Как найти скорость движения волны

Формула скорости волны в физике

Формула скорости волны

Определение

Фронт волны (волновая поверхность) — это геометрическое место точек среды, для которых в некоторый момент времени фаза волны
имеет одно и то же значение.

Скоростью волны называют скорость, с которой движется фронт волны.

Формула фазовой скорости волны

Рассмотрим одномерный случай для гармонической волны. Уравнение волновой поверхности при это запишем как:

[Ф_s=omega t-kx+varphi left(1right),]

где${ Ф}_s$ — фаза волны; $k=frac{2pi }{lambda }$ — волновое число; $lambda $ — длина волны; $omega $ — циклическая частота; $varphi $ — начальная фаза. Уравнению (1) в каждый момент времени соответствует только одна точка оси X координата которой, равна:

[x=frac{omega t+varphi -Ф_s}{k}left(2right).]

Разным значениям фазы волны $Ф_s$ соответствуют разные волновые поверхности, каждая из которых в одномерной волне превращается в точку. Из формулы (2) видно, что волновые поверхности перемещаются в среде со скоростью:

[frac{dx}{dt}=frac{omega }{k}=frac{lambda }{T}=v left(3right),]

где $T$ — период колебаний точек в волне.

Если волны гармонические, то скорость движения волновой поверхности равна скорости распространения волны. Скорость, которую определяет выражение (3) является фазовой скоростью.

Фазовая скорость гармонической волны совпадает со скорость распространения энергии волны.

Скорость волны зависит от вещества, в котором распространяется волна и типа волны. Скорость волны — это не то же самое, что скорость колебания частиц среды в волне.

Формула для вычисления фазовой скорости распространения продольных волн

Скорость распространения продольных упругих волн в однородных в газах или жидкостях может быть вычислена как:

[v=sqrt{frac{K}{rho }}left(4right),]

где $K$ — модуль объемной упругости вещества; $rho =const$ — плотность среды. В газах формула (4) выполняется, если избыточное давление много меньше, равновесного давление газа в невозмущенном состоянии.

Для нахождения скорости распространения продольных волн в газе применяют выражение:

[v=sqrt{frac{gamma p}{rho }}left(5right),]

где $gamma $ — показатель адиабаты; $p$ — давление газа.

Продольные механические волны могут распространяться в твердых телах, их фазовая скорость равна:

[v=sqrt{frac{E}{rho }}left(6right),]

где $E$ — модуль Юнга вещества стержня.

Формула для фазовой скорости распространения поперечных волн

Поперечные механические волны способны распространяться только в твердых телах. Скорость ($v$) распространения поперечных волн в бесконечной изотропной среде при этом можно найти как:

[v=sqrt{frac{G}{rho }left(7right),}]

где $G$ — модуль сдвига среды; $rho $ — плотность вещества.

Упругие свойства и плотность твердого тела зависит от химического состава вещества, и она несущественно изменяется при изменении давления и температуры. Поэтому в большинстве случаев скорость распространения волны можно считать постоянной.

Формула для групповой скорости волн

Кроме фазовой скорости для описания распространения диспергирующих волн применяют понятие групповой скорости. При этом фазовая скорость может зависеть от частоты, при этом в веществе распространяются волны сложного негармонического характера, тогда с групповую скорость проще использовать, как характеристику скорости распространения волн.

Групповой скоростью называют скорость перемещения группы (цуга) волн, которые создают в каждый момент времени, локализованный в пространстве, волновой пакет. Любая реальная волна представляет собой суперпозицию гармонических волн. Скорость, с которой такая волна распространяется в веществе, имеющем дисперсию, равна фазовой скорости накрадывающихся волн. Распространение волны определяют перемещением энергии колебаний, которую переносит группа вол от источника.

Групповая скорость ($u$) связана с фазовой скоростью ($v$) формулой:

[u=v-frac{dv}{dlambda }left(8right).]

Если дисперсия отсутствует, то $frac{dv}{dlambda }=0$, тогда фазовая и групповая скорости равны и не зависят от длины волны.

Примеры задач с решением

Пример 1

Задание. За время равное $t=20$ c волне совершается $N=$100 колебаний, при этом расстояние между соседними максимумами волны составляет 1 м. Какова скорость распространения волны?

Решение. Сделаем рисунок.

Формула скорости волны, пример 1

В качестве основы для решения задачи используем формулу для вычисления фазовой скорости волны вида:

[v=frac{lambda }{T} left(1.1right).]

Найдем период колебаний как время одного полного колебания:

[T=frac{t}{N} left(1.2right).]

Используя формулу (1.2) скорость будем вычислять, применяя формулу:

[v=frac{lambda N}{t}.]

Вычислим искомую скорость:

[v=frac{1cdot 100}{20}=5left(frac{м}{с}right).]

Ответ. $v=5frac{м}{с}$

Пример 2

Задание. Уравнение плоской волны, которая распространяется вдоль положительного направления оси X, имеет вид: $xi left(x,tright)=2{cos left[omega left(t-frac{x}{v}right)right] }left(мright).$ Частота колебаний $nu =450$Гц, длина волны $lambda =0,8 $м. Какова скорость распространения волны, какой будет максимальная скорость колебания частиц среды?

Решение. Фазовую скорость движения волны найдем как:

[v=frac{lambda }{T}=lambda nu left(2.1right),]

где период — величина обратная частоте колебаний:

[T=frac{1}{nu }left(2.2right).]

Вычислим фазовую скорость:

[v=450cdot 0,8=360 left(frac{м}{с}right).]

Скорость колебания частиц равна:

[frac{dxi }{dt}=frac{d}{dt}left(2{cos left[omega left(t-frac{x}{v}right)right] }right)=-2omega {sin left[omega left(t-frac{x}{v}right)right]left(2.3right). }]

Максимальное значение скорости колебаний частиц в волне из (2.3) равно:

[{left(frac{dxi }{dt}right)}_{max}=left|2omega right|left(2.4right).]

Циклическую частоту найдем как:

[omega =2pi nu ,]

тогда:

[{left(frac{dxi }{dt}right)}_{max}=left|2cdot 2pi nu right|=4pi nu .]

Вычислим максимальную скорость колебаний частиц:

[{left(frac{dxi }{dt}right)}_{max}=4pi cdot 450=5,65cdot {10}^3left(frac{м}{с}right).]

Ответ. $v=360 frac{м}{с}$, ${left(frac{dxi }{dt}right)}_{max}=5,65cdot {10}^3frac{м}{с}$

Читать дальше: формула скорости свободного падения.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание:

Волновое движение:

Процесс распространения колебаний в упругой среде называют механической волной. Для механических волн нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию, она должна обладать инертными и упругими свойствами.

Различают поперечные и продольные волны. Продольные волны могут распространяться в любых средах: твердых, жидких и газообразных; поперечные – только в твердых средах.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. Волны переносят энергию колебаний.

Изучив страницу, вы сможете:

  • исследовать образование стоячих звуковых волн в воздухе;
  • объяснять механизм образования стоячих волн, определять узлы и пучности, используя графический метод;
  • исследовать интерференцию от двух источников на поверхности воды;
  • объяснять принцип Гюйгенса и условия наблюдения дифракционной картины механических волн.

Уравнение бегущей волны

Колебательное движение тела в упругой среде является источником механической волны.

Волну, переносящую энергию, называют бегущей волной.

