Как найти скорость отдачи ружья при выстреле

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,663
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,987
  • разное
    16,906

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Владельцев оружия часто интересует скорость отдачи, но они не единственные. Есть много других ситуаций, в которых полезно знать это количество. Например, баскетболист, выполняющий бросок в прыжке, может захотеть узнать свою скорость назад после того, как выпустил мяч, чтобы избежать врезаться в другого игрока, и капитан фрегата может захотеть узнать, какое влияние оказывает выпуск спасательной шлюпки на нос корабля движение. В космосе, где отсутствуют силы трения, критическая величина — скорость отдачи. Вы применяете закон сохранения количества движения, чтобы найти скорость отдачи. Этот закон выводится из законов движения Ньютона.

TL; DR (слишком длинный; Не читал)

Закон сохранения количества движения, полученный из законов движения Ньютона, дает простое уравнение для расчета скорости отдачи. Он основан на массе и скорости выброшенного тела, а также на массе отскакивающего тела.

Закон сохранения импульса

Третий закон Ньютона гласит, что каждая приложенная сила имеет равную и противоположную реакцию. При объяснении этого закона обычно приводят пример, когда едущий на скорости автомобиль врезается в кирпичную стену. Автомобиль воздействует на стену, а стена оказывает на машину ответную силу, которая ее раздавливает. Математически падающая сила (F

я) равна силе (Fр) величины и действует в обратном направлении:

F_I = -F_R

Второй закон Ньютона определяет силу как массовое ускорение времени. Ускорение — это изменение скорости:

a = frac { Delta v} { Delta t}

Таким образом, чистая сила может быть выражена:

F = m frac { Delta v} { Delta t}

Это позволяет переписать Третий закон так:

Это известно как закон сохранения количества движения.

Расчет скорости отдачи

В типичной ситуации отдачи выпуск тела меньшей массы (тело 1) оказывает влияние на более крупное тело (тело 2). Если оба тела стартуют из состояния покоя, закон сохранения количества движения утверждает, что m1v1 = -m2v2. Скорость отдачи обычно равна скорости тела 2 после выпуска тела 1. Эта скорость равна

v_2 = — frac {m_1} {m_2} v_1

Пример

  • Какова скорость отдачи у 8-фунтовой винтовки Winchester после выстрела пулей весом 150 гран со скоростью 2820 футов в секунду?

Прежде чем решать эту проблему, необходимо выразить все величины в согласованных единицах. Одно зерно равно 64,8 мг, поэтому пуля имеет массу (мB) 9720 мг или 9,72 грамма. Винтовка же имеет массу (мр) 3632 грамма, так как в фунте 454 грамма. Теперь легко рассчитать скорость отдачи винтовки (vр) в футах в секунду:

v_R = — frac {m_B} {m_R} v_B = — frac {9.72} {3,632} 2,820 = -7,55 text {фут / с}

Знак минус означает, что скорость отдачи противоположна скорости пули.

  • Фрегат грузоподъемностью 2000 тонн выпускает 2-тонную спасательную шлюпку со скоростью 15 миль в час. Если предположить незначительное трение, какова скорость отдачи фрегата?

Вес выражен в одних и тех же единицах, поэтому нет необходимости в пересчете. Вы можете просто написать скорость фрегата как:

v_F = — frac {2} {2000} 15 = -0,015 text {миль / ч}

Скорость эта мала, но пренебречь ею нельзя. Это более 1 фута в минуту, что очень важно, если фрегат находится рядом с доком.

Выстрел и его периоды

Выстрелом называется выбрасывание пули из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При сгорании порохового заряда примерно 25-35% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа); 15-25% энергии — на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола, нагревание стенок ствола, гильзы и пули, перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001-0,06 сек).

При выстреле различают четыре последовательных периода:

  • предварительный;
  • первый (основной);
  • второй;
  • третий (период последействия газов).

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250-500 кг/см2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки.

Предварительный период выстрела

Первый, или основной период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 314 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Первый (основной) период выстрела

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза — дульное давление — составляет у различных образцов оружия 300-900 кг/см2. Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

Второй период выстрела

Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200-2000 м/сек, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

Третий период (период последействия газов) выстрела

Явление выстрела

От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает, движение оружия назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику, препятствует прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей, при встрече с воздухом порождают пламя и ударную волну, последняя является источником звука при выстреле.
Явление выстрела
При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола (автоматы и пулеметы Калашникова), часть пороховых газов, кроме того, после прохождения пулей газоотводного отверстия устремляется через него в газовую камору, ударяет в поршень и отбрасывает поршень с затворной рамой назад.

