Как найти скорость электронов через длину волны

В этой статье мы собираемся обдумать взаимосвязь энергии и длины волны вместе с примерами и решить некоторые задачи, чтобы проиллюстрировать то же самое.

Энергия находится в прямой зависимости от частоты электромагнитных излучений. Если длина волны увеличивается, это означает, что повторяемость волны будет уменьшаться, что непосредственно влияет на энергию частицы в волне.

Формула соотношения энергии и длины волны

Энергия частицы может быть связана с ее скоростью во время распространения. Скорость частицы дает представление о частоте и длине волны. Если длина волны мала, то частота и, следовательно, энергия частицы будут увеличиваться.

Если колебания частицы больше в траектории пути, то возвратность частицы в волну больше и длина волны мала, это означает, что энергия, которой обладает частица, больше.

Энергия любого тела связана с его длиной волны уравнением

E=hc/λ

Где «h» — постоянная Планка h = 6.626 * 10-34Js

C — скорость света c=3 *108 м/с и

λ — длина волны света

Энергия обратно пропорциональна длине волны света. Чем меньше длина волны, тем больше энергия частицы в волне.

Задача 1: Рассчитать энергию фотонов, испускающих красный свет. Считайте длину волны луча красного света равной 698 нм. Какова будет энергия, если длина волны уменьшится до 500 нм, то есть если источник излучает зеленый свет?

Данный:λ1=698нм

λ2=500 нм

ч = 6.626 * 10-34 Js

с=3 * 108 м/с

У нас есть,

E=hc/λ1

E = 6.626 * 10-34 Дж* 3 * 108 м/с/698* 10-9m

=0.028* 10-17=28* 10-20Дж

Энергия красной длины волны 28* 10-20Джоули.

Если длина волны λ2=500 нм

Тогда энергия, связанная с зеленым светом, равна

E=hc/λ2

E = 6.626 * 10-34 Дж* 3 * 108 м/с / 500* 10-9m

= 0.03910-17=39* 10-20Дж

Мы видим, что энергия увеличилась до 39*10-20 Джоулей при уменьшении длины волны.

Подробнее о Влияние преломления на длину волны: как, почему, подробные факты.

График взаимосвязи энергии и длины волны

По мере увеличения длины волны частота волны падает, тем самым уменьшая энергию, которой обладает волна. Если мы построим график зависимости энергии от длины волны появляющейся частицы, то график будет выглядеть так, как показано ниже.

связь энергии и длины волны

График зависимости энергии от длины волны

Приведенный выше график ясно показывает, что по мере увеличения длины волны энергия, связанная с частицей, уменьшается экспоненциально.

Связь кинетической энергии и длины волны

Если скорость частицы больше, то очевидно, что кинетическая энергия частицы велика. Кинетическая энергия определяется уравнением

КЭ=1/2мВ2

Где m — масса объекта или частицы

V — скорость массы

Мы можем записать приведенное выше уравнение как

2E=мв2

Умножение «m» в обеих частях уравнения

2mE=(мВ)2

Импульс объекта определяется как произведение массы объекта на скорость, с которой он движется.

p = mv

Следовательно, приведенное выше уравнение становится

P2=2 мВ

P=√2mE

Согласно де Бройлю,

λ =h/p

Подставляя приведенное выше уравнение, мы имеем

λ =h/ √2mE

Приведенное выше уравнение дает связь между энергией и длиной волны частицы.

Подробнее о Что такое кинетическая энергия света: подробные факты.

Задача 2. Вычислить кинетическую энергию частицы массой 9.1 × 10-31 кг с длиной волны 293 нм. Кроме того, найдите скорость частицы.

Данный: λ = 293 нм

м = 9.1 × 10-31 kg

ч = 6.626 * 10-34Js

с=3 *108 м/с

У нас есть,

λ =h/ √2mE

λ2=h2/ 2мЕ

Е = ч2/ 2мλ2

=(6.626 * 10-34 Дж)2/2* 9.1* 10-31* (293*10-9) 2

= 0.28 * 10-23

Кинетическая энергия, связанная с частицей, равна 0.28*10-23 Джоули.

Теперь, чтобы вычислить скорость частицы, выведем формулу скорости из кинетической энергии:

КЕ=1/2 мВ2

2E= мв2

v=√(2Е/м)

= √(2(0.28*10-23)/(9.8*10-31))

= 0.24 * 104= 2400 м / с

Скорость частицы с длиной волны 298 нм составляет 2400 м/с.

