Как найти скорость если известно время сила

Есть снаряд 5 грамм, к нему приложили силу в 1.5Н

можно ли узнать его скорость какими-то методами?

Если да, то какие еще параметры должны быть известны?

Давайте представим, что эти параметры у нас есть. По какой формуле тогда будет высчитываться скорость движения данного тела?

бонус за лучший ответ (выдан): 5 кредитов

Никак без дополнительных параметров. Сила является причиной ускорения по второму занону Ньютона a=F/m. Но скорость в каждый момент времени находится по формуле v=v0+a*t. Поэтому, чтобы узнать скорость, требуется ещё знать её начальное значение и сколько времени с этого момента прошло.

Но если речь идёт именно о снаряде, то всё многкратно усложняется. Сила приложена к снаряду только до момента вылета снаряда из ствола и к тому же непостоянна. Сама сила изменяется пропорционально давлению пороховых газов. Кривая давления представлена на рисунке

Расчёт скорости и давления ведётся уже по баллистическим формулам, например таким:

V=(al)/(b+l); v0=(aL)/(b+L); a=(v0(b+L))/L; P=((φmba^2)/S)*(l/(b+l)^3,

где l — путь в стволе, L — длина нарезной части, a,b,φ — пороховые константы, S — площадь поперечного сечения ствола.

Но даже в рогатке возникающая сила не постоянная, а обратно пропорциональна натяжению резины, и начальная скорость будет зависеть от этой переменной силы, массы и времени выстрела. Поэтому по тем данным (только сила и масса) практически ничего не вычислишь.

система выбрала этот ответ лучшим

Kuzmi­ch291­192
[7K]

6 лет назад 

В данном случае необходимо применить 2 закон Ньютона, но не в привычной для нас форме, а в дифференциальной:

F=(p2-p1)/t, где F — сила, приложенная к телу, p1 — импульс тела до приложения силы, p2 — импульс тела после приложения силы, t — время приложения силы.

То есть, результирующее значение силы, приложенное к телу есть изменение импульса этого тела за единицу времени. Именно в таком виде Ньютон вывел свой закон.

Применим данную формулу.

Дано:

m=5*10^(-3) кг

F=1.5 H

Найти:

v-?

Как я понимаю, начальная скорость снаряда равна 0, следовательно второй закон Ньютона примет вид:

F*t=p

Расписав импульс и выразив скорость, имеем:

F*t=m*v

v=F*t/m

Из полученной формулы видно, что для нахождения скорости нам необходимо знать время. Действительно, чем больше времени сила будет прилагаться к телу, тем больше она тело разгонит (или же затормозит, если направление силы и направление скорости разнонаправленны).

Предположим, что t=1 с.

Тогда

v=1.5*1/5*10^(-3)

v=1500/5

v=300 (м/с).

Таким образом, для нахождения скорости тела, в данном случае, мы должны знать силу, действующую на тело, массу тела, и время действия силы на тело (при условии, что тело находилось в состоянии покоя).

SVFE4­8
[7.4K]

4 месяца назад 

Можно рассчитать скорость снаряда, используя силу и массу снаряда, но необходима дополнительная информация. Формула для расчета скорости:

Скорость = сила/масса

В этом случае сила равна 1,5 Н, а масса равна 5 граммам. Чтобы использовать эту формулу, массу необходимо перевести в килограммы.

1 грамм = 0,001 килограмма

5 грамм = 5 * 0,001 = 0,005 килограмма

Таким образом, скорость снаряда можно рассчитать как:

Скорость = 1,5 Н / 0,005 кг = 300 м/с

Важно отметить, что этот расчет дает только начальную скорость снаряда в момент приложения силы. Чтобы рассчитать конечную скорость, необходимо учитывать другие факторы, такие как сопротивление воздуха, гравитация и угол запуска.

Для точного расчета конечной скорости снаряда необходимо знать следующие параметры:

угол запуска

начальная скорость

масса снаряда

сопротивление воздуха

гравитационное ускорение

время полета

Когда эти параметры известны, уравнения движения можно использовать для расчета конечной скорости.

Стоит отметить, что это упрощенный пример, и в реальных сценариях сопротивление воздуха и угол запуска являются критическими факторами, влияющими на конечную скорость снаряда.

dmitr­iy861
[9.1K]

6 лет назад 

Пусть меня кто то поправит если ошибаюсь, но по моему тут второй закон Ньютона. В общем виде это частное от силы разделённой на массу!

Rafai­l
[136K]

6 лет назад 

Если к телу массой 5 г приложить (и не убирать) силу в 1,5 Н, то она, согласно второму закону Ньютона, придаст ему ускорение а=F/m=1,5/0,005=300 м/c^2. Под действием этого ускорения тело начнёт увеличивать скорость по закону v=a*t, где t — время действия силы. Так что, зная формулу Вы можете рассчитать скорость тела в любой момент времени.

Михаи­л Белод­едов
[26.2K]

6 лет назад 

Через секунду — 1,5/0,005 = 300 м/с. Через 2 секунды — 600 м/с. Через 3 секунды — 900 м/с. Через 4 секунды — 1,2 км/с. Через 5 секунд — 1,5 км/с. Через 10 секунд — 3 км/с. Через 20 секунд — 6 км/с. А через полминуты скорость достигнет 8 км/с и, если снаряд к тому времени не воткнётся в Землю, он начнёт удаляться от поверхности Земли.

Если рассматривать данный вопрос с точки зрения школьных знания то F=m*a , F — сила, m — масса, a — ускорение. Что бы найти скорость в какой либо момент времени, достаточно ускорение умножить на время. Если же учитывать, что есть сила трения, то что сила прилагалась не равномерно и не постоянно, то тут нужны дополнительные данные.

Чосик
[208K]

более года назад 

Мы знаем, что сила равна произведению массы объекта на ускорение. Мы знаем приложенную силу и массу объекта.

F= 1.5Н

m = 5 = 0.005 кг

F = m*a

a = F/m

a = 1.5/0.005 = 300 м/с.

Теперь необходимо связать скорость и ускорение.

v=v0+a*t

То есть, чтобы узнать скорость движения в определенный момент, необходимо знать время.

владс­андро­вич
[766K]

более года назад 

Скорость эта такая величина, которая в физике обозначается буковкой «V». Если же вы хотите ее найти, то нужно использовать правильную формулу и этой правильной формулой в конечном итоге является v = Ft/m.

Буква F в ней обозначает силу, а  t — время, а что касается буквы  m, то она массу.  

Aleks­andr6­052
[84K]

6 лет назад 

Скорость можно определить по формуле: v = Ft/m.

Здесь v — скорость, F — сила, t — время, m — масса.

То есть, чтобы успешно решить поставленную задачку нам недостаёт ещё одной физической величины, а именно — времени.

Знаете ответ?

Здесь, в этой статье, мы обсудим, как найти конечную скорость с ускорением и расстоянием и как на нее влияют импульс и сила. 

Мы рассчитываем конечную скорость объекта, используя различные уравнения, содержащие силу, массу, время, расстояние и импульс. Для каждой переменной мы можем использовать разные уравнения для определения конечной скорости. 

Например, чтобы найти конечную скорость, используя импульс объекта, можно использовать уравнение импульса, котороеР = мв где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит скорость, импульс и массу, поэтому оно может помочь в вычислении конечной скорости, когда известны масса и импульс. Точно так же, если масса дана без импульса, то мы можем использовать математическую форму второго закона движения Ньютона, то есть F = ma, где m — масса объекта, F — передняя работа над объектом, а a — ускорение объекта. Наконец, для времени и расстояния кинематические уравнения движения являются лучшими инструментами для определения скорости кого-либо или объекта.

как найти конечную скорость через ускорение и расстояние

Изображение предоставлено: Быстрая коза
График силы, импульса, ускорения и скорости

Как найти конечную скорость через силу, массу и время?

Как я уже упоминал, математическая форма второго закона движения Ньютона для нахождения конечной скорости с использованием силы, массы и времени. Математическая форма второго закона движения F = ма, где m — масса объекта, F — передняя работа над объектом, а — ускорение объекта. 

Уравнение содержит непосредственно силу, массу и ускорение. 

Как мы знаем, ускорение — это «скорость изменения скорости по отношению ко времени».

Итак, по этой формуле мы можем найти скорость, зная массу, силу и время. Если тело движется с переменной скоростью, что влечет за собой изменение скорости и/или направления, считается, что изменение происходит в этом движении.

Второй закон движения Ньютона, который подразумевает, как сила производит корректировку в движении, касается этого движения. Второй закон движения Ньютона иллюстрирует числовую связь между силой, массой и ускорением и используется для количественной оценки того, что происходит в сценариях, включающих силы и движение. Второй закон чаще всего формулируется численно как F = ма

Как найти конечную скорость через расстояние и время?

Используя первое, второе и третье уравнения движения.

Первое кинематическое уравнение v=u+at представляет собой комбинацию конечной скорости, начальной скорости, ускорения, расстояния и времени. То, какое уравнение следует использовать, будет зависеть от конкретного случая. Иногда можно использовать более одного уравнения.  

Чтобы найти конечную скорость, когда известны начальная скорость и расстояние, третье уравнение движения, которое v2=u2+ 2к может быть использован. И если время дано с расстоянием, и нам нужно вычислить конечную скорость, то, во-первых, мы можем узнать начальную скорость, используя второе уравнение движения, которое s=ut+1/2 в2 а затем, используя третье уравнение движения, которое v2 = ты2+ 2к, мы можем рассчитать конечную скорость объекта. 

Вычисление начальной и конечной скорости является частью нескольких физических формулировок и уравнений. В моделях для сохранение импульса или законы движения, разрыв между начальной и конечной скоростью говорит вам о скорости предмета до и после, что угодно происходит. Это может быть сила, приложенная к предмету, удар или что-то еще, что изменяет траекторию и скорость объекта.

Соответствующее уравнение движения можно использовать для вычисления конечной скорости объекта, испытывающего постоянное ускорение. Чтобы связать их друг с другом, эти уравнения требуют сочетания расстояния, начальной скорости, конечной скорости, ускорения и времени.

Как найти конечную скорость по импульсу?

Используя уравнение импульс то есть P = mv], где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит массу объекта и скорость объекта. Выражение, подобное приведенному выше, можно рассматривать как технику решения вопросов. Можно определить последнюю переменную в формуле, имея целочисленные данные всех переменных, кроме одной, в формулах.

Точно так же выражение можно рассматривать как фразу, объясняющую значимое отношение между двумя переменными. В выражении две переменные можно рассматривать либо как линейно коррелированные, либо как обратно связанные. И масса, и скорость прямо пропорциональны импульсу. При неизменной скорости увеличение массы приведет к увеличению импульса, переносимого предметом.

Соответственно, увеличение скорости (при неизменной массе) приведет к увеличению мамы предмета.энтум. Мы можем предсказать, насколько сильно изменение одной переменной повлияет на другую, рассматривая и вычисляя пропорционально количества. Импульс — это элемент вектора, который имеет величину (математическую величину), а также направление. Вектор импульса обычно движется по той же траектории, что и вектор скорости.