Пока затворная рама не пройдет определенное расстояние, обеспечивающее вылет пули из канала ствола, затвор продолжает запирать канал ствола. После вылета пули из канала ствола происходит его отпирание; затворная рама и затвор, двигаясь назад, сжимают возвратную пружину; затвор при этом извлекает из патронника гильзу. При движении вперед под действием, сжатой пружины затвор досылает очередной патрон в патронник и вновь запирает канал ствола.

Иногда после удара бойка по капсюлю выстрела не последует или он произойдет с некоторым запозданием. В первом случае имеет место осечка, а во втором — затяжной выстрел. Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Затяжной выстрел является следствием медленного развития процесса зажжения или воспламенения порохового заряда.

Отдача при выстреле – хорошо знакомая, но мало понятна?

Взяться за эту статью меня подтолкнули «кочующие» с давнего времени от издания к изданию устоявшиеся стереотипные высказывания многих авторов вроде: «применение нового пороха позволяет снизить дульное давление и уменьшить отдачу на 10-15%», «благодаря наличию газоотводного механизма отдача снижена на 20-25%» и тому подобное. Увы, эти цифры имеют мало общего с реальностью и часто похожи на рекламу мухи, выдаваемой за «большой африканский мух». При этом для измерения величины отдачи используется размерность энергии (Дж, кгс.м), что далеко не всегда корректно отражает реальную, ощущаемую нами отдачу.

Нижеизложенное в первую очередь касается гладкостволок, для нарезного оружия все происходит схожим образом, хотя могут быть и заметные отличия.

Физика из школьного курса:

Для некоторого упрощения наших рассуждений и физической модели процесса будем считать, что оружие в момент выстрела не прижато (прижато очень слабо) к плечу и мы только поддерживаем его руками на весу. На самом деле мы мало погрешим против истины, так как даже если оружие прижато к плечу очень плотно, это слабо сказывается на восприятии отдачи и, главное, никак не отражается на сравнительных результатах, которые нас интересуют при стрельбе из различного оружия различными боеприпасами.

«Сила действия равна и противоположна по направлению силе противодействия» — хорошо знакомый многим третий закон Ньютона. Или по другому — закон сохранения импульса. Пусть есть неподвижное ружье с патронами, если дробь (пуля), а также пыжи и прокладки вместе с ней, общей массой Mдр покинули ствол ружья со скоростью Vдр, затем ствол «покинули» пороховые газы массой Mпор со средней скоростью Vпор, то ружье (с оставшейся гильзой и патронами) массой Мруж с неподвижным стволом (одностволка, двустволка, газоотводка и другие) приобретет в противоположном направлении скорость Vруж, которая легко определяется из формулы.

Мруж x Vруж = Mдр x Vдр + Mпор x Vпор

Так как до выстрела оружие было неподвижно и общий импульс (произведение массы тела (или газа) на его скорость) был равен нулю, то после выстрела импульс ружья должен уравнять импульс дроби, пыжей и пороховых газов, чтобы сумма была по-прежнему равна нулю. Причем нам не надо разбираться, каким образом происходили внутренние процессы при выстреле и знать их параметры (давление газов, величину силы трения, длину и диаметр ствола). Есть масса дроби, пыжей, пороховых газов (пороха) и их скорость — тогда произведение массы ружья на его скорость определяется однозначно. Больше пороха и дроби — однозначно больше и импульс ружья. При равной длине стволов, одинаковой сверловке и одинаковых боеприпасах более легкое ружье получит большую скорость, но импульс ружья (произведение массы ружья на его скорость) останется примерно одинаковым для ружей разной массы.

Если быть совсем точным, то очень небольшие различия все же есть. У более легкого ружья начальная скорость дроби (и импульс) будет чуть-чуть меньше, так как чуть большая часть энергии пороха израсходуется на сообщение чуть большей кинетической энергии этому ружью. У газоотводки часть энергии, хоть и очень маленькую, отберет работа механизма перезаряжания. Но все эти различия очень невелики и лежат в пределах 1-1,5%.