Связь энергии электрона и длины волны

Энергия электрона определяется простым уравнением:

Е=чню

Где «h» — постоянная Планка, а

nu — частота появления электрона

Частота электрона определяется как

ню = v / λ

Где v — скорость электрона и

λ — длина волны электронной волны

Следовательно, энергия связана с длиной волны электрона как

E=hv/λ

Это соотношение позволяет найти энергию, связанную с распространением одиночного электрона с определенной длиной волны, скоростью и частотой. Энергия обратно пропорциональна длине волны. Если длина волны электрона уменьшается, энергия волны должна быть больше.

Электромагнитные волны;
Изображение Фото: Pixabay

Получив энергию в той или иной форме, электрон переходит из более низкого энергетического состояния в более высокое энергетическое состояние. Для перехода электронов из одного состояния в другое энергия электрона определяется уравнением

Э=РE(1/нf– 1/нi)

Где RE=-2.18* 10-18m-1 является константой Ридберга

nf это конечное состояние электрона

ni это начальное состояние электрона

Мы можем далее переписать приведенное выше уравнение как

ч ню = RE(1/нf– 1/нi)

hc/λ =RE(1/нf– 1/нi)

1/λ =REhc(1/nf– 1/нi)

1/λ =R(1/nf– 1/нi)

Где,

Р=РEчс=1.097* 107

По мере того, как электрон получает энергию, электрон переходит и перескакивает в более высокое состояние энергетического уровня и высвобождает энергию электронам, присутствующим в этом состоянии, и либо становится стабильным, либо высвобождает количество энергии и возвращается в более низкие энергетические состояния.

Подробнее о 16+ Пример амплитуды волны: подробные пояснения.

Задача 3: Если электрон переходит из состояния ni=1, чтобы указать nf=2, затем рассчитайте длину волны электрона.

Данный:

ni=1

nf=2

1/λ =RE(1/нf– 1/нi)

1/λ=-1.097*107 * ( 1/2-1/1 )

1/λ=0.5485* 107

Следовательно,

λ = 1/0.5485* 107

λ =1.823*10-7

λ =182.3*10-9=182.3нм

Длина волны света, излучаемого при переходе электрона с одного энергетического уровня на другой, равна 182.3 нм.

Связь лучистой энергии и длины волны

Каждый объект поглощает световые лучи в дневное время в зависимости от его формы, размера и состава. Если температура поверхности объекта достигает температуры выше абсолютного нуля, объект будет излучать излучения в виде волн.

Это испускаемое излучение пропорционально четвертой степени абсолютной температуры объекта и определяется уравнением

U=ɛΣ Т4A

Где U — излучаемая энергия

ɛ — коэффициент излучения излучения от объекта

Σ — постоянная Стефана-Больцмана, равная Σ=5.67*10-8Вт / м2K4

T — абсолютная температура

А — площадь объекта

Объект с высокой температурой излучает излучение с короткими длинами волн, а более холодные поверхности излучают волны с большей длиной волны. В зависимости от испускаемого излучения и длины волны испускаемого излучения волны классифицируются в соответствии с приведенной ниже таблицей.

Имя и фамилия Радиоволны Микроволны Инфракрасный порт Видимый Ультрафиолетовое рентген Гамма излучение
Длина волны > 1м 1mm-1m 700нм-1мм 400nm-700nm 10nm-380nm 0.01nm-10nm <0.01 нм
частота <300 МГц 300MHz-300GHz 300ГГц-430ТГц 430ТГц-750ТГц 750ТГц-30ФГц 30PHz-30EHz >30 Гц

По мере уменьшения длины волны излучения частота волны возрастает. Длина волны напрямую связана с температурой, поэтому, если частота испускаемого излучения больше, это означает, что энергия объекта высока.

Гамма-лучи, рентгеновские лучи и ультрафиолетовые лучи имеют очень короткую длину волны, поэтому энергия этих волн очень высока по сравнению с видимым, инфракрасным, микроволнами или радиоволнами. Кроме того, чем выше излучение, полученное объектом, тем больше он будет излучать в зависимости от коэффициента излучения объекта.