В однородной среде скорость распространения волны остается величиной постоянной. Смещение y (x, t) от положения равновесия частиц среды при распространении волны зависит от координаты x на оси 0х, вдоль которой распространяется волна, и от времени t по закону:

Волновое движение в физике - формулы и определение с примерами

где Волновое движение в физике - формулы и определение с примерами

Введем волновое число Волновое движение в физике - формулы и определение с примерами тогда уравнение бегущей волны примет вид Волновое движение в физике - формулы и определение с примерами

Смещение точек упругой среды в волне, бегущей в противоположном направлении выбранной оси 0х, можно определить по формуле: Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Вспомните! Основные характеристики волн. Волны, созданные источником, совершающим гармонические колебания, характеризуются амплитудой колебания частиц среды A, частотой Волновое движение в физике - формулы и определение с примерами длиной волны Волновое движение в физике - формулы и определение с примерами и скоростью распространения Волновое движение в физике - формулы и определение с примерами

Длиной волны Волновое движение в физике - формулы и определение с примерами называют расстояние между двумя соседними точками на оси 0х, колеблющимися в одинаковых фазах. Расстояние, равное длине волны Волновое движение в физике - формулы и определение с примерами, волна пробегает за период Т, следовательно, Волновое движение в физике - формулы и определение с примерами В однородных средах скорость распространения волны величина постоянная.

Физический смысл волнового числа

Запишем формулу (2), выразив циклическую частоту через период Волновое движение в физике - формулы и определение с примерами с учетом определения длины волны Волновое движение в физике - формулы и определение с примерами получим: Волновое движение в физике - формулы и определение с примерами

Бегущая волна обладает двойной периодичностью – во времени и в пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны Волновое движение в физике - формулы и определение с примерами Волновое число Волновое движение в физике - формулы и определение с примерами является пространственным аналогом циклической частоты Волновое движение в физике - формулы и определение с примерами

Фронт волны и волновая поверхность

Волна за время, равное периоду колебаний, достигает точек пространства, расположенных от источника на расстоянии длины волны. Совокупность этих точек представляет собой фронт волны, который отделяет колеблющиеся точки среды от точек, не вовлеченных в колебательное движение. Фронт волны от точечного источника представляет собой сферу, от плоской пластины – плоскость, от струны – форму цилиндра (рис. 79–81).

Волновое движение в физике - формулы и определение с примерами

Фронт волны – это геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Направление распространения волны указывает луч, который перпендикулярен фронту волны.

В волне можно рассмотреть множество поверхностей, все точки которых совершают колебания синфазно, их называют волновыми поверхностями. При множестве волновых поверхностей, фронт волны только один.

Геометрическое место точек пространства, которые совершают колебания в одинаковой фазе в данный момент времени, называют волновой поверхностью.

Стоячие волны

Уравнение стоячей волны При отражении от более плотной среды волна, изменив свое направление на обратное, меняет фазу на Волновое движение в физике - формулы и определение с примерами то есть на противоположную. В результате сложения падающей и отраженной волн образуется стоячая волна. Она имеет вид, представленный на рисунке 83. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Получим уравнение стоячей волны путем сложения уравнений бегущих волн: Волновое движение в физике - формулы и определение с примерами

Заменив волновое число его значением Волновое движение в физике - формулы и определение с примерами запишем уравнение стоячей волны в виде: Волновое движение в физике - формулы и определение с примерами

Координаты точек пучностей и узлов определяются из условий наибольшего и наименьшего значений амплитуды. При Волновое движение в физике - формулы и определение с примерами образуется пучность с амплитудой равной 2 А (рис. 84). Расстояния от источника стоячей волны до пучностей равны: Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

При Волновое движение в физике - формулы и определение с примерами образуются узлы, амплитуда колебаний в этой точке равна 0. Расстояния от источника волны до узлов равны:

Волновое движение в физике - формулы и определение с примерами

Расстояния между двумя соседними пучностями или двумя соседними узлами равны:

Волновое движение в физике - формулы и определение с примерами

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не переносится в другие части струны. В каждом таком отрезке происходит дважды за период превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Отсутствие переноса энергии является отличительной особенностью стоячей волны.

Пример:

Уравнение бегущей волны, изображенной на рисунке (рис. 85): Волновое движение в физике - формулы и определение с примерами. Уравнение отраженной волны: Волновое движение в физике - формулы и определение с примерами

А. Получите уравнение стоячей волны как сумму падающей и отраженной волн.

В. Полученное выражение запишите, заменив волновое число и циклическую частоту через длину волны и период.

С. Определите положение узлов и пучностей.

Волновое движение в физике - формулы и определение с примерами

Дано:

Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Решение: А. Уравнение стоячей волны определятся сложением уравнений бегущих волн:Волновое движение в физике - формулы и определение с примерами Волновое движение в физике - формулы и определение с примерами

В. Волновое движение в физике - формулы и определение с примерами

С. При Волновое движение в физике - формулы и определение с примерами образуется пучность с амплитудой 2А. Расстояние от источника до пучностей Волновое движение в физике - формулы и определение с примерами

С. Расстояние от узлов определим из условия Волновое движение в физике - формулы и определение с примерами тогдаВолновое движение в физике - формулы и определение с примерами

Ответ: Волновое движение в физике - формулы и определение с примерами Волновое движение в физике - формулы и определение с примерами

Интерференция волн

Если в некоторой среде несколько источников возбуждают механические волны, то они распространяются независимо друг от друга. Все точки среды принимают участие в колебаниях, вызванных каждой волной в отдельности. Наложение волн, в результате которой появляется устойчивая картина чередующихся максимумов и минимумов колебаний частиц среды, называют интерференцией.

Интерферировать могут только волны, имеющие одинаковую частоту и постоянный сдвиг фаз. Такие волны называют когерентными, их создают источники, колеблющиеся с одинаковой частотой и постоянным значением сдвига фаз.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны: например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников (рис. 87).

Запомните! Волны называют когерентными, если их источники совершают колебания одной частоты с постоянным сдвигом фаз.

Волновое движение в физике - формулы и определение с примерами

Условие максимума и минимума при интерференции двух волн

Амплитуда колебаний при наложении волн определяется в соответствии с принципом суперпозиции (рис. 88). Если в некоторой точке среды накладываются гребни когерентных волн, то происходит усиление колебаний, амплитуда принимает значение, равное сумме амплитуд. Если накладывается гребень одной волны с впадиной другой волны, то при равенстве амплитуд отдельно взятых волн данная точка пространства не совершает колебания. Если амплитуды отличаются, то колебания в этой точке совершаются с амплитудой равной разности амплитуд распространяющихся волн.

Волновое движение в физике - формулы и определение с примерами

Для определения результата интерференции волн, распространяющихся от двух источников А и В, находящихся на расстоянии Волновое движение в физике - формулы и определение с примерами от точки С, достаточно определить разность хода волн и сравнить с длиной волны. Если разность хода равна целому числу длин волн, то в точке С произойдет наложение гребней или впадин, амплитуда колебаний возрастет (рис. 89). Выполняется условие максимума:

Волновое движение в физике - формулы и определение с примерами

где Волновое движение в физике - формулы и определение с примерами − разность хода волн, Волновое движение в физике - формулы и определение с примерами – натуральное число, равное 0, 1, 2, 3 … Разность хода лучей соответствует разности фаз колебаний:

Волновое движение в физике - формулы и определение с примерами

так как волна за период пробегает расстояние равное длине волны Волновое движение в физике - формулы и определение с примерами периоду Т соответствует фаза Волновое движение в физике - формулы и определение с примерами

Минимум колебаний в рассматриваемой точке среды наблюдается в том случае, если от двух когерентных источников распространяются волны со сдвигом фаз, равным нечетному числу p, а разность хода лучей кратна нечетному числу полуволн. В этом случае колебания происходят в противофазе (рис. 90).