После вылета дроби (пули) и истечения пороховых газов мы «останавливаем» ружье своим плечом, прикладывая к нему какую-то силу, эту же силу ощущает и наше плечо (силу отдачи). Произведение средней силы отдачи на время, в течение которого она воздействует, уже называют импульсом силы отдачи, который в нашем случае должен погасить импульс (скорость) ружья до нуля. То есть импульс силы отдачи равен импульсу ружья. Соответственно увеличение массы пороха и (или) дроби в патроне приводит к увеличению импульса (скорости) ружья и, значит, ощущаемой нами отдачи.

Поскольку сила отдачи не является постоянной величиной на всем промежутке времени, можно разбить время взаимодействия на много малых отрезков t и перемножить на среднюю силу, действующих в каждом из них, а потом сложить результаты и получить импульс силы. Этот процесс называется интегрированием, и если нарисовать график силы отдачи во времени, то площадь под графиком как раз будет равна импульсу силы отдачи. А соответствующая формула запишется в следующем виде:

P = Мруж x Vруж = Fотдачи ср x tвозд = Сумма(Fi x ti)

В процессе восприятия отдачи можно условно выделить два этапа. На первом, основном, этапе воздействия происходит «удар» ружья в плечо и гашение большей части импульса и скорости ружья. Сила отдачи при этом достигает максимума. За этот период плечо вместе с верхней частью туловища приобретает некоторую скорость и продолжает двигаться с ружьем назад. Далее, на втором этапе мы «тормозим» плечо с ружьем уже за счет эластичности и определенного напряжения мышц корпуса. Второй этап обычно продолжительнее первого по времени (тем более, если вы относительно легкой комплекции и используете достаточно мощные патроны), и ощущаемая сила отдачи будет невелика, так как основная часть импульса ружья уже была погашена. При стрельбе из нарезного оружия и гладкостволок малых калибров, с небольшим импульсом отдачи, второй этап может быть более коротким и практически незаметным.

Один и тот же импульс силы отдачи можно получить за меньший промежуток времени основного воздействия, имея большее максимальное (и среднее) значение силы отдачи, или за большее время при меньшей максимальной силе отдачи. Очевидно, что во втором случае ощущаемая нами отдача будет меньше.

Таким образом, объективно отдачу в целом (как мы ее понимаем в «бытовом» смысле) характеризует суммарный импульс силы отдачи и, главное, максимальная величина самой силы отдачи. И эти понятия надо четко разделять.

Практические выводы и рекомендации в реальной стрельбе:

При одном типе оружия и одинаковых боеприпасах более легкое ружье получит большую скорость, то есть оно «резче» ударит в плечо, воздействуя на него более короткое основное время. Следовательно и максимальная сила отдачи будет выше, что и подтверждается практикой. Если отдача переносится с трудом, то выход — или более тяжелое ружье, или более «легкие» патроны, или самозарядка с длинным ходом ствола. (Подробнее о длинном ходе ствола ниже).

Более легкое ружье, имея большую скорость, будет обладать и большей кинетической энергией (при одинаковом значении импульса с более тяжелым ружьем, имеющим меньшую скорость), так как энергия пропорциональна скорости в квадрате. То есть значение энергии ружья после выстрела (произведение массы на скорость в квадрате и деленное пополам) может являться определенным критерием силы отдачи, но только при одинаковых типе и конструктивном исполнении ружей.

Например, стоит поставить на ружье резиновый затыльник (тем более мягкий), который несколько увеличит длину хода амортизации ружья при встрече с плечом и «растянет» время воздействия на первом этапе, и сила отдачи уменьшится. Тот же эффект обеспечит, например, и толстая телогрейка со множеством свитеров.

Рекомендация плотно прижимать ружье имеет тот смысл, что заметное воздействие оружия на плечо начинается несколько раньше, еще до вылета снаряда из ствола, несколько увеличивается время основного воздействия и снижается сила отдачи. Но тут нужно не перестараться, излишне напрягая мышцы торса. Чем закрепощенное будет туловище, тем труднее плечу начать «следовать» за прикладом назад, увеличивая ход и «растягивая» время воздействия, и уж никак не следует прислоняться плечом к какому-либо упору (дереву и т.п.) — отбитое плечо вам наверняка будет обеспечено. Поэтому при стрельбе лежа, когда корпус значительно закрепощен, вы быстрее отобьете себе плечо, и пристрелку гладкоствольного оружия лучше производить из положения сидя за столом с опорой под цевье. Также человек большего веса (120кг по сравнению с 70кг — весьма большая разница) объективно, при прочих равных условиях, будет испытывать большую максимальную силу отдачи. Тяжелое плечо и корпус труднее «отбрасывать» назад, и общее время воздействия будет заметно меньше, хотя сама отдача переноситься субъективно может и легче.