С импульс — это вектор, сложение двух векторов импульса выполняется так же, как сложение любых двух других векторов. Когда два вектора направлены в разные стороны, один из них считается отрицательным, а другой — положительным. В большинстве вопросов этой группы задач для эффективного решения необходимо учитывать векторный характер импульса.

Как найти конечную скорость после столкновения?

Использование выражения для упругих и неупругих столкновений.

Импульс P, то есть P = mv, где m — масса объекта, P — импульс объекта, а v — скорость объекта.

По закону сохранения импульса: «Импульс до столкновение = импульс после столкновение»

Выражение для упругих столкновений

Формула для расчета конечной скорости данного объекта

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

Формула для расчета конечной скорости сталкивающегося объекта

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (vi)

Выражение для неупругого столкновения

m1v1+m2v2=m1v1f+m2v2f

где m1 — масса объекта до столкновения, v1 — скорость данного объекта до столкновения, m2  — масса сталкивающегося объекта до столкновения, v2 – скорость сталкивающегося объекта до столкновения, а v1f – конечная скорость данного объекта, а v2f — конечная скорость сталкивающегося объекта. 

Эластичный или неэластичный столкновения возможны. Оба импульс и кинетическая энергия сохраняются при упругих столкновениях, а кинетическая энергия не сохраняется при неупругих столкновениях. Неупругие столкновения происходят, когда кинетическая энергия не сохраняется, например, при столкновении транспортных средств. Сохранение импульс относится к неупругим столкновениям.

В результате импульс до удара равен импульсу после контакта. Слово «импульс» соответствует количеству переменных, содержащихся в движущемся предмете. Произведение массы на скорость — вот как это называется. а его единицы — кгм/с.

Можно эффективно определить скорость транспортного средства после столкновения, используя приведенную ниже формулу, если мы знаем начальную массу и скорость транспортного средства и сталкивающегося объекта.

Когда частицы сталкиваются в неупругое столкновение, они не действуют как упругие во время столкновения. Это указывает на то, что частицы не деформируются упруго в месте столкновения; вместо этого они могут необратимо деформироваться, что приводит к рассеиванию энергии во время столкновения. Это отличается от упругого столкновения, при котором частицы упруго изгибаются в месте удара, ведя себя как безупречно упругие пружины, поглощая и высвобождая равное количество энергии.   

Как найти конечную скорость без учета времени?

С помощью третьего уравнения движения. 

Третье уравнение движения не содержит времени, поэтому оно не зависит от времени.  

Третье уравнение движения, которое есть v2=u2+2asis комбинация начальной скорости, конечной скорости, ускорения и расстояния. Таким образом, мы можем легко вычислить конечную скорость, когда известны другие переменные. И ему не нужно время, чтобы быть Познанным. 

Если положение объекта меняется относительно стандартного местоположения, считается, что он находится в движении относительно этой стандартной точки, а если нет, то считается, что он находится в неподвижном состоянии относительно этой точки. Мы создаем несколько классических формул, относящихся к определениям расстояния, смещения, скорости, скорости и ускорения объекта, с помощью формул, называемых уравнениями движения для хорошего понимания или взаимодействия с различными условиями покоя и движения.  

Как найти конечную скорость без ускорения? 

Как мы обсуждали ранее, приведенная ниже формула содержит начальную скорость объекта и сталкивающегося объекта до столкновения, а также массу объекта и сталкивающегося объекта до столкновения и конечную скорость. Итак, отсюда легко вычислить конечную энергию объекта, не зная его ускорения.  

Учитывая м1 — масса объекта до столкновения, v1 — скорость данного объекта до столкновения, м2  — масса сталкивающегося объекта до столкновения, v2 — скорость сталкивающегося объекта до столкновения, а v1f — конечная скорость данного объекта и v2f — конечная скорость сталкивающегося объекта. 

Для упругого столкновения;  

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (v1i) 

Для неупругого столкновения; 

m1v1+m2v2=m1v1f+m2v2f

Если у нас есть исходная масса и скорость предоставленного объекта и сталкивающегося предмета, мы можем использовать приведенную ниже формулу для вычисления скорости предмета после столкновения. 

Как найти конечную скорость без начальной скорости?

Если начальная скорость объекта не указана, то можно считать, что изначально объект находился в состоянии покоя.

Таким образом, мы можем рассчитать конечную скорость по различным формулам, таким как кинематические уравнения, приравняв начальную скорость к нулю. Также мы можем найти скорость объекта по числовой форме второго закона движения, если известна масса объекта. Другой способ найти скорость — использовать формулу импульса, если известны масса и импульс объекта.  

Примеры 

Пример 1 

Допустим, автомобиль массой 100 кг движется со скоростью 80 м/с. Другой автомобиль массой 120 кг движется со скоростью 100 м/с. Они сталкиваются друг с другом. Конечная скорость первого автомобиля после столкновения равна 100 м/с. Какой будет конечная скорость второго автомобиля после столкновения? 

дорожный знак-дорожный-знак-щит-6771.png

Изображение предоставлено: Быстрая коза
Столкнулись две машины

Решения

В этом случае масса m1 то есть масса первого автомобиля до столкновения, скорость v1 первого автомобиля перед столкновением, масса m2 второго автомобиля до столкновения, скорость v2 второго автомобиля перед столкновением и конечной скоростью v1f первого автомобиля после столкновения известны. 

Данный; 

m1= 100 кг

v1= 80 м/см2= 120 кг

v2= 100 м / с

v1f = 100 м / с

Используя формулу упругого столкновения, мы можем вычислить конечную скорость второго автомобиля после столкновения. 

v2f=m2-m1/m1+m2 (vf)+m1-m2/m1+m2 (vi)  

v2f=(120- 100/120+ 100)100+(120(100+20))80

v2f= (0.090) 100 + 43.6363

v2f= 52.64 м / с

Таким образом, конечная скорость второго автомобиля после столкновения равна v.2f= 52.64 м / с.

Пример 2  

Автомобиль начал двигаться с начальной скоростью 30 м/с и преодолел расстояние 5 км. Автомобиль достигает ускорения a=10 м/с.2. Какой должна быть конечная скорость автомобиля и сколько времени это займет? 

В этом примере известна начальная скорость автомобиля, ускорение автомобиля и перемещение автомобиля, а конечная скорость автомобиля и время, затраченное автомобилем, задаются.  

Для нахождения конечной скорости мы будем использовать третье уравнение движения, которое представляет собой комбинацию начальной скорости, конечной скорости, смещения и ускорения. 

Данный; 

Начальная скорость, u = 30 м / с

Ускорение, а=10м/с2

Водоизмещение, с=5000м

Для нахождения конечной скорости мы будем использовать третье уравнение движения, то есть; 

v2 = u2 + 2as

где v — конечная скорость объекта, u — начальная скорость объекта, а — ускорение объекта при смещении объекта.   

Ввод заданных значений в приведенную выше формулу 

v2= 30 м / с2+2(10м2s2)(5000м)

v2= 900 m2s2+(20м/s2)(5000м)

v2= 900 m2s2+100000m2/s2

v2= 100900 m2/s2

v = 317.645 м / с

Значит, конечная скорость автомобиля будет равна 317.645 м/с.

Теперь, чтобы найти время, необходимое для покрытия заданного перемещения, мы будем использовать первое уравнение движения, которое имеет вид v=u+at. 

Подставляя заданные значения в это уравнение, мы получим 

317.645 м/с=30 м/с+ 10 м/с2t

317.645 м/с-30 м/с= 10м/с2t

287.645 м/с = 10м/с2t

t=287.645 м/с / 10 м/с}

t = 28.7 с

Таким образом, время, которое потребуется машине, чтобы добраться до конечной точки, составляет 28.7 секунды.  

Часто задаваемые вопросы | Часто задаваемые вопросы  

В. С точки зрения физики, что такое импульс? 

Импульс — это двумерная величина, которая включает в себя как величину, так и направление. Поскольку у импульса есть направление, его можно использовать для прогнозирования направления и скорости движения сталкивающихся тел. 

В. Какую роль играет импульс в движении? 

Когда два тела сталкиваются друг с другом, тело, имеющее большую скорость, что приводит к большему импульсу, передает большую мощность телу, имеющему меньшую скорость или движущемуся медленнее. 

Тело с малой стартовой скоростью должно сместиться с большей скоростью и импульсом по сравнению с телом с большей скоростью при старте после столкновения. 

В. Каковы подходы к сохранению импульса? 

Переменная, называемая импульсом, которая определяет движение в замкнутом наборе компонентов и никогда не меняется в соответствии с принципом сохранения импульса; то есть «общий импульс системы остается постоянным». 

Импульс эквивалентен импульсу, необходимому для остановки предмета за заданный промежуток времени, когда его масса умножается на его скорость. Общий импульс набора сущностей равен сумме их различных импульсов.

Однако, поскольку импульс — это вектор, который включает в себя как направление, так и амплитуда движения, импульсы объектов, движущихся в противоположных направлениях, могут компенсироваться, давая общую сумму нулю. 

Второй закон Ньютона это закон который был выведен в результате проведения опытов Ньютоном.

В результате чего были выведена новая формула второго закона ньютона а = F /m

Что такое второй закон Ньютона, масса и вес тела

Второй закон НьютонаОбобщая результаты опытов Галилея по падению тяжелых тел, астрономические законы Кеплера о движении планет, данные собственных исследований.

Ньютон сформулировал второй закон динамики, количественно связывающий изменение движения тела с силами, вызывающими это изменение.

Чтобы исследовать зависимость между силой и ускорением количественно, рассмотрим некоторые опыты.

Ускорение от величины силы

I. Рассмотрим, как зависит ускорение одного и того же тела от величины силы, действующей на это тело. Предположим, что к тележке прикреплен динамометр, по показаниям которого измеряют силу.

Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле s = (at2) : 2 определим ускорение a.

Изменяя величину силы, проделаем опыт несколько раз. Результаты измерения покажут, что ускорение прямо пропорционально силе, действующей на тележку

a1 : a2 = F1 : F2

ИЛИ

а ~ F.

Отношение силы, действующей на тело, к ускорению есть величина постоянная, которую обозначим mЭто отношение назовем массой тела.

Зависимость ускорения от массы

II. Установим зависимость ускорения тела от его массы. Для этого будем действовать на тележку какой-нибудь постоянной силой, изменяя массу (помещая различные грузы на тележку).

Ускорения тележки будем определять так же, как и в первом опыте. Опыт покажет, что ускорение тележки обратно пропорционально массе, то есть

(a1/a2) = (m2/m1), или а ~ (1/m)

Обобщая результаты опытов, можно заметить, что ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе данного тела (второй закон ньютона формулировка).

Этот вывод называется вторым законом Ньютона. Математически этот закон можно записать так (формула второго закона ньютона):

а = F /m

где а — ускорение, m—масса тела, F — результирующая всех сил, приложенных к телу. В частном случае на тело может действовать и одна сила.

Результирующая сила равна векторной сумме всех сил, приложенных к телу;

= mа.

Следовательно, сила равна произведению массы на ускорение.

Второй закон динамики можно записать в иной более удобной форме. Учитывая, что ускорение

а = (υ2 — υ1) / (t2 — t1)

подставим это выражение в уравнение второго закона Ньютона. Получим

F = ma = (2 — 1) / (t2 — t1) = (∆(mυ))/t

Что такое импульс

Импульсом, или количеством движения, называется вектор, равный произведению массы тела на его скорость (тυ).

