Как найти скорость молекулярная физика

Значительная часть явлений молекулярной физики определяется скоростями молекул. Несмотря на это, нахождение скоростей молекул газа приобретает как теоретического, так и практического значения.

Виды скоростей молекул газа

Скорости газовых молекул в результате их хаотического движения отличаются как по величине, так и по направлению. Скорость данной молекулы газа в данный момент времени есть величина случайная. В молекулярно-кинетической теории газов пользуются понятиями средней (vv), средней квадратичной (vквv_{кв}) и наиболее вероятной (νHν_H) скоростей. Эти скорости задаются для равновесных состояний газа.

Средняя (или среднеарифметическая) скорость определяется уравнением

v=1n∑i=1nviv=frac{1}{n}sumlimits_{i=1}^{n}{{{v}_{i}}}

где viv_i – скорость ii-й молекулы;

nn –количество молекул.

Средняя квадратичная скорость определяется как:

vкв=v2=3kTm{{v}_{кв}}=sqrt{{{v}^{2}}}=sqrt{frac{3kT}{m}}

По этой формуле можно вычислить также скорость броуновских частиц. Конечно, при этом mm –масса броуновской частицы.

Выражению vквv_{кв} можно придать более удобный вид, умножив числитель и знаменатель под корнем на число Авогадро и учитывая, что kN=RkN = R и mN=МmN = М,

vкв=3RTM{{v}_{кв}}=sqrt{frac{3RT}{M}}

Среднюю квадратичную скорость называют еще тепловой. Значение vкв для газов достаточно велики. Так, для водорода при комнатной температуре vкв=1,9⋅103v_{кв} = 1,9 · 10^3 м/с, то есть около 2 км/с.

Тепловая скорость, как видно из уравнения, пропорциональна корню температуры и обратно пропорциональна корню массы. Это обстоятельство определяет, что тепловое движение– достаточно интенсивно для молекул, заметно для микроскопически малых частиц, которые осуществляют броуновское движение, и совершенно незаметно для тяжелых тел.

Экспериментальное определение скоростей газовых молекул

Большой интерес представляет непосредственное экспериментальное определение скоростей газовых молекул. Оно является прямым подтверждением многих результатов и положений молекулярно-кинетической теории. Впервые такое исследование провел А. Штерн в 1920 г. Источником атомов, скорость которых измерялась, в опыте Штерна был молекулярный пучок атомов серебра Ag. Схема установки приведены на рис. 1. На оси системы двух коаксиальных цилиндрических поверхностей натянуто платиновый провод, покрытый слоем серебра.

Примечание

В других опытах использовали также висмут, кадмий, цезий.

Проволока разогревается электрическим током. Так, при температуре около 1300°С серебро с поверхности проволоки испаряется. Таким образом создавался линейный источник «Ag-лучей» и в камере цилиндров, воздух из которой предварительно откачивался при давлении 1,3 · 10-4 Па, образовывался одноатомный газ серебра. Часть атомов серебра через диафрагмы s1 и s2 проходила, образуя молекулярный пучок, к поверхности внешнего цилиндра, где оседала на прозрачной пластинке, создавая слой в виде узкой полосы.

Скорость молекул газа1.svg

Рис. 1

На первой стадии опыта Штерна установка находится в состоянии покоя. При достижении равновесного состояния (температура проволоки достигала определенного значения, которое определяли по её свечению) атомы серебра оседали у точки а1. На второй стадии опыта оба цилиндра приводились в достаточно быстрое вращение с частотой 41,7 с-1.

При этом атомы серебра, двигаясь в вакууме прямолинейно, оседали у точки b. Смещение полосы объясняется тем, что пока атомы серебра пролетают по инерции путь r, внешний цилиндр успевает вернуться на угол φ=ωtφ = ωt, то есть каждая точка внешнего цилиндра смещается на расстояние Δs=ωrtΔs = ωrt, где ωω –угловая скорость его вращения; tt –время, за который атомы серебра проходят путь r. Таким образом,

t=rv=Δsωrt=frac{r}{v}=frac{Delta s}{omega r}

где vv – скорость атомов серебра.