Возьмите на заметку:

Интерференция волн приводит к перераспределению энергии колебаний между частицами среды. Это не противоречит закону сохранения энергии, так как в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Волновое движение в физике - формулы и определение с примерами

Распространение волн. Принцип Гюйгенса – Френеля

На основе принципа Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн, невозможно объяснить, почему источники вторичных волн создают фронт только по направлению распространения волны. Для объяснения явлений распространения волны французский физик О. Френель в 1815 г. дополнил принцип Х. Гюйгенса представлениями о когерентности и интерференции вторичных волн. При наложении вторичных когерентных волн происходит интерференция, в результате которой амплитуда колебаний в различных точках пространства становится разной: по направлению распространения волны усиливается, в обратном направлении – уменьшается. Огибающая фронты вторичных волн является фронтом результирующей волны (рис. 92).

Волновое движение в физике - формулы и определение с примерами

Дифракция механических волн

Вторичные волны, созданные точками среды, которые находятся на краю отверстия или препятствия, искривляются и волна огибает препятствие (рис. 93 а–г).

Волновое движение в физике - формулы и определение с примерами

Дифракция – это явление огибания волнами препятствий.

Все волны способны огибать препятствия, если длина волны соизмерима с размерами препятствия. Дифракция становится заметной, если размеры препятствия меньше длины волны.

Физика в нашей жизни:

Струнные музыкальные инструменты

Интересно знать! Адырна (рис. 96 а) – один из древнейших казахских струнных инструментов. В его форме отобразилась воинственность кочевников-казахов: он напоминает изогнутый лук воина. Деревянный корпус инструмента легкий, так как он пустотелый. Струны изготавливают из кусков специально выделанной кожи или сплетенных из верблюжьей шерсти нитей. Музыкант играет, перебирая струны. Их в инструменте 13. Жетыген (рис. 96 б) – семиструнный музыкальный инструмент. Он имеет прямоугольную форму, изготовлен из дерева, струны – из конского волоса. Легенда о жетыгене раскрывает причину использования именно семи струн. Старик, потерявший семерых сыновей, вылил свое горе, исполняя кюи о них. Вспоминая каждого из сыновей, он натягивал новую струну на музыкальном инструменте.

Волновое движение в физике - формулы и определение с примерами

Условие возникновения стоячей волны в струне

Стоячая волна в струне возникает только в том случае, если длина Волновое движение в физике - формулы и определение с примерами струны равняется целому числу длин полуволн: Волновое движение в физике - формулы и определение с примерами

Набору значений Волновое движение в физике - формулы и определение с примерами длин волн соответствует набор возможных частот Волновое движение в физике - формулы и определение с примерами Каждая из частот Волновое движение в физике - формулы и определение с примерами и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота называется основной частотой, все остальные частоты называются гармониками.

В отличие от груза на пружине или маятника, у которых имеется единственная собственная частота, струна обладает бесконечным числом собственных резонансных частот. На рисунке 96 в изображены несколько типов стоячих волн в струне. Стоячие волны различных типов могут одновременно присутствовать в колебаниях струны.

Визуализация звуковых волн

Существует несколько способов демонстрации стоячей волны, один из них – фигуры Хладни (рис. 97). Немецкий физик Эрнст Хладни получал узор, посыпая пластинку песком и проводя по краю смычком. Движения смычка заставляли пластинку колебаться на некоторой резонансной частоте. Песок скапливался и лежал неподвижно в узлах, а на участках, где отраженная волна усиливала бегущую, песок смещался.

Волновое движение в физике - формулы и определение с примерами

Интересно знать! В Шотландии есть рослинская капелла св. Матвея, на одной из арок которой есть 213 резных каменных кубов, с вырезанным на них геометрическим рисунком. Многие исследователи пытались понять, что зашифровано в рисунках на кубах. Отставной генерал ВВС Томас Митчел со своим сыном, пианистом Стюартом Митчелом предложили оригинальный способ расшифровки послания. Они сопоставили геометрические рисунки с фигурами Хладни и пришли к выводу, что на кубах записаны ноты. Собрав ноты воедино и творчески обработав их, они представили миру произведение «Рослинский Мотет».

Итоги:

Волновое движение в физике - формулы и определение с примерами

Глоссарий

Волновая поверхность – геометрическое место точек, имеющих одинаковую фазу колебаний.

Дифракция – явление огибания волнами препятствий.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Когерентные волны – волны, имеющие одинаковую частоту и постоянный сдвиг фаз.

Механическая волна – процесс распространения колебаний в упругой среде.

Фронт волны – геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Распространение колебаний в упругих средах. Продольные и поперечные волны

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды, с течением времени передаются в ее другие точки. В качестве примера достаточно вспомнить, что измерение пульса осуществляется на запястье, хотя сердце расположено внутри грудной клетки. Такие явления связаны с распространением механических волн.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Механические волны не могут распространяться в вакууме.
Источником механических волн является колеблющееся тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в ней с определенной скоростью, зависящей от плотности и упругих свойств среды.

Подчеркнем, что при распространении волны отсутствует перенос вещества, т. е. частицы колеблются вблизи положений равновесия. Среднее смещение частиц за большой промежуток времени равно нулю.
Рассмотрим основные характеристики волны.

Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.

Волновое движение в физике - формулы и определение с примерами

Основными характеристиками волны являются (рис. 208):

Рассмотрим колебания источника волны, происходящие с циклической частотой Волновое движение в физике - формулы и определение с примерами и амплитудой А:
Волновое движение в физике - формулы и определение с примерами
где x(t) — смещение источника от положения равновесия.

В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна v, то зависимость от времени t координаты (смещения) х колеблющейся точки, находящейся на расстоянии r от источника, описывается функцией
Волновое движение в физике - формулы и определение с примерами
где k — волновое число Волновое движение в физике - формулы и определение с примерамифаза волны.

Выражение х(t, r) называется уравнением плоской волны, распространяющейся (бегущей) вдоль направления радиус-вектора Волновое движение в физике - формулы и определение с примерами
 

Бегущую волну можно наблюдать, проведя следующий опыт: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна, описываемая уравнением плоской волны.

Рассмотрим классификацию бегущих волн по направлению колебаний частиц среды, в которой они распространяются.

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн. Продольную волну легко получить с помощью длинной пружины, которая лежит на гладкой горизонтальной поверхности и один конец ее закреплен. Легким ударом по свободному концу В пружины мы вызовем появление волны (рис. 209).

Волновое движение в физике - формулы и определение с примерами

При этом каждый виток пружины будет колебаться вдоль направления распространения волны ВС. Примерами продольных волн являются звуковые волны в воздухе и жидкости.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны. С помощью длинной пружины можно продемонстрировать распространение поперечных волн, если совершать колебания незакрепленного конца перпендикулярно пружине (рис. 210).

Волновое движение в физике - формулы и определение с примерами

Поперечные волны вызывают звучание струн музыкальных инструментов при их возбуждении.

Продольные колебания симметричны относительно линии распространения ВС, и их действие на любой регистрирующий прибор не изменяется, если прибор будет поворачиваться вокруг направления распространения.