Некоторое значение имеет и форма ложи (а также развесовка, положение центра тяжести) оружия. Например, когда приклад является продолжением линии ствола (компоновка «булпап» и похожие), отдача будет восприниматься чуть сильнее.

Как мы видим, сила отдачи, то, как она реально изменяется во времени и воздействует на нас, является не только объективной характеристикой оружия и патронов, но и существенно зависит от нашей комплекции, индивидуальной манеры стрельбы (прикладки оружия, изготовки и позиции) и даже от того, какая на нас одежда.

Влияние на отдачу системы ружья:

Влияние системы (типа) ружья на отдачу может быть весьма заметным, а в некоторых случаях, у самозарядок с длинным ходом (откатом) ствола, просто радикальным.

Сначала рассмотрим процесс отдачи у самозарядного ружья с неподвижным стволом и газоотводным (или инерционным как у ружей ) механизмом. Вначале все происходит, как у обычных «несамозарядок»: снаряд с основной частью пороховых газов покидает ствол, ружье (вместе с неподвижным или уже движущимся относительно него затвором) приобретает определенный импульс и скорость и начинает воздействовать на плечо. Примерно в это же время под действием остаточного давления газов в газоотводной камере происходит расцепление затвора со стволом (ружьем) (этот процесс может происходить и с некоторым запаздыванием, после вылета снаряда (пули) из ствола и падения в нем давления, чтобы обеспечить нормальную экстракцию гильзы). И затвор уже движется назад отдельно и несколько быстрее, экстрагируя гильзу. Таким образом, в основное время воздействия ружья на плечо на первом этапе и гашения его импульса затвор может (со своей массой и импульсом) участвовать лишь частично, значительно «растягивая» время погашения своего импульса за счет длинного хода-экстрагирования и перебрасывая его на второй этап.

Учитывая, что масса затвора с тягами составляет примерно 300-350 г, около 10% от массы ружья, соответственно на несколько меньшую (6-8%), но заметную, величину может снизиться и максимальная сила отдачи, но никак не на 20-25%.

Многие склонны приписывать уменьшение отдачи у самозарядных «газоотводок» отводу части пороховых газов, что является неверным. Конечно, импульс отведенных пороховых газов частично «вычитается» из общего импульса и силы отдачи, но этот эффект очень мал, никак не больше 1%. Во-первых, как вы увидите ниже, полный вклад пороховых газов в импульс гладкоствольного ружья и соответственно силу отдачи составляет максимум 10-15%. Во-вторых, отводится около 10% газов (10% от 15% составляет уже 1,5% от общего числа). А эти 1,5% газов, хотя и вычитается из импульса ружья вначале, но они в основном «срабатываются и переходят» в импульс затвора и добавляются позже. И только часть их «теряется» в газосбросных отверстиях газовой камеры и «не участвует» в отдаче.

Особо следует остановиться на самозарядках с длинным ходом ствола (МЦ-21-12, Browning A-5 и т.п.). Нетрудно догадаться, учитывая вышеизложенное, что длинный откат ствола значительно (в разы) увеличивает время воздействия на первом, основном, этапе и примерно во столько же раз снижает максимальную силу отдачи. Можно здесь привести для аналогии и артиллерийские орудия (пушки, гаубицы), где без системы отката ствола опоры просто «вырывало» бы из земли.

Проведем упрощенный расчет. Если у ружья с неподвижным стволом длина хода амортизации на первом этапе составляет (с учетом упругости резинового затыльника ружья, мышц плеча и начала движения плеча назад) около 1,5-2,5 см, то у самозарядки с откатом ствола — 8-9 см (ход ствола) плюс те же 1-2 см. Разница в длине хода амортизации будет отличаться в 4-6 раз. Так как масса ствола у самозарядки составляет примерно половину массы всего ружья, то ствол будет отброшен назад после выстрела примерно с вдвое большей скоростью, чем ружье с неподвижным стволом. Соответственно разница в ходе амортизации в 4-6 раз за счет большей в 2 раза скорости ствола выльется в увеличение времени воздействия уже в 2-3 раза, примерно во столько же раз уменьшится и максимальная сила отдачи.