Ниже приведен график зависимости энергии от длины волны в секунду для разных температур. График показывает, что по мере повышения температуры системы энергия испускаемого излучения также увеличивается с температурой.

График зависимости энергии от длины волны излучения излучения

Для длины волны в видимой области эмиссия излучения максимальна. Это связано с тем, что Солнце излучает УФ-лучи вместе с инфракрасными лучами и видимыми лучами, а эти лучи представляют собой электромагнитные волны дальнего действия. Озоновый слой Земли защищает земную атмосферу от этого вредного излучения и либо отражается обратно, либо задерживается в облаках.

В видимом диапазоне в дневное время излучается больше излучений, поскольку в дневное время от Солнца поступает все больше и больше излучений, а испускается меньше ИК-лучей по сравнению с видимым спектром. Ночью температура снижается, длина волны излучения увеличивается, и объект излучает больше ИК-лучей.

Подробнее о Свойства преломления: волна, физические свойства, исчерпывающие факты.

Задача 4: Коробка длиной 11 см, шириной 2 см и воздухом 7 см нагревается до температуры 1200 Кельвинов. Если коэффициент излучения ящика равен 0.5, то рассчитайте скорость излучения энергии из ящика.

Данный:л=11см

ч=2см

б = 7cm

е =0.5

Σ=5.67* 10-8Вт / м2K4

Т=1200 К

Общая площадь ящика составляет

A=2(фунт+чб+гл)

=2(11*7+7*s 2+2*11)

=2 (77+14+22)

=0.0226 кв.м

Энергия, излучаемая коробкой, равна

U=ɛ Σ T4A

=0.5* 5.67* 10-8* 12004* 0.0226

=1328.6 Вт

Связь частоты энергии и длины волны

Чем больше частота волны, тем больше энергия, связанная с частицей. Энергия связана с частотой волны как

E=ч/ню

Где «h» — постоянная Планка.

nu — частота волны

Частота волны определяется как скорость волны в среде и длина волны.

ню = v / λ

Где v — скорость волны

λ — длина волны

Следовательно,

λ=v/ну

Это дает связь между частотой и длиной волны волны. Это говорит о том, что длина волны и частота обратно пропорциональны друг другу. Если длина волны увеличивается, частота волны уменьшится.

Подробнее о Влияние преломления на частоту: как, почему нет, подробные факты.

Задача 5. Скорость луча света, испускаемого источником, равна 1.9 × 108 РС. Частота возникновения излучаемой волны составляет 450ТГц. Найдите длину волны испускаемого излучения.

Данный: v=1.9*108 м/с

F=450ТГц=450*1012Hz

Длина волны луча света равна

λ = v/f

=1.9* 108/ 450* 1012

= 0.004222 * 10-4

=422.2* 10-9=422.2нм

Луч света имеет длину волны 422.2 нм.

Связь энергии фотона и длины волны

Энергия, которой обладает фотон, называется энергией фотона и обратно пропорциональна электромагнитной волне фотона по соотношению

E=hc/λ

Где «h» — постоянная Планка.

С — скорость света

λ — длина волны фотона

Частота фотона определяется уравнением

f=с/λ

Где f — частота

Следовательно, фотон с большей длиной волны обладает небольшой единицей энергии, тогда как фотон с меньшей длиной волны дает большое количество энергии.

Подробнее о Какова длина волны фотона: как найти, несколько идей и фактов.

Задача 6: Рассчитать энергию фотона, распространяющегося в электромагнитной волне с длиной волны 620 нм.

Данный: Длина волныλ =620 нм

ч = 6.626 * 10-34 js

с=3 *108 м/с

У нас есть,

E=hc/λ

Е=6.626 * 10-34 Дж*3 * 108 м/с/620* 10-9m

= 0.032 * 10-17= 32 * 10-20 Дж

Энергия, связанная с фотоном, равна 32* 10-20Джоули.

Часто задаваемые вопросы

Q1. Вычислите длину волны электрона, движущегося со скоростью 6.35 × 106 м/с

Данный: v=6.35*106м/с

м=9.1*10-31kg

ч=6.62* 10-34 Js

Кинетическая энергия электрона равна

КЕ=1/2 мВ2

=1/2 * 9.1*10-31* (6.35* 106)2

=1.83* 10-17Дж

Импульс электрона равен

P=√2mE

=√2* 9.1* 10-31* 1.83 * 10-17

= 5.7 * 10-24кг.м / с

Теперь длина волны электрона

λ =h/√2mE

= 6.62 * 10-34/ 5.7 * 10-24

= 4.8 * 10-10m

=48нм

Длина волны электрона, движущегося со скоростью 6.35*106м/с составляет 48 нм.