Тогда основной закон динамики можно сформулировать следующим образом: сила равна изменению импульса в единицу времени (второй закон ньютона в импульсной форме)

F(∆(mυ))/t

Это и есть наиболее общая формулировка второго закона Ньютона. Массу тела Ньютон определил как количество вещества, содержащегося в данной теле. Это определение несовершенно.

Из второго закона Ньютона вытекает следующее определение массы. Из равенства 

a1/a2m2/m1 

видно, что чем больше масса тела, тем меньше ускорение получает тело, то есть тем труднее изменить скорость этого тела и наоборот.

Следовательно, чем больше масса тела, тем в большей степени это тело способно сохранять скорость неизменной, то есть больше инертности. Тогда можно сказать, что масса есть мера инертности тела.

Эйнштейн доказал, что масса тела остается постоянной только при определенных условиях. В зависимости от скорости движения тела его масса изменяется по такому закону:

Масса тела

где m — масса тела, движущегося со скоростью υ; m0 — масса этого же тела, находящегося в покое; с = 3 • 108м/с скорость света в вакууме.

Проанализируем данное уравнение:

  1. Если υ«с, то величиной —, как очень малой, можно пренебречь и m = m0, то есть при скоростях движения, много меньших скорости света, масса тела не зависит от скорости движения;
  2. Если υ  с, то υ22 ≈ 1, тогда т = m0/0— отсюда вытекает, что m → ∞.

По мере увеличения скорости тела для его дальнейшего ускорения нужно будет прикладывать все увеличивающиеся силы.

Но бесконечно больших сил, которые потребовались бы для сообщения телу скорости, равной скорости света, в природе не существует.

Таким образом, заставить рассматриваемое тело двигаться со скоростью света принципиально невозможно.

Со скоростями, близкими к скорости света, современная физика встречается: так разгоняются, например, элементарные частицы в ускорителях.

Масса тела с ростом скорости

Масса тела с ростом скорости увеличивается, но количество вещества остается неизменным, возрастает инертность. Поэтому массу нельзя путать с количеством вещества.

Покажем связь между силой тяжести, массой тела и ускорением свободного падения. Любое тело, поднятое над Землей и ничем не поддерживаемое, падает снова на Землю.

Это происходит вследствие того, что между телом и Землей существует притяжение (этот вопрос более подробно рассмотрим позже). 

Сила, с которой тело притягивается к Земле, называется силой тяжести. Падение тел в безвоздушном пространстве под действием силы тяжести (при υ0 = 0) называется свободным падением. 

Отметим, что для тел, покоящихся в поле сил тяготения, сила тяжести равна весу тела Р.

Весом тела называется сила, с которой тело давит на горизонтальную подставку, неподвижную относительно Земли, или действует на подвес.

Если Р— сила тяжести, m — масса, g — ускорение силы тяжести (в данной точке Земли оно для всех тел одинаковой среднее его значение равно 9,8м2), то применяя второй закон динамики, получим

P = mg.

Выразим с помощью этой формулы веса двух различных тел. Тогда:

P1 = m1g и Р2 = m2g. Разделив почленно эти два равенства, будем иметь

P1/P2 = m1/m2

Следовательно, веса тел в данной точке земной поверхности прямо пропорциональны их массам.

Задачи на второй закон ньютона

1. Какая сила F действует на автомобиль массой кгm=1000 кг, если он движется с ускорением мсa=1 м/с2.

Дано:
m = 1000 кг
a = 1 м/с2

Найти: F — ?

Решение:

Запишем второй закон Ньютона :

= mа.

= 1000 кг • 1 м/с2 = 1000 Н

Ответ: 1000 Н.

2. На мяч действует сила F = 70Н, масса мяча m = 0,2 кг, найти его ускорение a.

Дано:

m = 0,2 кг,

F = 70Н

Найти:

a — ?

Решение:

Запишем второй закон Ньютона :

= mа.

Следовательно а = / m.

а = 70Н : 0,2 кг = 350 м/с.

Ответ: а = 350 м/с.


Статья на тему Второй закон Ньютона

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

Содержание:

Движение и силы:

Вы уже знаете, каким сложным является хаотическое движение молекул. В повседневной жизни мы встречаемся с более простыми видами движения. Движутся люди, автомобили (рис. 76), самолеты, Солнце, Луна и другие тела. Окружающий нас мир немыслим без движения. Характеристики многих движений можно легко определить и описать с помощью несложных математических формул.

Движение и силы в физике - виды, формулы и определения с примерами

Как установить, движется или нет данное физическое тело? Рассмотрим пример. Вы стоите на остановке и вдали видите автобус (рис. 77). Движется он или нет? Несмотря на то что вращения колес не видно, вы уверенно определяете, что автобус движется. Изменяется с течением времени его положение относительно киоска, деревьев, домов, неподвижных относительно поверхности Земли. Точно так же мы судим о движении облаков и птиц в небе, рыб в аквариуме, футболистов на поле, поездов и любых других тел.

Движение и силы в физике - виды, формулы и определения с примерами

Изменение положения тела в пространстве относительно других тел с течением времени называется механическим движением. Следовательно, движение происходит в пространстве и во времени.

Рассмотрим еще один пример. Вы едете в электричке (рис. 78). Можно ли сказать, что, сидя в ней, вы находитесь в состоянии покоя? И да, и нет. Да — потому, что вы не движетесь по электричке, т. е. с течением времени ваше положение относительно электрички не меняется. Нет — потому, что вместе с электричкой вы движетесь относительно поверхности Земли. А если электричка остановилась? Теперь вы находитесь в состоянии покоя относительно электрички и поверхности Земли, но движетесь вместе с Землей вокруг Солнца (рис. 79), перемещаясь за каждую секунду примерно на 30 км относительно звезд.

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Таким образом, покой и движение относительны. Относительны и характеристики движения. Это легко увидеть на опыте. Укрепите светоотражатель (фликер) на ободе колеса вашего велосипеда. Какова будет кривая, которую опишет фликер (ее называют траекторией) при движении колеса? Относительно вас или вашего друга, едущего рядом с вами, фликер будет двигаться по окружности. А стоящий человек, мимо которого вы проезжаете, увидит, что фликер описывает не окружность, а сложную кривую (рис. 80). Следовательно, траектория тоже относительна.

Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. Механическое движение — это изменение положения тела в пространстве относительно другого тела или тел с течением времени.
  2. Механическое движение и покой относительны.

Траектория, путь и время

Для решения научных и практических задач необходимо уметь описывать механическое движение тела или его частей, определять характеристики движения и устанавливать связи между ними.

Какими физическими величинами описывается механическое движение?

Проведите мелом по доске. Мел при движении описывает линию, которая хорошо видна на доске.

В голубом небе часто отчетливо видны белые следы позади летящих самолетов (рис. 81). Быстро мчащийся катер оставляет на поверхности воды пенистую дорожку (рис. 82).

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Линия, которую описывает тело при своем движении, называется траекторией.

Мы привели примеры движений, когда траектория — видимая линия. Но чаще всего она невидима. Однако траекторию всегда можно изобразить, если отметить точками положения движущегося тела в различные моменты времени, а затем соединить эти точки. Несложно, например, представить траекторию летящего ядра (рис. 83).

Движение и силы в физике - виды, формулы и определения с примерами

Если траектория движения — прямая линия, движение называется прямолинейным. Например, такова траектория падающего с дерева яблока (рис. 84). Если же траектория — кривая линия, то движение называется криволинейным (см. рис. 83).

Движение и силы в физике - виды, формулы и определения с примерами

Длина той части траектории, которую описывает тело за данный промежуток времени, называется путем, пройденным телом за этот промежуток времени.

Обозначается путь обычно буквой s. Путь это физическая величина. Его можно измерить или вычислить по формуле. Единицей пути в СИ является 1 метр (1 м). На практике путь часто измеряют в кратных единицах — километрах — или в дольных — сантиметрах, миллиметрах, микрометрах.

А что такое промежуток времени? Допустим, вы отправляетесь в путешествие на поезде «Минск — Москва». Поставим вопрос: за какой промежуток времени поезд пройдет путь s = 212 км от Минска до Орши? Ответить на этот вопрос очень легко. Во-первых, нужно знать момент времени, когда поезд отправляется из Минска. Обозначим его буквой t с индексом 1, т. е. Движение и силы в физике - виды, формулы и определения с примерами Во-вторых, нужно знать момент времени, когда поезд прибывает в Оршу. Обозначим его Движение и силы в физике - виды, формулы и определения с примерами Промежуток времени, за который поезд проходит путь от Минска до Орши, равен:

Движение и силы в физике - виды, формулы и определения с примерами

(Движение и силы в физике - виды, формулы и определения с примерами — греч. «дельта» — знак, обозначающий в математике и физике изменение величины, т. е. разность ее конечного и начального значений). Так, если в нашем примере Движение и силы в физике - виды, формулы и определения с примерами = 20 ч 10 мин, Движение и силы в физике - виды, формулы и определения с примерами = 23 ч 15 мин, то Движение и силы в физике - виды, формулы и определения с примерами = 3 ч 5 мин.

Для краткости вместо «промежуток времени» будем говорить «время».

Единицей времени в СИ является 1 секунда (1 с). Иногда удобнее использовать кратные единицы времени: минуту (мин) и час (ч). Существуют и такие единицы времени, как сутки (сут), год. Вы, конечно, знаете, что одни сутки равны 24 ч, 1 год равен 365 (366) сут.

Для измерения времени служат различные Рис. 87 приборы, например метроном (рис. 85), часы (рис. 86), секундомер (рис. 87).

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Для практических целей полезно научиться отсчитывать про себя секунды, произнося числа через равные интервалы времени.

При прохождении лечебных процедур иногда необходимо фиксировать определенный промежуток времени, например 1 мин или 5 мин. В таких случаях удобно использовать песочные часы (рис. 88).

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Для измерения пройденного пути в автомобилях имеется специальный прибор — одометр (от греч. «дорога» и «мера») (см. рис.). Одометр включает:

  • датчик, фиксирующий обороты колеса;
  • счетчик, подсчитывающий обороты;
  • индикатор, фиксирующий путь, который проехал автомобиль.

Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. Траектория — линия, которую описывает тело при своем движении.
  2. Если траектория — прямая линия, то движение называется прямолинейным, если траектория — кривая линия, то движение криволинейное.
  3. Путь — длина той части траектории, которую описывает тело за данный промежуток времени.

Равномерное движение и скорость

Среди всего разнообразия движений тел наиболее просто описывается равномерное прямолинейное движение. Что представляет собой это движение? Как его охарактеризовать?

Рассмотрим пример. Девочка на санках спускается с горки. Понаблюдаем за движением нескольких точек, например А, B, С (рис. 89). Эти точки движутся совершенно одинаково, описывая равные траектории. Движение, при котором все точки тела описывают одинаковые по форме и равные по длине траектории, называется поступательным. А если тело движется поступательно, нужно ли изучать движение всего тела или достаточно изучить движение только одной его точки? Рис. 90 Ведь все точки (рис. 89, 90) движутся совершенно одинаково. В данном учебном пособии мы будем изучать движение тела, не рассматривая его форму, размеры, т. е. будем моделировать тело точкой.

