизвестный вектор.
Через его конец проведем пунктирную
прямую, параллельную вектору.
Точка пересечения построенных прямых
определяет положение конца вектора
ускорения точки.

Пример 2.9

Колесо радиуса
катится без скольжения по прямолинейному
пути (Рис. 2.11). Ось колеса движется
ускоренно, имея в данный момент времени
скоростьи ускорение.
Определить проекции ускорение любой
точкиобода колеса на оси координат.

Принимая за полюс точку
,
получаем:


причем

где
– угловая скорость колеса;– его угловое ускорение.

Рис. 2.11

Зная положение мгновенного
центра скоростей колеса – точка касания
колеса и дороги, определяем угловую
скорость колеса:

В рассматриваемой задаче расстояние
от точки
,
скорость которой известна, до мгновенного
центра скоростейсо временем не изменяется. Это
обстоятельство позволяет найти угловое
ускорение колеса в данный момент времени
по определению углового ускорения:

,

так как

представляет собой проекцию вектора
ускорения точкина направление её вектора скорости,
которая в рассматриваемом случае равна.

Записывая уравнение
в проекциях на координатные оси, получаем
проекции вектора ускорения точки:

Пример 2.10

Колесо радиуса
катится без скольжения по криволинейной
поверхности (Рис.2.12). Ось колеса движется
ускоренно, имея в данный момент времени
скоростьи касательное ускорение.
Определить проекции ускорения любой
точкиобода колеса на заданные координатные
оси, если радиус кривизны в точкеравен.

Рис. 2.12

Задача решается так же, как в
примере 2.9, но в отличие от предыдущей
задачи, траектория точки– кривая линия. У точкипоявляется вторая составляющая ускорения
– нормальная:

В результате получаем:

Пример 2.11

Колесо радиуса
катится без проскальзывания по
прямолинейному пути. Ось колеса движется
равномерно со скоростью(Рис. 2.13). Определить ускорение любой
точкиколеса.

Рис. 2.13

Ось колеса движется равномерно
и прямолинейно. Следовательно, точка– мгновенный центр ускорений. Для любой
точкиколеса получаем:

Но угловая скорость колеса
постоянна и, следовательно, угловое
ускорение колеса равно нулю.

Тогда

Таким образом, ускорение любой точки
совпадает с осестремительным ускорением,
полученным этой точкой при вращении
колеса вокруг оси, проходящей через
центр колеса
перпендикулярно плоскости движения.

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В
АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

Из сборника задач И.В.Мещерского: 18.11;
18.13; 18.16; 18.18; 18.22; 18.23; 18.25; 18.26;
18.28; 18.37; 18.38; 18.39; 18.40.

Из учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА —
теория и практика»: комплекты СР-21;

СР-22.

ПРАКТИЧЕСКИЕ
ЗАНЯТИЯ № 7-8

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    03.03.2015560.03 Кб15PSY — recommendation.pdf

  • #
  • #

Беляев С.А. Кинематика и связи // Квант. — 1971. — № 2. — С. 44-46.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Кинематика часто рассматривает движение абсолютно твердых тел, то есть тел, расстояния между любыми двумя точками которых остаются постоянными. При этом существуют методы, значительно упрощающие решение кинематических задач. С одним из них мы сейчас познакомимся.

Пусть тела при движении соприкасаются, и скольжение между ними отсутствует. Тогда скорости обоих тел в точке соприкосновения полностью совпадают (рис. 1).

Рис. 1

Если же между телами есть проскальзывание, то совпадают лишь проекции скоростей на перпендикуляр к касательной в точке соприкосновения. При этом достаточно, чтобы касательная существовала хотя бы для одной из скользящих поверхностей (рис. 2).

Рис. 2.

Рассмотрим несколько примеров.

1. Стержень ОА вращается по часовой стрелке с угловой скоростью ω, приводя в движение кирпич ABCD с боковой стороной а (рис. 3). Найти зависимость скорости кирпича υ от угла α.

Решение. Стержень и кирпич соприкасаются в точке А. Следовательно, скорости кирпича и стержня в этой точке в направлении MN  совпадают. Таким образом,

или

Рис. 3.

2. Источник света S находится на расстоянии l от экрана MN (рис. 4). В начальный момент времени плоский предмет высоты h начинает равномерно двигаться со скоростью υ от источника к экрану. Найти зависимость скорости движения края тени по экрану от времени.

Рис. 4.

Решение. В данной задаче в роли стержня выступает луч SB. В точке А луч «соприкасается» с предметом, а в точке В с экраном, образуя границу тени. Составим два уравнения, связывающих проекции скоростей в точках А и В:  — проекция на ,   — проекция на MN. Здесь ω — угловая скорость вращения луча. Разделив второе равенство на первое и учитывая, что

 и

получим

Пусть теперь стержень АВ заданной длины l (рис. 5) движется произвольно. Скорости  и  его концов могут быть различны, но, так как длина стержня не меняется, проекции этих скоростей  и  должны быть равны: . Проекции скоростей  и  определяют круговое движение стержня с угловой скоростью  (проверьте это самостоятельно).

Рис. 5.

Решим две задачи.

3. Стержень АВ опирается своими концами о стороны тупого угла β (рис. 6). Верхний конец стержня тянут со скоростью υ вдоль стороны АО. Найти зависимость скорости u точки В от угла α.

Рис. 6.

Решение. Так как длина стержня АВ неизменна, проекции скоростей его концов на направление стержня одинаковы:

или

Рассмотрим случай, когда длина стержня изменяется во время движения («стержнем» может служить, например, отрезок, соединяющий две заданные точки, расстояние между которыми меняется). Тогда соотношение, связывающее проекции скоростей концов стержня, принимает вид

где u — скорость изменения длины стержня. (Модуль здесь нужен, так как неизвестно, какая из скоростей больше.)

4. Лодку с крутого берега тянут за веревку с постоянной скоростью υ. Найти зависимость скорости лодки u от угла α.

Решение. В данном случае нас интересует часть веревки АВ. Скорость ее сокращения равна υ. Векторы скоростей концов, веревки А и В показаны на рисунке 7.

Рис. 7.

Согласно утверждению, приведенному выше, имеем

или так как  то

Попробуйте самостоятельно решить подобные задачи.

1. Стержень ОА вращается по часовой стрелке с угловой скоростью ω, приводя в движение цилиндр радиуса r (рис. 8). Скольжения между цилиндром и плоскостью нет. Найти зависимость скорости цилиндра υ от угла α.

Рис. 8.

2. Кривошип АО длины r (рис. 9) вращается с угловой скоростью ω, длина шатуна АВ равна l. Найти скорость υ точки В шатуна, если .

Рис. 9.

3. Шарик, предварительно раскрутив вокруг оси, кладут на горизонтальную поверхность. Коэффициент трения шарика о поверхность отличен от нуля. Под действием силы трения шарик изменяет свое первоначальное вращательное движение и начинает каким-то образом двигаться по поверхности. Описать, как будет происходить это движение.

Ответы

1. (*На рисунке к этой задаче вектор скорости υAц должен быть направлен под углом α/2 к стержню.)

В точке А проекции скоростей цилиндра υAц и стержня υ на направление АО´  совпадают. Значение υ равно . Заметим, что мгновенная ось вращения цилиндра проходит через точку В. Поэтому υAц направлена перпендикулярно АВ и равна ω·AB, где ω — угловая скорость вращения цилиндра. Поскольку

 и

получим

Из условия равенства проекции имеем

или

Откуда

2. Поскольку длина АВ неизменна, проектируя скорости концов шатуна на направление АВ, получим :

или

Воспользовавшись теоремой синусов

можно найти

Содержание:

Плоское движение тела:

При изучении темы ПЛОСКОЕ ДВИЖЕНИЕ ТЕЛА раздела КИНЕМАТИКА. вы научитесь применять аналитические и графические методы для определения скоростей и ускорений точек тел и механизмов. Хотя эти знания имеют самостоятельную ценность, особенно необходимы они будут для решения задач динамики тела и системы.

Приведены программы расчета кинематики плоского движения в математической системе Maple V. Анимационные возможности этой системы делают решение наглядным, позволяя глубже понять суть задачи.

Методы решения задачи кинематики плоского движения разнообразны. Выбрать оптимальный путь, который может существенно упростить решение, помогут примеры, приведенные в этой главе.

Скорости точек многозвенного механизма

Постановка задачи. Плоский многозвенный механизм с одной степенью свободы находится в движении. Известна угловая скорость какого-либо его звена или скорость одной из точек механизма. Найти скорости точек механизма и угловые скорости его звеньев.

План решения:

Рассмотрим два простых геометрических способа решения задачи, в которых, в отличие от аналитических методов, определяются модули скоростей и угловых скоростей. Не оговаривая отдельно, всякий раз под угловой скоростью Плоское движение тела в теоретической механике

1-й способ. Мгновенные центры скоростей

1. Определяем положение мгновенного центра скоростей (МЦС) каждого звена. МЦС лежит на пересечении перпендикуляров, проведенных

к скоростям точек, принадлежащих звену (рис. 85). У тех звеньев, у которых МЦС не существует (скорости двух точек параллельны и не перпендикулярны отрезку, их соединяющему), угловая скорость равна нулю, а скорости всех точек равны. Если векторы скоростей перпендикулярны отрезку их соединяющем}’, то имеют место два частных случая положения МЦС (рис. 86, 87).

Если тело (колесо, диск, цилиндр) катится по поверхности без проскальзывания, то МЦС этого тела находится в точке касания.

2. Для каждого звена определяем расстояния от его точек до МЦС этого звена.
Плоское движение тела в теоретической механике
3. Записываем систему уравнений для скоростей N точек звена Плоское движение тела в теоретической механике включая точку с известной скоростью:

Плоское движение тела в теоретической механике

ЗдесьПлоское движение тела в теоретической механике — угловая скорость звена Плоское движение тела в теоретической механике Плоское движение тела в теоретической механике — расстояние от МЦС звенаПлоское движение тела в теоретической механике до точки Плоское движение тела в теоретической механике Решаем систему, определяем угловую скорость звена, а затем скорости всех его точек.

Этот пункт плана выполняем последовательно для всех звеньев механизма. Очередное звено должно иметь общую точку (шарнир) с предыдущим, для которого угловая скорость найдена или известна.

2-й способ. План скоростей

1.    Как и в методе МЦС ведем расчет, переходя от одного звена к другому, шарнирно с ним соединенном}’.

Построение начинаем с вектора, величина и направление которого известны или легко вычисляются. Этот вектор в заданном масштабе откладываем от некоторой произвольной точки О (рис. 91). Его конец определяет первую точку плана скоростей. Точку плана скоростей (конец вектора) отмечаем строчной буквой, соответствующей точке вектора скорости. Пусть первая точка плана скоростей обозначена как b.

2.    Рассматриваем очередное звено, на котором имеется точка с уже известной скоростью. Необходимо, чтобы на этом звене была

еще одна точка с известным направлением вектора скорости (например, ползун или точка звена, совершающего вращательное движение). Пусть эта точка обозначена как С (рис. 88).

Справедливо правило, согласно которому неизменяемые отрезки механизма, обозначенные прописными буквами, перпендикулярны отрезкам плана скоростей, обозначенными теми же строчными буквами.

Следующая точка плана скоростей лежит на пересечении двух прямых. Одна прямая определяется направлением скорости точки С, вторая перпендикулярна ВС. Длина полученного отрезка Ос является модулем скорости Плоское движение тела в теоретической механике (рис. 91).

Скорости остальных точек этого звена (если таковые имеются) найдем по правилу подобия неизменяемых фигур механизма и фигур, обозначенных теми же строчными буквами плана скоростей.

Пункт 2 плана выполняем для всех звеньев механизма (рис. 91-95).

3. После построения плана скоростей определяем угловую скорость каждого звена по простой формуле Плоское движение тела в теоретической механике где Плоское движение тела в теоретической механике расстояние между точками Плоское движение тела в теоретической механике звена, Плоское движение тела в теоретической механике — длина отрезка на плане скоростей.

Задача №1

Плоский многозвенный механизм с одной степенью свободы приводится в движение кривошипом АВ, который вращается против часовой стрелки с угловой скоростью Плоское движение тела в теоретической механике (рис. 88).Плоское движение тела в теоретической механике

Ползуны С, К, Н движутся горизонтально, Плоское движение тела в теоретической механикеНайти скорости точек В, С, D, Е, F, G, Н, К механизма и угловые

8.1.Скорости точек многозвенного механизма скорости его звеньев АВ, BD, DG, EH, FO, СК.

Решение

1-й способ. Мгновенные центры скоростей

1. Определяем положение мгновенного центра скоростей каждого звена АВ, BD, DG, СК, EH, FO.

МЦС звеньев АВ и FO искать не требуется. Они совершают вращательное движение вокруг шарниров А и О соответственно. Можно условно считать, что там находятся их МЦС.

Вектор Плоское движение тела в теоретической механике скорости точки В направим перпендикулярно радиусу АВ против часовой стрелки (рис. 89). Далее, чтобы узнать положение МЦС следующего звена надо знать направления векторов скоростей двух его точек. Следующим звеном будет стержень BD, имеющий со звеном АВ общую точку В. У него есть три характерные точки В, С и D. Направление вектора скорости точки D пока неизвестно.

Плоское движение тела в теоретической механике

Остается точка С. Ползун С движется строго горизонтально. Вектор скорости Плоское движение тела в теоретической механике направляем по горизонтали налево. Из двух возможных горизонтальных направлений мы выбрали этот вариант, исходя из теоремы о проекции векторов скоростей точек неизменяемого отрезка. Проекции должны быть равны и направлены в одну сторону. Таким образом, известны направления скоростей двух точек тела. Это позволяет определить МЦС звена BCD. Находим точкуПлоское движение тела в теоретической механикепересечения перпендикуляров, проведенных из точек В и С, к векторам Плоское движение тела в теоретической механике (рис. 89). Теперь определяем направление вектора Плоское движение тела в теоретической механике Он будет перпендикулярен радиусу Плоское движение тела в теоретической механике и направлен налево, исходя из той же теоремы о проекциях скоростей точек отрезка BD.