Q2. Черный объект площадью 180 кв.м находится при температуре 550К. Какова скорость излучения энергии от объекта?

Данный: А=180 кв.м

Т=550К

Поскольку объект имеет черный цвет, коэффициент излучения равен 1.

е =1

У нас есть,

U=ɛΣT4A

=1*с 5.67* 10-8* 5504* 180

= 0.93 * 106МОЩНОСТЬ

Мощность излучения от выброса излучения от объекта составляет 0.93*106Вт.

Какова абсолютная температура системы?

Это неизменное и совершенное значение температуры системы.

Абсолютная температура системы измеряется по шкале градусов Цельсия, Фаренгейта или Кельвина, которые измеряют ноль как абсолютный ноль градусов.

Как длина волны фотона зависит от температуры?

Температура системы определяет подвижность частиц системы.

Чем больше излучений получает система при более высоких температурах, тем больше излучения будет излучаться системой. При более высоких температурах излучаются более короткие волны, а при более низких температурах излучаются более длинные волны.


Задание:

Найти скорости и кинетические энергии электрона и нейтрона, длина волны де Бройля которых равна λ = 0,1 нм

Решение:

Решение: № 2.33Решение: № 2.33Решение: № 2.33

Как определить длину волны де Бройля для электрона

Содержание:

  • Волна де Бройля или волна амплитуды вероятности
  • Природа волн де Бройля, фазовая и групповая скорость
  • Какой формулой определяется длина волны
  • Как определить длину волны де Бройля для электрона

Волна де Бройля или волна амплитуды вероятности

Волна де Бройля является волной вероятности или волной амплитуды вероятности, которая определяет плотность вероятности обнаружения объекта в конкретной точке конфигурационного пространства.

Согласно определения волн де Бройля, можно сделать вывод об их взаимодействии с какими-либо частицами и их волновой природе. Формулировка волн материи была введена в науку в 1924 году французским физиком-теоретиком Луи де Бройлем. Благодаря теории, свойство корпускулярно-волнового дуализма (или двойственности) было распространено на любые проявления материи, включая излучение и какие-либо частицы вещества.

В современной квантовой теории «волна материи» понимается несколько иначе. Однако название данного физического феномена, связанного с частицами вещества, включая водород, сформулировано в честь автора гипотезы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В 1913 году Н. Бор предложил полуклассическую модель атома, в основе которой было два постулата:

  1. Момент импульса электрона в атоме строго определен. Величина в любом случае пропорциональна nh/2π, где n – какое-либо целое число, начиная с 1, а h – постоянная Планка, присутствие которой в формуле ясно свидетельствует о том, что момент импульса частицы квантован. Таким образом, атом включает комплекс разрешенных орбит, по которым только и может перемещаться электрон. Когда электрон расположен на этих орбитах, излучение (то есть потеря энергии) отсутствует.
  2. Атомный электрон излучает или поглощает энергию в процессе перехода с одной орбиты на другую в количестве, определяемом, как разность энергий на этих орбитах. В связи с тем, что промежуточные состояния между разрешенными орбитами отсутствуют, излучение строго квантуется. Показатель его частоты составляет (E1 – E2)/h, что является выводом из формулы Планка для энергии E = hν.

Таким образом, боровская модель атома не предусматривает излучение электрона на орбите, его нахождение между орбитами. Однако согласно простой рассматриваемой модели, движение электрона рассматривают с классической точки зрения, как вращение планеты вокруг Солнца.

В процессе поиска ответа на вопрос о поведении электрона Де Бройль предположил, что электрону в любом случае должна соответствовать определенная волна. Благодаря ей, частица «выбирает» исключительно такие орбиты, на которых данная волна укладывается целое число раз. В этом и заключался смысл целочисленного коэффициента в постулированной Бором формуле.

Гипотеза приводит к выводу, что электронная волна де Бройля не является электромагнитной, а волновые параметры должны быть характерны для любых материальных частиц, а не только для электронов в атоме. Ученому удалось получить важное соотношение, с помощью которого можно определить тип этих рассматриваемых волновых свойств. Формула расчета волны де Бройля:

(λ = h/p)

где λ – является длиной волны, p – определяет импульс частицы в уравнении.