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Как определить, какой путь пройдет тело при движении за данный промежуток времени? Пусть тележка (рис. 91) движется прямолинейно. Будем отмечать ее положения, точнее положения точки A, через равные промежутки времени. Это можно сделать, установив на тележке капельницу с вытекающими через равные промежутки времени, например через 2 с, каплями. Определим пути, проходимые тележкой за Движение и силы в физике - виды, формулы и определения с примерами = 2 с на первом, втором, третьем и последующих участках движения.

Движение и силы в физике - виды, формулы и определения с примерами

Подобрав груз, можно достичь того, что пути, пройденные тележкой за равные промежутки времени Движение и силы в физике - виды, формулы и определения с примерами окажутся равными Движение и силы в физике - виды, формулы и определения с примерами Если уменьшить промежутки времени, то во столько же раз уменьшатся и проходимые пути.

Движение, при котором тело за любые равные промежутки времени проходит равные пути, называется равномерным.

Найдем отношения путей к соответствующим промежуткам времени:

Движение и силы в физике - виды, формулы и определения с примерами

Величина Движение и силы в физике - виды, формулы и определения с примерами новая физическая величина, называемая скоростью. Обозначается скорость буквой Движение и силы в физике - виды, формулы и определения с примерами

Тогда для равномерного прямолинейного движения можно записать формулу:

Движение и силы в физике - виды, формулы и определения с примерами

Из формулы (1) следует, что скорость равномерного прямолинейного движения есть физическая величина, равная отношению пути, пройденного телом, к промежутку времени.

Из формулы (1) легко найти путь, пройденный за любой промежуток времени, и промежуток времени:

Движение и силы в физике - виды, формулы и определения с примерами

На примере с капельницей вы убедились, что при равномерном прямолинейном движении скорость является постоянной величиной.

При равномерном прямолинейном движении с увеличением промежутка времени увеличивается путь (рис. 92), но скорость остается постоянной.

Движение и силы в физике - виды, формулы и определения с примерами

Значит, скорость является характеристикой движения. Теперь можно дать еще одно определение равномерного прямолинейного движения, используя его характеристику — скорость: равномерное прямолинейное движение — это движение но прямой с постоянной скоростью.

Единицей скорости в СИ является 1 метр в секунду Движение и силы в физике - виды, формулы и определения с примерами На практике часто используют другие единицы. Например, скорость обычных транспортных средств (автобуса, поезда, самолета и др.) удобно выражать в километрах в час Движение и силы в физике - виды, формулы и определения с примерами Скорость космических ракет, спутников (рис. 93) выражают в километрах в секунду Движение и силы в физике - виды, формулы и определения с примерами При решении задач, как правило, все физические величины выражают в основных единицах СИ.

Движение и силы в физике - виды, формулы и определения с примерами

Пусть автомобиль движется но шоссе со скоростью Движение и силы в физике - виды, формулы и определения с примерами Выразим эту скорость в метрах в секунду Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Скорость движения пешехода Движение и силы в физике - виды, формулы и определения с примерами Выразите ее самостоятельно в метрах в секунду Движение и силы в физике - виды, формулы и определения с примерами

Максимальная скорость движения в природе — скорость распространения света в пустоте (рис. 94).

Движение и силы в физике - виды, формулы и определения с примерами

Она равна Движение и силы в физике - виды, формулы и определения с примерамиДвижение и силы в физике - виды, формулы и определения с примерами Вас не удивило огромное значение этой скорости? Сравните ее со скоростью звука в воздухе — Движение и силы в физике - виды, формулы и определения с примерамиТеперь легко объяснить, почему гром вы слышите позже, чем видите молнию, хотя молния и гром возникают практически одновременно.

Из формулы Движение и силы в физике - виды, формулы и определения с примерами следует, что для нахождения скорости нужно знать путь и промежуток времени, за который этот путь пройден. Но люди изобрели и широко применяют приборы, которые непосредственно показывают скорость, например, стрелкой на циферблате. Такие приборы называются спидометрами (рис. 95). Если скорость движения автомобиля равна Движение и силы в физике - виды, формулы и определения с примерами а самолета — Движение и силы в физике - виды, формулы и определения с примерами то за одно и то же время самолет преодолеет в 10 раз больший путь, а это значит, что самолет движется в 10 раз быстрее автомобиля.

Таким образом, скорость характеризует быстроту движения, т. е. показывает, как быстро тело меняет свое положение в пространстве относительно других тел.

Главные выводы:

  1. Скорость — количественная характеристика быстроты движения.
  2. Определить скорость движения можно, разделив пройденный путь на затраченный промежуток времени.
  3. Если скорость постоянна, то движение равномерное.

Графики пути и скорости при равномерном прямолинейном движении

Можно ли выразить связь пути s и времени t не через формулы, а каким-либо другим способом? Для этого используются графики.

Поясним суть графического метода на конкретном примере. Пусть самолет движется равномерно и прямолинейно со скоростью Движение и силы в физике - виды, формулы и определения с примерами(рис. 96). Опишем движение самолета графически, т. е. построим графики зависимости пути и скорости движения самолета от времени движения.

Движение и силы в физике - виды, формулы и определения с примерами

Путь s от начального момента времени Движение и силы в физике - виды, формулы и определения с примерами до момента времени t равен Движение и силы в физике - виды, формулы и определения с примерамиНачальный момент времени Движение и силы в физике - виды, формулы и определения с примерами примем за нуль Движение и силы в физике - виды, формулы и определения с примерами Тогда формула пути упростится: Движение и силы в физике - виды, формулы и определения с примерами

Найдем значения пути для различных значений промежутка времени и занесем их в таблицу 1.

Движение и силы в физике - виды, формулы и определения с примерами

Например, если t = 3ч, то

Движение и силы в физике - виды, формулы и определения с примерами

Теперь построим график зависимости пути от времени. По оси абсцисс в определенном масштабе (например, 1 см — 1 ч) будем откладывать промежутки времени движения, а по оси ординат (в масштабе 1 см — 900 км) — путь (рис. 97).

Движение и силы в физике - виды, формулы и определения с примерами

Прямая I выражает графическую зависимость пути от времени равномерного движения самолета. Эту прямую называют графиком пути. График пути напоминает известный вам из математики график функции Движение и силы в физике - виды, формулы и определения с примерами выражающей прямую пропорциональную зависимость у от х.

Ценность графика пути в том, что он, как и соотношение Движение и силы в физике - виды, формулы и определения с примерами позволяет решить главную задачу — найти путь s, пройденный телом за произвольный промежуток времени

Например, нас интересует путь самолета за промежуток времени t = 4 ч. Для этого из точки на горизонтальной оси, соответствующей времени t = 4 ч (см. рис. 97), проводим перпендикуляр до пересечения с графиком (точка К). Из найденной точки К опускаем перпендикуляр на ось ординат и получаем ответ без вычислений. Путь s = 3600 км.

А что представляет собой график скорости? Он выражает зависимость скорости от времени. Так как скорость с течением времени не изменяется, то различным моментам времени соответствует одно и то же значение скорости. Составим таблицу 2 и построим прямую, выражающую зависимость скорости от времени, откладывая по оси абсцисс время, а по оси ординат — скорость (рис. 98).

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

График скорости равномерного прямолинейного движения — прямая, параллельная оси времени.

Прямая II изображает график скорости движения самолета. Что дает график скорости? Он не только показывает значение скорости, но и позволяет найти пройденный путь. Рассчитаем путь самолета за промежуток времени t = 2 ч. Согласно формуле Движение и силы в физике - виды, формулы и определения с примерами этот путь Движение и силы в физике - виды, формулы и определения с примерами Посмотрим на это произведение с точки зрения геометрии. Первый множитель Движение и силы в физике - виды, формулы и определения с примерами выражает одну сторону закрашенного прямоугольника (см. рис. 98), второй (2 ч) другую. Из математики вы уже знаете, что перемножением сторон a и b находят площадь S прямоугольника (рис. 99). Конечно, площадь не есть путь, речь идет только о численном равенстве. Пройденный путь численно равен площади фигуры под графиком скорости.

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Площадью фигуры под графиком скорости определяется путь не только при равномерном прямолинейном, но и при любом другом движении. Например, путь за промежуток времени Движение и силы в физике - виды, формулы и определения с примерами (см. рис.) численно равен площади закрашенной фигуры: Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. График пути выражает зависимость пройденного пути от времени движения тела.
  2. Путь при равномерном прямолинейном движении можно определить по формуле Движение и силы в физике - виды, формулы и определения с примерами по графику пути или с помощью графика скорости.

Пример №1

Легковой и грузовой автомобили равномерно движутся в одном направлении но параллельным полосам прямолинейного участка

шоссе. Скорость движения легкового автомобиля Движение и силы в физике - виды, формулы и определения с примерами грузового — Движение и силы в физике - виды, формулы и определения с примерами Каким будет расстояние между автомобилями через промежуток времени t = 3,0 мин, если в начальный момент автомобили находились рядом?

Запишем условие и выразим величины через основные единицы СИ.

Дано:

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

t = 3, 0 мин = 180 с

Движение и силы в физике - виды, формулы и определения с примерами

Решение:

Найдем путь, который проехал каждый из автомобилей за промежуток времени t:

Движение и силы в физике - виды, формулы и определения с примерами

Расстояние между автомобилями:

Движение и силы в физике - виды, формулы и определения с примерами

Подставим значения и вычислим:

Движение и силы в физике - виды, формулы и определения с примерами

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

Пример №2

Графики зависимости пути от времени равномерных прямолинейных движений пешехода Димы (1) и велосипедиста Пети (2) представлены на рисунке 102. Во сколько раз отличаются скорости движения мальчиков?

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Из графиков следует, что за промежуток времени t = 1 мин Дима прошел путь Движение и силы в физике - виды, формулы и определения с примерами а Петя проехал Движение и силы в физике - виды, формулы и определения с примерами

Скорость движения Димы:

Движение и силы в физике - виды, формулы и определения с примерами

Скорость движения Пети:

Движение и силы в физике - виды, формулы и определения с примерами

Отношение:

Движение и силы в физике - виды, формулы и определения с примерами

Ответ: скорость движения Пети на велосипеде в 2 раза больше скорости движения Димы пешком.

Этот же ответ можно было получить проще:

Движение и силы в физике - виды, формулы и определения с примерами

Из графика для одного и того же момента времени, например t = 1 мин (либо 2 мин и т. д.), определяем пути Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами Тогда

Движение и силы в физике - виды, формулы и определения с примерами

Неравномерное (переменное) движение. Средняя скорость

Проанализируйте движение автобуса. Он уменьшает скорость перед остановкой. Затем в течение какого-то промежутка времени стоит на остановке, т. е. его скорость равна нулю, после чего скорость увеличивается. Значит, скорость автобуса в процессе движения изменяется, т. е. является переменной величиной.

Движение, при котором скорость изменяется, называется неравномерным (переменным).

Практически все движения, наблюдаемые в природе и технике, — неравномерные. С изменяющейся скоростью движутся, например, люди, птицы (рис. 103), дельфины (рис. 104), поезда, падают предметы (рис. 105). Но как же тогда характеризовать это движение?