Со стержнем BCD имеют общие точки два стержня: СК и DG. Рассмотрим сначала стержень DG. Направление вектора скорости точки D уже известно. Чтобы определить положение МЦС, надо знать направление вектора еще одной точки на этом звене. Такой точкой является F. Вектор ее скорости перпендикулярен радиусу вращения FO и направлен вертикально. Перпендикуляры к векторам Плоское движение тела в теоретической механике задают положение точки Плоское движение тела в теоретической механике вокруг которой звено DEFG совершает мгновенное вращательное движение.

Перпендикулярно радиусам Плоское движение тела в теоретической механике проводим вектора Плоское движение тела в теоретической механике

Переходим к звену ЕН, МЦС которого находим на пересечении перпендикуляров к Плоское движение тела в теоретической механике (продолжение радиуса Плоское движение тела в теоретической механике и к вектору скорости Плоское движение тела в теоретической механике ползуна Н, движущегося горизонтально. Получаем точкуПлоское движение тела в теоретической механике — МЦС звена ЕН.

И, наконец, рассматриваем звено СК. Скорости Плоское движение тела в теоретической механике параллельны и не перпендикулярны СК. Звено С К совершает мгновенно-поступательное движение. Условно можно сказать, что МЦС звена С К находится в бесконечности.

2. Определяем расстояния от МЦС звеньев до тех точек этих звеньев, скорости которых надо найти.

Звено BCD

Плоское движение тела в теоретической механике

Звено DEFG. Пользуясь подобием Плоское движение тела в теоретической механике находим Плоское движение тела в теоретической механике

Звено ЕН (рис. 90). Находим расстояния до МЦС:

Плоское движение тела в теоретической механике

8.1.Скорости точек многозвенного механизма

Плоское движение тела в теоретической механике

3. Записываем систему уравнений для скоростей трех точек звена BCD, включая точку В с известной скоростью:

Плоское движение тела в теоретической механике

Решаем эту систему. Находим Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике

Система уравнений для скоростей точек звена DEFG имеет вид

Плоское движение тела в теоретической механике

Из первого уравнения вычисляем угловую скорость:

Плоское движение тела в теоретической механике

Получаем скорости точек:

Плоское движение тела в теоретической механике

Система уравнений для скоростей точек звена ЕН имеет вид

Плоское движение тела в теоретической механике

Отсюда

Плоское движение тела в теоретической механике

Звено СК совершает мгновенно-поступательное движение. Следовательно, скорости точек С я К равны: Плоское движение тела в теоретической механикеУгловая скорость этого звена равна нулю Плоское движение тела в теоретической механике.

Плоское движение тела в теоретической механикеМожно считать, что МЦС звена, движущегося мгновенно-поступательно, находится в бесконечности. Поэтому, рассуждая формально, получаем Плоское движение тела в теоретической механике

Частично проверить решение можно графически. Известно, что концы векторов скоростей точек неизменяемого отрезка лежат на одной прямой. Убеждаемся в этом, проводя прямую через концы векторов Плоское движение тела в теоретической механике отложенных на чертеже в масштабе (рис. 90).
Плоское движение тела в теоретической механике
Аналогично, проверяем скорости Плоское движение тела в теоретической механике Через их концы также можно провести прямую. Остались непроверенными скорости точек Е и Н. Для этого можно воспользоваться методом построения плана скоростей, см. ниже 2-й способ.

Результаты расчетов помещаем в таблицы. Скорости даны в см/с, угловые скорости — в рад/с.

Плоское движение тела в теоретической механике

2-й способ. План скоростей

1. Построение начинаем с вектора, величина и направление которого известны или легко вычисляются. В нашем случае это Плоское движение тела в теоретической механике. Вектор Плоское движение тела в теоретической механике в заданном масштабе откладываем от некоторой произвольной точки О (рис. 91). Все остальные вектора также будем откладывать от этой точки.

8.1.Скорости точек многозвенного механизма

Точки плана скоростей (концы векторов) отмечаем соответствующими строчными буквами. Таким образом, положение точки b на плане скоростей известно.

2. Рассматриваем звено BCD (рис. 90), на котором имеется точка В с известной скоростью. Неизменяемые отрезки механизма, обозначенные прописными буквами, перпендикулярны отрезкам плана скоростей, обозначенными теми же строчными буквами,Плоское движение тела в теоретической механикеЗвено механизма ВС горизонтально.

Плоское движение тела в теоретической механике

Следовательно, точка с плана скоростей лежит на одной вертикали с точкой b. Известно направление скорости ползуна С. Точку с находим на пересечении двух прямых. Вектор Плоское движение тела в теоретической механике изображен отрезком Ос плана скоростей (рис. 91). Из правила подобия фигур механизма и фигур, обозначенных теми же строчными буквами плана скоростей(в данном случае это отрезки BC и CD),имеем Плоское движение тела в теоретической механике

Плоское движение тела в теоретической механике
Так получаем точку d плана скоростей и, следовательно, величину и направление вектораПлоское движение тела в теоретической механике (рис. 92).

Определяем скорость Плоское движение тела в теоретической механике Направление этого вектора известно — он перпендикулярен радиусу вращения FO. По свойству плана скоростей Плоское движение тела в теоретической механике Точка d на плане уже есть. Проводим через нее горизонтальную прямую (перпендикулярную DF) до пересечения с вертикальным направлением вектора скорости Плоское движение тела в теоретической механике Получаем точку Плоское движение тела в теоретической механике (рис. 93). Соединяя ее с центром О, определяем модуль искомой скорости Плоское движение тела в теоретической механике

Из соотношения подобия Плоское движение тела в теоретической механике на отрезке Плоское движение тела в теоретической механике находим внутри него конец вектора скорости Плоское движение тела в теоретической механике и вне отрезка, пользуясь пропорцией Плоское движение тела в теоретической механикеточку Плоское движение тела в теоретической механике определяющую вектор скорости Плоское движение тела в теоретической механике (рис. 94).

Аналогично, определяем скоростьПлоское движение тела в теоретической механике (рис. 95). Здесь Плоское движение тела в теоретической механике Точки Плоское движение тела в теоретической механике и с на плане скоростей совпадают.

3. Угловые скорости звеньев определяем по простым формулам: Плоское движение тела в теоретической механике

Ускорения точек многозвенного механизма

Постановка Задачи. Плоский шарнирно-стержневой механизм состоит из шарнирно соединенных стержней и ползунов. Механизм приводится в движение кривошипом, который вращается с заданной угловой скоростью. В указанном положении механизма найти ускорения всех его шарниров.
*) Существует еще несколько способов проверки вычисления скоростей точек многозвенного механизма.

8.2. Ускорения точек многозвенного механизма

План решения

1.    Определяем угловые скорости звеньев и скорости точек механизма (см. § 8.1).

2.    Определяем ускорение шарнира, принадлежащего звену с известным законом движения:

Плоское движение тела в теоретической механике

где R — длина звена. Если задан закон изменения утла поворота Плоское движение тела в теоретической механике то Плоское движение тела в теоретической механике

Если угловая скорость звена постоянна, Плоское движение тела в теоретической механике Вектор ускорения в этом случае направляем к центру вращения звена.

3.    Для определения ускорения точки В тела, совершающего плоское движение, воспользуемся векторной формулой

Плоское движение тела в теоретической механике

Здесь Плоское движение тела в теоретической механике— известное ускорение точки, выбранной в качестве полюса, Плоское движение тела в теоретической механике— центростремительное ускорение условного движения В вокруг А по окружности с радиусом Плоское движение тела в теоретической механике — вращательное ускорение.

Возможны три случая определения ускорения по формуле (1). А. Точка В является ползуном, или направление ее вектора ускорения по каким-либо другим причинам известно. В этом случае формула (1) в проекциях на оси координат представляет собой систему двух линейных уравнений для неизвестного модуля ускорения ав и неизвестного углового ускорения звена Плоское движение тела в теоретической механике

Б. В точке В шарнирно соединены звено АВ и звено ВС, где С — неподвижный шарнир. Таким образом, точка В движется по окружности с центром в С, и ее ускорение можно представить в виде векторной суммы нормального и тангенциального ускорения:

Плоское движение тела в теоретической механике

Величину нормального ускорения Плоское движение тела в теоретической механике находим, зная скорость точки Плоское движение тела в теоретической механике Направляем векторПлоское движение тела в теоретической механике по радиусу ВС к центру вращения С. Вектор Плоское движение тела в теоретической механике неизвестен лишь по модулю, направление его известно — перпендикулярно радиусу ВС.

В результате, система уравнений (1-2), записанная в проекциях, дает четыре уравнения для четырех неизвестных Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике Решая ее, находим ускорение Плоское движение тела в теоретической механике

В. Точка В не удовлетворяет случаям А и Б. В этом случае либо она не является шарниром, либо к ней шарнирно присоединено тело, совершающее плоское (не вращательное и не поступательное) движение. Для решения задачи должны быть известны угловая скорость и угловое ускорение звена, на котором находится точка В. Они могут быть найдены при вычислении скорости и ускорения других точек этого звена. При этих условиях уравнение (1) является векторным уравнением для одной неизвестной Плоское движение тела в теоретической механике.

Этот пункт плана выполняем последовательно для всех звеньев механизма. Очередное звено должно иметь общую точку (шарнир) с предыдущим.

Задача №2

Плоский шарнирно-стержневой механизм состоит из четырех шарнирно соединенных стержней и горизонтально движущегося ползуна С (рис. 96). Механизм приводится в движение кривошипом OA, который вращается с постоянной угловой скоростью Плоское движение тела в теоретической механике = 2 рад/с. В указанном положении механизма найти ускорения шарниров А, В, С и точки М. Даны размеры: АО = 2 см, А В = 5 см, Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике
Решение

1. Определяем угловые скорости звеньев и скорости точек механизма. Находим величину скорости точки А:

Плоское движение тела в теоретической механике

Вектор Плоское движение тела в теоретической механике направляем перпендикулярно радиусу АО против часовой стрелки. Вектор скорости Плоское движение тела в теоретической механике направлен горизонтально. Мгновенный центр скоростей Р звена АВ находится на пересечении перпендикуляров к векторам скоростей точек Плоское движение тела в теоретической механике (рис. 97). Находим расстояния

8.2. Ускорены точек многозвенного механизма

от точек А, В, М до МЦС:Плоское движение тела в теоретической механике

Скорости точек находим из системы уравнений

Плоское движение тела в теоретической механике

В результате решения получаем

Плоское движение тела в теоретической механике

Найти скорость точки С не составит труда. Векторы Плоское движение тела в теоретической механике параллельны и не перпендикулярны отрезку ВС. Следовательно, звено ВС совершает мгновенно-поступательное движение, и скорости всех его точек в этот момент равны. Отсюда, Плоское движение тела в теоретической механике 2 см/с. Угловая скорость звена ВС равна нулю.

2. Определяем ускорение шарнира А, принадлежащего звену OA с известной постоянной угловой скоростью Плоское движение тела в теоретической механике. Ускорение точки А состоит только из нормальной составляющей,

Плоское движение тела в теоретической механике и направлено вдоль О А к центру О (рис. 98).

Плоское движение тела в теоретической механике

3. Находим ускорение точки В. Точка В движется по окружности с центром в неподвижном шарнире D, и ее ускорение можно представить в виде векторной суммы нормального и тангенциального ускорений:

Плоское движение тела в теоретической механике

С другой стороны, ускорение точки В выражается через ускорение точки А, лежащей на том же звене АВ. Рассматривая А в качестве полюса, имеем

Плоское движение тела в теоретической механике

Сравнивая (3) и (4), получаем, что

Плоское движение тела в теоретической механике

В проекциях на оси х, у (рис. 98) векторное уравнение (3) дает систем}’ двух уравнений относительно неизвестных Плоское движение тела в теоретической механике

Плоское движение тела в теоретической механике

где Плоское движение тела в теоретической механике

Решаем систему (5):

Плоское движение тела в теоретической механике

Окончательно, величина ускорения точки ВПлоское движение тела в теоретической механике

8.2. Ускорены точек многозвенного механизма

Вычисление ускорения точки М выполняем по п.ЗВ плана решения. Действительно, угловая скорость и угловое ускорение звена А В уже известны:Плоское движение тела в теоретической механике

Рассматривая А в качестве полюса (рис. 99), записываем векторное уравнениеПлоское движение тела в теоретической механике

гдеПлоское движение тела в теоретической механике Из (6) определяем проекции Плоское движение тела в теоретической механикена оси координат:

Плоское движение тела в теоретической механике

Величина ускорения точки M

Плоское движение тела в теоретической механике

Находим ускорение точки С. Скорости точек В я С звена ВС, совершающего мгновенно — поступательное движение, равны, однако, их ускорения различны.Плоское движение тела в теоретической механике

Для определения Плоское движение тела в теоретической механике воспользуемся векторным равенством (полюс — точка В)

Плоское движение тела в теоретической механике

Плоское движение тела в теоретической механикеВ качестве полюса можно также брать точку В, ускорение которой уже найдено.

гдеПлоское движение тела в теоретической механике Вектор Плоское движение тела в теоретической механикераскладываем на составляющие (рис. 100)

Плоское движение тела в теоретической механике

Векторное уравнение (7) содержит две неизвестных величины:Плоское движение тела в теоретической механикеиПлоское движение тела в теоретической механике Записывая (7) в проекциях на оси ху, получаем систему двух уравнений с двумя неизвестными. Но можно решить задачу проще.Плоское движение тела в теоретической механике
Спроецируем (7) на ось Плоское движение тела в теоретической механике направленную вдоль стержня ВС. При этом в уравнение не войдет модуль неизвестного вектора Плоское движение тела в теоретической механике

Плоское движение тела в теоретической механике

НаходимПлоское движение тела в теоретической механике

Результаты расчетов помещаем в таблицу (скорости в см/с, ускорения в см/Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике

8.3. Уравнение трех угловых скоростей

Постановка задачи. Подобрать длины звеньев шарнирного четырехзвенника так, чтобы в некоторый момент движения угловые скорости его звеньев были бы равны заданным. Положение опорных шарниров четырехзвенника известно.