Де Бройль объединил в одном соотношении корпускулярную и волновую характеристики материи: такие, как импульс и длина волны. Данные параметры связывает постоянная Планка, величина которой примерно составляет (6,626*10^{-27} эрг∙с) или (6,626*10^{-34} Дж∙с), задающая масштаб проявления волновых свойств вещества.

Природа волн де Бройля, фазовая и групповая скорость

Следует отметить, что волны де Бройля, называемые электронными волнами, не являются электромагнитными. В 1927 году американским физикам Дэвиссону и Джермеру удалось подтвердить гипотезу де Бройля. Ученые обнаружили дифракцию электронов на кристалле никеля. В процессе получилось определить дифракционные максимумы, которые соответствуют формуле Вульфа-Брэггов:

(2dsinj = nl)

Расчет брэгговской длины волны подтвердил ее соответствие формуле:

Расчет брэгговской длины волны

Источник: bog5.in.ua

Дифракционная картинка

Источник: bog5.in.ua

В дальнейшем гипотеза де Бройля была подтверждена опытным путем Л.С. Тартаковским и Г. Томсоном. Ученым удалось зафиксировать дифракционную картину, когда пучок быстрых электронов при Е≈ 50 кэВ проходит сквозь фольгу из разных металлов.

Чуть позже получилось обнаружить дифракцию нейтронов, протонов, атомных пучков и молекулярных пучков. В дальнейшем были изобретены инновационные методики исследования вещества, включая нейтронографию и электронографию, сформировалось направление электронной оптики.

Макротела должны характеризоваться аналогичными свойствами. В случае, если m = 1кг,  (l = 6,62*10^{-31} м) – невозможно обнаружить современными методами – поэтому макротела рассматриваются только в качестве корпускул.

В том случае, когда частица с массой m перемещается со скоростью v, фазовая скорость волн де Бройля будет определяться по формуле:

фазовая скорость волн де Бройля

Источник: bog5.in.ua

волновое число

Источник: bog5.in.ua

Исходя из того, что c > v, фазовая скорость волн де Бройля превышает скорость света в вакууме. Можно отметить, что фазовая скорость может быть больше и может быть меньше с, в отличие от групповой скорости. Формула групповой скорости:

Формула групповой скорости

Источник: bog5.in.ua

Скорость

Источник: bog5.in.ua

Таким образом, групповая скорость волн де Бройля соответствует скорости движения частицы. В случае фотона она будет равна:

групповая скорость волн де Бройля соответствует скорости движения частицы

Источник: bog5.in.ua

В результате, значение групповой скорости равно скорости света.

Волны де Бройля подвержены дисперсии. Если подставить выражение:

Волны де Бройля подвержены дисперсии

Источник: bog5.in.ua

в формулу:

в формулу

Источник: bog5.in.ua

получим следующее равенство:

(Vф= f(λ))

Примечание

Так как присутствует дисперсия, волны де Бройля невозможно представить, как волновой пакет. В противном случае, он мгновенно «расплывется», то есть исчезнет, в течение 10-26 с.

Какой формулой определяется длина волны

Количественные соотношения, которые связывают корпускулярные и волновые способности частиц, аналогичны свойствам фотонов:

длина волны

Источник: bog5.in.ua

Гипотеза де Бройля основана на универсальном характере данного равенства, что справедливо в условиях любых волновых процессов. Какой-либо частице, которая обладает импульсом р, соответствует волна. Ее длину можно определить с помощью формулы де Бройля:

формула де Бройля

Источник: bog5.in.ua

p =mv— является импульсом частицы, h – определяется, как постоянная Планка.

Как определить длину волны де Бройля для электрона

Рассчитать длину волны де Бройля для электрона можно на конкретном примере. Предположим, то требуется определить длину волны де Бройля λ для электрона, кинетическая энергия которого составляет:

  • W1 = 10 кэВ;
  • W2 = 1 МэВ.

В первую очередь стоит записать исходные данные:

(m_{e}=9,1*10^{-31} кг)

(W1 = 10 кэВ = 10*10^{3}*1,6*10^{-19} = 1,6*10^{-15}Дж)

(W2 = 1 МэВ = 10*10^{6}*1,6*10^{-19}= 1,6*10^{-13} Дж)

Требуется найти λ.