На первом, основном, этапе «отброшенный» ствол воздействует на ружье (и плечо) через усилие возвратной пружины плюс сила трения тормоза о трубку магазина вплоть до прихода в крайнее заднее положение (примерно, до точки максимальной силы отдачи). Фактически на этом этапе гасится почти весь импульс ствола (ружья), так как плечо, в отличие от выстрела из ружей с неподвижным стволом, значительно меньше отбрасывает назад за счет в несколько раз меньшей силы отдачи.

На втором этапе плечо отчасти воспринимает усилие возвратной пружины ствола минус сила трения тормоза (поэтому получается ступенька), которая досылает ствол обратно вперед. Так как суммарное усилие меньше и ствол досылается вперед с меньшей средней скоростью, то время воздействия на втором этапе значительно (даже в разы) больше. Отдача здесь невелика и практически мы воспринимаем это не как отдачу, а скорее как давление на плечо. Обратите внимание на выстрел из артиллерийского орудия — очень быстрый откат ствола назад и гораздо более медленный накат вперед.

Третий этап означает «силу отдачи в обратном направлении» (во время удара ствола о буфер при доходе вперед). Мы воспринимаем это уже не плечом, а руками как относительно небольшой (мы можем на него даже не обратить внимание) толчок вперед, при этом также отчасти гасится «подброс» ствола вверх.

Четвертым этапом следует добавить, аналогично второму и третьему (но в несколько раз меньшую по величине), отдачу от затвора, который досылает следующий патрон в патронник, но это уже малозначительный этап.

Хотя, казалось бы, общее время отдачи для самозарядки с длинным ходом ствола в несколько раз больше, мы этого даже особо не заметим, так как это время относительно невелико. Более того, такая самозарядка позволяет легче контролировать ружье при выстреле, фактически сразу после прекращения действия отдачи, и значительно быстрее произвести повторное прицеливание (ее значительно меньше отбрасывает назад и вверх). А при стрельбе из ружей с неподвижным стволом мы вынуждены после гашения отдачи больше отвлекаться на возвращение «ушедших под небеса» стволов в плоскость прицеливания.

Конечно, при стрельбе из двустволки, когда всего два выстрела, обычно остается достаточно времени для возврата стволов из «поднебесья» и второго прицельного выстрела, поэтому такой нюанс мы скорее не заметим. Но при стрельбе из самозарядки, например по налетевшей стае гусей, когда стрельба часто ведется «три-пятиплетом», преимущество системы с длинным хода ствола в быстром повторном прицеливании весьма ощутимо.

Порох и дульные компенсаторы, их влияние на отдачу:

Оценим приблизительно вклад пороховых газов в общий импульс отдачи, например ружья 12 калибра. При массе пороха (вылетающих пороховых газов) «Сокол» или «Сунар» в 1,7-2,2 г масса дробового снаряда с пыжами и прокладками составляет в среднем 35-39 г. Скорость дроби при вылете из дула составляет около 370-400 м/с, а средняя скорость истечения пороховых газов (вначале она максимальна, а потом сразу падает по мере падения давления) в первом приближении составит 700-800 м/с, так как максимальная их скорость даже у нарезного оружия (в самом начале истечения, когда дульное давление максимально) обычно составляет 1200-1400м/с.

Если обратиться к формуле в начале статьи и перемножить массы дробового снаряда и пороха на их скорости, то увидим, что импульс пороховых газов и их вклад в отдачу примерно в 7-10 раз меньше импульса дроби, то есть составляют не более 10-15% в импульсе отдачи. Примерно такое же соотношение будет и для пуль (немного меньше масса , но больше начальная скорость) и для гладкостволок других калибров. Поэтому, даже если поставить «идеальный» дульный компенсатор, рассеивающий все пороховые газы вбок и «исключающий» их участие в отдаче, сама отдача снизится максимум на 10-15%, что реально достигается только отчасти, для гладкостволок эффект снижения отдачи вряд ли превышает 5-8%.

У нарезного оружия (особенно для патронов magnum), где отношение массы пороха к массе пули может составлять 1/2-1/3, установка дульного тормоза снижает импульс отдачи на величину до 20-25%, несмотря на большие начальные скорости пули.