План решения:

Под угловыми скоростями будем понимать проекции соответствующих векторов на ось Плоское движение тела в теоретической механике перпендикулярную плоскости движения. Индекс Плоское движение тела в теоретической механике дополнительно указывать не будем, принимая Плоское движение тела в теоретической механике

1. Последовательно нумеруем шарниры и звенья механизма. Выбираем систему координат, помещая ее начало в один из шарниров механизма. Определяем координаты шарниров.

2.    Записываем уравнения трех угловых скоростейПлоское движение тела в теоретической механике

Плоское движение тела в теоретической механике

где Плоское движение тела в теоретической механике — координаты шарниров на концах звена, имеющего угловую скорость Плоское движение тела в теоретической механике Шарниры 1 и 4 — опорные. Все угловые скорости и некоторые координаты даны в условии.

3.    Решаем систему (1) относительно неизвестных координат. Определяем длины звеньев механизма (расстояния между шарнирами) по формулам

Плоское движение тела в теоретической механике

Задача №3

В положении, изображенном на рис. 101, известны угловые скорости шарнирного четырехзвенника О ABC: Плоское движение тела в теоретической механике = 2 рад/с, Плоское движение тела в теоретической механике рад/с. Найти длины звеньев OA и ВС, Плоское движение тела в теоретической механике. Расстояния даны в см, АВ = 60 см.
Плоское движение тела в теоретической механике
Решение

1.    Последовательно нумеруем шарниры и звенья механизма. Номера шарниров указываем индексами у соответствующих букв. Выбираем систему координат, помещая ее начало в шарнир О. Определяем координаты шарниров (рис. 102):

Плоское движение тела в теоретической механике

2.    Записываем уравнения трех угловых скоростей (1), где по условию Плоское движение тела в теоретической механике

Плоское движение тела в теоретической механикеУравнения следуют из координатной формы записи векторной формулы (1), на с. 130, для скоростей точек при плоском движении.

8.3. Уравнение трех угловых скоростей

Плоское движение тела в теоретической механике рад/с. Система приобретает вид

Плоское движение тела в теоретической механике

3. Решаем систему (2) относительно Плоское движение тела в теоретической механике Получаем

Плоское движение тела в теоретической механике

Кроме того, Плоское движение тела в теоретической механике Определяем длины звеньев:Плоское движение тела в теоретической механике

Уравнение трех угловых ускорений

Постановка задачи. Многозвенный механизм приводится в движение кривошипом, вращающимся с известной угловой скоростью и известным угловым ускорением. Найти угловые скорости и угловые ускорения звеньев механизма.

План решения:

Под угловыми скоростями и ускорениями будем понимать проекции соответствующих векторов на ось Плоское движение тела в теоретической механике перпендикулярную плоскости движения. Индекс Плоское движение тела в теоретической механике дополнительно указывать не будем, принимая Плоское движение тела в теоретической механике

1.    Нумеруем шарниры и звенья механизма. Выбираем систему координат, помещая ее начато в один из шарниров механизма. Определяем координаты шарниров.

2.    Выделяем из механизма шарнирные четырехзвенники. Рассмотрим четырехзвенник, шарниры которого последовательно обозначены номерами Плоское движение тела в теоретической механике — номера неподвижных

Гл. 8. Плоское движение тела

шарниров. Стержни четырехзвенника имеют номера Плоское движение тела в теоретической механике Записываем уравнения трех угловых скоростей:

Плоское движение тела в теоретической механике

где Плоское движение тела в теоретической механике( — угловая скорость Плоское движение тела в теоретической механике-го  звена, Плоское движение тела в теоретической механике— координаты его концов. Номера шарниров Плоское движение тела в теоретической механике как и номера звеньев Плоское движение тела в теоретической механике не обязательно должны быть последовательными числами.

3.    Из решения (1) получаем все угловые скорости механизма.

4.    Записываем уравнения трех угловых ускорений для каждого четырехзвенника *) :

Плоское движение тела в теоретической механике

где Плоское движение тела в теоретической механике — угловое ускорение Плоское движение тела в теоретической механике-го звена.

5.    Решаем (2) относительно неизвестных угловых ускорений.

Задача №4

Многозвенный механизм приводится в движение кривошипом OA, вращающимся с угловой скоростью Плоское движение тела в теоретической механике = 1 рад/с и угловым ускорением Плоское движение тела в теоретической механике (рис. 103).Плоское движение тела в теоретической механике
Дано:Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механикеНайти угловые скорости и угловые ускорения звеньев механизма.

Плоское движение тела в теоретической механике Уравнения следуют из координатной формы записи векторной формулы (4), на с. 130, для ускорений точек при плоском движении.

8.4. Уравнение трех угловых ускорений

Решение

1. Нумеруем шарниры и звенья механизма (рис. 104). Выбираем систему координат, помещая ее начало в шарнир О. Определяем координаты шарниров:

Плоское движение тела в теоретической механике

2. Выделяем из механизма шарнирные четырехзвенники (рис. 105, 106). Записываем уравнения трех угловых скоростей для четырехзвенника OABD (рис. 105),
Плоское движение тела в теоретической механике

и для четырехзвенника О АСЕ (рис. 106),

Плоское движение тела в теоретической механике

(4)
3. Решаем систему четырех линейных уравнений (3), (4). Получаем угловые скорости звеньев:Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике Из решения следует, что звено АС движется мгновенно-поступательно. Этот результат очевиден. Его можно было получить сразу из условия задачи, не решая ее. Действительно, Плоское движение тела в теоретической механике следовательно, векторы скоростей шарниров А и С такжеПлоское движение тела в теоретической механике

параллельны и но перпендикулярны АС. Мгновенного центра скоростей звена АС не существует (расположен в «бесконечности»), что соответствует Плоское движение тела в теоретической механике

4. Записываем уравнения трех угловых ускорений для четырех-звенника OABD (рис. 105),

Плоское движение тела в теоретической механике

и для четырехзвенника ОАСЕ (рис. 106),Плоское движение тела в теоретической механике
5. Из решения (5,6) получаем угловые ускорения: Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике

Кинематические уравнения плоского движения

Постановка задачи. Составить кинематические уравнения плоского многозвенного механизма.

План решения:

1. Составляем кинематические графы механизма, выбирая наиболее короткие маршруты. Началом и концом графа должна быть точка с известной скоростью. Кинематические графы должны включать в себя все звенья механизма. Некоторые звенья могут входить в разные графы. Обозначения для графов приведены на с. 130.

8.5. Кинематические уравнения плоского движения

2.    Записываем по два кинематических уравнения в проекциях на оси координат для каждого графа. Получаем систему дифференциальных уравнений.

3.    Упрощаем систему уравнений, используя уравнения связей и тригонометрические формулы приведения.

Задача №5

Механизм состоит из стержней OA, АВ, CD и ползунов С и D. Ползун D движется вверх со скоростью Плоское движение тела в теоретической механике (рис. 107); BD = ВС. Составить кинематические уравнения механизма.Плоское движение тела в теоретической механике
Решение

1.    Составляем кинематические графы:

Плоское движение тела в теоретической механике

2.    Записываем для каждого графа (1), (2) по два кинематических уравнения в проекциях на оси координат:

Плоское движение тела в теоретической механике

3.    Упрощаем систему (3), используя уравнения связей,Плоское движение тела в теоретической механикеПлоское движение тела в теоретической механике и тригонометрические

Гл. 8. Плоское движение тела

формулы приведения:

Плоское движение тела в теоретической механике

Задача №6

Плоский манипулятор состоит из жесткой детали ОАВ, стержней ВС, AM, колеса С и захвата М. Даны длиныПлоское движение тела в теоретической механикеПлоское движение тела в теоретической механике и скорость захвата Плоское движение тела в теоретической механике
Плоское движение тела в теоретической механике
Составить кинематические уравнения манипулятора . Решение

1.    Составляем кинематические графы:

Плоское движение тела в теоретической механике

2.    Записываем по два кинематических уравнения в проекциях на оси координат для каждого графа (5):

Плоское движение тела в теоретической механике

Плоское движение тела в теоретической механике Задание K-3 из сборника [15]. В задании К-3 скорость точки М определяется из решения дифференциального уравнения так, чтобы манипулятор захватил деталь, движущуюся по известному закону. В рассматриваемом примере задача захвата не решается, а предполагается, что скорость М известна из других соображений, в том числе из условия захвата детали.

8.5. Кинематические уравнения плоского движения

3. Упрощаем систему (6), используя уравнения связей,Плоское движение тела в теоретической механике Плоское движение тела в теоретической механике и тригонометрические формулы приведения:

Плоское движение тела в теоретической механике

Замечание 1. В данной задаче скорости точек механизма можно найти для некоторого промежутка времени, а не для фиксированного момента времени, как в аналогичных задачах § 8.1, § 8.3. Решая нелинейную систему дифференциальных уравнений (4), получаем полную картину движения механизма . Для решения системы (4) необходимо дополнить ее начальными условиями:

Плоское движение тела в теоретической механике

где константыПлоское движение тела в теоретической механике и определяют начальную конфигурацию механизма. В некоторых численных методах для решения систему (4) требуется привести к форме Коши. Уравнения (4) представляют собой систему четырех алгебраических уравнений относительно Плоское движение тела в теоретической механике Решая систему, получаем, что

Плоское движение тела в теоретической механике

Замечание 2. В решении задачи следует использовать наиболее короткие графы. В данном случае вместо графа (2) можно было бы выбрать граф

Плоское движение тела в теоретической механике

Система дифференциальных уравнений изменится, однако в форме Коши ее вид останется прежним.
Плоское движение тела в теоретической механике На странице Интернет кафедры теоретической механики МЭИ www.termech.mpei.ac.ru можно найти обучающую программу ROBBY2, разработанную Осадченко Н.В. и Корецким А.В. Программа интегрирует уравнения (4), составленные- для задач из сборника [15], анимирует полученное решение и представляет результаты в виде графиков и таблиц.

Замечание 3. Метод графов широко используется для решения задач кинематики и динамики. Примеры составления графов представлены также на с. 243, 244 310, 313, 316, 327, 329.

Замечание 4. Для того, чтобы проинтегрировать полученные кинематические уравнения, необходимо скорости ползунов выразить через соответствующие координаты, например, Плоское движение тела в теоретической механике задать одну из пяти функций, входящих в уравнения, и выбрать для остальных функций начальные условия.

Предупреждение типичных ошибок:

  1. Кинематические графы являются ориентированными графами. Меняя направление маршрута, меняйте и угол. Следующие два графа
  2. эквивалентны: Плоское движение тела в теоретической механике
  3. Угловая скорость звена, которому принадлежат точки А и В графа Плоское движение тела в теоретической механике , не обязательно равна Плоское движение тела в теоретической механике см., например, с. 243.
  • Принцип виртуальных перемещений
  • Аксиомы и теоремы статики
  • Система сходящихся сил
  • Моменты силы относительно точки и оси
  • Равновесие вала
  • Определение усилий в стержнях, поддерживающих плиту
  • Тело на сферической и стержневых опорах
  • Приведение системы сил к простейшему виду

Содержание:

  1. Плоское движение тела
  2. Определение скоростей точек тела
  3. Уравнения плоского движения
  4. Скорости точек фигуры. Мгновенный центр скоростей
  5. Определение положения мгновенного центра скоростей
  6. Порядок решения задач на тему: Определение скоростей точек тела
  7. Примеры решения задач на тему: Определение скоростей точек тела
  8. Решение задачи графоаналитическим способом
  9. Решение задачи с помощью мгновенного центра скоростей
  10. Определение ускорений точек тела
  11. Ускорения точек плоской фигуры
  12. Порядок решения задач на тему: Определение ускорений точек тела
  13. Примеры решения задач на тему: Определение ускорений точек тела
  14. План скоростей
  15. Порядок решения задач на тему: План скоростей
  16. Примеры решения задач на тему: План скоростей
  17. План ускорений
  18. Примеры решения задач на тему: План ускорений

Плоское движение тела — это такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Плоское движение тела

Плоскопараллельное движение (плоское движение) — вид движения абсолютно твёрдого тела, при котором траектории всех точек тела располагаются в плоскостях, параллельных заданной плоскости. Примером плоскопараллельного движения по отношению к вертикальной плоскости, относительно которой тело движется в параллельном направлении, является качение колеса по горизонтальной дороге

Определение скоростей точек тела

Скорости точек тела пропорциональны их расстояниям до мгновенного центра скоростей, и это отношение определяет угловую скорость тела в данный момент времени: Частные случаи определения положения мгновенного центра скоростей. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого, то точка касания Р имеет в данный момент времени скорость равную нулю, и, следовательно является мгновенным центром скоростей .

Уравнения плоского движения

Плоским называется такое движение тела, при котором траектории всех его точек лежат в плоскостях, параллельных данной неподвижной плоскости.

При таком движении все точки твердого тела, лежащих на перпендикуляре к этой плоскости, имеют одинаковые траектории, скорости и ускорения.

Плоское движение фигуры можно рассматривать как сложное (то есть, абсолютное) движение, которое включает поступательное движение вместе с произвольно выбранной точкой Плоское движение тела, что называется полюсом (переносное движение), и на вращательное движение фигуры вокруг этой точки (относительное движение).

На рис.4.1 с телом Плоское движение тела связана подвижная система координат Плоское движение тела. При движении тела начало координат Плоское движение тела и угол поворота Плоское движение тела подвижной системы координат относительно неподвижной системы Плоское движение тела со временем меняются. Таким образом, чтобы однозначно задать положение тела при плоском движении нужно задать закон движения начала подвижной системы координат (полюса Плоское движение тела) и угол поворота подвижной системы относительно неподвижной системы координат, то есть:

Плоское движение тела

Уравнения (4.1) называются уравнениями плоского движения твердого тела.

При этом, поступательная часть плоского движения описывается двумя уравнениями:

Плоское движение тела

а относительная вращательная вокруг полюса — третьим уравнением:

Плоское движение тела

Координаты любой точки Плоское движение тела плоской фигуры Плоское движение тела (рис.4.1), если за полюс выбрана точка Плоское движение тела и задан угол Плоское движение тела, определяются по уравнениям:

Плоское движение тела

Плоское движение тела

Скорости точек фигуры. Мгновенный центр скоростей

Поскольку плоское движение тела состоит из поступательного вместе с полюсом и вращательного вокруг него, то скорость любой точки тела Плоское движение тела (рис.4.2) геометрически состоит из абсолютной скорости Плоское движение тела точки Плоское движение тела, которую принято за полюс, и относительной скорости Плоское движение тела в относительном вращательном движении точки Плоское движение тела вместе с телом вокруг полюса Плоское движение тела:

Плоское движение тела

Плоское движение тела

Вектор относительной скорости Плоское движение тела точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону угловой скорости.