Отсюда

v=ωr2Δsv=frac{omega {{r}^{2}}}{Delta s}

Измеряя смещение полос атомов серебра ΔsΔs и угловую скорость вращения прибора, можно определить скорость атомов серебра. Она приблизительно описывалась выражением

(3,5kTm)12{{left( 3,5frac{kT}{m} right)}^{frac{1}{2}}}

что согласуется со средней скоростью молекул, которые определяются по формуле

v=8kTπmv=sqrt{frac{8kT}{pi m}}

Результаты опытов Штерна показали, что на самом деле картина структуры полосы сложнее.

Смещенная возле точки b полоса была не резко ограниченной, а размытой (рис. 2).

Скорость молекул газа2.svg

Рис. 2

Несмотря на то, что атомы серебра имеют разные скорости, более быстрым атомам должны соответствовать меньшие смещения, а тем более медленным – большие. Таким образом, результаты опыта Штерна вполне передают реальную картину теплового движения молекул.

Тест по теме «Скорость движения молекул»

Средние скорости молекул

Найдём
наиболее
вероятную скорость
,
соответствующую максимуму
функции
распределения
.
Эта скорость определяется из условия

,
т.е.

Проведя
дифференцирование произведения функций,
получим

Средняя
скорость

молекул
(имеется в видусредняя
арифметическая скорость
)
по определению из формулы статического
усреднения

Средняя
скорость входит в
коэффициенты диффузии, вязкости,
теплопроводности и, соответственно
используется в расчётах этих процессов.

Среднеквадратичная
скорость

;

,
откуда

Эта
скорость входит в основное уравнение
молекулярно-кинетической теории.
Качественно
положение характерных (средних) скоростей
показано на рис. 8.6

Проанализируем,
как будет меняться ход кривой при
изменении температуры газа. При
увеличении температуры (или уменьшении
массы молекулы) максимум кривой
смещается вправо (из
)
и становится ниже (площадь под кривойостаётся
неизменной) (Рис. 8.7)

Рис. 8.6

Рис. 8.7

3.
Барометрическая формула
.

Атмосферное
давление на высоте h
обусловлено весом вышележащих слоёв
газа. Давление на высоте h+dh
будет P+dP
(dh>0,
dP<0,
т.к. вес и
давление с высотой убывают).

Разность
давлений

P
и P+dP
обусловлена
весом газа, заключённого в объёме
цилиндра, с площадью основания, равной
и высотойdh
(Рис. 8.8).

,

где
– плотность газа на высоте,
отсюда

(*)

При
нормальных условиях воздух можно
считать идеальным газом
.
Тогда

можно
найти из уравнения состояния идеального
газа
,
здесь

Рис. 8.8

М
– средняя масса моля воздуха. Плотность

,
подставим в (*), получим

.
Поделим обе части на Р:

.
Возьмём интеграл от левой и правой
частей:

.

Предел
давление на уровнеh=0.
Для случая, когда температура постоянная
(изотермическая атмосфера), интегрируя,
получим:

,
отсюда получаем барометрическую
формулу
.

Графическая
иллюстрация этой формулы на рис. 8.9
Давление
убывает с высотой тем быстрее, чем
тяжелее газ и чем ниже температура.

Рис. 8.9

Распределение Больцмана

В
барометрической формуле в отношении
M/R
разделим и
числитель и знаменатель на число Авогадро
.

,
где

масса
одной молекулы,

постоянная
Больцмана.

Вместо
Р
и
подставим соответственно.(см. лекцию №7), гдеплотность
молекул на высотеh,
плотность
молекул на высоте.

Из барометрической
формулы в результате подстановок и
сокращений получим распределение
концентрации молекул по высоте в поле
силы тяжести Земли.

Из
этой формулы следует, что с понижением
температуры число частиц на высотах,
отличных от нуля, убывает (рис. 8.10),
обращаясь в 0 при Т=0 (при
абсолютном нуле все молекулы расположились
бы на поверхности Земли). При высоких
температурах
n
слабо убывает с высотой, так

что
молекулы оказываются распределёнными
по высоте почти равномерно
.
Распределение молекул по высоте
является результатом
конкуренции между притяжением молекул
к Земле и тепловым движением, стремящимся
разбросать молекулы по всем высотам.

На разной высоте молекула обладает
различным запасом
потенциальной энергии

Рис. 8.10

.Следовательно,
распределение
молекул по высоте является и распределением
их по значениям потенциальной энергии
.

(*)

где
плотность молекул в том месте пространства,
где потенциальная энергия молекулы
имеет значение;плотность
молекул в том месте, где потенциальная
энергия равна 0.