Решение:

Формула волны де Бройля:

Формула волны де Бройля

Источник: bog5.in.ua

Так как известна кинетическая энергия электронов, можно рассчитать их скорость:

 кинетическая энергия электронов

Источник: bog5.in.ua

Формула

Источник: bog5.in.ua

формула

Источник: bog5.in.ua

 Далее можно определить длину волны де Бройля:

длинf волны де Бройля

Источник: bog5.in.ua

В том случае, когда скорость v частиц соизмерима со скоростью света с, длину волны де Бройля можно рассчитать по формуле:

длину волны де Бройля можно рассчитать по формуле

Источник: bog5.in.ua

Нина

Нина

По формуле длины волны де Бройля
лямбда=h / m*v. ( лямбда — длина волны, h -постоянная Планка, m -масса электрона=9.1*10^(-31)кг, v -скорость ) выразим скорость
v=h / m*лямбда.
v=6,63*10^(-34) / 9,1*10^(-31)*1,5*10^(-10)=4,86*10^6м/c.

Современная физика описывает явления, которые, на первый взгляд, противоречат здравому смыслу. Знаете ли вы, что свет может взаимодействовать с электронами? В результате этих взаимодействий электрон может достичь определенной скорости, а свет… меняет свое направление и длину волны. Это явление называется эффектом Комптона. Проанализировав эту статью, вы увидите, что этот удивительный эффект имеет очень простое объяснение. Чтобы понять его, нам понадобятся лишь базовые знания механики и простые факты из современной физики.

Простое объяснение эффекта Комптона

Эффект Комптона — это явление, при котором свет взаимодействует с электронами. Давайте сначала уточним, что именно мы подразумеваем под словом «свет». Оказалось, что свет имеет двойственную природу — в одних экспериментах его природа волновая, в других — корпускулярная.

Свет как волны или как частицы

Рис. 1. Следует ли рассматривать свет как волны или как частицы?

Свет волновой природы — это электромагнитные волны (или электромагнитное излучение), с которыми мы знакомы. Подтверждение того, что свет может вести себя как волна, было получено в 1803 году английским физиком Томасом Янгом. Он провел серию гениальных экспериментов, в которых показал, что свет претерпевает дифракцию и интерференцию, то есть явления, характерные для волн. Эти эксперименты XIX века утвердили мнение о том, что свет является разновидностью волны.

Это мнение оставалось практически неизменным в течение 100 лет! Однако уже в то время были обнаружены явления и эффекты, которые нельзя было объяснить, исходя из того, что свет имеет только волновую природу. Фотоэлектрический эффект, заключающийся в выбросе электронов с поверхности металлов, оказался большой проблемой. Свойства этого явления противоречили волновой природе света.

В 1900 году немецким физиком Максом Планком была написана первая статья, постулирующая частичную природу света. В 1905 году на основе работы Планка световая квантовая гипотеза была представлена Альбертом Эйнштейном, также уроженцем Германской империи того времени. Эта гипотеза постулировала, что свет можно рассматривать как поток частиц. Наименьшая «порция» света (квант света) называется фотоном. Используя свою гипотезу, Эйнштейн смог объяснить фотоэлектрический эффект и его свойства. В 1921 году за это объяснение он получил Нобелевскую премию.

Давайте теперь вернемся к эффекту Комптона. Он получил свое название от имени американского физика Артура Холли Комптона. Комптон изучал рассеяние рентгеновских лучей. Полученные им результаты не соответствовали волновой природе света в то время. Для того чтобы правильно объяснить полученные результаты, Комптон, как и Эйнштейн, должен был предположить, что свет состоит из потока частиц. В 1923 году физик опубликовал работу, описывающую новый эффект, и очень скоро, в 1927 году, он получил Нобелевскую премию за свои исследования! Как видите, в то время новая, зарождающаяся отрасль физики (сейчас она называется современной физикой) была полем многих захватывающих и новаторских научных исследований.

Эффект Комптона делает известной как волновую, так и корпускулярную природу света. Этот эффект связан с взаимодействием рентгеновских и гамма-лучей с электронами. В результате этого взаимодействия электрон приобретает определенную скорость и выбрасывается, а излучение меняет направление и длину волны. Когда излучение, особенно свет, меняет направление, мы говорим, что оно рассеяно. Схема явления Комптона показана на рис. 2.