Модуль и направление абсолютной скорости Плоское движение тела находится построением соответствующего параллелограмма на векторах Плоское движение тела и Плоское движение тела (рис.4.2). Таков путь решения векторного уравнения, когда по записанному уравнению строят векторную фигуру, называется графоаналитическим.

Относительная скорость Плоское движение тела в относительном вращательном движении точки Плоское движение тела вместе с телом вокруг полюса Плоское движение тела по модулю равна:

Плоское движение тела

где Плоское движение тела — угловая скорость вращения тела вокруг полюса.

Найти скорость любой точки тела можно также на основе теоремы, которая гласит:

Проекции скоростей двух точек фигуры на прямую, что соединяет эти точки, равны между собой.

Согласно этой теореме (рис.4.3) :

Плоское движение тела

или

Плоское движение тела

Плоское движение тела

Если известна скорость Плоское движение тела точки Плоское движение тела тела, то:

Плоское движение тела

При плоском движении тела в каждый момент времени существует точка тела, скорость которой равна нулю. Эта точка называется мгновенным центром скоростей и, как правило, обозначается буквой Плоское движение тела.

Если мгновенный центр скоростей известен, то легко можно найти мгновенное распределение скоростей всех точек тела (рис.4.4).

Плоское движение тела

Выберем за полюс поступательного движения мгновенный центр скоростей Плоское движение тела. Тогда для точек Плоское движение тела и Плоское движение тела тела можно записать векторные уравнения (4.3):

Плоское движение тела

где Плоское движение тела — вектор абсолютной скорости полюса Плоское движение тела;

Плоское движение тела — вектор относительной скорости точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела, направлен перпендикулярно Плоское движение тела;

Плоское движение тела — вектор относительной скорости точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела, направлен перпендикулярно Плоское движение тела.

Поскольку скорость выбранного полюса Плоское движение тела равна нулю Плоское движение тела, то:

Плоское движение тела

По модулю скорости вращения точек Плоское движение тела и Плоское движение тела вокруг полюса Плоское движение тела равны:

Плоское движение тела

Разделив Плоское движение тела на Плоское движение тела получим:

Плоское движение тела

Таким образом, мгновенное распределение скоростей точек тела при его плоском движении, такое же, какое было бы при его вращательном движении вокруг мгновенного центра скоростей.

Определение положения мгновенного центра скоростей

Существует несколько способов нахождения положения мгновенного центра скоростей.

Случай 1. Известна скорость Плоское движение тела одной точки Плоское движение тела тела и угловая скорость его вращения Плоское движение тела (рис.4.5).

Плоское движение тела

Мгновенный центр скоростей Плоское движение тела лежит на перпендикуляре к скорости Плоское движение тела точки Плоское движение тела, на расстоянии:

Плоское движение тела

Для нахождения направления перпендикуляра надо повернуть вектор Плоское движение тела относительно точки Плоское движение тела на угол Плоское движение тела в сторону угловой скорости.

Случай 2. Известны направления скоростей Плоское движение тела и Плоское движение тела двух точек Плоское движение тела и Плоское движение тела тела (рис.4.6).

Плоское движение тела

Мгновенный центр скоростей должен лежать как на перпендикуляре к вектору Плоское движение тела, так и на перпендикуляре к вектору Плоское движение тела, то есть мгновенный центр скоростей Плоское движение тела лежит в точке пересечения этих перпендикуляров.

Случай 3. Скорости двух точек Плоское движение тела и Плоское движение тела тела параллельны между собой, а перпендикуляры к ним не совпадают (рис.4.7).

Плоское движение тела

Говорят, что в этом случае мгновенный центр скоростей лежит на бесконечности. Угловая скорость вращения равна нулю, а скорости всех точек тела геометрически равны, то есть в данный момент времени тело выполняет поступательное движение.

Случай 4. Скорости двух точек Плоское движение тела и Плоское движение тела параллельны, направлены в одну сторону и не равны по модулю. Кроме того, Плоское движение тела и Плоское движение тела перпендикулярны отрезку Плоское движение тела (рис.4.8).

Плоское движение тела

Мгновенный центр скоростей находится на продолжении отрезка Плоское движение тела той точки, скорость которой меньше. Расстояние от точки к мгновенному центру скоростей можно найти из пропорции (4.6):

Плоское движение тела

Решив это уравнение относительно Плоское движение тела, получим:

Плоское движение тела

Таким образом, для определения положения мгновенного центра скоростей надо знать не только направления скоростей, но и их величину.

Случай 5. Скорости двух точек Плоское движение тела и Плоское движение тела тела параллельны друг другу, перпендикулярны отрезку Плоское движение тела, но направлены в разные стороны (рис.4.9).

Плоское движение тела

Мгновенный центр скоростей лежит на отрезке Плоское движение тела и делит его на части пропорциональные скоростям. Поскольку Плоское движение тела, то по формуле (4.6) можно записать:

Плоское движение тела

Решив уравнение относительно Плоское движение тела, получим:

Плоское движение тела

Таким образом, для нахождения положения мгновенного центра скоростей надо знать величины и направления скоростей обеих точек.

Случай 6. Тело катится без проскальзывания по неподвижной поверхности (рис.4.10).

Плоское движение тела

В этом случае мгновенный центр скоростей находится в точке Плоское движение тела прикосновения тела к поверхности. Действительно, если отсутствует скольжение тела относительно поверхности, то скорости точек прикосновения тела и поверхности должны быть одинаковыми. Но скорости точки Плоское движение тела, принадлежащей неподвижной поверхности, равна нулю.

Тогда и скорость точки Плоское движение тела, которой в данный момент времени движущееся тело прикасается к неподвижной поверхности, тоже равна нулю.

Порядок решения задач на тему: Определение скоростей точек тела

а) решение графоаналитическим методом:

  • выбрать за полюс ту точку тела, скорость которой известна по величине и направлению или легко определяется из условий задачи;
  • найти точку тела, направление скорости которой известно;
  • пользуясь формулами плоского движения найти скорость этой точки;
  • определить угловую скорость тела в данный момент времени;
  • по известной угловой скорости и скорости полюса, пользуясь формулами плоского движения найти скорости других точек тела.

б) решение с помощью мгновенного центра скоростей:

  • определить положение мгновенного центра скоростей одним из известных способов;
  • определить значение мгновенного радиуса той точки тела, скорость которой известна, и найти угловую скорость тела;
  • найти скорости других точек тела.

Примеры решения задач на тему: Определение скоростей точек тела

Задача №1

Стержень Плоское движение тела (рис.4.11) длиной Плоское движение тела выполняет плоское движение. Вектор скорости точки Плоское движение тела образует угол Плоское движение тела с осью стержня и в данный момент времени равен Плоское движение тела. Вектор скорости точки Плоское движение тела в этот же момент времени образует угол Плоское движение тела с осью стержня.

Плоское движение тела

Определить величину скорости точки Плоское движение тела, положение мгновенного центра скоростей, угловую скорость стержня и скорость точки Плоское движение тела, которая лежит на середине стержня.

Решение задачи графоаналитическим способом

1. Выберем за полюс точку Плоское движение тела (рис.4.11), поскольку известны направление и величина скорости этой точки.

2. Используя формулу распределения скоростей при плоском движении, запишем векторное уравнение для определения скорости точки Плоское движение тела:

Плоское движение тела

где Плоское движение тела — скорость полюса точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела.

Данное векторное уравнение можно решить построением векторного треугольника скоростей (рис.4.12). Для этого из произвольной точки плоскости Плоское движение тела надо построить правую и левую часть векторного уравнения (1).

Плоское движение тела

При построении правой части уравнения (1) из точки Плоское движение тела в произвольном масштабе отложим вектор скорости Плоское движение тела, который является известным и по величине и по направлению. К вектору Плоское движение тела надо добавить вектор относительной скорости Плоское движение тела, направление которого является известным, поскольку скорость точки Плоское движение тела у ее относительном вращательном движении вокруг полюса Плоское движение тела перпендикулярна радиусу вращения, в данном случае радиус вращения — отрезок Плоское движение тела. Величина вектора Плоское движение тела неизвестна и поэтому через точку Плоское движение тела проводится только его направление (прямая Плоское движение тела рис.4.12).

Теперь из точки Плоское движение тела построим левую часть уравнения (1). Направление скорости точки Плоское движение тела является известным (по условию задачи), но неизвестна ее величина, и потому, из точки Плоское движение тела проводим линию параллельную Плоское движение тела.

Точка Плоское движение тела пересечения прямых, параллельных Плоское движение тела и Плоское движение тела, и будет решением данного векторного уравнения.

В результате построения получили замкнутый треугольник скоростей, стороны которого в выбранном масштабе определяют искомую скорость точки Плоское движение тела и относительную скорость этой же точки при ее вращении вместе с телом вокруг полюса Плоское движение тела.

В этом треугольнике известны все углы и одна сторона Плоское движение тела. С треугольника Плоское движение тела находим:

Плоское движение тела

3. Определим угловую скорость вращения стержня Плоское движение тела. Поскольку Плоское движение тела, то :

Плоское движение тела

4. Найдем скорость точки Плоское движение тела, лежащей посередине отрезка Плоское движение тела. Для этого запишем формулу для скорости точки Плоское движение тела относительно того же самого полюса точки Плоское движение тела:

Плоское движение тела

где Плоское движение тела — скорость полюса точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела.

Скорость Плоское движение тела имеет то же направление, что и Плоское движение тела, а по модулю равна:

Плоское движение тела

Отложив от точки Плоское движение тела (рис.4.12) вектор Плоское движение тела, равный половине вектора Плоское движение тела , получим точку Плоское движение тела. Вектор, проведенный из точки начала построения (точки Плоское движение тела ) в точку Плоское движение тела изображает скорость Плоское движение тела точки Плоское движение тела.

Поскольку стороны Плоское движение тела и Плоское движение тела треугольника Плоское движение тела равны между собой Плоское движение тела и угол между ними Плоское движение тела, то треугольник равносторонний. Таким образом: Плоское движение тела

Решение задачи с помощью мгновенного центра скоростей

1. Определим положение мгновенного центра скоростей. Для этого с точек Плоское движение тела и Плоское движение тела (рис.4.13) проведем перпендикуляры к скоростям Плоское движение тела и Плоское движение тела. Пересечение этих перпендикуляров (точка Плоское движение тела) будет мгновенным центром скоростей.

Плоское движение тела

2. Определим мгновенные радиусы. Поскольку треугольник Плоское движение тела прямоугольный, то:

Плоское движение тела

3. Вычислим угловую скорость вращения фигуры вокруг мгновенного центра скоростей:

Плоское движение тела

4. Найдем скорости точек Плоское движение тела и Плоское движение тела:

Плоское движение тела

где Плоское движение тела — мгновенный радиус точки Плоское движение тела, поскольку треугольник Плоское движение тела равносторонний (Плоское движение тела угол между ними Плоское движение тела), то Плоское движение тела

Если надо было бы определить только величину скорости Плоское движение тела, то можно было бы воспользоваться теоремой о равенстве проекций двух точек плоской фигуры на прямую, соединяющую эти точки:

Плоское движение тела

Тогда:

Плоское движение тела

Ответ: Плоское движение тела

Задача №2

Колесо радиусом Плоское движение тела катится по горизонтальной поверхности. В момент рассматриваемого времени скорость центра Плоское движение тела и угловая скорость колеса Плоское движение тела (рис.4.14).

Определить: скорости точек Плоское движение тела, Плоское движение тела и Плоское движение тела, которые лежат на концах вертикального и горизонтального диаметров.

Плоское движение тела

Решение.

1. В качестве полюса выберем точку Плоское движение тела, направление и величина скорости которой известны.

2.Используя формулу распределения скоростей точек тела при плоском движении определяем скорости других точек колеса.

Для точки Плоское движение тела колеса:

Плоское движение тела

где Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вокруг полюса Плоское движение тела.

По модулю Плоское движение тела равна:

Плоское движение тела

Скорость Плоское движение тела направлена перпендикулярно Плоское движение тела в сторону угловой скорости, то есть по направлению Плоское движение тела и Плоское движение тела будут совпадать.

Из точки Плоское движение тела (рис.4.14) строим уравнение (1): откладываем вектор Плоское движение тела, а с его конца по тому же направлению Плоское движение тела.

Тогда:

Плоское движение тела

Векторное уравнение для определения скорости точки Плоское движение тела, будет иметь вид:

Плоское движение тела

где Плоское движение тела — скорость точки Плоское движение тела в ее вращательном движении вокруг полюса Плоское движение тела.

Эта скорость параллельна скорости Плоское движение тела, но будет направлена в противоположную сторону и по модулю равна:

Плоское движение тела

Из точки Плоское движение тела (рис.4.14) строим векторное уравнение (2): откладываем вектор Плоское движение тела, а с его конца в противоположную сторону Плоское движение тела.

Поскольку векторы коллинеарны, то:

Плоское движение тела

Таким образом, скорость точки Плоское движение тела равна Плоское движение тела и направлена в противоположную сторону от Плоское движение тела. Колесо катится со скольжением по поверхности.

Составляем векторное уравнение для определения скорости точки Плоское движение тела:

Плоское движение тела

где Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вокруг полюса Плоское движение тела.

По модулю Плоское движение тела равна:

Плоское движение тела

Скорость Плоское движение тела направлена перпендикулярно Плоское движение тела в сторону угловой скорости Плоское движение тела, то есть вертикально вниз.

Из точки Плоское движение тела (рис.4.14) строим уравнение (3): откладываем вектор Плоское движение тела, а с его конца вектор Плоское движение тела вертикально вниз. Соединив точку Плоское движение тела с концом вектора Плоское движение тела получим вектор Плоское движение тела скорости точки Плоское движение тела.