Больцман
доказал, что распределение (*) справедливо
не только в случае потенциального поля
сил земного тяготения, но и в любом
потенциальном поле сил для совокупности
любых одинаковых частиц, находящихся
в состоянии хаотического теплового
движения
.

Таким
образом, закон
Больцмана (*) даёт распределение частиц,
находящихся в состоянии хаотического
теплового движения, по значениям
потенциальной энергии
.
(рис. 8.11)

Рис. 8.11

  1. Распределение
    Больцмана при дискретных уровнях
    энергии
    .

Полученное
Больцманом распределение относится к
случаям, когда молекулы находятся во
внешнем поле и их потенциальная энергия
может применяться непрерывно. Больцман
обобщил полученный им закон на случай
распределения, зависящего от внутренней
энергии молекулы.

Известно,
что величина внутренней энергии молекулы
(или атома) Е
может принимать лишь дискретный ряд
дозволенных значений
.
В этом случае распределение Больцмана
имеет вид:

,

где
число
частиц в состоянии с энергией;

коэффициент
пропорциональности, который удовлетворяет
условию

,

где
N
– полное число частиц в рассматриваемой
системе.

Тогда
и в результате для случая дискретных
значений энергии распределение Больцмана

Качественная
иллюстрация этого распределения
представлена на рис. 8.12. Это распределение
характерно
для состояния термодинамического
равновесия.

Заметим,
что в активных
средах лазеров

населённость уровней с большим
значением энергии может быть выше,
чем с меньшим. Это так называемая
инверсная
населённость

уровней.

Рис. 8.12

Но
состояние системы в этом случае
термодинамически неравновесное.

  1. Статистика
    Максвелла-Больцмана

Распределение
Максвелла и Больцмана можно объединить
в один закон Максвелла-Больцмана,
согласно которому число молекул,
компоненты скорости которых лежат в
пределах от
до,
а координаты в пределах отx,
y,
z
до x+dx,
y+dy,
z+dz,
равно

где
,плотность
молекул в том месте пространства, где;;;полная
механическая энергия частицы.

Распределение
Максвелла-Больцмана устанавливает
распределение молекул газа по координатам
и скоростям при наличии произвольного
потенциального силового поля
.

Примечание:
распределение Максвелла и Больцмана
являются составными частями единого
распределения, называемого распределением
Гиббса (этот вопрос подробно рассматривается
в спецкурсах по статической физике, и
мы ограничимся только упоминанием этого
факта).

Вопросы для
самоконтроля.

  1. Дайте определение
    вероятности.

  2. Каков смысл функции
    распределения?

  3. Каков смысл условия
    нормировки?

  4. Запишите
    формулу для определения среднего
    значения результатов измерения величины
    x
    с помощью функции распределения.

  5. Что представляет
    собой распределение Максвелла?

  6. Что
    такое функция распределения Максвелла?
    Каков ее физический смысл?

  7. Постройте
    график функции распределения Максвелла
    и укажите характерные особенности этой
    функции.

  8. Укажите
    на графике
    наиболее вероятную скорость.
    Получите выражение для.
    Как изменяется графикпри повышении температуры?

  9. Получите
    барометрическую формулу. Что она
    определяет?

  10. Получите
    зависимость концентрации молекул газа
    в поле силы тяжести от высоты.

  11. Запишите
    закон распределения Больцмана а) для
    молекул идеального газа в поле силы
    тяжести; б) для частиц массой m,
    находящихся в роторе центрифуги,
    вращающейся с угловой скоростью
    .

  12. Объясните
    физический смысл распределения
    Максвелла-Больцмана.

Лекция №9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Молекулярная физика Основные формулы

1. Основы молекулярно-кинетической теории. Газовые законы

1.1 Количество вещества

Количество вещества

m — масса;

μ — молярная масса вещества;

N — число молекул;

NA = 6,02·1023 моль-1 — число Авогадро

1.2 Основное уравнение молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа

p — давление идеального газа;

m — масса одной молекулы;

n = N/V — концентрация молекул;

V — объем газа;

N — число молекул;

Среднее значение квадрата скорости молекул — среднее значение квадрата скорости молекул.

1.3 Средняя квадратичная скорость молекул идеального газа

Средняя квадратичная скорость молекул идеального газа

k = 1,38·10-23 Дж/К — постоянная Больцмана;

R = kNA = 8,31 Дж/(моль·К) — универсальная газовая постоянная;

T = t+273 — абсолютная температура;

t — температура по шкале Цельсия.