Если мы используем более современные пороха, например «Сунар» вместо «Сокола», которые обеспечивают одинаковые начальные скорости при меньших навесках (1,7 г «Сунара» вместо 2,1 г «Сокола», что примерно на 20% меньше), то пропорционально (на 20% от 10-15%), то есть в целом на 2-3% снизится и отдача. Едва ли мы сможем объективно уловить это небольшое уменьшение. И главный эффект от более современных порохов будет заключаться в снижении их воздействия, за счет меньшей массы и зачастую меньшего дульного давления, на дробовой сноп и создания предпосылок для увеличения кучности и равномерности дробовой осыпи.

Короткий ствол — грохочет сильнее, бьет мягче:

Прочно укоренившееся мнение, что чем короче ствол, тем больше отдача, является ошибочным. Обычно приводятся следующие аргументы: при более коротких стволах возрастает дульное давление и увеличивается максимальная и средняя скорость истечения пороховых газов (что абсолютно верно) и поэтому отдача возрастает. А это уже неверно, так как почему-то забывается, что одновременно снижается и скорость дробового снаряда (пули). Хотя снижение скорости дроби (ее импульса и следовательно вклада в отдачу) относительно невелико, но так же невелико и повышение скорости истекающих газов с ростом дульного давления. Разобраться в том, какой эффект (снижение скорости дробового снаряда или повышение скорости пороховых газов) перевешивает во влиянии на отдачу — не очень сложно.

Вначале мы говорили о том, что определить импульс ружья (и отдачи) можно, зная скорости дробового снаряда и среднюю скорость истечения пороховых газов, не вдаваясь во внутреннюю баллистику и ее тонкости. Но тот же импульс ружья и отдачи можно определить, зная график равнодействующей всех сил, действующих на ружье (график величины этой силы от времени). Посчитав площадь под графиком (импульс этой силы), мы получим импульс, который получило ружье.

На ружье действует основная сила (действие равно противодействию), которая действует и на дробовой снаряд и на сами истекающие пороховые газы (сила давления пороховых газов в казенной части, умноженная на площадь сечения ствола). Из этой силы вычитается сила трения дроби и пороховых газов о канал ствола. Ясно, что равнодействующая сила (при прочих равных условиях) будет пропорциональна давлению в казенной части, и зная график давления от времени (и площадь под ним) в более коротком и длинном стволе, можно сказать, как изменятся импульс и отдача.

Всем хорошо знаком график давления пороховых газов в зависимости от точки нахождения дробового снаряда по длине ствола. График величины давления от времени будет иметь похожий вид, но только как бы «смазанный» вправо, что связано с тем, что дробь, разгоняясь в стволе, проходит последующие участки за меньшие промежутки времени. После вылета дроби давление относительно резко падает до нуля, так как «выталкивать» только пороховые газы значительно легче.

Понятно, что в стволах, различающихся только длиной и при одинаковых патронах, график давления (и скорости дроби) вначале будет абсолютно идентичен (ведь не может же дробь и пороховые газы заранее «знать» — долго ли им еще лететь по стволу или нет). Но при более коротком стволе дробь (пуля), естественно, покинет ствол раньше по времени, и давление начнет резко падать до нуля раньше. Соответственно и меньше будет площадь под графиком, что определяет импульс отдачи. Этот эффект очень незначителен даже при переходе от ствола длиной 75 см к 50 см — единицы процентов, так как вклад давления на конечном участке ствола в суммарный импульс очень мал, само давление мало, и время действия мало (разогнавшаяся дробь(пуля) пролетает его очень быстро).

Отчего же так сильно убеждение в повышение отдачи при коротких стволах. Дело в психологии — значительно больший «грохот» истекающих пороховых газов заставляет нас рефлекторно думать, что и отдача соответственно возросла. Наверно именно поэтому также приписывается заметное снижение отдачи более современным порохам с пониженным дульным давлением и несколько отличным звуком выстрела.

Эпилог:

Надеюсь, что «отдача» теперь перестала быть «загадочной незнакомкой», хотя нам суждено воспринимать ее не только через сухие понятия «импульса» и «энергии», массы и типа оружия, но и особенности индивидуальной манеры стрельбы, а также струнками нашей души, невольно вслушиваясь в раскатистые аккорды выстрела.