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Неравномерное движение характеризуется средней скоростью. Как определить среднюю скорость? Рассмотрим пример. Вы едете на экскурсию в Брест поездом. Поезд проходит от Минска до Бреста путь s = 330 км. На прохождение этого пути затрачивается время t = 4,5 ч. В течение данного времени поезд стоит на станциях, движется то с увеличивающейся, то с уменьшающейся скоростью.

Среднюю скорость находят путем деления всего пути на весь промежуток времени, за который этот путь пройден. Обозначим среднюю скорость Движение и силы в физике - виды, формулы и определения с примерами и запишем формулу:

Движение и силы в физике - виды, формулы и определения с примерами

Тогда поезд «Минск — Брест» движется со средней скоростью

Движение и силы в физике - виды, формулы и определения с примерами

Вас не удивило, что мы использовали формулу равномерного движения? Да, действительно формально мы нашли среднюю скорость так, как будто поезд весь путь s = 330 км двигался равномерно с постоянной скоростью Движение и силы в физике - виды, формулы и определения с примерами Это, конечно же, не означает, что он на самом деле двигался равномерно. На отдельных участках пути скорость движения поезда была как значительно большей Движение и силы в физике - виды, формулы и определения с примерами так и меньшей, чем Движение и силы в физике - виды, формулы и определения с примерами и даже равной нулю (рис. 106).

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Средняя скорость дает лишь приблизительное представление о быстроте движения тела. Описание переменного движения более сложно по сравнению с описанием равномерного.

Например, если скорость поезда на участке разгона возрастает от О до Движение и силы в физике - виды, формулы и определения с примерами то в различных точках траектории она принимает различные значения из этого промежутка. Таким образом, можно говорить не только о средней скорости на данном участке траектории, но и о скорости в данной точке траектории. Такую скорость называют в физике мгновенной скоростью.

Главные выводы:

  1. Характеристикой неравномерного движения является средняя скорость.
  2. Для вычисления средней скорости нужно путь разделить на весь промежуток времени, затраченный на прохождение этого пути.

Пример №3

Катя прошла путь Движение и силы в физике - виды, формулы и определения с примерами км за промежуток времени Движение и силы в физике - виды, формулы и определения с примерами мин. Затем остановилась и в течение промежутка времени Движение и силы в физике - виды, формулы и определения с примерами мин разговаривала с подругой, после чего прошла путь Движение и силы в физике - виды, формулы и определения с примерами км за промежуток времени Движение и силы в физике - виды, формулы и определения с примерами мин. Определите среднюю скорость движения Кати.

Дано:

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Весь путь, который прошла Катя:

Движение и силы в физике - виды, формулы и определения с примерами

Весь затраченный промежуток времени:

Движение и силы в физике - виды, формулы и определения с примерами

Средняя скорость движения Кати:

Движение и силы в физике - виды, формулы и определения с примерами

Вычислим Движение и силы в физике - виды, формулы и определения с примерами:

Движение и силы в физике - виды, формулы и определения с примерами

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

Пример №4

По графику скорости (рис. 107) определите путь и среднюю скорость движения велосипедиста за промежуток времени t = 0,60 ч.

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Искомый путь численно равен площади фигуры под графиком скорости. Путь Движение и силы в физике - виды, формулы и определения с примерами велосипедист проехал за промежуток времени Движение и силы в физике - виды, формулы и определения с примерами ч. Он численно равен площади прямоугольного треугольника, закрашенного в голубой цвет:

Движение и силы в физике - виды, формулы и определения с примерами

Аналогично можно найти пути Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами:

Движение и силы в физике - виды, формулы и определения с примерами

Весь путь: Движение и силы в физике - виды, формулы и определения с примерами

Средняя скорость движения велосипедиста: 

Движение и силы в физике - виды, формулы и определения с примерами

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

Почему изменяется скорость движения тела

Равномерное прямолинейное движение, т. е. движение с постоянной скоростью, — лишь модель реального движения. В жизни всякое движение (от движения огромных планет до движения невидимых частиц) чаще всего происходит с изменяющейся скоростью. Что является причиной изменения скорости?

Рассмотрим опыты. На столе лежит стальной шарик Он находится в состоянии покоя относительно стола. Чтобы заставить шарик двигаться, можно толкнуть его рукой или приблизить к нему магнит (рис. 111). В обоих случаях на шарик действуют другие тела (рука, магнит), что и является причиной изменения скорости движения шарика. А как долго шарик будет двигаться после толчка? Опыт показывает, что скорость движения шарика уменьшается, а через некоторое время его движение прекращается. Почему?

Движение и силы в физике - виды, формулы и определения с примерами

Проведем другой опыт. Три одинаковых шарика одновременно скатываются с одинаковой высоты (рис. 112). Дорожки, по которым затем о движутся шарики, отличаются: первая посыпана песком, вторая покрыта тканью, а третья — стеклом. Движение но третьей дорожке продолжается дольше, поскольку трение здесь наименьшее. Значит, причина прекращения движения шарика — трение между поверхностями шарика и стола и, конечно, сопротивление воздуха. А если бы мы смогли убрать эти причины, шарик двигался бы с постоянной скоростью сколько угодно долго.

Движение и силы в физике - виды, формулы и определения с примерами

Движение тела без действия на него других тел, как и покой, — его естественное состояние.

То, что тело остается в покое, если нет действия других тел, вполне понятно. Но как же тело может само но себе двигаться, если в повседневной жизни мы видим, что тело движется только тогда, когда Рис. 113 на него действует другое тело? Санки (рис. 113) надо тянуть за веревку, лодка плывет под действием весел (рис. 114). А были бы нужны веревка и весла, если бы не было сопротивления движению? Если бы вода не оказывала сопротивления движению, лодка после толчка двигалась бы бесконечно долго с постоянной скоростью.

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Итак, если тело находится в состоянии покоя или в состоянии движения, то оно стремится сохранять это состояние (не изменять скорость), пока на него не подействуют другие тела.

Свойство тела сохранять состояние покоя или равномерного прямолинейного движения (сохранять свою скорость неизменной) при отсутствии действия на него других тел называется инерцией.

С инерцией нам приходится встречаться постоянно. При резком торможении автобуса пассажиры наклоняются вперед, так как продолжают двигаться по инерции. При резком разгоне автобуса они отклоняются назад. Почему? Л может ли автомобиль остановиться мгновенно? Нет. Как бы ни были сильны тормоза, инерция препятствует мгновенному торможению. Именно из-за инерции тормозной путь автомобиля тем больше, чем больше скорость его движения. Мы уверены, что, помня об инерции, вы не будете перебегать улицу перед движущимся транспортом и научите не делать этого своих младших братьев и сестер. А сколько неприятностей из-за инерции случается, пока мы учимся кататься на коньках!

Инерция может приносить человеку не только неприятности, но и огромную пользу. В водяных и паровых турбинах, а также в ветряных двигателях (рис. 115) используется инерция движения воды, пара, ветра. Инерция играет полезную роль при применении удара, от выколачивания пыли до насадки на рукоятку молотка. Космонавт благодаря инерции может выйти в открытый космос (рис. 116) и не отстать от корабля.

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Древнегреческий философ Аристотель (IV в. до н. э.) считал, что только покой — естественное состояние тела, а движение — насильственное. Тело стремится к своему естественному состоянию, поэтому, если не поддерживать движение, оно прекращается.

Ошибка Аристотеля состояла в том, что он верил в инерцию покоя, но не понимал, что телам столь же свойственна инерция движения.

Спустя приблизительно 2000 лет после Аристотеля итальянский ученый Галилео Галилей смог вообразить идеализированный мир мир без трения. В результате он пришел к выводу о том, что движение тела без действия на него других тел, как и покой, является его естественным состоянием.

Главные выводы:

  1. Если на тело не действуют другие тела, то оно либо находится в состоянии покоя, либо движется равномерно и прямолинейно (по инерции).
  2. Изменить состояние покоя или движения тела можно только воздействием на него другого тела или тел.

Масса тела и плотность вещества

Одинаково ли легко изменить скорость различных тел? Мимо нас пролетает комар. Трудно ли изменить его скорость? Достаточно просто дунуть (рис. 117, а). А если проезжает груженый автомобиль МАЗ (рис. 117, б)? Инерция есть у всех тел, но это свойство проявляется у них в разной степени. Оно почти незаметно у комара, но очень заметно у автомобиля, для изменения скорости которого требуются большие и длительные воздействия.

Движение и силы в физике - виды, формулы и определения с примерами

Для характеристики инерции тела в физике используется физическая величина, называемая массой. Чем массивнее тело, тем труднее изменить его скорость, тем больше оно противится таким изменениям. Масса тела — мера его инерции. Иногда говорят: мера его инертности.

Обозначим массу тела буквой m. Основной единицей массы в СИ является 1 килограмм (1 кг). Полезно знать, что 1 л воды при комнатной температуре имеет массу, практически равную 1 кг. Соответственно, масса 1 мл равна 1 г. Обратите внимание! В килограммах измеряется единственная физическая величина — масса.

От чего зависит масса тела? Сравните разгон и торможение груженого и порожнего автомобилей. Понятно, что масса тела зависит от количества вещества в теле (от числа молекул). Дело в том, что массой (т. е. инерцией) обладает каждая молекула, поэтому массу всего тела можно рассматривать как сумму масс всех его молекул. Будут ли одинаковыми массы тел, если они содержат одинаковое число молекул? Да, если тела состоят из одного и того же вещества. Нет, если тела состоят из различных веществ (например, алюминиевая и золотая ложки). А теперь сравним массы разных веществ, имеющих одинаковый объем.

Задумайтесь над вопросом: какую тележку легче сдвинуть с места — нагруженную сухими дровами (рис. 118, а) или нагруженную камнями (рис. 118, б), имеющими равный с дровами объем? Конечно, тележку с дровами. Ее масса меньше. Значит, масса единицы объема дров и единицы объема камней разная.

Движение и силы в физике - виды, формулы и определения с примерами

Масса вещества, содержащегося в единице объема, называется плотностью вещества.

Чтобы найти плотность, необходимо массу вещества разделить на его объем. Плотность обозначается греческой буквой Движение и силы в физике - виды, формулы и определения с примерами (ро). Тогда

Движение и силы в физике - виды, формулы и определения с примерами

Единицей измерения плотности в СИ является Движение и силы в физике - виды, формулы и определения с примерами Плотности различных веществ определены на опыте и представлены в таблице 3.

На рисунке 119 изображены массы известных вам веществ в объеме Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

У большинства веществ плотность в твердом состоянии больше, чем в жидком. Например, плотность олова в твердом состоянии Движение и силы в физике - виды, формулы и определения с примерами а в жидком (при температуре 400 °С) Движение и силы в физике - виды, формулы и определения с примерами

Плотность вещества в жидком состоянии больше, чем в газообразном. Чем это можно объяснить? Вспомните о различии в расстояниях между молекулами. Самые большие расстояния — между молекулами газа. Поэтому плотность сжиженного воздуха (при -194 °С) равна Движение и силы в физике - виды, формулы и определения с примерами а в газообразном состоянии — Движение и силы в физике - виды, формулы и определения с примерами(при 0 °С).