1.4 Средняя кинетическая энергия молекулы одноатомного газа

Средняя кинетическая энергия молекулы одноатомного газа

1.5 Давление идеального газа

Давление идеального газа

n — концентрация молекул;

k — постоянная Больцмана;

T — абсолютная температура.

1.6 Закон Бойля-Мариотта

Закон Бойля-Мариотта

p — давление;

V — объем газа.

1.7 Закон Шарля

Закон Закон Шарля

p0 — давление газа при 0 °С;

α = 1/273 °C-1 — температурный коэффициент давления.

1.8 Закон Гей-Люссака

Закон Гей-Люссака

V0 — объем газа при 0 °С.

1.9 Уравнение Менделеева-Клапейрона

Уравнение Менделеева-Клапейрона

1.10 Объединенный закон газового состояния (уравнение Клапейрона)

Объединенный закон газового состояния

1.11 Закон Дальтона

Закон Дальтона

pi — парциальное давление i-й компоненты смеси газов.

2. Основы термодинамики

2.1 Внутренняя энергия идеального одноатомного газа

Внутренняя энергия идеального одноатомного газа

ν — количество вещества;

R = 8,31 Дж/(моль·К) — универсальная газовая постоянная;

T — абсолютная температура.

2.2 Элементарная работа, совершаемая газом,

при изменении объема на бесконечно малую величину dV

Элементарная работа, совершаемая газом

p — давление газа.

При изменении объема от V1 до V2

Работа, совершаемая газом

2.3 Первый закон термодинамики

Первый закон термодинамики

ΔQ — количество подведенной теплоты;

ΔA — работа, совершаемая веществом;

ΔU — изменение внутренней энергии вещества.

2.4 Теплоемкость идеального газа

Теплоемкость идеального газа

ΔQ — количество переданной системе теплоты на участке процесса;

ΔT — изменение температуры на этом участке процесса.

Для характеристики движения молекул в физике используют две скорости: среднюю и среднюю квадратичную скорость молекул.

Важно. Следует обязательно понимать, что в реальных условиях мы не можем точно знать ни конкретное число молекул в системе, ни тем более скорость каждой из них в конкретный момент времени. Это обусловлено неимоверно гигантским числом частиц в реальных и даже сколько-нибудь приближенных к ним системах. Например, в 1 см3 при давлении 200 мм. рт. ст. содержится 4,18*1018 молекул водорода. Говоря более понятными категориями, это более чем 4 миллиарда миллиардов. Заметим, что указанное давление меньше атмосферного почти в 4 раза. Последнее в среднем равняется 760 мм. рт. ст. Разрежённый водород по своим свойствам наиболее близок к идеальному газу. В данном случае физика вынуждена иметь дело с распределениями скоростей и энергий частиц.

Что такое средняя скорость движения молекул

Среднюю скорость движения молекул часто именуют скоростью их теплового движения.

Определение 1

Вид формулы средней относительной скорости молекул в физике можно представить выражением:

[text { Vотн }=sqrt{2} sqrt{frac{8 R T}{pi m_{0}}}]

Выражение под корнем – средняя скорость молекул идеального газа.

Как определить среднюю квадратичную скорость движения молекул

Определение 2

Средней квадратичной скоростью молекул идеального газа называют величину равную квадратному корню из среднего арифметического величины квадратов скоростей каждой из молекул.

Средняя скорость молекул равна:

[leftlanglemathrm{V}_{mathrm{KB}}rightrangle=sqrt{frac{1}{N} sum_{i=1}^{N} v_{i}^{2}}]

Если обе её части возвести в квадрат и проинтегрировать, то получим выражение:

[langlemathrm{VKB}rangle^{2}=int_{0}^{infty} v^{2} F(v) d v]

Ещё одно выражение для среднеквадратичной скорости:

[leftlangle V_{K B}rightrangle=sqrt{frac{3 k T}{m_{0}}}=sqrt{frac{3 R T}{mu}}]

Именно она присутствует в уравнении, именуемом основным уравнением молекулярно-кинетической теории

P = (1/3)nm*<Vкв>

Где n – концентрация молекул, которая вычисляется делением их общего числа на объём.

Пример. 1.