А. Володаренко

Начальная скорость пули

Начальной скоростью называется скорость движения пули у дульного среза ствола. За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.

Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет.

Величина начальной скорости пули зависит от длины ствола; веса пули; веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжания.

Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.

Изменение веса порохового заряда приводит к изменению количества пороховых газов, а, следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули.

Длина ствола и вес порохового заряда увеличиваются при конструировании оружия до наиболее рациональных размеров.

С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).

С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули.

Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а, следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.

Плотностью заряжания называется отношение веса заряда к объему гильзы при вставленной пуле (каморы сгорания заряда). При глубокой посадке пуля значительно увеличивается плотность заряжания, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие, патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжания увеличивается (уменьшается) начальная скорость пули, отдача оружия и угол вылета.

Начальная скорость пули, отдача оружия и угол вылета

Внутренняя баллистика — это наука, занимающаяся изучением процессов, которые происходят при выстреле, в особенности при движении пули (гранаты) по каналу ствола.

Выстрелом называется выбрасывание пули (гранаты) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.

При выстреле из стрелкового оружия происходят следующие явления. От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор. В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, она продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику, препятствует прорыву пороховых газов в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей, при встрече с воздухом порождают пламя и ударную волну; последняя является источником звука при выстреле.

При сгорании порохового заряда примерно 25—35% выделяемой энергии затрачивается на сообщение пули поступательного движения (основная работа); 15—25% энергии — на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок канала ствола, гильзы и пули; перемещение подвижных частей оружия); около 40% энергии не используется и теряется после вылета пули из канала ствола.

Выстрел происходит в очень короткий промежуток времени (0,001—0,06 с). При выстреле различают четыре последовательных периода (рис. 3.1): предварительный; первый, или основной; второй; третий, или период последействия газов.

Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы. В течение этого периода в канале ствола создается давление газов, необходимое для того, чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250—500 кг/см2 в зависимости от устройства нарезов, массы пули и твердости ее оболочки. Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение начинается сразу же при достижении в канале ствола давления форсирования.

Рис. 3.1. Периоды выстрела

Первый, или основной, период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро меняющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины. Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4—6 см пути. Затем вследствие быстрого увеличения скорости движения пули объем запульного пространства увеличивается быстрее притока новых газов, давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.

Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро, и у дульного среза дульное давление составляет у различных образцов оружия 300—900 кг/см2 (например, у самозарядного карабина Симонова (СКС) — 390 кг/см2). Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.

У некоторых видов стрелкового оружия, особенно короткоствольных (например, ПМ), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.

Третий период, или период последействия газов, длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200—2000 м/с, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.

Начальной скоростью (V

0) называется скорость движения пули у дульного среза ствола.

За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия. Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет. Величина начальной скорости пули зависит от длины ствола; массы пули; массы, температуры и влажности порохового заряда, формы и размеров пороховых зерен и плотности заряжания.

Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость.

При постоянной длине ствола и постоянной массе порохового заряда начальная скорость тем больше, чем меньше масса пули.

Изменение массы порохового заряда приводит к изменению количества пороховых газов и, следовательно, к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше масса порохового заряда, тем больше максимальное давление и начальная скорость пули.

Длина ствола и масса порохового заряда увеличиваются при конструировании оружия до наиболее рациональных размеров.

С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. В связи с этим необходимо учиты­вать поправки дальности на температуру воздуха и заряда.

С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули.

Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда и, следовательно, на начальную скорость полета пули. Они подбираются соответствующим образом при конструировании оружия.

Отдачей называется движение оружия (ствола) назад во время выстрела. Отдача ощущается в виде толчка в плечо, руку или грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кгм и воспринимается стреляющими безболезненно.

Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т.д.) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под действием которой дульная часть ствола оружия отклоняется кверху. Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.

Кроме того, при выстреле ствол оружия совершает колебательные движения — вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону. Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т.п.

Сочетание влияния вибрации ствола, отдачи оружия и других причин приводит к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола. Этот угол называется углом вылета. Величина угла вылета дается в таблицах стрельбы.

Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при приведении его к нормальному бою.