Зная плотность и объем тела, легко найти массу:

Движение и силы в физике - виды, формулы и определения с примерами

Формулу Движение и силы в физике - виды, формулы и определения с примерами можно использовать не только для однородных тел, но и для тел, имеющих полости или состоящих из разных веществ. Только в этом случае формула выражает среднюю плотность тела (сравните со средней скоростью):

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Твердое вещество, состоящее из молекул Движение и силы в физике - виды, формулы и определения с примерами (лед), имеет плотность Движение и силы в физике - виды, формулы и определения с примерамижидкое (вода) — Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Вы заметили особенность? Плотность льда меньше плотности воды, что указывает на более плотную упаковку (т. е. меньшие промежутки) молекул в жидком состоянии вещества (вода), чем в твердом (лед).

Из всех видов деревьев наименьшей плотностью обладает древесина бальзового дерева Движение и силы в физике - виды, формулы и определения с примерами растущего в тропиках Центральной и Южной Америки.

Средняя плотность Вселенной ничтожно мала Движение и силы в физике - виды, формулы и определения с примерами а вещество нейтронных звезд имеет очень большую плотность Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. Чем больше масса тела, тем труднее изменить скорость его движения.
  2. Плотность вещества показывает, какая масса вещества содержится в единице его объема.
  3. Плотность вещества в различных агрегатных состояниях разная.
  4. Тела, состоящие из разных веществ, характеризуются средней плотностью.

Пример №5

Средняя плотность тела человека примерно равна плотности воды. Зная свою массу, вычислите объем тела.

Дано:

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Определим с помощью весов свою массу m. Например, m = 50 кг. Тогда объем тела 

Движение и силы в физике - виды, формулы и определения с примерами

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

Сила

Изменить скорость движения тела можно воздействием на него другого тела. Чем больше это воздействие, тем сильнее изменяется скорость. Напрягая мышцы рук, вы увеличиваете скорость тележки. Ваш старший брат или отец может сильнее подействовать на тележку и увеличить скорость ее движения больше.

С помощью какой физической величины можно количественно определить, насколько сильно воздействует одно тело на другое, например человек на тележку? Такой величиной является сила.

Сила — количественная мера воздействия одного тела на другое.

В приведенном примере результатом воздействия является изменение скорости, значит, сила — причина изменения скорости движения тела.

Однако действие одного тела на другое приводит не только к изменению скорости. Подействуем на пружину гирей (подвесим ее к пружине) (рис. 120, а). Действие гири на пружину вызывает ее удлинение (рис. 120, б). Гиря, стоящая на тонкой доске (рис. 121), прогибает ее. Сжимая пальцами ластик, вы изменяете его форму. В этих случаях действие одного тела на другое, т. е. сила, вызывает изменение размеров или формы тела.

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Изменение размеров или формы тела называется деформацией. Значит, сила является не только причиной изменения скорости, но и причиной деформации тела. Чем больше сила, тем больше деформация. Действительно, подействуйте на пружину более тяжелой гирей, т. е. большей силой, и растяжение пружины будет больше (рис. 122).

Движение и силы в физике - виды, формулы и определения с примерами

Сила не может существовать сама по себе. Если мы говорим, что на тело действует сила, это означает только то, что на тело действует другое тело.

Обычно силу обозначают буквой F и изображают в виде стрелки. Направление стрелки указывает направление действия силы. Начало стрелки совпадает с точкой приложения силы. Абсолютное число, выражающее длину стрелки, называют модулем силы.

Итак, сила характеризуется модулем, направлением и точкой приложения. Пусть на одинаковые пружины действуют две одинаковые гири (рис. 123). Одна пружина растягивается под действием гири, другая — сжимается. Модули действующих на пружины сил одинаковы, но направления у сил разные.

Движение и силы в физике - виды, формулы и определения с примерами

На рисунке 124 изображены два тела (арбуз и яблоко), действующие на стол с одинаково направленными, но имеющими разные модули силами. Эти силы приложены к крышке стола в точках Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами и направлены вертикально вниз. Модуль силы Движение и силы в физике - виды, формулы и определения с примерами больше модуля силы Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Чаще всего тело испытывает не одно, а сразу два или более действий, причем иногда противоположного направления. Как изменится скорость движения тела в этом случае? Если модули противоположно направленных сил равны, то, как и в математике при сложении равных но модулю, но противоположных но знаку чисел, мы получим в результате нуль. Такие силы мы будем называть компенсирующими друг друга. В этом случае, как и при отсутствии сил, скорость тела изменяться не будет. На рисунке 125 силы, приложенные к одному и тому же телу (ветке), компенсируют друг друга, и тело находится в состоянии покоя.

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

В повседневной жизни слово «сила» часто используется в сочетаниях «сила огня», «сила духа», «сила воли» и т. д. В физике слово «сила» употребляется только в смысле количественной меры такого воздействия, которое либо меняет скорость движения тела, либо деформирует его, либо вызывает то и другое одновременно. Действие даже самой малой силы обязательно приводит к тому или иному результату. От нажатия на стол пальцем крышка стола неизбежно прогнется, хотя это не всегда заметно.

Главные выводы:

  1. Сила является количественной мерой воздействия одного тела на другое.
  2. Сила является причиной изменения скорости движения тела и его деформации.
  3. Сила характеризуется модулем, направлением и точкой приложения.

Явление тяготения и сила тяжести

Посмотрите на глобус. Это модель Земли. Земля имеет форму, близкую к форме шара. Нам это кажется естественным. Но каково было недоумение людей, впервые услышавших об этом! Они никак не могли поверить, что люди, живущие на противоположной стороне Земли (рис. 126), не падают в бездну.

Движение и силы в физике - виды, формулы и определения с примерами

Почему люди одинаково устойчивы в любом месте Земли? Земля притягивает к себе все тела.

Если бы Земля не обладала притяжением, брошенные горизонтально или вверх тела, двигаясь но инерции, никогда не вернулись бы на Землю. Тем не менее мяч, брошенный вертикально вверх, возвращается обратно (рис. 127, а). Траектория мяча, брошенного горизонтально, но мере движения искривляется (рис. 127, б). Спутник движется вокруг Земли по круговой орбите (рис. 127, в). Искривление траектории мяча, спутника есть также результат притяжения этих тел к Земле.

Движение и силы в физике - виды, формулы и определения с примерами

Сила, с которой Земля притягивает к себе тело, называется силой тяжести.

Зависит ли сила тяжести от массы тела? Конечно, да. Из жизненного опыта мы хорошо знаем, что, чем больше масса налитой в ведро воды, тем труднее его удерживать. Слона Земля притягивает гораздо сильнее, чем зайца (рис. 128).

Движение и силы в физике - виды, формулы и определения с примерами

Во сколько раз увеличивается масса тела, во столько раз возрастает сила тяжести Движение и силы в физике - виды, формулы и определения с примерами Иначе говоря, действующая на тело сила тяжести прямо пропорциональна массе тела:

Движение и силы в физике - виды, формулы и определения с примерами

где Движение и силы в физике - виды, формулы и определения с примерами — коэффициент пропорциональности (о его числовом значении вы узнаете из § 25).

Сила тяжести направлена вертикально вниз (рис. 129) и приложена к центру однородного тела.

Движение и силы в физике - виды, формулы и определения с примерами

А обладают ли другие планеты притяжением, как Земля? Английский физик и математик Исаак Ньютон пришел к выводу, что притяжение свойственно всем планетам и вообще любому телу, обладающему массой, т. е. всем телам Вселенной. Поэтому явление взаимного притяжения тел названо всемирным тяготением.

Для любознательных:

Сила тяжести зависит не только от массы тела, которое притягивается, но и от массы того тела, которое притягивает (Земля, Луна и др.).

Все небесные тела притягивают к себе любые другие тела. Но так как массы и размеры небесных тел различны, то разной будет и действующая сила притяжения. Так, на Луне сила тяжести, действующая на тело, будет почти в 6 раз меньше, чем на Земле.

Масса Земли очень большая: Движение и силы в физике - виды, формулы и определения с примерами Движение и силы в физике - виды, формулы и определения с примерами поэтому ее притяжение так велико. Земля притягивает не только тела, находящиеся на ее поверхности, но и удаленные от нее (искусственные спутники, Луну). Но мере удаления сила притяжения уменьшается (уменьшается Движение и силы в физике - виды, формулы и определения с примерами), но сохраняется прямо пропорциональная зависимость силы тяжести от массы тела.

Еще сильнее притяжение Солнца, так как его масса примерно в 300 000 раз больше массы Земли. Именно поэтому Земля и другие планеты движутся вокруг Солнца.

Главные выводы:

  1. Все тела во Вселенной обладают свойством притягивать к себе другие тела.
  2. Сила, с которой Земля притягивает к себе тело, называется силой тяжести.
  3. Сила тяжести, действующая на тело, прямо пропорциональна его массе.

Пример №6

Плотность железного бруска в Движение и силы в физике - виды, формулы и определения с примерами раз больше плотности деревянного. Объем железного бруска в Движение и силы в физике - виды, формулы и определения с примерами раз меньше объема деревянного. Во сколько раз отличаются силы тяжести, действующие на бруски?

Дано:

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Силы тяжести, действующие на бруски, равны:

Движение и силы в физике - виды, формулы и определения с примерами

Массы брусков равны: Движение и силы в физике - виды, формулы и определения с примерами

Отношение сил: 

Движение и силы в физике - виды, формулы и определения с примерами

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

Сила упругости

На горизонтальном столе лежит шар. Как и на всякое тело, на него действует сила тяжести Движение и силы в физике - виды, формулы и определения с примерами (рис. 132, а). Но почему он не падает вниз? Этому препятствует опора (крышка стола). В чем выражается действие опоры на лежащее на ней тело?

Из § 21 вы знаете, что приложенная к телу сила (даже очень большая) не вызывает изменения скорости движения тела, если она скомпенсирована (уравновешена) приложенной к нему противоположно направленной другой силой. Как возникает эта другая сила? В приведенном примере шар, притягиваясь Землей, давит на крышку стола. Сила давления Движение и силы в физике - виды, формулы и определения с примерами приложена к крышке стола и направлена вниз (рис. 132, б). Действуя на крышку, эта сила прогибает ее, т. е. деформирует крышку, хотя данная деформация и не заметна для глаз.

Движение и силы в физике - виды, формулы и определения с примерами

Вас. не должно удивлять утверждение, что любая, даже незначительная, сила давления (например, сила давления мухи, севшей на стол) вызывает деформацию. Деформации поверхности стола, на которую давит гиря, не видно. Но попробуйте положить под гирю поролон (рис. 133), и вы заметите его прогиб, т. е. деформация станет очевидной.

Движение и силы в физике - виды, формулы и определения с примерами

Вернемся к примеру с шаром. Деформированная опора, стремясь распрямиться, действует на шар с силой, направленной вверх (рис. 134), — силой упругости. Именно сила упругости Движение и силы в физике - виды, формулы и определения с примерами и компенсирует действие силы тяжести Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Проделаем еще один опыт. Подвесим шар к пружине, укрепленной на штативе. Шар, притягиваясь к Земле (рис. 135, а), движется и растягивает (деформирует) пружину. Деформирующая сила Движение и силы в физике - виды, формулы и определения с примерами приложена к пружине и направлена вниз. Но движение шара не продолжается неограниченно. Что же препятствует движению?