Поскольку векторы Плоское движение тела и Плоское движение тела между собой перпендикулярны, то вектор Плоское движение тела является гипотенузой прямоугольного треугольника:

Плоское движение тела

Ответ: Плоское движение тела

Задача №3

Колесо радиусом Плоское движение тела катится без проскальзывания по горизонтальной поверхности со скоростью центра колеса Плоское движение тела

Определить: скорости точек Плоское движение тела, Плоское движение телаПлоское движение тела (рис.4.15).

Плоское движение тела

Решение. Решим задачу с помощью мгновенного центра скоростей.

1. Определим положение мгновенного центра скоростей. Поскольку колесо катится по неподвижной поверхности, то мгновенный центр скоростей находится в точке Плоское движение тела прикосновения колеса к неподвижной поверхности.

2. Мгновенный радиус для точки Плоское движение тела равен Плоское движение тела. Тогда с формулы (4.4) получим угловую скорость Плоское движение тела колеса:

Плоское движение тела

Направлена угловая скорость по ходу часовой стрелки.

3. Определим величину и направление скоростей точек Плоское движение тела, Плоское движение телаПлоское движение тела.

Соединим точки Плоское движение тела, Плоское движение телаПлоское движение тела с мгновенным центром скоростей Плоское движение тела. Векторы скоростей Плоское движение тела, Плоское движение тела и Плоское движение тела будут направлены перпендикулярно мгновенным радиусам Плоское движение тела и Плоское движение тела, соответственно.

По модулю скорости будут равны:

Плоское движение тела

где

Плоское движение тела

Ответ: Плоское движение тела

Задачи, которые рекомендуются для самостоятельной работы: 16.2; 16.4; 16.11; 16.12 [2]

Определение ускорений точек тела

Теорема: ускорение любой точки плоской фигуры равно геометрической сумме ускорения полюса и ускорения этой точки во вращательном движении фигуры вокруг полюса.

Ускорения точек плоской фигуры

Формула распределения ускорений при плоском движении тела имеет вид:

Плоское движение тела

где Плоское движение тела — ускорение полюса, точки Плоское движение тела, в поступательном движении;

Плоское движение тела — относительное ускорение точки Плоское движение тела в ее вращательном движении вместе с телом вокруг полюса Плоское движение тела;

Плоское движение тела — ускорение любой точки Плоское движение тела тела.

Ускорение любой точки Плоское движение тела плоской фигуры равно геометрической сумме ускорения точки, которую выбрано за полюс, и ускорения точки Плоское движение тела при его вращении вместе с телом вокруг этого полюса.

Графическое определение ускорения точки Плоское движение тела выполняется следующим образом (рис.4.16):

Плоское движение тела

Плоское движение тела

Вычисление величины ускорения точки Плоское движение тела с помощью рассматриваемого параллелограмма затрудняет расчеты, поскольку предварительно надо определить угол между векторами Плоское движение тела и Плоское движение тела.

Учитывая, что Плоское движение телапредставляет собой относительное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг полюса Плоское движение тела, то это ускорение можно разложить на относительную тангенциальную (касательную) и относительную нормальную (центростремительную) составляющие:

Плоское движение тела

где

Плоское движение тела

Вектор Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону углового ускорения, а вектор Плоское движение тела всегда направлен от точки Плоское движение тела к выбранному полюсу Плоское движение тела (рис.4.17).

Тогда уравнение (4.10) примет вид:

Плоское движение тела

Если точка Плоское движение тела, которая выбрана за полюс поступательного движения, движется не прямолинейно, то ее ускорение, в свою очередь, тоже можно разложить на тангенциальную Плоское движение тела и нормальную Плоское движение тела составляющие:

Плоское движение тела

Плоское движение тела

Порядок решения задач на тему: Определение ускорений точек тела

1. Выбрать точку, которая будет полюсом при записи уравнения плоского движения (как правило выбирают точку, ускорение которой известно).

2. Записать векторное уравнение распределения ускорений.

3. Спроектировать уравнение распределения ускорений на две взаимно перпендикулярные оси, одна из которых совпадает с нормальным ускорением, а вторая – с тангенциальным.

4. Определить мгновенное угловое ускорение плоской фигуры.

5. Найти искомые ускорения точек с помощью уравнения распределения ускорений.

Примеры решения задач на тему: Определение ускорений точек тела

Задача №1

Прямоугольная (рис.4.18, а) пластина Плоское движение тела движется в плоскости чертежа. Ускорение точки Плоское движение тела в данный момент времени равно Плоское движение тела и образует с прямой Плоское движение тела угол Плоское движение тела.

Ускорение точки Плоское движение тела составляет Плоское движение тела и образует угол Плоское движение тела с прямой Плоское движение тела.

Плоское движение тела

Определить мгновенную угловую скорость и мгновенное угловое ускорение пластины, и ускорение точки Плоское движение тела, если Плоское движение тела

Решение.

1. Выберем за полюс точку Плоское движение тела, поскольку ее ускорение известно (задано в исходных данных).

2. Составим векторное уравнение для ускорения точки Плоское движение тела пластины:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее вращательном движении вместе с телом вокруг точки Плоское движение тела. Вектор этого ускорения направлен от точки Плоское движение тела к точке Плоское движение тела и по модулю равен: Плоское движение тела

Плоское движение тела — относительное тангенциальное (касательное) ускорение точки Плоское движение тела в ее вращении вместе с телом вокруг точки Плоское движение тела. Направлен вектор этого ускорения перпендикулярно Плоское движение тела в сторону углового ускорения и по модулю равен Плоское движение тела.

Поскольку направление углового ускорения неизвестное, то направлением Плоское движение тела на рис. 4.18,а задаемся.

3. Спроектируем составленное уравнение (1) на оси Плоское движение тела и Плоское движение тела.

В проекции на ось Плоское движение тела получим:

Плоское движение тела

В проекции на ось Плоское движение тела:

Плоское движение тела

4. Из уравнения (2) получим величину нормального ускорения:

Плоское движение тела

Найдем мгновенную угловую скорость фигуры:

Плоское движение тела

5. Из уравнения (3) получим величину тангенциального ускорения:

Плоское движение тела

Угловое ускорение фигуры:

Плоское движение тела

Поскольку величина Плоское движение тела положительная, то направление тангенциального, а соответственно и углового ускорений выбрано верно.

6. Определим ускорение точки Плоское движение тела.

Для вычисления ускорения точки Плоское движение тела лучше за полюс выбрать точку Плоское движение тела, поскольку ускорение этой точки уже известно и задана сторона Плоское движение тела прямоугольника:

Плоское движение тела

Направление векторов Плоское движение тела и Плоское движение тела показано на рис. 4.18,б.

Спроектируем записанное уравнение на оси Плоское движение тела и Плоское движение тела:

Плоское движение тела

где

Плоское движение тела

Полное ускорение точки Плоское движение тела:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

Задача №2

Равносторонний треугольник Плоское движение тела движется в плоскости чертежа. Ускорение вершин Плоское движение тела и  Плоское движение тела в данный момент времени равны Плоское движение тела и направлены вдоль сторон треугольника (рис.4.19).

Определить ускорение вершины Плоское движение тела.

Решение. Если известны ускорения двух точек плоской фигуры, например Плоское движение тела и  Плоское движение тела, то задачу рекомендуется решать в следующей последовательности:

1. Рассматривая первую точку Плоское движение тела как полюс поступательного движения, записать векторное уравнение распределения ускорений при плоском движении для точки Плоское движение тела и спроектировать это уравнение на прямую Плоское движение тела, соединяющую обе точки.

2. Из уравнения проекций определить величину нормального ускорения Плоское движение тела и значение  угловой скорости фигуры Плоское движение тела.

3. Спроектировать векторное уравнение распределения ускорений при плоском движении на прямую, которая перпендикулярна Плоское движение тела, и определить из уравнения проекций величину тангенциального ускорения Плоское движение тела и значение углового ускорения фигуры Плоское движение тела.

4. Если нужно, то, используя формулу распределения ускорений при плоском движении, определить ускорение любой другой точки плоской фигуры.

Решим задачу, придерживаясь приведенной последовательности.

1. Выберем за полюс точку Плоское движение тела. Для точки Плоское движение тела треугольника можно записать:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела;

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела, направлением задаемся (рис.4.19).

Спроектируем записанное равенство (1) на прямую Плоское движение тела:

Плоское движение тела

Плоское движение тела

2. Откуда: 

Плоское движение тела

Поскольку Плоское движение тела то:

Плоское движение тела

3. Спроектируем векторное уравнение на прямую, которая перпендикулярна Плоское движение тела:

Плоское движение тела

Откуда: 

Плоское движение тела

Учитывая то, что Плоское движение тела, получим:

Плоское движение тела

Поскольку величина тангенциального ускорения Плоское движение тела положительная, то его направление на рис. 4.19 выбрано верно. Отсюда следует, что угловое ускорение направлено против хода часовой стрелки.

4. Определим ускорение точки Плоское движение тела, приняв за полюс точку Плоское движение тела:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела;

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела в сторону углового ускорение фигуры Плоское движение тела.

Учитывая, что Плоское движение тела, определим модули относительного нормального и тангенциального ускорений:

Плоское движение тела

От точки Плоское движение тела (рис.4.20) отложим векторы ускорений, которые составляют правую часть уравнения (2).

Выберем систему координат Плоское движение тела, причем ось Плоское движение тела направим вдоль стороны Плоское движение тела треугольника.

Спроектируем равенство (2) на оси выбранной системы координат:

Плоское движение тела

Подставляя числовые данные, получим:

Плоское движение тела

Таким образом, ускорение вершины Плоское движение тела треугольника равно:

Плоское движение тела

Поскольку проекция ускорения Плоское движение тела на ось Плоское движение тела равна нулю и величина проекции на ось Плоское движение тела положительная, то вектор ускорения точки Плоское движение тела будет направлен вдоль стороны Плоское движение тела треугольника от точки Плоское движение тела к точке Плоское движение тела.

Ответ: Плоское движение тела

Задача № 3

В шарнирном механизме (рис.4.21) в данный момент времени угловая скорость и угловое ускорение кривошипа Плоское движение тела равны Плоское движение тела Точка Плоское движение тела механизма движется по дуге окружности радиусом Плоское движение тела и в момент времени, что рассматривается, лежит на прямой Плоское движение тела.

Плоское движение тела

Найти ускорение точки Плоское движение тела и мгновенное угловое ускорение шатуна Плоское движение тела, если Плоское движение тела 

Решение. Скорость точки Плоское движение тела кривошипа, который вращается вокруг точки Плоское движение тела равен:

Плоское движение тела

Направлена скорость Плоское движение тела перпендикулярно Плоское движение тела в сторону угловой скорости Плоское движение тела (рис.4.21).

Точка Плоское движение тела шатуна вращается вокруг центра Плоское движение тела и ее линейная скорость направлена перпендикулярно Плоское движение тела.

Поскольку скорости точек Плоское движение тела и Плоское движение тела шатуна параллельны, то мгновенный центр скоростей шатуна лежит в бесконечности и мгновенное движение шатуна является поступательным, то есть

Плоское движение тела

Ускорение точки Плоское движение тела равно геометрической сумме нормального и тангенциального ускорений:

Плоское движение тела

где 

Плоское движение тела

Направления ускорений Плоское движение тела и Плоское движение тела показаны на рис.4.21.

Выберем точку Плоское движение тела за полюс для шатуна Плоское движение тела. Тогда для точки Плоское движение тела шатуна:

Плоское движение тела

или

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение телаПлоское движение тела

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела, направлением задаемся (рис.4.22), Плоское движение тела

Свяжем с точкой Плоское движение тела прямоугольную систему координат Плоское движение тела (рис.4.22) и спроектируем уравнение (1), помня, что Плоское движение тела, на оси выбранной системы координат:

Плоское движение тела

С другой стороны, при движении точки Плоское движение тела по дуге окружности радиуса Плоское движение тела, точка приобретет ускорения Плоское движение тела:

Плоское движение тела

где Плоское движение тела — нормальное ускорение точки Плоское движение тела в ее вращательном движении вокруг точки Плоское движение тела направлено к центру вращения;

Плоское движение тела — тангенциальное ускорение точки Плоское движение тела в ее вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела, задаемся направлением (рис.4.22).

Плоское движение тела

По величине нормальное Плоское движение тела и тангенциальное Плоское движение тела ускорения соответственно равны:

Плоское движение тела

Спроектируем уравнение (4) на оси выбранной системы координат:

Плоское движение тела

Подставим в (3) все рассчитанные величины:

Плоское движение тела

Поскольку

Плоское движение тела

то

Плоское движение тела

Положительное значение величины Плоское движение тела указывает на то, что направление Плоское движение тела было выбрано верно.

Угловое ускорение тела Плоское движение тела равно:

Плоское движение тела

Угловое ускорение Плоское движение тела направлено в сторону Плоское движение тела, то есть против хода часовой стрелки.

Для определения тангенциального ускорения Плоское движение тела в уравнение (2) подставим Плоское движение тела из (5):

Плоское движение тела

Откуда

Плоское движение тела

Поскольку величина Плоское движение тела отрицательная, то направление тангенциального ускорения Плоское движение тела выбрано не в ту сторону.

Полное ускорение точки Плоское движение тела:

Плоское движение тела

Ответ: Плоское движение тела

Задачи, которые рекомендуются для самостоятельной работы: 18.12; 18.14; 18.22 [2].

План скоростей

План скоростей и план ускорений – физическое изображение векторных уравнений, связывающих скорости и ускорения точек механизма. Изображение механизма, выполненное с помощью условных обозначений (см. выше) называется структурной схемой механизма.

Определение скоростей различных точек движущейся плоской фигуры легко может быть выполнено графически с помощью построения плана скоростей.

План скоростей – это графическое изображение из единого центра (полюса) векторов абсолютных скоростей точек фигуры в фиксированный момент ее движения.