Действие поперечных волн на регистрирующий прибор зависит от того, в какой плоскости, проходящей через линию распространения, происходит колебание. Эта особенность поперечных волн носит название поляризации. Если колебания происходят в одной плоскости, то волну называют плоско или линейно поляризованной. Если конец вектора колебаний, например вектора смещения, скорости, напряженности электрического поля, описывает эллипс или окружность, то волну называют эллиптически или циркулярно-поляризованной.

До сих пор мы рассматривали волны, распространяющиеся в какой-либо среде. Волны, которые распространяются на границе раздела двух сред, называются поверхностными волнами. Примером данного типа волн служат волны на поверхности воды.

Звуковые волны. Скорость звука. Ультразвук

Звуком называются колебания среды, воспринимаемые органами слуха.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.
 

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды (например, воздуха), распространяющиеся в пространстве с течением времени. Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны классифицируются по частоте следующим образом:

Многие животные могут воспринимать ультразвуковые частоты. Например, собаки могут слышать звуки до 50 000 Гц, а летучие мыши — до 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.
Звуковые волны приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся мелодиями, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и безошибочно можем отличить пение птиц от шума городской улицы.

Одной из важнейших характеристик звуковых волн является спектр. Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

В сплошном спектре присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
В

дискретном спектре — конечное число волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.
 

Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).
 

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию па различных музыкальных инструментах.
 

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить

основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью.

Интенсивность I — это энергия Волновое движение в физике - формулы и определение с примерами переносимая волной в единицу времени Волновое движение в физике - формулы и определение с примерами = 1 с через единичную площадку площадью Волновое движение в физике - формулы и определение с примерами расположенную перпендикулярно к направлению распространения волны:
Волновое движение в физике - формулы и определение с примерами

Другими словами, интенсивность любой волны — мощность, переносимая волной через единичную площадку, расположенную перпендикулярно к направлению распространения волны.

Единицей интенсивности в СИ является ватт на метр в квадрате Волновое движение в физике - формулы и определение с примерами
Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости.

С возрастом порог слышимости человека возрастает.

Интенсивность звуковых волн, при которой возникает ощущение боли, называют порогом болевого ощущения или болевым порогом. Интенсивность звука, улавливаемого ухом человека, лежит в широких пределах: от Волновое движение в физике - формулы и определение с примерами (порог слышимости) до Волновое движение в физике - формулы и определение с примерами (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Реактивный самолет может создать звук интенсивностью Волновое движение в физике - формулы и определение с примерами мощные усилители на концерте в закрытом помещении — до Волновое движение в физике - формулы и определение с примерами поезд метро — около Волновое движение в физике - формулы и определение с примерами

Уровни интенсивности звука L определяют обычно, используя шкалу, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б самый слабый звук, который воспринимает наше ухо. Единица названа в честь изобретателя телефона А. Г. Белла. Измерение уровня интенсивности в децибелах проще, поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

Волновое движение в физике - формулы и определение с примерами
где I — интенсивность данного звука, Волновое движение в физике - формулы и определение с примерами — интенсивность Волновое движение в физике - формулы и определение с примерами соответствующая минимально возможной интенсивности звука, улавливаемого ухом человека.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это связано с тем, что восприятие звука — процесс не только

физический, но и физиологический. Действительно, человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.
 

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах, т. е. его способностью улавливать звуки различных частот. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 Гц до <5000 Гц. Порог слышимости зависит от частоты звука: при частоте 1000 Гц он примерно 120—130 дБ, а при частоте 50 Гц — примерно 50 дБ. С частотой изменяется также и кажущаяся громкость звука. Звук, имеющий уровень интенсивности 20 дБ на частоте 1000 Гц, вследствие особенностей восприятия будет иметь такую же громкость, как и звук в 50 дБ на частоте 100 Гц. Следует отметить, что болевой порог в зависимости от частоты изменяется не столь существенно, как порог слышимости.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на . 20 дБ. Вследствие этого звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ.
 

Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.
 

Тембр (оттенок звука) зависит от того, сколько обертонов присоединяется к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей (табл. 6) и т. д.
Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше, чем в твердых телах (табл. 7).

Скорость звука в идеальных газах с ростом температуры растет пропорционально Волновое движение в физике - формулы и определение с примерами где Т — абсолютная температура. В воздухе скорость звука Волновое движение в физике - формулы и определение с примерами при температуре t = 0 °C и с = 343 Волновое движение в физике - формулы и определение с примерами при температуре t = 20 °C. В жидкостях и металлах скорость звука, как правило, уменьшается с ростом температуры (исключение — вода).

Таблица 6
 

Частота колебаний различных источников звука
Волновое движение в физике - формулы и определение с примерами

Таблица 7
Скорость звука с в различных средах
Волновое движение в физике - формулы и определение с примерами

Впервые скорость распространения звука в воздухе была определена в 1640 г. французским физиком Мареном Мерсенном. Он измерял промежуток времени между моментами появления вспышки и звука при ружейном выстреле. Мерсенн определил, что скорость звука в воздухе равна Волновое движение в физике - формулы и определение с примерами

Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией, а соответствующие приборы — эхолокаторами. Наиболее известные животные, обладающие способностью к эхолокации, — летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокацию используют различные китообразные, а также птицы гуахаро, V. гнездящиеся в глубоких пещерах Венесуэлы и на острове Тринидад, стрижи-салаганы, живущие в пещерах Юго-Восточной Азии.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образовано из начальных букв трех английских слов: sound — звук, navigation — навигация, range — дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение, в отличие от рентгеновского, безвредно для человека.

Электромагнитные волны. Скорость электромагнитных волн

Основные характеристики механических волн:

Бегущая волна

Длина волны Волновое движение в физике - формулы и определение с примерами — наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. с. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника Волновое движение в физике - формулы и определение с примерами
Скорость распространения волны:
Волновое движение в физике - формулы и определение с примерами
Уравнение бегущей волны:
Волновое движение в физике - формулы и определение с примерами
 

Продольная волна

Волна называется продольной, если колебания происходят вдоль направления распространения волн.
 

Поперечная волна

Волна называется поперечной, если колебания происходят в направлениях, перпендикулярных к направлению распространения волны.
Впервые гипотезу о существовании электромагнитных волн высказал в 1864 г. Максвелл. Он показал, что источниками электрического поля могут быть либо электрические заряды, либо магнитные поля, меняющиеся во времени. Магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическим током), либо переменными электрическими полями. Изменение индукции магнитного поля с течением времени вызывает появление в окружающем пространстве вихревого электрического поля. Силовые линии этого поля замкнуты, а вектор его напряженности Волновое движение в физике - формулы и определение с примерами в любой точке пространства перпендикулярен вектору индукции Волновое движение в физике - формулы и определение с примерами магнитного поля (рис. 211).

Волновое движение в физике - формулы и определение с примерами

Максвелл предположил, что любое изменение напряженности электрического поля сопровождается возникновением вихревого магнитного поля.
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют электромагнитным полем. Согласно теории Максвелла переменное электромагнитное поле распространяется в пространстве в виде электромагнитных волн.

Волновое движение в физике - формулы и определение с примерами

При ускоренном движении зарядов в проводнике создается переменное электрическое поле, которое порождает переменное магнитное поле, а последнее, в свою очередь, вызывает появление вихревого электрического поля уже на большем расстоянии от заряда и т.д. (рис. 212, а, б). Таким образом, попеременно порождая друг друга, в пространстве распространяется электромагнитное поле.