Рассмотрим простейший случай, чтобы использование интегрирования не затруднило понимание сути явления и помогло лучше понять материал. Вычислим как меняется средняя скорость движения молекул в идеальном газе при линейном увеличении его давления. График следующий:

Где P — давление, ρ — плотность

Напомним, что средняя скорость частиц:

[mathrm{Vcp}=sqrt{frac{8 R T}{pi m_{0}}}]

Если присмотреться к представленному графику, то можно заметить, что P приблизительно равно ρ‎. Эти две величины можно связать соотношением

P=C*ρ‎

Где С – некоторая постоянная величина, константа.

Далее считаем m0= ρ/n, p = n*k*T = C* ρ. Отсюда следует, что k*T = (C*ρ)/n.

Нужно лишь подставить эти значения в формулу для средней скорости:

[V c p=sqrt{8 mathrm{kT} / pi mathrm{m}}=sqrt{(8 mathrm{C} rho / pi mathrm{n})(mathrm{n} / rho)}=sqrt{8 mathrm{C} / pi}]

В полученном выражении нет ни одной переменной величины, т. е. при увеличении давления, вопреки ожиданиям, скорость оказалась неизменной.

Ответ: В процессе, который был дан нам на графике, при увеличении давления средняя скорость молекул никак не меняется.

Нет времени решать самому?

Наши эксперты помогут!

Пример. 2.

Определим среднюю квадратичную скорость молекул газа при условии, что нам известны его давление (P), молярная масса (M) и концентрация частиц (n).

Воспользуемся формулой:

[leftlanglemathrm{V}_{kappa в}rightrangle=sqrt{frac{3 k T}{m_{0}}}=sqrt{frac{3 R T}{mu}}]

Также нам потребуется уравнение Менделеева-Клайперона

Здесь мы воспользовались тем, что:

m/μ = N/Na

PV = (m/μ)*RT = (N/Na)*RT

Если обе части этого уравнения поделить на V и принять во внимание, что

(N/V) = n, то можно получить

P = (n/Na)*RT. Отсюда находим, что RT = (p*N)/n

Если мы это подставим в выражение для среднеквадратичной скорости [leftlangle V_{K B}rightrangle=sqrt{3 mathrm{kT} / mathrm{m}_{0}}=sqrt{3 mathrm{RT} / mu}], получим, что средняя квадратичная скорость движения молекул газа: [leftlangle V_{K B}rightrangle=sqrt{left(3 rho N_{a}right) /(mu mathrm{n})}]

Ответ: Формула средней квадратичной скорости молекул исходя из данный нам условий следующая:

[leftlangle V_{K B}rightrangle=sqrt{left(3 rho N_{a}right) /(mu mathrm{n})}]

  • Печать

Скорость молекул идеального газа

Средняя скорость молекул идеального газа (или средняя квадратичная скорость молекул) вычисляется по формулам, описанным ниже, и измеряется в м/с.

Формула скорости молекул газа

По формуле средней квадратичной скорости молекул вычисляется и скорость молекул идеального газа (v):

где R – универсальная газовая постоянная, равная 8,31, Дж/К•моль;

Т – температура, К;

М – молярная масса, кг/моль;

k – постоянная Больцмана, равная 1,38*10-23, Дж/К;

m – масса одной молекулы идеального газа, кг.

Известно, что молярная масса М равна произведению массы молекулы на число Авогадро 6,02*1023 (моль-1) , т.е. М = Nam.

Скорость молекул газа вычисляется в м/с.

Следовательно, скорость частичек газа зависит от температуры и их массы. Чем выше температура, тем быстрее движутся молекулы газа, а чем они тяжелее, тем медленнее их скорость.

Что такое идеальный газ

Идеальным считается настолько разряженный газ, что в нем можно пренебречь взаимодействием между молекулами. Иными словами в таком газе молекул настолько мало, что между ними почти не происходит столкновений и взаимного притяжения.

При небольшом давлении и не самой низкой температуре обычные газы близки к идеальному состоянию. Например, водород и кислород в обычных условиях можно считать идеальными газами.

Скорость молекул некоторых газов в обычных условиях приведены в таблице:

Понравилась статья? Поделить с друзьями:
  • Как найти удаленный файл авастом
  • Как найти расход топливо двигателя
  • Как найти фильм настя
  • Как исправить щель между передними зубами у ребенка 8 лет
  • Как найти концентрацию вещества математика