План скоростей может быть построен, если:

  • известная скорость одной точки плоской фигуры и направление скорости другой точки;
  • известная скорость одной точки плоской фигуры и мгновенная угловая скорость фигуры

Пусть известные скорости Плоское движение тела, Плоское движение тела, Плоское движение тела и Плоское движение тела, вершин прямоугольника Плоское движение тела (рис. 4.23, а). Для построения плана скоростей с произвольной точки Плоское движение тела (рис.4.23,б), которая называется полюсом плана скоростей, отложим направленные отрезки Плоское движение тела и Плоское движение тела, которые в выбранном масштабе будут изображать скорости Плоское движение тела, Плоское движение тела, Плоское движение тела и Плоское движение тела. Полученные точки Плоское движение тела и Плоское движение тела, которые называются вершинами плана скоростей, соединим между собой прямыми линиями.

Плоское движение тела

Установим свойства и правила построения плана скоростей.

По уравнению распределения скоростей при плоском движении фигуры, если за полюс принять точку Плоское движение тела, то для точки Плоское движение тела получим:

Плоское движение тела

где Плоское движение тела — вектор абсолютной скорости точки Плоское движение тела;

Плоское движение тела — вектор относительной скорости точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг точки Плоское движение тела, направлена перпендикулярно Плоское движение тела и по модулю равна Плоское движение тела

С другой стороны для векторов треугольника Плоское движение тела плана скоростей (рис.4.23,б) можно записать:

Плоское движение тела

Учитывая, что векторы Плоское движение тела и Плоское движение тела изображают в выбранном масштабе абсолютные скорости Плоское движение тела и Плоское движение тела и, сравнивая уравнения (4.14) и (4.15), можно сделать вывод, что отрезок Плоское движение тела изображает в масштабе скорость Плоское движение тела.

Таким образом, отрезок Плоское движение тела плана скоростей направлен перпендикулярно стороне Плоское движение тела фигуры и по модулю равен: 

Плоское движение тела

где Плоское движение тела — масштабный коэффициент, который принят при построении плана скоростей.

Аналогично:

Плоское движение тела

Отсюда мгновенная скорость вращения плоской фигуры:

Плоское движение тела

Вектор Плоское движение тела согласно уравнению (4.14) направлен на плане скоростей от точки Плоское движение тела к точке Плоское движение тела. Если этот вектор перенести в точку Плоское движение тела фигуры, то можно определить направление вращения точки Плоское движение тела вокруг точки Плоское движение тела вместе с фигурой (в данном случае, по ходу часовой стрелки). Направление же мгновенной угловой скорости Плоское движение тела плоской фигуры будет совпадать с направлением ее вращения.

Из рассматриваемого вытекает:

Порядок решения задач на тему: План скоростей

1. Изображают на чертеже в выбранном масштабе плоскую фигуру и вектор скорости той точки, скорость которой известна.

2. Определяют направление скорости второй точки плоской фигуры.

3. Записывают векторное уравнение распределения скоростей при плоском движении, принимая за полюс точку, скорость которой известна, а за искомую ту точку, направление скорости которой известно.

4. Решают записанное векторное уравнение графически путем построения в выбранном масштабе плана скоростей.

5. Определяют мгновенную угловую скорость вращения плоской фигуры.

6. Определяют скорость других точек плоской фигуры.

Примеры решения задач на тему: План скоростей

Задача №1

Найти угловую скорость Плоское движение тела шатуна 2 и скорость точки Плоское движение тела ползуна 3 кривошипно-шатунного механизма (рис. 4.24), если : 

Плоское движение тела

Плоское движение тела

Решение.

1. Согласно исходным данным в произвольном масштабе строим схему механизма (рис.4.25, а).

2. Учитывая, что кривошип 1 вращается вокруг неподвижной точки Плоское движение тела с угловой скоростью Плоское движение тела определяем скорость точки Плоское движение тела кривошипа 1 и шатуна 2:

Плоское движение тела

Направлена скорость Плоское движение тела перпендикулярно Плоское движение тела в сторону угловой скорости Плоское движение тела.

3. Следующей точкой шатуна, скорость которого можно определить, является точка Плоское движение тела, поскольку она, кроме шатуна, одновременно принадлежит и ползуну 3, что движется поступательно в горизонтальных направляющих. То есть направление этой скорости известно.

Для определения скорости точки Плоское движение тела запишем уравнение распределения скоростей при плоскопараллельном движении, принимая за полюс точку Плоское движение тела, скорость которой известна:

Плоское движение тела

где Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном 2 вокруг точки Плоское движение тела. Вектор Плоское движение тела направлен перпендикулярно ;

Плоское движение тела — абсолютная скорость точки Плоское движение тела, которая движется прямолинейно вместе с ползуном 3 в горизонтальных направляющих.

Плоское движение тела

4. Решим уравнение (1) графически (рис.4.25, б). Для этого с произвольной точки Плоское движение тела (полюса плана скоростей) отложим направленный отрезок Плоское движение тела, который в определенном масштабе будет изображать вектор скорости Плоское движение тела. Через точку Плоское движение тела этого отрезка проведем линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор скорости Плоское движение тела, длина и направление которого неизвестны.

Вектор который будет на плане скоростей изображать абсолютную скорость точки Плоское движение тела, выходит из полюса Плоское движение тела параллельно Плоское движение тела к пересечению с линией Плоское движение тела в точке Плоское движение тела.

Определим направление отрезка Плоское движение тела, который на плане скоростей изображает относительную скорость Плоское движение тела. Поскольку, согласно уравнению (1), вектор Плоское движение тела надо прибавить к вектору Плоское движение тела, который на плане скоростей изображается вектором Плоское движение тела, то вектор Плоское движение тела будет направлен от точки Плоское движение тела к точке Плоское движение тела.

Полученный векторный треугольник Плоское движение тела представляет собой план скоростей для кривошипно-шатунного механизма в положении, что рассматривается. Стороны этого треугольника в определенном масштабе изображают: Плоское движение тела — абсолютную скорость точки Плоское движение тела; Плоское движение тела — относительную скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном Плоское движение тела вокруг точки Плоское движение тела; Плоское движение тела — абсолютную скорость точки Плоское движение тела.

Перенесем из плана скоростей в точку Плоское движение тела на рис.4.25, а найденные направления скоростей Плоское движение тела и Плоское движение тела.

Поскольку скорость Плоское движение тела на плане изображается вектором Плоское движение тела, а Плоское движение тела — вектором Плоское движение тела, то угол при вершине Плоское движение тела равен углу между этими двумя векторами скоростей. Если на рис.4.25, а перенести Плоское движение тела и Плоское движение тела в точку Плоское движение тела, то угол между ними будет составлять Плоское движение тела, то есть Плоское движение тела

Аналогично, Плоское движение тела равен углу между векторами Плоское движение тела и Плоское движение тела. Учитывая, что Плоское движение тела, с рис.4.25, а получим:

Плоское движение тела

Таким образом, и угол при вершине Плоское движение тела тоже будет равняться Плоское движение тела, а треугольник Плоское движение тела будет равносторонним, то есть:

Плоское движение тела, или Плоское движение тела

5. Определяем мгновенную угловую скорость шатуна 2. Поскольку Плоское движение тела, то:

Плоское движение тела

где Плоское движение тела, исходя из того, что треугольник Плоское движение тела (рис.4.25,а) равнобедренный.

Направление угловой скорости Плоское движение тела определяется вектором Плоское движение тела. В данном случае Плоское движение тела направлена против хода часовой стрелки.

Ответ: Плоское движение тела

Задача №2

Найти угловые скорости шатуна 2 и коромысла 3 и абсолютные скорости точек Плоское движение тела и Плоское движение тела рычажного механизма (рис.4.26), если: Плоское движение тела Плоское движение тела Плоское движение тела

Угловая скорость кривошипа 1 — Плоское движение тела 

Плоское движение тела

Решение.

1. В соответствии с исходными данными в произвольном масштабе строим схему механизма (рис.4.27, а).

2. Так как точка Плоское движение тела принадлежит кривошипу 1, который вращается вокруг шарнира Плоское движение тела с угловой скоростью Плоское движение тела, то:

Плоское движение тела

Вектор скорости Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону вращения кривошипа (рис.4.27, а).

2. Шатун 2 механизма движется плоскопараллельно. Скорость точки Плоское движение тела шатуна 2 равна скорости точки Плоское движение тела кривошипа 1. Второй точкой шатуна, направление скорости которой известно, есть точка Плоское движение тела. Точка Плоское движение тела, кроме шатуна, принадлежит и коромыслу 3, которое вращается вокруг центра Плоское движение тела. Таким образом, скорость точки Плоское движение тела направлена перпендикулярно радиусу вращения Плоское движение тела.

3. Для определения скорости точки Плоское движение тела запишем формулу распределение скоростей:

Плоское движение тела

где Плоское движение тела — абсолютная скорость точки Плоское движение тела, которая направлена перпендикулярно Плоское движение тела;

Плоское движение тела — абсолютная скорость точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном 2 вокруг полюса Плоское движение тела. Направлен вектор Плоское движение тела перпендикулярно Плоское движение тела.

4. Решаем записанное уравнение графически. Для этого из произвольной точки Плоское движение тела (полюса плана скоростей) (рис.4.27,б) проводим вектор Плоское движение тела параллельно Плоское движение тела, который в определенном масштабе будет изображать скорость точки Плоское движение тела.

Плоское движение тела

Через конец вектора Плоское движение тела проводим линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор относительной скорости Плоское движение тела. Длина и направление этого вектора неизвестны.

Скорость точки Плоское движение тела направлена перпендикулярно Плоское движение тела и, по правилу, должна проходить через полюс плана скоростей. Исходя из этого, через точку Плоское движение тела проводим линию перпендикулярную коромыслу 3 к пересечению в точке Плоское движение тела с линией Плоское движение тела.

Полученный на рис. 4.27, б векторный треугольник Плоское движение тела являет собой план скоростей механизма в данном положении. В этом треугольнике вектор Плоское движение тела изображает абсолютную скорость точки Плоское движение тела, вектор Плоское движение тела направлен от полюса к точке Плоское движение тела — абсолютную скорость точки Плоское движение тела, а вектор Плоское движение тела направлен от точки Плоское движение тела к точке Плоское движение тела — относительную скорость Плоское движение тела, поскольку, согласно уравнению (2), эта скорость прибавляется к Плоское движение тела.

Перенесем направления скоростей Плоское движение тела и Плоское движение тела в точку Плоское движение тела на рис. 4.27, а.

Поскольку Плоское движение тела, а Плоское движение тела, то угол при вершине Плоское движение тела равен углу при вершине Плоское движение тела треугольника Плоское движение тела на схеме механизма (рис. 4.28), который образован путем продолжения кривошипа Плоское движение тела и коромысла Плоское движение тела к пересечению.

Плоское движение тела

Таким образом

Плоское движение тела

Угол при вершине Плоское движение тела будет равняться углу Плоское движение тела между продолжением прямой Плоское движение тела (рис.4.28) и прямой Плоское движение тела, поскольку сторона Плоское движение тела, а прямая Плоское движение тела. Учитывая, что Плоское движение тела, то:

Плоское движение тела

Тогда угол при вершине Плоское движение тела:

Плоское движение тела

Для определения сторон Плоское движение тела плана скоростей воспользуемся теоремой синусов:

Плоское движение тела

Из уравнения (1) получим:

Плоское движение тела

Плоское движение тела

Таким образом:

Плоское движение тела

5. Определим мгновенные угловые скорости шатуна 2 и коромысла 3. Поскольку Плоское движение тела, то:

Плоское движение тела

Направление угловой скорости Плоское движение тела определяется направлением относительной скорости Плоское движение тела. С рис.4.27,а видно, что угловая скорость Плоское движение тела будет направлена против хода часовой стрелки.

Угловая скорость коромысла 3 равна:

Плоское движение тела

где

Плоское движение тела

Направление Плоское движение тела определяет скорость Плоское движение тела. Направлена угловая скорость коромысла 3 (рис.4.27,а) по ходу часовой стрелки.

6. Определить величины скоростей Плоское движение тела и Плоское движение тела можно непосредственно и путем измерения соответствующих отрезков на построенном плане скоростей.

Поскольку вектор Плоское движение тела на плане скоростей изображается отрезком Плоское движение тела, то масштабный коэффициент плана скоростей будет равен:

Плоское движение тела

Скорости Плоское движение тела на плане скоростей соответствует отрезок Плоское движение тела, а скорости Плоское движение телаПлоское движение тела.

Тогда:

Плоское движение тела

7. Для определения скорости точки Плоское движение тела воспользуемся теоремой подобия.

Поскольку фигура Плоское движение тела на схеме механизма и фигура Плоское движение тела на плане скоростей должны быть подобными, то можно составить пропорцию:

Плоское движение тела

В левой части пропорции (2) отношение отрезков на схеме механизма, а в правой — на плане скоростей.

Из уравнения (2) получим расстояние от точки Плоское движение тела к точке Плоское движение тела на плане скоростей:

Плоское движение тела

Поскольку на схеме механизма отрезок Плоское движение тела перпендикулярен Плоское движение тела, то и на плане скоростей отрезок Плоское движение тела надо провести перпендикулярно Плоское движение тела, причем в ту сторону, чтобы обход точек Плоское движение тела, Плоское движение тела и Плоское движение тела на плане скоростей должен был быть против хода часовой стрелки, как и для точек Плоское движение тела, Плоское движение тела и Плоское движение тела на схеме механизма.

Вектор скорости Плоское движение тела точки Плоское движение тела на плане скоростей в масштабе будет изображаться вектором Плоское движение тела, а величина скорости точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела Плоское движение тела Плоское движение тела

Задача №3

В состав рычажного механизма (рис.4.29) входят два кривошипа 1 и 4, и два шатуна 2 и 3. Кривошип 1 вращается с угловой скоростью Плоское движение тела, а кривошип 4 с угловой скоростью Плоское движение тела.

Плоское движение тела

Найти угловые скорости шатунов 2 и 3 и абсолютные скорости точек Плоское движение тела и Плоское движение тела, если: Плоское движение тела Плоское движение тела В данном положении механизма кривошип 1 расположен вертикально, а кривошип 2 – горизонтально.

Решение. Особенность этой задачи заключается в том, что определить сразу направление скорости точки Плоское движение тела невозможно. Но точка Плоское движение тела одновременно принадлежит к двум телам (шатуну Плоское движение тела и шатуну Плоское движение тела), и для нее можно записать два векторных уравнения распределения скоростей при плоском движении (относительно точек Плоское движение тела и Плоское движение тела), что позволяет решить задачу.