Как и в случае с лежащим шаром, сила упругости Движение и силы в физике - виды, формулы и определения с примерами Она приложена к висящему шару, направлена противоположно деформирующей силе и равна ей по числовому значению. А теперь поместим шар на пружину сверху (рис. 135, б). Пружина сожмется под действием силы давления Движение и силы в физике - виды, формулы и определения с примерами приложенной к ней. Препятствовать движению шара будет сила упругости Движение и силы в физике - виды, формулы и определения с примерами с которой пружина действует на шар.

Движение и силы в физике - виды, формулы и определения с примерами

Итак, сила, действующая на тело со стороны деформированной опоры или подвеса, называется силой упругости.

Вы заметили закономерность? Сила упругости Движение и силы в физике - виды, формулы и определения с примерами приложена к телу, вызвавшему деформацию опоры или подвеса. Она противоположна но направлению и численно равна деформирующей силе Движение и силы в физике - виды, формулы и определения с примерами Но стоит убрать деформирующую силу — и растяжение, сжатие или прогиб исчезают, т. е. деформированное тело (пружина, стол) восстанавливает свои первоначальные размеры и форму.

Для любознательных:

Иногда после действия большой деформирующей силы тело не возвращается к первоначальной форме. Например, покупая в магазине батон, вы определяете его свежесть, деформируя специальной ложкой. При действии на батон небольшой силы он после снятия воздействия восстанавливает форму, но если вы переусердствуете, нажимая ложкой, батон так и не сможет избавиться от своего непривлекательного деформированного вида.

Поскольку сила упругости возникает в ответ на воздействие (опора, подвес реагируют на воздействие), то силу упругости часто называют еще силой реакции.

Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. Сила упругости (сила реакции) возникает в ответ на действие деформирующей силы.
  2. Сила упругости приложена к телу, вызвавшему деформацию опоры или подвеса.
  3. Сила упругости противоположна деформирующей силе, но их модули равны.

Вес тела

При взаимодействии тел на каждое из них со стороны другого действует сила. Рассмотрим действие друг на друга тела и его горизонтальной опоры или тела и его вертикального подвеса.

На рисунке 140 представлены различные тела. Каждое из этих тел, притягиваясь к Земле, действует на опору или подвес с силой, которая вам хорошо знакома из предыдущего параграфа. Это сила давления на опору или сила натяжения подвеса. Иначе эту силу называют весом тела.

Движение и силы в физике - виды, формулы и определения с примерами

Почему тело действует на опору или подвес? Потому что его притягивает Земля. Неподвижные опора или подвес не позволяют телу падать и сами испытывают действие силы.

Вес — это сила, с которой тело вследствие притяжения Земли действует на опору или подвес.

Обозначим вес буквой Р и укажем вес каждого тела на рисунке 140. Вес мяча приложен к опоре (крышке стола), направлен вниз и является уже известной вам силой давления. Вес собаки приложен к земле в местах соприкосновения ее лап с землей и равен сумме четырех сил:

Движение и силы в физике - виды, формулы и определения с примерами

Определите сами и изобразите вес всех ос шальных тел, представленных на рисунке 140.

А теперь еще раз сравним силу тяжести и вес тела. У этих сил есть общее: они вызваны притяжением Земли. Эти силы очень часто (подчеркиваем — часто, но не всегда) численно равны друг другу. Но у силы тяжести и веса есть различия.

Во-первых, они приложены к разным телам: сила тяжести — к телу (шару), а вес. — к опоре или подвесу (крышке стола, нити) (рис. 141, а, б).

Движение и силы в физике - виды, формулы и определения с примерами

Во-вторых, сила тяжести в данном месте Земли имеет строго определенное значение Движение и силы в физике - виды, формулы и определения с примерами а вес тела может быть не только равен, но и больше или меньше этого значения.

Докажем это с помощью опыта. Подвесим груз на пружине (рис. 142, а). Если мы будем равномерно поднимать и опускать этот груз, то удлинение пружины, а значит, и сила упругости и вес груза будут оставаться такими же, как в случае неподвижного груза. Но если мы неравномерно (с разгоном) опустим (рис. 142, б) или поднимем (рис. 142, в) груз в вертикальном направлении, то будут наблюдаться изменения в растяжении пружины, что указывает на изменения веса тела.

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Вам известно, что действующая на тело сила тяжести на других планетах может быть как больше, так и меньше, чем на Земле. Значит, и вес тела на этих планетах будет другим.

А может ли тело вообще потерять вес? Космонавты и все тела в космическом корабле свободно парят, не оказывая действия на опору или подвес, т. е. их вес Р = 0. Это состояние тела называется невесомостью.

Невесомость можно создать и на Земле. Пустим свободно падать груз вместе с пружиной. Пружина не растягивается, а, значит, вес груза равен нулю. Это и есть невесомость.

Главные выводы:

  1. Вес тела — сила, приложенная к опоре или подвесу.
  2. Вес неподвижного или равномерно движущегося тела численно равен силе тяжести.
  3. Вес тела, движущегося неравномерно, может изменяться и быть больше силы тяжести, меньше и даже равным нулю.

Единица силы и измерение силы

Сила характеризуется числовым значением (модулем), направлением и точкой приложения. Чтобы определить числовое значение силы, нужно измерить силу, т. е. сравнить ее с другой силой, принятой в качестве единицы силы. Что принято за единицу силы?

Главный результат действия силы — изменение скорости движения тела, которая сама по себе никогда не изменяется. Исходя из этого, была выбрана в СИ единица силы — 1 ньютон (1 Н), названная в честь английского ученого Исаака Ньютона. Существуют кратные и дольные единицы силы: 1 кН = 1000 Н, 1 мН = 0,001 Н.

Сила, как вы знаете, может не только изменить скорость, но и вызвать деформацию тела. Пружина растягивается (рис. 143), потому что на нее действует вес груза, который притягивает Земля.

Движение и силы в физике - виды, формулы и определения с примерами

Какой массой должно обладать тело, чтобы действующая на него сила тяжести равнялась 1,0 И? Исследования показали, что с силой F = 1,0 Н Земля притягивает тело массой m = 0,102 кг.

Определим значение коэффициента Движение и силы в физике - виды, формулы и определения с примерами, входящего в формулу силы тяжести Движение и силы в физике - виды, формулы и определения с примерами Из формулы видно, что Движение и силы в физике - виды, формулы и определения с примерами Так как на тело массой 0,102 кг Земля действует с силой Движение и силы в физике - виды, формулы и определения с примерами то:

Движение и силы в физике - виды, формулы и определения с примерами

Значит, если масса тела равна 1,0 кг, то действующая на него сила тяжести Движение и силы в физике - виды, формулы и определения с примерами Следовательно, и вес этого тела (если оно находится в состоянии покоя или движется равномерно) Р = 9,8 Н. Ни в коем случае нельзя приравнивать вес и массу, что, к сожалению, часто встречается в быту. Это разные физические величины, и единицы у них разные. Масса измеряется в килограммах, вес — в ньютонах (рис. 144). Если ваша масса m = 50 кг, то ваш вес Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Как измерить силу? Для этого нужно создать измерительный прибор. Будем подвешивать к пружине сначала одну гирю массой m = 102 г = = 0,102 кг, затем две, три и т. д. Отметим метками положения указателя (рис. 145), напротив которых ставим значения 1 Н, 2 Н, 3 Н и т. д.

Движение и силы в физике - виды, формулы и определения с примерами

Пружина с указателем и шкалой представляет собой прибор для измерения сил — динамометр (от греч. dynamis — сила и metreo — измеряю) (рис. 146). Динамометром можно измерять не только вес тела, но и любые силы.

Движение и силы в физике - виды, формулы и определения с примерами

Динамометры бывают различных типов и размеров в зависимости от того, для измерения больших или малых сил они предназначены. Для измерения мускульной силы руки используют динамометр силомер (рис. 147, а). Определить силу тяги трактора позволяет тяговый динамо метр (рис. 147, б).

Движение и силы в физике - виды, формулы и определения с примерами

Для проведения различных исследований удобен динамометр с реечной передачей (рис. 148). Он позволяет измерять не только силу, направленную вниз, например создаваемую лежащим на опоре А телом (рис. 148, а), или вес подвешенного 1 к подвесу Б тела. Таким динамометром можно измерить и силу, направленную вверх (рис. 148, б).

Движение и силы в физике - виды, формулы и определения с примерами

Для любознательных:

Значение коэффициента Движение и силы в физике - виды, формулы и определения с примерами, равное Движение и силы в физике - виды, формулы и определения с примерами характерно только для Земли (оно несколько изменяется в зависимости от географической широты места и от высоты подъема тела над поверхностью Земли; с увеличением высоты значение Движение и силы в физике - виды, формулы и определения с примерами уменьшается).

Для Луны этот коэффициент в б раз меньше, т. е.  Движение и силы в физике - виды, формулы и определения с примерами для Юпитера Движение и силы в физике - виды, формулы и определения с примерами Для Солнца Движение и силы в физике - виды, формулы и определения с примерами (почти в 30 раз больше, чем для Земли).

Главные выводы:

  1. В СИ единицей силы является 1 ньютон.
  2. Силу измеряют с помощью динамометра.
  3. С силой F = 1 Н Земля притягивает тело массой m = 0,102 кг.
  4. В формуле Движение и силы в физике - виды, формулы и определения с примерами силы тяжести, с которой Земля действует на тело, постоянный коэффициент Движение и силы в физике - виды, формулы и определения с примерами

Пример №7

Зависимость силы тяжести, действующей на песок в песочных часах, от его объема представлена на рисунке 149. Определите плотность песка. Коэффициент Движение и силы в физике - виды, формулы и определения с примерами примите равным Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Плотность песка Движение и силы в физике - виды, формулы и определения с примерами Масса песка Движение и силы в физике - виды, формулы и определения с примерами Силу тяжести для данного объема песка, например Движение и силы в физике - виды, формулы и определения с примерами определим по данным графика Движение и силы в физике - виды, формулы и определения с примерами Тогда Движение и силы в физике - виды, формулы и определения с примерами 

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

  • Заказать решение задач по физике

Сложение сил и равнодействующая сила

На любое тело действует хотя бы одна сила — сила тяжести. Но чаще всего на тело действует несколько сил. Например, на шарик (рис. 151) действуют Земля и нить (две силы). Каков результат их действия?

Движение и силы в физике - виды, формулы и определения с примерами

Решим такую задачу. Вы с другом перевозите на тележке груз, причем один из вас тянет тележку, прикладывая силу Движение и силы в физике - виды, формулы и определения с примерами другой толкает ее, действуя с силой Движение и силы в физике - виды, формулы и определения с примерами (рис. 152). Какова сила, которая двигает тележку?

Движение и силы в физике - виды, формулы и определения с примерами

Эта сила Движение и силы в физике - виды, формулы и определения с примерами А изменилось бы движение тележки, если бы ее тянул один человек, прикладывая силу F = 180 Н? Нет, эффект был бы таким же. Значит, одна сила F оказывает на тележку такое же действие, как две одновременно действующие силы Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами

Сила, которая оказывает на тело такое же действие, как несколько одновременно действующих на него сил, называется равнодействующей этих сил.