Волновое движение в физике - формулы и определение с примерами

Электромагнитное поле, распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью, называется электромагнитной волной (рис. 213). Электромагнитные волны являются поперечными — вектор скорости Волновое движение в физике - формулы и определение с примерами вектор напряженности Волновое движение в физике - формулы и определение с примерами электрического поля и вектор индукции Волновое движение в физике - формулы и определение с примерамимагнитного поля взаимно перпендикулярны. Этим волнам свойственны все явления, характерные для механических волн (отражение, преломление и т. д.). Но в отличие от механических электромагнитные волны могут распространяться и в вакууме.

Одним из важнейших результатов теории Максвелла было теоретическое определение скорости электромагнитных волн. Согласно этой теории скорость с электромагнитной волны в вакууме связана с электрической постоянной Волновое движение в физике - формулы и определение с примерами и магнитной постоянной Волновое движение в физике - формулы и определение с примерами соотношением

Волновое движение в физике - формулы и определение с примерами

Скорость распространения волны с в вакууме является предельной. В веществе скорость распространения меньше с и зависит от его электрических и магнитных свойств.

Экспериментально электромагнитные волны были открыты в 1887 г. немецким физиком Генрихом Рудольфом Герцем. Для их генерации он использовал специальное устройство (рис. 214).

Волновое движение в физике - формулы и определение с примерами

Длина волны, возникавшей при проскакивании искры между электродами устройства, была Волновое движение в физике - формулы и определение с примерами= 10 м. Это электромагнитное устройство впоследствии
получило название вибратора Герца.    

Волновое движение в физике - формулы и определение с примерами

Герц считал, что такие волны невозможно использовать для передачи информации. Однако 7 мая 1905 г. русский ученый Александр Степанович Попов осуществил первую в мире передачу информации электромагнитными волнами — радиопередачу и положил начало эры радиовещания.
 

Свойства электромагнитных волн очень сильно зависят от их частоты. Спектр электромагнитного излучения удобно изображать в виде шкалы электромагнитных волн, приведенной на рисунке 215, а их классификация в зависимости от частот (длин волн) дается в таблице 8.
 

Таблица 8
 

Классификация электромагнитных волн
Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

В настоящее время электромагнитные волны находят широкое применение в науке и технике:

  • плавка и закалка металлов в электротехнической промышленности, изготовление постоянных магнитов (низкочастотные волны);
  • телевидение, радиосвязь, радиолокация (радиоволны);
  • мобильная связь, радиолокация (микроволны);
  • сварка, резка, плавка металлов лазерами, приборы ночного видения (инфракрасное излучение);
  • освещение, голография, лазеры (видимое излучение);
  • люминесценция в газоразрядных лампах, закаливание живых организмов, лазеры (ультрафиолетовое излучение);
  • рентгенотерапия, рентгеноструктурный анализ, лазеры (рентгеновское излучение);
  • дефектоскопия, диагностика и терапия в медицине, исследование внутренней структуры атомов, лазеры, военное дело (гамма-излучение).

Изобретение радио. Принципы радиосвязи

Вспомним колебательный контур, состоящий из конденсатора и катушки индуктивности, в котором возникают электромагнитные колебания (рис. 216).

Волновое движение в физике - формулы и определение с примерами

Он называется закрытым, так как в нем происходит лишь обмен энергией между конденсатором, в котором сосредоточена энергия электрического поля, и катушкой, в которой сосредоточена энергия магнитного поля.

Потери энергии при электромагнитных колебаниях в контуре на излучение в окружающее пространство настолько малы, что можно считать: контур не создает электромагнитного излучения. Таким образом, вследствие изменения электрического и магнитного полей в закрытом пространстве внутри конденсатора и катушки закрытый колебательный контур не может служить источником электромагнитного излучения.

Для эффективного излучения контур нужно «открыть», раздвинув обкладки конденсатора, т. е. создать условия для того, чтобы поля «уходили» в пространство (см. рис. 216). Однако мощность электромагнитного излучения в этом случае невелика. И в таком виде его невозможно использовать на практике.

Исследования по передаче информации электромагнитными волнами, проведенные Поповым, показали, что колебательный контур можно использовать для радиосвязи, если одну обкладку конденсатора заземлить, а к другой присоединить вертикально натянутый провод, оставив его верхний конец свободным. Это устройство называется антенной. Антенна — незамкнутый провод или система проводов, подвешенных высоко над поверхностью Земли, по которым проходят переменные токи.

Применение антенны позволяет значительно увеличить мощность электромагнитного излучения. Колебательный контур, снабженный антенной, называется открытым, причем мощность излучения пропорциональна частоте излучения в четвертой степени Волновое движение в физике - формулы и определение с примерами

Рассмотрим устройство открытого колебательного контура. Основными его элементами являются конденсатор определенной емкости и катушка индуктивности. Отметим, что любой проводник имеет индуктивность, хоть и очень малую. Любые два проводника, разделенные изолятором, могут рассматриваться как конденсатор, имеющий определенную емкость контура  (см. рис. 216). Эта система называется открытым колебательным контуром (вибратором Герца). Радиосвязью называется передача информации электромагнитными волнами, частоты которых охватывают диапазон Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Рассмотрим принцип радиосвязи. В передающей антенне, настроенной в резонанс с генератором (рис. 217), возбуждаются высокочастотные токи, которые, в свою очередь, возбуждают электромагнитные волны в окружающем антенну пространстве. Эти волны, достигая приемной антенны, настроенной в резонанс с генератором, возбуждают токи той же частоты, которые могут быть усилены и использованы.

Токи звуковых частот, а также низкочастотные поля, применяемые в электротехнике, не годятся для радиосвязи по двум причинам:

  1.  электромагнитные волны, возбуждаемые такими токами, обладают очень малой энергией и поэтому не могут распространяться па большие расстояния;
  2. для эффективного излучения таких волн размеры антенн должны быть очень большими (например, при частоте 1000 Гц длина антенны должна быть 150км).

С учетом этих причин для радиосвязи используются электромагнитные волны высоких частот (отВолновое движение в физике - формулы и определение с примерами которые обладают достаточной энергией для передачи на большие расстояния и не требуют антенн значительных размеров. Однако электромагнитные волны высокой частоты, преобразованные в звуковые, не могут восприниматься ухом человека. Для передачи информации (речи, музыки) необходимы низкочастотные сигналы с частотами от 16 Гц до 20 000 Гц.

Инженеры нашли выход в специальном «смешивании» высокочастотных и низкочастотных сигналов. Поэтому радиопередачи осуществляются электромагнитными волнами высокой частоты (рис. 218, а), измененными низкочастотными сигналами (рис. 218, б, в). Этот прием получил название модуляции.

Волновое движение в физике - формулы и определение с примерами
 

Модуляцией электромагнитной волны называется изменение ее параметров (амплитуды, частоты, фазы) по заданному закону. При этом модулируемые величины изменяются с частотой, намного меньшей частоты волны. Модулируемая волна (высокочастотная) называется несущей волной, а ее частота — несущей частотой.

В зависимости от того, какой параметр подвергается изменению, модуляция подразделяется на амплитудную, частотную и фазовую. Простейшей является амплитудная модуляция (см. рис. 218). При амплитудной модуляции в цепь высокочастотного генератора включается устройство, изменяющее ток в ней с частотой звукового сигнала, несущего информацию. При этом амплитуда несущей волны изменяется в соответствии с частотой низкочастотного сигнала.