1. В соответствии с исходными данными в произвольном масштабе строим схему механизма (рис.4.30, а).

2. Так как точка Плоское движение тела принадлежит кривошипу 1, который вращается вокруг шарнира Плоское движение тела с угловой скоростью Плоское движение тела, то:

Плоское движение тела

Вектор скорости Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону вращения кривошипа 1 (рис.4.30, а).

Шатун 2 механизма движется плоскопараллельно. Скорость точки Плоское движение тела шатуна 2 равна скорости точки Плоское движение тела кривошипа 1.

Для определения скорости точки Плоское движение тела шатуна 2 запишем формулу распределения скоростей при плоском движении:

Плоское движение тела

где Плоское движение тела — абсолютная скорость точки Плоское движение тела, величина и направление которой является неизвестным;

Плоское движение тела — абсолютная скорость точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела при ее вращении вместе с шатуном 2 вокруг полюса Плоское движение тела. Направлен вектор Плоское движение тела перпендикулярно Плоское движение тела.

В уравнении (1) три неизвестных: величина и направление скорости точки Плоское движение тела; величина скорости Плоское движение тела. Поскольку векторное уравнение

Плоское движение тела

для плоскости позволяет определить только две неизвестных, то решить уравнение (1) невозможно.

3. Рассмотрим определение скорости точки Плоское движение тела шатуна 3 относительно точки Плоское движение тела.

Скорость точки Плоское движение тела кривошипа 4 равна:

Плоское движение тела

Вектор скорости Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону вращения кривошипа 4 (рис.4.30, а).

Учитывая, что шатун 3 механизма движется плоскопараллельно, то для определения скорости точки Плоское движение тела шатуна 3 запишем формулу распределения скоростей при плоском движении:

Плоское движение тела

где Плоское движение тела — абсолютная скорость точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном 3 вокруг полюса Плоское движение тела. Направлен вектор Плоское движение тела перпендикулярно Плоское движение тела.

В записанной системе векторных уравнений (1,2) четыре неизвестных: величина и направление скорости точки Плоское движение тела; величина скорости Плоское движение тела; величина скорости Плоское движение тела. Поскольку из каждого уравнения можно определить две неизвестных, то записанная система является определенной и ее можно решить.

4. Решаем записанную систему векторных уравнений (1) и (2) графически. Для этого из произвольной точки Плоское движение тела построим сначала уравнение (1), а затем (2) (рис.4.30, б).

Согласно уравнению (1) из произвольной точки Плоское движение тела проводим вектор Плоское движение тела параллельно Плоское движение тела, который будет изображать скорость точки Плоское движение тела. Длину отрезка Плоское движение тела выберем Плоское движение тела.

Тогда масштабный коэффициент плана скоростей будет равен:

Плоское движение тела

Через конец вектора Плоское движение тела проводим линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор относительной скорости Плоское движение тела. Длина и направление этого вектора неизвестны.

Теперь построим из того же самого полюса Плоское движение тела уравнение (2). Сначала отложим вектор Плоское движение тела параллельно Плоское движение тела, который в масштабе Плоское движение тела будет изображать скорость точки Плоское движение тела. Длина этого вектора соответственно равна:

Плоское движение тела

Через конец вектора Плоское движение тела проводим линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор относительной скорости Плоское движение тела.

Точка пересечения Плоское движение тела прямых Плоское движение тела и Плоское движение тела, которая одновременно удовлетворяет векторным уравнением (1) и (2), и будет решением системы, а вектор который на плане скоростей изображает Плоское движение тела будет направлен от полюса Плоское движение тела к точке Плоское движение тела.

Полученный на рис. 4.30,б четырехугольник Плоское движение тела представляет собой план скоростей механизма в данном положении. В этом четырехугольнике: вектор Плоское движение тела определяет относительную скорость Плоское движение тела; вектор Плоское движение тела — относительную скорость Плоское движение тела; Плоское движение тела — абсолютную скорость точки Плоское движение тела.

Перенесем направления скоростей Плоское движение тела и Плоское движение тела на рис. 4.30,а и, померив длины соответствующих отрезков, определим величины этих скоростей:

Плоское движение тела

5. Определим мгновенные угловые скорости шатунов.

Поскольку Плоское движение тела, то:

Плоское движение тела

Направление угловой скорости Плоское движение тела определяется направлением относительной скорости Плоское движение тела. С рис.4.30, а видно, что Плоское движение тела будет направлена против хода часовой стрелки.

Аналогично, угловая скорость шатуна 3 равна:

Плоское движение тела

Направление Плоское движение тела определяется относительной скоростью Плоское движение тела. Направлена угловая скорость шатуна 3 по ходу часовой стрелки.

Для определения скорости точки Плоское движение тела воспользуемся теоремой подобия. Поскольку точка Плоское движение тела на схеме механизма лежит посередине шатуна Плоское движение тела, то и на плане скоростей она должна лежать посередине отрезка Плоское движение тела.

Вектор скорости Плоское движение тела точки Плоское движение тела на плане скоростей в масштабе будет изображаться вектором Плоское движение тела, а величина скорости точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

План ускорений

План ускорений – построенный в определенном масштабе векторный график, характеризующие ускорения всех точек и звеньев механизма. Произвольная точка ра, из которой производится построение плана ускорений, называется полюсом плана ускорений.

Рассмотрим графический способ определения ускорений точек плоской фигуры (тела) с помощью плана ускорений.

Планом ускорений плоской фигуры является геометрическое место концов векторов ускорений любых точек фигуры, что отложены из одной произвольной точки, которую называют полюсом плана ускорений.

Построение плана ускорений основано на представлении ускорения Плоское движение тела любой точки Плоское движение тела фигуры в виде суммы трех векторов:

Плоское движение тела

где  Плоское движение тела — ускорение точки фигуры, которую принято за полюс поступательного движения;

Плоское движение тела — относительное нормальное (центростремительное) ускорение точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела. Направлено это ускорение от точки Плоское движение тела к точке Плоское движение тела и по модулю равно Плоское движение тела

Плоское движение тела — относительное тангенциальное (касательное) ускорение точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела. Направлено это ускорение перпендикулярно Плоское движение тела (отрезка Плоское движение тела ) в сторону углового ускорения Плоское движение тела тела и по модулю равно Плоское движение тела

Поскольку для определения величины Плоское движение тела надо знать угловую скорость Плоское движение тела плоской фигуры, то, если она не задана, предварительно надо построить план скоростей. Из плана скоростей определить относительную скорость вращения одной точки фигуры относительно второй и найти угловую скорость относительного вращательного движения (занятие 7).

Для того, чтобы уравнение (4.18) можно было решить, должно быть известно ускорение Плоское движение тела любой точки Плоское движение тела фигуры, которую выбирают за полюс поступательного движения.

Кроме того, должно быть известно:

Рассмотрим определение ускорений точек Плоское движение тела и Плоское движение тела треугольника Плоское движение тела (рис.4.31, а). Известными являются ускорение точки Плоское движение тела, направление ускорения точки Плоское движение тела и угловая скорость треугольника Плоское движение тела, то есть случай 1.

Для ускорения точки Плоское движение тела, если за полюс выбрать точку Плоское движение тела, будет справедливым векторное уравнение (4.18).

Решим уравнение (4.18) графически. Для этого (рис.4.31, б) из произвольной точки Плоское движение тела (полюса плана ускорений) построим вектор Плоское движение тела, который в масштабе будет изображать ускорение Плоское движение тела. С конца построенного вектора (точки Плоское движение тела ) построим вектор Плоское движение тела, который в том же масштабе будет изображать ускорение Плоское движение тела.

Величину ускорения Плоское движение тела определим из формулы:

Плоское движение тела

а направлен этот вектор вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела.

Плоское движение тела

К нормальному ускорению добавим, согласно уравнению (4.18), тангенциальное ускорение Плоское движение тела. Поскольку величина этого ускорения неизвестна, то через точку Плоское движение тела (конец вектора Плоское движение тела) проведем линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой и будет направлен вектор Плоское движение тела.

Направление абсолютного ускорения Плоское движение тела точки Плоское движение тела известно из условия задачи. Поскольку все абсолютные ускорения точек на плане откладываются от полюса Плоское движение тела, то через полюс проведем прямую, параллельную направлению ускорения точки Плоское движение тела. Точка пересечения Плоское движение тела  линий Плоское движение тела и Плоское движение тела будет решением уравнения (4.18), а вектор Плоское движение тела будет в выбранном масштабе изображать ускорение Плоское движение тела точки Плоское движение тела.

Для определения ускорения точки Плоское движение тела воспользуемся тем, что известными уже являются ускорения двух точек фигуры Плоское движение тела и Плоское движение тела (случай 2).

Запишем векторные уравнения для ускорения точки Плоское движение тела относительно полюсов Плоское движение тела и Плоское движение тела:

Плоское движение тела

где Плоское движение тела и Плоское движение тела — относительные нормальные ускорения точки Плоское движение тела в ее относительном вращательном движении соответственно вокруг точек Плоское движение тела и Плоское движение тела;

Плоское движение тела и Плоское движение тела — относительные тангенциальные ускорения точки Плоское движение тела в ее относительном вращательном движении вокруг точек Плоское движение тела и Плоское движение тела, соответственно.

Первым решаем уравнение (4.19). Поскольку ускорение Плоское движение тела точки Плоское движение тела на плане (рис.4.31, б) уже построено, то с его конца (точки Плоское движение тела ) строим вектор Плоское движение тела, который направлен от точки Плоское движение тела к точке Плоское движение тела и по модулю в масштабе равен Плоское движение тела:

Плоское движение тела

Через конец вектора Плоское движение тела проводим прямую, перпендикулярную Плоское движение тела, вдоль которой будет направлено ускорение Плоское движение тела и на которой будет лежать точка конца вектора Плоское движение тела.

Следующим построим уравнение (4.20). Поскольку ускорение Плоское движение тела точки Плоское движение тела на плане уже построено, то с его конца, точки Плоское движение тела, строим вектор Плоское движение тела, который направлен от Плоское движение тела к Плоское движение тела и по модулю в масштабе равен Плоское движение тела:

Плоское движение тела

Через конец вектора Плоское движение тела проводим прямую, перпендикулярную Плоское движение тела, вдоль которой будет направлено ускорение Плоское движение тела и на которой будет лежать точка конца вектора Плоское движение тела.

Таким образом, конец вектора Плоское движение тела будет лежать на пересечении линий, вдоль которых будут направлены тангенциальные ускорения Плоское движение тела и Плоское движение тела. Вектор Плоское движение тела на плане ускорений будет в масштабе изображать абсолютное ускорение точки Плоское движение тела.

Векторы Плоское движение телаПлоское движение тела и Плоское движение тела, выходящие из полюса плана ускорений, определяют абсолютные ускорения точек Плоское движение телаПлоское движение тела и Плоское движение тела. Отрезки же, соединяющие концы векторов абсолютных ускорений Плоское движение тела и Плоское движение тела определяют относительные ускорения одних точек при их вращении вокруг других Плоское движение тела

Кроме абсолютных и относительных ускорений точек фигуры Плоское движение тела, определяется величина ее углового ускорения Плоское движение тела:

Плоское движение тела или Плоское движение тела или Плоское движение тела

Для определения же направления углового ускорения Плоское движение тела надо перенести в точку Плоское движение тела вектор тангенциального ускорения Плоское движение тела и направление этого вектора укажет направление углового ускорения. В данном случае, угловое ускорение Плоское движение тела направлено по ходу часовой стрелки.

Треугольник Плоское движение тела, который образовался на плане ускорений будет подобно треугольнику Плоское движение тела.

Таким образом, для плана ускорений справедливо

правило подобия: фигура, которую образуют концы векторов абсолютных ускорений точек тела на плане ускорений подобная фигуре, которую одноименные точки образуют на теле.

Примеры решения задач на тему: План ускорений

Задача №1

Найти ускорение точки Плоское движение тела ползуна 3 и угловое ускорение Плоское движение тела шатуна 2 механизма, изображенном на рис.4.24. Выходные данные: Плоское движение телаПлоское движение тела,  кривошип 1 вращается равномерно Плоское движение тела

Решение. План скоростей для этого механизма был построен в задаче № 1 занятия № 7 (рис.4.25,б) и была определена угловая скорость шатуна 2 Плоское движение тела 

1.Построим схему механизма (рис. 4.32, а).

2. Сначала найдем ускорение точки Плоское движение тела механизме, поскольку она принадлежит кривошипу 1, который вращается вокруг точки Плоское движение тела с известной угловой скоростью.

Учитывая, что угловая скорость кривошипа постоянная Плоское движение тела то Плоское движение тела и полное ускорение Плоское движение тела будет равняться нормальному ускорению Плоское движение тела точки Плоское движение тела в ее вращательном движении вокруг Плоское движение тела:

Плоское движение тела

По модулю:

Плоское движение тела

Направлено ускорение Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела по линии Плоское движение тела.

3. Для определения ускорения точки Плоское движение тела запишем формулу распределения ускорений при плоском движении, приняв за полюс точку Плоское движение тела, ускорение которой уже известно:

Плоское движение тела

где Плоское движение тела — абсолютное ускорение точки Плоское движение тела, которое направлено по направлению движения ползуна 3 в горизонтальных направляющих;

Плоское движение тела — ускорение точки Плоское движение тела, известное по величине и по направлению;

Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено по шатуну Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — тангенциальное ускорение точки Плоское движение тела при ее вращении вокруг точки Плоское движение тела, направлено перпендикулярно шатуну Плоское движение тела и по модулю равно:

Плоское движение тела

Поскольку направление ускорения точки Плоское движение тела известно, то уравнение (1) достаточно для определения Плоское движение тела.

4. Решим уравнение (1) графически путем построения плана ускорений.