Как направлена равнодействующая? Проведем опыт. К нижнему крючку динамометра подвесим груз весом Движение и силы в физике - виды, формулы и определения с примерами а на столик поместим груз весом Движение и силы в физике - виды, формулы и определения с примерами (рис. 153, а). Динамометр показывает действие на него силы F = 4 Н. Сила F — сумма весов нижнего и верхнего грузов. Эти силы направлены вертикально вниз. Заменим два груза одним весом 4 Н и подвесим его к динамометру (рис. 153, б). Динамометр показывает, что действие одного груза такое же, как и двух грузов весом Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами Значит, сила Движение и силы в физике - виды, формулы и определения с примерами — равнодействующая двух сил, приложенных к динамометру. Изобразим эти силы схематически (см. рис. 153, в).

Движение и силы в физике - виды, формулы и определения с примерами

Модуль равнодействующей сил, действующих на тело в одном направлении но одной прямой, равен сумме модулей этих сил. Направление равнодействующей такое же, как и отдельных сил.

Изменим опыт: с помощью другого динамометра подействуем на данный динамометр вверх силой Движение и силы в физике - виды, формулы и определения с примерами (рис. 154, а). Приложенные к динамометру силы направлены в противоположные стороны. Динамометр показывает силу Движение и силы в физике - виды, формулы и определения с примерами Это и есть равнодействующая двух противоположно направленных сил. Она направлена вверх, что подтверждается изменением направления поворота стрелки реечного динамометра.

Значит, действие двух противоположно направленных сил можно заменить одной силой, модуль которой равен разности модулей двух приложенных сил и которая направлена в сторону большей силы (рис. 154, б).

Движение и силы в физике - виды, формулы и определения с примерами

А если силы Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами имеют равные модули? Тогда равнодействующая сила равна нулю. Происходит компенсация сил (см. § 21).

Ответим еще на один важный вопрос: как ведет себя тело при скомпенсированных силах, т. е. при нулевом значении равнодействующей?

Проведем опыт. Возьмем пенопластовую пластинку А очень малой массы. Подействуем на пластинку одинаковыми по модулю силами упругости нитей Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами (рис. 155). Других сил нет. Силой тяжести, действующей на пластинку, можно пренебречь. Равнодействующая сил Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами равна нулю. Пластинка находится в состоянии покоя. Толкнем пластинку. Она придет в движение и, если трение мало, будет двигаться равномерно, т. е. с постоянной скоростью. Но после прекращения толчка на пластинку по-прежнему действуют только силы Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами, их равнодействующая равна нулю. Опыт позволяет сделать очень важный вывод: если равнодействующая сил, приложенных к телу, равна нулю, тело находится в состоянии покоя или движется равномерно и прямолинейно. Приведите примеры, подтверждающие этот вывод.

Движение и силы в физике - виды, формулы и определения с примерами

А если продолжить опыт и подвесить к одной нити два груза, а к другой — три? Пластинка придет в движение с увеличивающейся скоростью (рис. 156), ведь равнодействующая сил упругости нитей Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами, приложенных к пластинке, уже не будет равна нулю.

Движение и силы в физике - виды, формулы и определения с примерами

Внимание! Находить равнодействующую можно только для сил, приложенных к одному телу.

Для любознательных:

Если приложенные к телу силы действуют не вдоль одной прямой, то модуль равнодействующей силы не равен арифметической сумме этих сил. В показанном на рисунке опыте приложенные силы — Движение и силы в физике - виды, формулы и определения с примерами = 3 Н, Движение и силы в физике - виды, формулы и определения с примерами = 4 Н — перпендикулярны друг другу, а модуль равнодействующей F равен не 7 Н, а 5 Н, т. е. меньше суммы Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. Действие нескольких сил, приложенных к телу, можно заменить одной силой — их равнодействующей.
  2. Направление равнодействующей двух сил, действующих вдоль одной прямой, совпадает с направлением большей из них.
  3. Если равнодействующая сил, приложенных к телу, равна нулю, то оно либо покоится, либо движется равномерно и прямолинейно.
  4. Если равнодействующая всех сил, приложенных к телу, не равна нулю, скорость тела изменяется.

Пример №8

На автомобиль массой m = 2,0 т, движущийся равномерно по прямолинейному горизонтальному участку шоссе, действует сила сопротивления движению Движение и силы в физике - виды, формулы и определения с примерами Определите силу тяги, развиваемую двигателем автомобиля. Изобразите все силы, действующие на автомобиль (масштаб: 0,5 см — 4000 Н). Найдите их равнодействующую.

Дано:

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Решение

Если автомобиль движется равномерно, то равнодействующая всех сил, приложенных к нему, равна нулю. На автомобиль действуют: сила тяжести Движение и силы в физике - виды, формулы и определения с примерами сила упругости Движение и силы в физике - виды, формулы и определения с примерами сила тяги Движение и силы в физике - виды, формулы и определения с примерами сила сопротивления Движение и силы в физике - виды, формулы и определения с примерами

Изобразим Движение и силы в физике - виды, формулы и определения с примерами в рекомендуемом масштабе (рис. 157). Так как движение автомобиля равномерное, то равнодействующая сил:

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Аналогично Движение и силы в физике - виды, формулы и определения с примерами значит, Движение и силы в физике - виды, формулы и определения с примерами

Ответ: Движение и силы в физике - виды, формулы и определения с примерами

Трение и сила трения

Кто из вас не катался с горы на санках? Приобретя большую скорость, санки (рис. 158), выехав на горизонтальный участок, останавливаются. Почему? Вспомните, что действующая на тело сила может изменить скорость его движения. Этой силой является сила трения скольжения. А что нужно сделать, чтобы санки продолжали движение с той же скоростью? Необходимо скомпенсировать силу трения. Для этого следует тянуть санки горизонтально с силой, равной по модулю силе трения. От чего зависит сила трения?

Движение и силы в физике - виды, формулы и определения с примерами

Проведем опыт. Будем с помощью динамометра равномерно перемещать брусок по горизонтальной поверхности стола (рис. 159). Динамометр показывает, что на брусок действует сила тяги, но скорость движения бруска не изменяется. Значит, на брусок действует еще одна сила компенсирующая сила. Этой силой является сила трения Движение и силы в физике - виды, формулы и определения с примерами Равнодействующая сил Движение и силы в физике - виды, формулы и определения с примерами и Движение и силы в физике - виды, формулы и определения с примерами равна нулю. Обратите внимание, что модуль силы трения равен модулю силы тяги только в случае равномерного прямолинейного движения. Если же модуль силы тяги больше модуля силы трения, скорость движения тела будет возрастать. А если Движение и силы в физике - виды, формулы и определения с примерами меньше Движение и силы в физике - виды, формулы и определения с примерами — убывать.

Движение и силы в физике - виды, формулы и определения с примерами

Итак, сила трения скольжения возникает при движении одного тела но поверхности другого и направлена в сторону, противоположную движению.

Почему возникает сила трения? Продолжим опыт. Будем равномерно перемещать брусок сначала по шероховатой, затем по обработанной поверхности доски. Сила тяги будет больше при движении по шероховатой поверхности (рис. 160, а). Значит, и модуль равной ей силы трения будет тем больше, чем более шероховатой, неровной окажется поверхность. При движении неровности цепляются друг за друга, деформируются, разрушаются. Это создает препятствия движению. А если бы поверхности были идеально гладкие, то возникла ли бы сила трения при движении одного тела по поверхности другого? Не спешите ответить «нет». При хорошо отполированных поверхностях расстояние между поверхностями тел или их участками при движении тел так мало, что станут существенными силы притяжения молекул поверхности одного тела к молекулам поверхности другого. Эти силы будут тормозить движение тел.
Движение и силы в физике - виды, формулы и определения с примерами

Значит, шероховатость поверхностей и силы притяжения между молекулами соприкасающихся поверхностей — причины возникновения сил трения.

Если при движении соприкасаются твердые поверхности тел, трение называют сухим.

От чего еще зависит сила сухого трения? Дадим ответ, исходя из опыта. Будем равномерно двигать брусок по различным поверхностям: по металлической, деревянной, резиновой — с примерно одинаковым качеством обработки (рис. 161). Динамометр показывает различную силу тяги. Следовательно, силы трения дерева но металлу, дерева по дереву, дерева по резине будут различны. Наибольшая сила трения возникнет при движении по поверхности резины. Не случайно подошвы в спортивной обуви (рис. 162) делают резиновыми и рельефными.

Движение и силы в физике - виды, формулы и определения с примерами

Движение и силы в физике - виды, формулы и определения с примерами

Поставим теперь на брусок гирю и сравним силы трения при равномерном движении ненагруженного бруска (рис. 163, а) и бруска с гирей (рис. 163, б). Видно, что во втором случае сила тяги, а значит, и сила трения увеличились. Но брусок с гирей с большей силой давит на поверхность, с которой соприкасается. Следовательно, сила трения тем больше, чем больше сила, прижимающая тело (брусок) к поверхности.

Движение и силы в физике - виды, формулы и определения с примерами

Как уменьшить трение? Здесь есть два пути. Первый — заменить трение скольжения трением качения. Проделаем такой опыт. Будем равномерно передвигать металлическую тележку по столу скольжением (рис. 164, а) и качением (рис. 164, б). Сила трения во втором случае значительно меньше, хотя материал поверхностей и прижимающая сила не изменяются. Значит, трение качения меньше трения скольжения. С тяжелым чемоданом справиться легко, если прикрепить к нему колеса.

Движение и силы в физике - виды, формулы и определения с примерами

Второй путь уменьшения трения скольжения — это смазывание трущихся поверхностей. Смазка (например, масло) заполняет все неровности трущихся поверхностей и располагается тонким слоем между ними так, что поверхности перестают касаться друг друга. При этом сухое трение заменяется трением слоев жидкости (масла), а оно в 8—10 раз меньше.

Опытный водитель никогда не отправится в далекий путь, не проверив, достаточно ли масла в двигателе машины. Объясните, зачем он это делает.

Для любознательных:

А знаете ли вы, что с помощью катков перемещают дома? Например, в городе Москве во время реконструкции улицы Тверской некоторые дома были передвинуты на другое место именно таким способом.

В машинах для замены трения скольжения трением качения используют шариковые и роликовые подшипники (см. рис.). Подшипники диаметром 1,5—2 мм применяют в точных измерительных приборах. Вращающийся вал машины или другого механизма не скользит но неподвижному вкладышу подшипника, а катится по нему на стальных шариках или роликах. Это снижает трение в 20—30 раз.

Движение и силы в физике - виды, формулы и определения с примерами

Главные выводы:

  1. Сила трения скольжения возникает при движении одного тела по поверхности другого.
  2. Сила трения скольжения направлена против движения.
  3. Сила трения зависит от свойств соприкасающихся поверхностей и силы, прижимающей тело к поверхности.
  • Давление в физике
  • Строение вещества в физике
  • Физическое тело и вещество в физике
  • Плотность и единицы плотности в физике
  • Потенциальная энергия
  • Кинетическая энергия
  • Закон сохранения и превращения механической энергии
  • Работа, мощность и энергия

Понравилась статья? Поделить с друзьями:
  • Как написать исправить ничего не могу
  • Как составить бизнес план для детской одежды
  • Как найти мастера по мелкому ремонту
  • Как найти свою фамилию на госуслугах
  • Как найти артефакты для хип