Обратный процесс — процесс выделения низкочастотного звукового сигнала из модулированного высокочастотного — называется детектированием.
Любая радиосвязь включает работу радиопередатчика и радиоприемника.
 

Радиопередатчиком называется устройство, передающее информацию электромагнитными волнами радиочастотного диапазона.
Основные элементы радиопередатчика:

  • генератор незатухающих колебаний несущей частоты;
  • блок модуляции;
  • усилитель и передающая антенна.

Блок-схема радиопередатчика приведена на рисунке 219.
Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами

Радиоприемником называется устройство, принимающее информацию, кото рая передается электромагнитными волнами радиочастотного диапазона от радиопередатчика.

Основные элементы радиоприемника:

  • приемная антенна с резонансным контуром, преобразующая энергию радио волн в энергию высокочастотных колебаний;
  • блок детектирования, который выделяет модулированные колебания, усиливает и демодулирует их;
  • воспроизводящее устройство (телефон, громкоговоритель), на которое подается низкочастотный модулирующий сигнал после его усиления.

Блок-схема радиоприемника приведена на рисунке 220.

Волновое движение в физике - формулы и определение с примерами

Простейшим радиоприемником является так называемый детекторный приемник (рис. 221). Он состоит из приемной антенны, соединенной с перестраиваемым по частоте колебательным контуром, детектора (полупроводниковый диод — устройство, пропускающее ток только в одном направлении), конденсатора (конденсатор обладает малым сопротивлением для высокочастотного сигнала и большим для низкочастотного, поэтому высокочастотный сигнал идет через конденсатор, а низкочастотный — через динамик) и динамика.

Соединенные параллельно конденсатор емкостью С и резистор сопротивлением R являются сглаживающей цепочкой. Их емкость и сопротивление подбираются таким образом, что Волновое движение в физике - формулы и определение с примерами где Т — период высокочастотных колебаний. Через резистор идет ток низкой частоты, форма которого соответствует форме звуковых колебаний, воспринимаемых динамиком приемника.

  • Заказать решение задач по физике

Радиовещание. Принципы телевидения

В современной технике используются радиоволны различных частот. Классификация радиоволн по длинам волн и частотам приведена в таблице 9.
Радиоволны сильно отличаются по своим свойствам. Например, длинные и средние волны хорошо огибают естественные препятствия. Но на средних волнах дальность приема резко отличается днем и ночью. Это связано с тем, что средние волны сильно поглощаются нижним слоем ионосферы 2 и отражаются от более отдаленного слоя 1 (рис. 222, а). Дальность их приема сильно возрастает ночью, так как из-за отсутствия солнечного излучения нижний слой ионосферы 2 пропадает.
 

Таблица 9
 

Классификация радиоволн но длинам волн и частотам
Волновое движение в физике - формулы и определение с примерами

Волновое движение в физике - формулы и определение с примерами
 

Короткие волны отражаются от ионосферы и, таким образом, многократно отражаясь от поверхности Земли и ионосферы 1 (рис. 222, б), могут распространяться на очень большие расстояния.

Советский радист Э. Кренкель, находясь в северной полярной экспедиции в » У» 30-е годы XX в., с помощью маломощной радиостанции установил связь с австралийскими радистами.

Ультракороткие волны пропускаются ионосферой и не огибают препятствия. Осуществление связи такими волнами возможно только в пределах прямой видимости. Это привело к сооружению гигантских (400—500 м высотой) телевизионных башен, электромагнитные волны с которых Moгут попадать в приемники, находящиеся от них на расстоянии порядка 70—80 км. Только использование спутников на различных орбитах решило вопрос с приемом теле- и радиопередач и телефонных сообщений в любых уголках Земли.
Останкинская телебашня имеет высоту 535 м и позволяет вести прием теле-визионных передач на расстоянии до 120 км от Москвы.

Области использования радиоволн:

  • радиовещание — передача речи, музыки на длинных, средних, коротких, ультракоротких волнах метрового диапазона;
  • радиосвязь — передача на расстояние телеграфных сигналов и телефонных разговоров на ультракоротких волнах метрового и дециметрового диапазонов;
  • телевидение — передача на расстояние изображения (аудио- и видеосигналов) на ультракоротких волнах метрового и дециметрового диапазонов;
  • радиолокация — обнаружение и определение положения различных объектов на волнах метровых, дециметровых, сантиметровых и миллиметровых диапазонов;
  • радиоастрономия — исследование с помощью радиотелескопов (рис. 223) космических объектов по их ультракоротковолновому излучению.

Волновое движение в физике - формулы и определение с примерами

Для радиолокации используются ультракороткие радиоволны, длина которых лежит в метровом, дециметровом, сантиметровом и миллиметровом диапазонах, вследствие того, что:

  • необходимы приемлемые размеры антенн радиолокатора;
  • размеры исследуемых объектов больше или сравнимы с длинами радиоволн;
  • чем меньше длина волны, тем легче обеспечить формирование достаточно короткого импульса;
  • ультразвуковые волны слабо поглощаются атмосферой независимо от погодных условий.
     

Радар (радиолокатор) — прибор, представляющий собой комбинацию ультракоротковолнового радиопередатчика и приемника. С помощью общей антенны для приема и передачи создастся остронаправленный радиолуч. Излучение осуществляется короткими импульсами длительностью порядка Волновое движение в физике - формулы и определение с примерамис. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить расстояние до предмета, скорость и направление его движения.

Важнейшим преимуществом радиолокации является независимость работы радаров от погодных условий и времени суток.

Радиоволнами осуществляется передача на расстояние изображений предметов. На телевизионной станции производится преобразование передаваемого изображения в последовательность электрических сигналов.

Сигнал изображения модулирует несущие высокочастотные колебания. Эти колебания излучаются антенной в виде радиоволн и передаются на большое расстояние. Они принимаются антенной телевизора. В результате детектирования снова получается электрический сигнал изображения. Он преобразуется в видимое изображение на экране кинескопа телевизора. Вместе с сигналом изображения передаются и звуковые сигналы.
Телевизионные передачи ведутся в диапазоне от 50 Мгц до 230 Мгц, в котором волны распространяются только в пределах прямой видимости.

Мобильная сотовая связь

В течение полутора веков, прошедших с момента изобретения телефона, телефонная связь настолько прочно вошла в быт современного человека, что отсутствие телефона в квартире практически стало исключением. К достоинствам проводных телефонных сетей следует отнести надежность связи и развитую систему абонентских сетей, позволяющую пользователю связаться с абонентом практически в любой стране мира.

Однако «жесткая привязка» абонента к стационарному телефонному аппарату, «ограниченная» к тому же длиной провода телефонной трубки, не позволяла пользователю быть мобильным, т. е, свободно перемещаться в пространстве во время разговоров или между ними.

Во второй половине прошлого века по мере совершенствования техники и технологии стала развиваться идея создания всемирной (глобальной) сети мобильной (сотовой) телефонной связи, позволяющей пользователю иметь доступ к развитой абонентской сети при помощи портативной переносной (мобильной) трубки-телефона значительного (десятки километров) радиуса действия.

Реализация этой идеи позволила бы вывести телефонную связь на новый уровень популярности и доступности с точки зрения пользователя, который имел бы свой индивидуальный телефонный номер и практически неограниченную свободу передвижения (мобильности) во время разговоров или между ними.

Предлагаемый принцип действия мобильной телефонной связи достаточно прост: при помощи трубки-телефона (мобильного телефона) абонент связывается с ближайшей базовой станцией (передатчиком) сети (рис. 224).