Схема Комптона

Рис. 2. Схема эффекта Комптона

В явлении Комптона излучение с длиной волны λf падает на свободный или слабо связанный электрон. Что это значит? «Свободный» электрон не взаимодействует ни с какими другими объектами, в то время как «слабо связанным» электрон называется тогда, когда энергия связи электрона намного меньше энергии падающего фотона.

В результате освещения электрон приобретает определенную скорость под углом φ к первоначальному направлению распространения излучения. Излучение, в свою очередь, рассеивается под углом θ к первоначальному направлению, длина волны также изменяется, и ее новое значение составляет λf.

Формулы для расчета энергии и импульса фотона

Чтобы понять и описать, что происходит во время эффекта Комптона, давайте рассматривать рентгеновские лучи (или гамма-лучи) как поток частиц. Если бы мы использовали только волновое описание, изменение длины волны излучения не могло бы быть объяснено. Такой эффект не возникает при классическом рассеянии. Если предположить, что мы рассматриваем излучение как поток фотонов, то мы имеем дело с упругим столкновением одной частицы (фотона) с другой частицей (электроном). Упругое столкновение можно рассматривать на основе известных законов механики — должны выполняться принципы сохранения импульса и энергии:

Эффект Комптона формулы

где буквы p и E обозначают импульс и энергию частицы, соответственно. Подстрочные индексы f и e означают фотон и электрон, соответственно. «Штрихованные» индексы относится к величинам после рассеяния, «нештрихованные» индексы — к величинам до рассеяния. Итак, нам удалось свести сложный вопрос современной физики к простой механике, как при столкновении бильярдных шаров!

Для справки. Упругое столкновение — столкновение, при котором импульс и энергия системы (в классической физике — кинетическая энергия) не изменяются.

Чтобы решить приведенную выше систему уравнений и определить неизвестные значения импульса и энергии после рассеяния, необходимо разложить вектор импульса на составляющие. В нашем двумерном случае мы получаем в общей сложности три уравнения: два, описывающие импульс (в горизонтальном и вертикальном направлениях), и одно, описывающее энергию:

Уравнения эффект Комптона

Что такое импульс и энергия фотона? Для их определения мы должны обратиться к двойственной природе излучения. Значение импульса фотона (частицы) связано с длиной волны света λ следующим соотношением: pf = h / λ .

где h = 6,63 * 10-34 Дж*с — постоянная Планка. Энергия фотона составляет: Ef = pf * c = h*c / λ

где c = 3 * 108 м/с — скорость света в вакууме. Вы уже видите взаимосвязь природы волн и частиц? Чтобы объяснить явление Комптона, мы должны рассматривать излучение как поток частиц, которые, подобно пулям, сталкиваются с электронами и приводят их в движение. С другой стороны, мы не можем определить энергию и импульс фотонов, не обращаясь к их волновой природе.

Формулы для расчета импульса и энергии релятивистских частиц

А каковы будут импульс и энергия электрона? В явлении Комптона отражающийся электрон может достигать очень высоких скоростей, составляющих значительную долю скорости света. Это означает, что к электрону нужно относиться релятивистски. Нельзя записать импульс и энергию электрона классическим способом, потому что масса движущегося электрона отличается от его массы покоя (и зависит от скорости). Релятивистская связь между энергией E и импульсом p следующая:

E = m0 * c4 + p2 * c2

где m0 — масса покоя. Для электрона это m0 = 9,1*10-31 кг. Далее мы будем обозначать массу покоя электрона через me. Конечно, если мы используем релятивистское выражение для движущегося электрона, то это же выражение должно быть использовано «с другой стороны уравнения» для покоящегося электрона. Когда электрон находится в состоянии покоя (до освещения), его импульс равен нулю, что означает, что мы можем выразить энергию (покоя) как: Ee = me * c2 .

В релятивистской физике мы говорим, что энергия покоя связана только с тем, что тело наделено массой. В этом смысл знаменитой формулы Эйнштейна — энергия и масса эквивалентны. Увеличение энергии тела приводит к увеличению его массы.