Из произвольной точки Плоское движение тела полюса плана ускорений (рис.4.32,б) отложим вектор Плоское движение тела, который будет изображать ускорение Плоское движение тела, и который направлен параллельно линии Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела. От конца этого вектора отложим вектор Плоское движение тела, что будет изображать Плоское движение тела, и который направлен параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела. Через конец вектора Плоское движение тела, точку Плоское движение тела, проведем линию Плоское движение тела, перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела и на этой линии будет лежать точка Плоское движение тела — конец вектора абсолютного ускорения точки Плоское движение тела механизма.

Плоское движение тела

Поскольку ускорение Плоское движение тела направлено по оси Плоское движение тела движения ползуна 3, то с полюса Плоское движение тела проводим горизонтальную прямую. Точка пересечения Плоское движение тела этой прямой с линией Плоское движение тела, проведенная перпендикулярно Плоское движение тела, будет концом вектора ускорения точки Плоское движение тела, а вектор Плоское движение тела будет изображать на плане ускорений Плоское движение тела.

4. Из построенного плана ускорений определим абсолютные величины ускорений Плоское движение тела и Плоское движение тела. Для этого с полюса Плоское движение тела опустим перпендикуляр Плоское движение тела на продолжение линии Плоское движение тела. Угол Плоское движение тела равен углу Плоское движение тела и составляет Плоское движение тела.

Из векторного четырехугольника Плоское движение тела (рис. 4.32, б) вытекает:

Плоское движение тела

Спроектируем векторное уравнение (2) на прямую Плоское движение тела:

Плоское движение тела

Учитывая, что Плоское движение тела изображает на плане ускорений Плоское движение тела, Плоское движение тела,  уравнение (3) можно переписать следующим образом:

Плоское движение тела

Откуда:

Плоское движение тела

Теперь спроектируем уравнение (2) на прямую Плоское движение тела:

Плоское движение тела

Учитывая, что Плоское движение тела на плане ускорений изображает Плоское движение тела, получим:

Плоское движение тела

Откуда:

Плоское движение тела

Поскольку Плоское движение тела, то:

Плоское движение тела

Из полученного результата следует, что в данный момент времени шатун механизма вращается равномерно Плоское движение тела и план ускорений будет иметь вид как на рис.4.33.

Плоское движение тела

Ответ: Плоское движение тела

Если построение плана ускорений выполнять с соблюдением масштаба, то ускорения характерных точек можно определить непосредственно измерением соответствующих отрезков на плане ускорений.

Задача №2

Найти абсолютное ускорение точек Плоское движение тела и Плоское движение тела на угловые ускорения шатуна 2 и коромысла 3 шарнирного механизма, схема которого изображена на рис.4.26, если: Плоское движение тела Плоское движение тела Плоское движение тела.  Кривошип 1 механизма вращается с постоянной угловой скоростью Плоское движение тела

Решение. План скоростей механизма для положения, что рассматривается, был построен в задаче № 2 занятие № 7 (рис.4.27, б) и определены мгновенные угловые скорости шатуна 2 и коромысла 3: Плоское движение тела

Решим задачу путем построения в масштабе плана ускорений.

1. Сначала в произвольном масштабе строим схему механизма (рис.4.34, а).

2.Определим ускорение точки Плоское движение тела кривошипа.

Поскольку кривошип 1 вращается вокруг неподвижной точки Плоское движение тела с постоянной угловой скоростью Плоское движение тела (то есть Плоское движение тела и соответственно Плоское движение тела), то ускорение Плоское движение тела точки Плоское движение тела:

Плоское движение тела

По модулю Плоское движение тела равно:

Плоское движение тела

Направлено ускорение Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела.

3.Запишем векторные уравнения для определения ускорения точки Плоское движение тела.

Точка Плоское движение тела принадлежит одновременно шатуну 2 и коромыслу 3 (случай 3). У шатуна 2 известно уже определенное ускорение точки Плоское движение тела, а в коромысла 3 ускорение точки Плоское движение тела (точка Плоское движение тела неподвижная, то есть Плоское движение тела). Таким образом, можно записать формулы распределения ускорений для точки Плоское движение тела, взяв за полюс точку Плоское движение тела для шатуна 2 в первом уравнении и точку Плоское движение тела для коромысла 3 во втором уравнении:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела и по модулю равно:

Плоское движение тела

4.Решим графически систему векторных уравнений (1,2).

Сначала построим уравнение (1). Для этого из произвольной точки Плоское движение тела полюса плана ускорений (рис.4.34,б) отложим вектор Плоское движение тела, который будет изображать ускорение Плоское движение тела. Направлен вектор Плоское движение тела параллельно линии Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела. Длину этого вектора выберем Плоское движение тела. Тогда масштабный коэффициент плана ускорений будет равняться:

Плоское движение тела

От конца вектора Плоское движение тела отложим вектор Плоское движение тела, который будет изображать Плоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора равна:

Плоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела и на этой линии будет лежать точка Плоское движение тела — конец вектора абсолютного ускорения точки Плоское движение тела механизма.

Следующим построим уравнение (2).

Поскольку Плоское движение тела, то точка Плоское движение тела будет лежать в полюсе Плоское движение тела плана ускорений.

От точки Плоское движение тела отложим вектор Плоское движение тела, который будет изображать Плоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора соответственно равна:

Плоское движение тела

Плоское движение телаПлоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела.

Решением системы (1,2) будет точка Плоское движение тела, в которой пересекаются линии, проведенные перпендикулярно Плоское движение тела и Плоское движение тела, вдоль которых направлены соответственно тангенциальные ускорения Плоское движение тела и Плоское движение тела.

Вектор абсолютного ускорения Плоское движение тела точки Плоское движение тела на плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина ускорения точки Плоское движение тела равна:

Плоское движение тела

Величины тангенциальных ускорений Плоское движение тела и Плоское движение тела найдем путем измерения соответствующих отрезков на плане ускорений:

Плоское движение тела

Поскольку Плоское движение тела и Плоское движение тела, то мгновенные угловые ускорения Плоское движение тела шатуна 2 и Плоское движение тела коромысла 3 соответственно равны:

Плоское движение тела

где Плоское движение тела — длина коромысла 3, которая была определена в задаче №2 занятия №7. 

Для определения направления углового ускорения Плоское движение тела перенесем мысленно в точку Плоское движение тела относительное тангенциальное ускорение Плоское движение тела. Направление Плоское движение тела указывает на то, что Плоское движение тела будет направлено по ходу часовой стрелки.

Аналогично, для определения направления Плоское движение тела в точку Плоское движение тела перенесем Плоское движение тела. Угловое ускорение Плоское движение тела будет направлено против хода часовой стрелки.

5.Для определения ускорения точки Плоское движение тела воспользуемся теоремой подобия. Для этого сначала построим прямую Плоское движение тела на плане ускорений (рис.4.34, б). Поскольку фигура Плоское движение тела на схеме механизма и фигура Плоское движение телана плане ускорений должны быть подобными, то можно составить пропорцию:

Плоское движение тела

В левой части пропорции (3) отношение отрезков на схеме механизма, а в правой — на плане ускорений.

Из уравнения (3) получим расстояние от точки Плоское движение тела к точке Плоское движение тела на плане ускорений:

Плоское движение тела

Поскольку на схеме механизма отрезок Плоское движение тела перпендикулярен Плоское движение тела, то и на плане ускорений отрезок Плоское движение тела надо провести перпендикулярно Плоское движение тела, причем в ту сторону, чтобы расположение точек Плоское движение тела, Плоское движение тела и Плоское движение тела на плане ускорений было против хода часовой стрелки, как и точки Плоское движение тела, Плоское движение тела и Плоское движение тела на схеме механизма.

Вектор абсолютного ускорения Плоское движение тела точки Плоское движение тела на плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина ускорения точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

Задача №3

В состав рычажного механизма (рис.4.35) входят два кривошипа 1 и 4, и два шатуна 2 и 3. Кривошип 1 в настоящий момент времени вращается равномерно с угловой скоростью Плоское движение тела, а кривошип 4 – замедленно с угловой скоростью Плоское движение тела и угловым ускорением Плоское движение тела

Найти угловые ускорения шатунов 2 и 3 и абсолютные ускорения точек Плоское движение тела и Плоское движение тела, если: Плоское движение тела Плоское движение тела. В данном положении механизма кривошип 1 расположен вертикально, а кривошип 4 — горизонтально.

Решение. План скоростей механизма для положения, что рассматривается, был построен в задаче №3 занятия №7 (рис.4.30, б) и определены мгновенные угловые скорости шатуна 2 и шатуна 3: Плоское движение тела

1. В произвольном масштабе построим схему механизма (рис. 4.36, а).

2.Сначала определим абсолютные ускорения точек Плоское движение тела и Плоское движение тела, принадлежащие соответственно кривошипам 1 и 4, угловые скорости которых известны.

Поскольку кривошип 1 вращается вокруг неподвижной точки Плоское движение тела с постоянной угловой скоростью Плоское движение тела то есть Плоское движение тела, то:

Плоское движение тела

Направлено ускорение Плоское движение тела вдоль кривошипа Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела.

Кривошип 4 вращается вокруг неподвижной точки Плоское движение тела с угловой скоростью Плоское движение тела и угловым ускорением Плоское движение тела. Поскольку кривошип 4 вращается замедленно, то угловое ускорение направлено противоположно угловой скорости (рис.4.35.)

Абсолютное ускорение точки Плоское движение тела кривошипа 4 представляет собой векторную сумму нормальной и тангенциальной составляющих: 

Плоское движение тела

Нормальная составляющая ускорения точки Плоское движение тела направлена вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равна:

Плоское движение тела

а тангенциальная — перпендикулярно Плоское движение тела в сторону углового ускорения Плоское движение тела и по модулю равна:

Плоское движение тела

3. Запишем векторные уравнения для определения ускорения точки Плоское движение тела.

Точка Плоское движение тела принадлежит одновременно шатуну 2 и шатуну 3. У шатуна 2 известно ускорение точки Плоское движение тела, а у шатуна 3 — точки Плоское движение тела. Таким образом, можно записать формулы распределения ускорений для точки Плоское движение тела, взяв за полюс точку Плоское движение тела для шатуна 2 в первом уравнении и точку Плоское движение тела шатуна 3 во втором:

Плоское движение тела

В уравнении (2):

Плоское движение тела — направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — направлено перпендикулярно Плоское движение тела, величина и направление этого ускорения неизвестны.

В уравнении (3):

Плоское движение тела — направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — направлено перпендикулярно Плоское движение тела, величина и направление этого ускорения неизвестны.

4. Решим графически систему векторных уравнений (2,3).

Сначала построим уравнение (2). Для этого из произвольной точки Плоское движение тела полюса плана ускорений (рис.4.36,б) отложим вектор Плоское движение тела, который будет изображать ускорение Плоское движение тела. Направлен вектор Плоское движение тела параллельно линии Плоское движение тела от Плоское движение тела точки к точке Плоское движение тела. Длину этого вектора выберем Плоское движение тела. Тогда масштабный коэффициент плана ускорений будет равняться:

Плоское движение тела

От конца вектора Плоское движение тела отложим вектор Плоское движение тела, который будет изображать Плоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора равна:

Плоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела и на этой линии будет лежать точка Плоское движение тела — конец вектора абсолютного ускорения точки Плоское движение тела механизма.

Следующим построим уравнение (3).

Для построения вектора Плоское движение тела от полюса Плоское движение тела согласно уравнению (1) отложим вектор Плоское движение тела, а с его конца Плоское движение тела. Эти векторы в масштабе Плоское движение тела будут изображать ускорения Плоское движение тела и Плоское движение тела и будут направлены им параллельно (рис. 4.36, а).

Длины векторов Плоское движение тела и Плоское движение тела соответственно равны:

Плоское движение тела

Абсолютное ускорение Плоское движение тела точки Плоское движение тела на плане ускорений будет изображаться вектором Плоское движение тела.

Плоское движение тела

От точки Плоское движение тела отложим вектор Плоское движение тела, который будет изображатьПлоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора равна:

Плоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела.

Решением системы (2,3) будет точка Плоское движение тела, в которой пересекаются линии, проведенные перпендикулярно Плоское движение тела и Плоское движение тела, вдоль которых направлены соответственно тангенциальные ускорения Плоское движение тела и Плоское движение тела.

Вектор абсолютного ускорения Плоское движение тела точки Плоское движение тела на плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина ускорения точки Плоское движение тела равна:

Плоское движение тела

Величины тангенциальных ускорений Плоское движение тела и Плоское движение тела найдем путем измерения соответствующих отрезков на плане ускорений:

Плоское движение тела

Поскольку Плоское движение тела и Плоское движение тела, то мгновенные угловые ускорение Плоское движение тела шатуна 2 и Плоское движение тела шатуна 3 соответственно равны:

Плоское движение тела

Направления угловых ускорений Плоское движение тела и Плоское движение тела определяем путем перенесения мысленно в точку Плоское движение тела относительных тангенциальных ускорений Плоское движение тела и Плоское движение тела (аналогично задаче №2). Угловое ускорение Плоское движение тела направлено по ходу часовой стрелки, а Плоское движение тела — против хода часовой стрелки.

5. Для определения ускорения точки Плоское движение тела воспользуемся теоремой подобия. Поскольку точка Плоское движение тела на схеме механизма лежит посередине шатуна Плоское движение тела, то и на плане ускорений она должна лежать посередине отрезка Плоское движение тела. Вектор ускорения Плоское движение тела точки Плоское движение тела плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина абсолютного ускорения точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика механической системы
  25. Динамика плоского движения твердого тела
  26. Динамика относительного движения материальной точки
  27. Динамика твердого тела
  28. Кинематика простейших движений твердого тела
  29. Общее уравнение динамики
  30. Работа и мощность силы
  31. Обратная задача динамики
  32. Поступательное и вращательное движение твердого тела
  33. Плоскопараллельное (плоское) движение твёрдого тела
  34. Сферическое движение твёрдого тела
  35. Движение свободного твердого тела
  36. Сложное движение твердого тела
  37. Сложное движение точки
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Понравилась статья? Поделить с друзьями:
  • Как найти корзину на съемном жестком диске
  • Как в телеграмме найти сообщения конкретного человека
  • Как найти сумку которая потерялась
  • Как составить имидж компании
  • Как найти периметр прямоугольника формула на меньше