Волновое движение в физике - формулы и определение с примерами

Эта базовая станция, в свою очередь, связывается со следующим передатчиком сети и т. д. по мере требования абонента (рис. 225).

Волновое движение в физике - формулы и определение с примерами

Описанный принцип создания развитой абонентской сети называется сотовым принципом, поскольку по такому же принципу пчелы выстраивают соты внутри улья. При этом каждая созданная ячейка служит основой для создания следующей точно такой же ячейки и т. д.

В силу этого обстоятельства мобильную телефонную связь принято называть также сотовой телефонной связью. При движении абонента (например, на автомобиле) (см. рис. 225) базовые станции самостоятельно следят за ним и «передают» друг другу, что происходит практически без потери качества связи, быстро и совершенно незаметно для пользователя.

Самая простая часть структурной схемы сотовой связи — мобильный (переносной) телефон, состоит из двух частей: собственно «трубки» или ME (Mobile Equipment) и модуля идентификации абонента, или смарт-карты SIM (Subscriber Identity Module), получаемой при заключении контракта с тем или иным оператором.

Каждому сотовому телефону при производстве присваивается собственный номер или международный идентификатор мобильного устройства IMEI (International Mobile Equipment Identity), позволяющий отличить его от второго точно такого же.

В нашей стране используется стандарт сетей второго поколения GSM (Global System for Mobile Communications), который был разработан в 1990 г. Данный стандарт использует рабочую частоту v = 900 МГц, позволяющую значительно улучшить качество связи по сравнению со стандартами первого поколения.
Первый оператор GSM принял абонентов в 1991 году, а уже к началу 1994 г. мировые сети, основанные на данном стандарте, имели 1,3 миллиона абонентов. К концу 1995 г. их число увеличилось до 10 миллионов!

При включении мобильного телефона с активированной смарт-картой он «сам» находит ближайшую базовую станцию соответствующей сотовой сети, после чего весь пакет телефонных услуг данной сети становится доступным абоненту.
Каждый передатчик обеспечивает радиопокрытие в среднем на расстоянии до двух десятков километров от него (рис. 226).

Волновое движение в физике - формулы и определение с примерами

Для рационального использования сотовой сети передатчиков разрабатываются оптимальные схемы их взаиморасположения на местности с учетом ее рельефа.

Важнейшей характеристикой для выбора того или иного оператора сотовой сети является зона покрытия различных населенных пунктов нашей страны базовыми станциями данной сети.

Волновое движение в физике - формулы и определение с примерами

Современные технологии позволяют в метро или других труднодоступных для электромагнитных волн местах устанавливать микробазовые станции или пикосоты (рис. 227), которые позволяют значительно разгружать мобильный трафик на напряженных направлениях.

Основные формулы

Длина волны:
Волновое движение в физике - формулы и определение с примерами
Скорость волны:
Волновое движение в физике - формулы и определение с примерами
Уравнение бегущей волны:
Волновое движение в физике - формулы и определение с примерами
Скорость распространения электромагнитных волн в вакууме:

Волновое движение в физике - формулы и определение с примерами

  • Продольные и поперечные волны в физике
  • Звуковые волны в физике
  • Электрическое поле в физике
  • Работа по перемещению заряда в электростатическом поле
  • Электромагнитные волны и их свойства
  • Магнитные явления в физике
  • Магнитный поток
  • Волны в физике

Механические колебания и волны

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Содержание

    • Виды волн
  • Гармонические колебания
  • Амплитуда и фаза колебаний
  • Период колебаний
  • Частота колебаний
  • Свободные колебания (математический и пружинный маятники)
  • Вынужденные колебания
  • Резонанс
  • Длина волны
  • Звук
  • Основные формулы по теме «Механические колебания и волны»

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 )​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​( nu )​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:

где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Механические колебания и волны

3 (59.1%) 156 votes

Отдельные частицы любого тела — твердого, жидкого или газообразного — взаимодействуют друг с другом. Поэтому если какая-то частица начинает колебаться, то благодаря взаимодействию между частицами это движение с некоторой скоростью начинает распространяться во все стороны.

Определение

Волна — колебания, распространяющиеся в пространстве с течение времени.

В воздухе, твердых телах и внутри жидкостей механические волны возникают благодаря силам упругости. Эти силы осуществляют связь между отдельными частями тела. В образовании волн на поверхности воды играют роль сила тяжести и сила поверхностного натяжения. Такие волны позволяют наиболее наглядно рассмотреть главные особенности волнового движения.

Волна на поверхности воды представляет собой бегущие вперед валы округлой формы. Расстояние между валами, которые также называют гребнями, примерно одинаковы. Волны распространяются в среде с определенной скоростью. Так, если чайка летит вперед, а по ней в любой момент времени оказывается один и тот же гребень, то скорость распространения волны можно принять равной скорости полета чайки. Волны на воде наблюдать удобно потому, что скорость их распространения невелика.

Если бросить в воду легкий предмет, он не будет увлекаться волной, а начнет совершать колебания вверх и вниз, оставаясь примерно на одном месте, как поплавок. Это говорит о том, что частицы воды остаются на месте в то время, как волна распространяется на большие расстояния.

Если же резко толкнуть горизонтальную пружину, можно будет наблюдать, как в одних местах она разрежается, в других — уплотняется. Это тоже волна. Видно, что энергия, полученная от толчка руки, переносится через пружину, хотя ее частицы остаются на месте.

Примеры с поплавком на воде и горизонтальной пружиной позволяют сделать вывод, что волна переносит энергию, но не переносит вещество среды.

Виды механических волн

По характеру колебаний частиц среды относительно положения равновесия различают два вида волн:

Определения

  1. Поперечная волна — волна, при которой частицы среды колеблются перпендикулярно направлению распространения этой волны.
  2. Продольная волна — волна, при которой частицы среды колеблются параллельно направлению распространения этой волны.

Волны, распространяющиеся вдоль резинового шнура, являются поперечными (см. рисунок ниже). Чтобы появилась волна, нужно взять конец шнура, прикрепленного к вертикальной опоре, и дернуть его. При этом волна побежит к вертикальной опоре, а сам шнур будет менять свою форму. Каждая частица шнура станет совершать колебания относительно своего неизмененного положения равновесия сверху вниз (перпендикулярно направлению распространения волны).

Рассмотрим поперечные волны подробнее. Каждый участок шнура обладает массой и упругостью. При деформации шнура в любом его сечении появляются силы упругости. Эти силы стремятся возвратить шнур в исходное положение. Благодаря инертности участок колеблющегося шнура не останавливается в положении равновесия, а проходит его, продолжая двигаться до тех пор, пока силы упругости не остановят этот участок в момент максимального отклонения от положения равновесия.

На рисунках а, б, в, г, д и е изображен процесс распространения поперечной волны. На них показаны положения частиц среды в последовательные моменты времени.

Теперь рассмотрим распространение в среде продольной волны. Такую волну можно наблюдать, собрав установку из цепочки массивных шариков, связанных пружинками. Шары подвешены так, чтобы они могли колебаться только вдоль цепочки (см. рисунок ниже).

Если первый шар привести в колебательное движение, то вдоль цепочки побежит продольная волна, состоящая из чередующихся уплотнений и разрежений шаров. Уплотнения и разрежения (см. рисунок ниже) появляются вследствие горизонтальных колебаний шаров у положения равновесия. Волна также распространяется горизонтально.