Анализируя рис. 2, мы видим, что отдельные компоненты импульса могут быть определены простыми тригонометрическими соотношениями. Таким образом, в конечном итоге наша система уравнений принимает вид, показанный ниже. Первое уравнение относится к горизонтальной составляющей импульса, второе — к вертикальной, а третье выражает принцип сохранения энергии.

Система уравнений эффект комптона

В типичном лабораторном эксперименте мы освещаем электроны излучением с фиксированной длиной волны λ и получаем, как правило, угол рассеяния фотона θ. Тогда неизвестные в приведенной выше системе уравнений имеют вид λ, pe и φ. Для получения окончательного выражения, описывающего эффект Комптона, эта система обычно преобразуется к форме, показанной ниже. Мы рекомендуем вам провести эти расчеты самостоятельно. В Интернете вы найдете множество советов о том, как это сделать.

Δλ = λ — λ = ( h / me * c ) * ( 1 — cos θ )

Эта форма решения позволяет нам быстро определить разность длин волн между падающим и рассеянным фотоном. Зная длину волны падающего фотона и угол рассеяния фотона θ , мы можем быстро определить длину волны рассеянного фотона. Зная длины волн, мы можем вычислить энергии обоих фотонов, а затем, исходя из принципа сохранения энергии, энергию электрона после рассеяния.

Разница Δλ = λ — λ называется комптоновским сдвигом или комптоновским смещением. Выражение λc = h / me * c ≈ 2,43 * 10-12 м называется комптоновской длиной волны.

Если выражаться образно, то можно сказать, что излучение после столкновения со свободными электронами меняет направление… и цвет — потому что меняется длина волны. Однако такое утверждение не совсем точно. Когда мы говорим о «цвете света», мы имеем в виду свет видимого диапазона, то есть с длиной волны от 400 до 700 нм. Комптоновское рассеяние, однако, не наблюдается для видимого излучения. Эффект возникает для рентгеновских и гамма-лучей, т.е. для излучения с на порядки большей энергией фотонов (или на много порядков меньшей длиной волны), чем видимый свет.

Два случая комптоновского рассеяния

Рассмотрим теперь два крайних случая комптоновского рассеяния. Первый возникает, когда угол рассеяния фотона θ = 0°. Это означает, что фотон не меняет своего направления после столкновения с электроном. Эта ситуация показана на рис. 3. Мы видим, что:

λ — λ = ( h / me * c ) * (1 — 1) = 0 → λ = λ

Длина волны фотона до и после столкновения одинакова. Это означает, что фотон не передает импульс или энергию электрону. Поэтому электрон остается в состоянии покоя, а фотон продолжает двигаться без рассеяния.

Случай отсутствия рассеяния в явлении Комптона

Рис. 3. Случай «отсутствия» рассеяния в явлении Комптона

Другой крайний случай — когда θ = 180°. Образно говоря, фотон «отскакивает» от электрона и начинает двигаться в прямо противоположном направлении. Такая ситуация называется обратным рассеянием фотона. Тогда у нас есть:

λ = ( h / me * c ) * (1 + 1) = 2h / me * c

При обратном рассеянии разность длин волн фотона принимает максимально возможное значение. Это означает, что фотон передает электрону максимально возможную энергию и импульс. Эта ситуация показана на рис. 4.

Случай обратного рассеяния в явлении Комптона

Рис. 4. Случай обратного рассеяния в явлении Комптона

Список использованной литературы

  1. Комптон А. Рассеяние рентгеновских лучей как частиц // Эйнштейновский сборник 1986—1990. — М.: Наука, 1990. — С. 398—404. — 2600 экз.
  2. Camphausen KA, Lawrence RC. «Principles of Radiation Therapy» in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management: A Multidisciplinary Approach. 11 ed. 2008.
  3. Филонович С. Р. Артур Комптон и его открытие // Эйнштейновский сборник 1986—1990. — М.: Наука, 1990. — С. 405—422. — 2600 экз.
  4. Эффект Комптона. Учебно-методическое пособие / Р.Р. Гайнов, Е.Н. Дулов, М.М. Бикчантаев // Казань: Казанский (Приволжский) федеральный университет, 2013. – 24 с.: 7 илл.

Понравилась статья? Поделить с друзьями:
  • Как найти загрузки на самсунге а30
  • Почему вареная свекла горчит как исправить
  • Как мне исправить hdd диск
  • Как найти прошлогодний снег ответ на загадку
  • Как составить барабанную установку