Физические характеристики волны

Обратимся к рисункам д, е еще раз. Видно, что когда частица 1 находится в положении равновесия и движется вверх, частица 13 тоже находится в положении равновесия и движется вверх. Спустя четверть период частица 1 будет максимально отклонена от положения равновесия, ровно, как и частица 13. Так как частицы 1 и 13 движутся одинаково, говорят, что колебания этих частиц происходят в одинаковых фазах. Расстояние между этими частицами называют длиной волны.

Внимание! В действительности частица 13 отстает по фазе от частицы 1 на 2π. Но поскольку такая разница фаз не приводит к различию в состояниях колеблющихся частиц, можно считать, что частицы колеблются в одинаковых фазах.

Определение

Длина волнырасстояние между двумя ближайшими точками волны, колеблющимися в одинаковых фазах.

Длина волны обозначается как λ (лямбда). Единица измерения длины волны — метр (м).

Согласно рисунку е, в одинаковых фазах колеблются частицы 1 и 13, 2 и 14, 3 и 15, 4 и 16. Поэтому расстояния между этими частицами равно длине волны. Но частицы 1 и 7, находящиеся на расстоянии λ2, колеблются в противоположных фазах. Посмотрите на рисунок д: когда 1 частица находится в положении равновесия и движется вверх, частица 7 находится в положении равновесия и движется низ. На рисунке е обе частицы максимально отклонены от положения равновесия, но в противоположных направлениях.

Волна распространяется на расстояние λ за время, равное периоду колебаний частиц вещества. Зная расстояние, на которое распространилась волна, и время, в течение которого это распространение происходило, можно найти скорость волны:

v=λT

Но мы знаем, что период равен величине, обратной частоте колебаний:

T=1ν

Тогда скорость распространения волны равна:

v=λν

Скорость волны равна произведению длины волны на частоту колебаний.

При распространении волны мы имеем дело с периодичностью двоякого рода:

  1. Во-первых, каждая частица среды совершает периодические колебания во времени. В случае гармонических колебаний (эти колебания происходят по синусоидальному или косинусоидальному закону) частота постоянна и амплитуда одинакова во всех точках. Колебания отличаются только фазами.
  2. Во-вторых, в данный момент времени форма волны повторяется в пространстве через отрезки длиной λ вдоль линии распространения волны. На рисунке ниже показан профиль волны в определенный момент времени (сплошная линия). С течением времени вся эта картина перемещается со скоростью v направо. Спустя промежуток времени ∆t волна будет иметь вид, изображенный на том же рисунке прерывистой линией.

Пример №1. Определите скорость распространение волны на поверхности воды, если расстояние между ее гребнями равно 1 метру. Учитывайте, что мимо наблюдателя за 5 секунд прошло 10 волн.

Обычно под волной на воде люди понимают гребни — частицы воды, максимально отклоненные от положения равновесия. Расстояние между гребнями равно длине волны. Чтобы найти скорость распространения волны, нужно знать частоту колебания молекул воды. Ее можно вычислить по следующей формуле:

ν=nt

где n — количество «волн», прошедших мимо наблюдателя.

Тогда скорость волны равна:

v=λν=λnt=1·105=2 (мс)

Уравнение бегущей волны

Определение

Бегущая волна — волна, распространяющаяся в пространстве.

Колебания гармонической волны в любой точке происходят по гармоническому закону с одной и той же амплитудой. Найдем уравнение, описывающее колебательный процесс в любой точке пространства при распространении гармонической волны.

Будем рассматривать волну, бегущую по длинному тонкому резиновому шнуру. Ось Ox направим вдоль шнура, а начало отсчета свяжем с левым концом шнура. Смещение любой колеблющейся точки шнура от положения равновесия обозначим буквой s. Для описания волнового процесса необходимо знать значение s в любой точке шнура в любой момент времени. Следовательно, нужно знать вид функции:

s = s(x, t)

Заставим конец шнура (точка х = 0) совершать гармонические колебания с частотой ω. Если начальную фазу колебаний считать равной 0, то колебания этой точки будут происходить по закону:

s = smaxsin ωt

smax — амплитуда колебаний (рис. а).

Колебания распространяются вдоль шнура (оси Ox) со скоростью v и в произвольную точку шнура с координатой х придут спустя время, которое можно определить следующим выражением:

τ=xv

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ (рис. б). Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой smax, но с другой фазой:

Уравнение бегущей волны

s=smaxsin [ω(tτ)]=smaxsin [ω(txv)]

Это уравнение называется уравнением бегущей волны, распространяющейся в положительном направлении оси Ox.

Пример №2. Уравнение бегущей волны имеет вид s(x, t)=0,1sin(2πtxπ2). Найдите частоту волны, скорость её распространения и длину.

Запишем уравнение бегущей волны:

s=smaxsin [ω(tτ)]=smaxsin [ω(txv)]

Сопоставляя эти два уравнения можно определить, что циклическая частота и скорость распространения соответственно равны:

ω=2π (радс)

v=4 (мс)

Циклическую частоту также можно рассчитать по формуле:

ω=2πν

Тогда частота волны равна:

ν=ω2π=2π2π=1 (Гц)

Тогда длина волны равна:

λ=vν=41=4 (м)

Задание EF18242

На рисунке показан профиль бегущей волны в некоторый момент времени. Разность фаз колебаний точек 1 и 5 равна

Ответ:

а) π/3

б) π/2

в) π

г) 2π


Алгоритм решения

  1. Определить характер движения указанных точек.
  2. По характеру движения точек определить их разность фаз.

Решение

Точки 1 и 5 соответствуют максимальной амплитуде колебаний. В этот момент они меняют направление движения (до этого двигались вверх, теперь меняют направление в противоположную сторону). Поскольку точки 1 и 5 движутся одинаково, можно считать, что они колеблются в одинаковых фазах. Это возможно, если разность фаз кратна 2π.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22628

Какова скорость звуковых волн в среде, если при частоте 400 Гц длина волны λ = 4 м?


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу, которая связывает скорость волны с ее частотой и длиной.

3.Выполнить решение задачи в общем виде.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Частота звуковой волны: ν = 400 Гц.

Скорость звука — это отношение длины волны к ее периоду. Но период — это обратная величина частоте. Следовательно, скорость звука — есть произведение длины волны на частоту:

v=λν=4·400=1600 (мс)

Ответ: 1600

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18803

На расстоянии 510 м от наблюдателя рабочие вбивают сваи с помощью копра. Какое время пройдёт от момента, когда наблюдатель увидит удар копра, до момента, когда он услышит звук удара? Скорость звука в воздухе равна 340 м/с.


Алгоритм решения

1.Записать исходные данные.

2.Выполнить решение задачи в общем виде.

3.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Скорость распространения звука в воздухе: v = 340 м/с.

 Расстояние наблюдателя до источника звука: s = 510 м.

Звук от удара проделает путь, равный одинарному расстоянию от наблюдателя до источника звука. Следовательно, для нахождения времени, через которое наблюдатель услышит звук, нужно разделить этот путь на скорость звука в воздухе:

t=sv=510340=1,5 (с)

Ответ: 1,5

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 3.1k

to continue to Google Sites

Not your computer? Use Guest mode to sign in privately. Learn more

Понравилась статья? Поделить с друзьями:
  • Как найти отключенный телефон через спутник бесплатно
  • Как найти хорошо оплачиваемую работу в интернете
  • Одно бедро выше другого как исправить в домашних условиях
  • Как найти площади фигур заданных координатами
  • Как найти сервер для контр страйк