Отдача оружия

Движение оружия назад во время выстрела называется отдачей. Давление пороховых газов в канале ствола действует во все стороны с одинаковой силой. Давление газов на дно пули заставляет её двигаться вперёд, а давление на дно гильзы передаётся на затвор и вызывает движение оружия назад. При отдаче образуется пара сил, под действием которой дульная часть оружия отклоняется кверху. Отдача стрелкового оружия ощущается в виде толчка в плечо, руку или в грунт. Действие отдачи оружия характеризуется величиной скорости и энергии, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у автомата Калашникова невелика и воспринимается стреляющим безболезненно, а у малокалиберной винтовки — почти не ощутима. Для уменьшения влияния отдачи на результаты стрельбы необходимо точно соблюдать приёмы стрельбы.

Отдача оружия

Автор текста: Военная кафедра Казахского нац. университета

Источник: https://www.kaznu.kz/

Автор публикации

не в сети 2 дня

Условие задачи:

Охотник стреляет из ружья. Определить силу отдачи, если масса дроби 35 г, начальная скорость дроби 320 м/с, а выстрел длится 0,05 с.

Задача №2.10.4 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(m=35) г, (upsilon_0=320) м/с, (Delta t = 0,05) с, (F-?)

Решение задачи:

Схема к решению задачиСилу отдачи можно определить из второго закона Ньютона, записанного в общем виде:

[F = frac{{Delta p}}{{Delta t}};;;;(1)]

Поскольку иного не сказано в условии, то будем считать, что охотник держит ружье горизонтально. Система “ружье – дробь” замкнута вдоль горизонтальной оси (x), так как вдоль этой оси не действуют никакие внешние силы. В таком случае справедлив закон сохранения импульса в проекции на ось (x):

[0 =  – {p_1} + {p_2}]

[{p_1} = {p_2}]

Здесь (p_1) – импульс, полученный ружьем при выстреле, (p_2) – импульс дроби, который равен (m{upsilon _0}):

[{p_1} = m{upsilon _0}]

Так как начальный импульс ружья, очевидно, равен нулю, то понятно, что изменение импульса ружья равно:

[Delta p = m{upsilon _0};;;;(2)]

Подставим (2) в (1), тогда получим:

[F = frac{{m{upsilon _0}}}{{Delta t}}]

Обязательно проверяем, все ли численные данные задачи даны в системе СИ – видно, что нужно перевести массу дроби.

[35; г = frac{{35}}{{1000}}; кг = 0,035; кг]

Теперь посчитаем ответ.

[F = frac{{0,035 cdot 320}}{{0,05}} = 224; Н]

Ответ: 224 Н.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

2.10.3 Найти количество теплоты, выделившееся при лобовом абсолютно неупругом ударе
2.10.5 Шары массами 1 и 2 кг движутся навстречу друг другу. Скорость первого шара 5 м/с
2.10.6 Два шара массами 0,3 и 0,2 кг движутся навстречу друг другу. Скорость первого шара

При выстреле из ружья массой 3 кг вылетает пуля массой 10 г со скоростью 600 м/с. Чему равна скорость отдачи ружья, если в момент выстрела приклад:
а) не был прижат к плечу стрелка;
б) был плотно прижат к плечу стрелка?
Масса стрелка 80 кг.

reshalka.com

ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Импульс тела. Закон сохранения импульса. Реактивное движение. Номер №1723

Решение а

Дано:

m

2

=
3
кг

m

1

=
10
г;

v

1

=
600
м/с;

m =
80 кг.
Найти:

v

2

− ?
СИ:

m

1

=
0
,
01
кг.
Решение:
Решение рисунок 1
По закону сохранения импульса:

m

1

v

1

+

m

2

v

2

=

m

1

v

1

+

m

2

v

2

;
В проекции на ось X:

0
+
0
=

m

1

v

1

m

2

v

2

;

m

1

v

1

=

m

2

v

2

;

v

2

=

m

1

v

1

m

2

;

v

2

=

0
,
01

600

3

=
2
м/с.
Ответ: 2 м/с.

Решение б

Дано:

m

2

=
3
кг

m

1

=
10
г;

v

1

=
600
м/с;

M =
80 кг.
Найти:

v

2

− ?
СИ:

m

1

=
0
,
01
кг.
Решение:
Решение рисунок 1
По закону сохранения импульса:

m

1

v

1

+

m

2

v

2

=

m

1

v

1

+
(

m

2

+
M
)

v

2

;
В проекции на ось X:

0
+
0
=

m

1

v

1


(

m

2

+
M
)

v

2

;

m

1

v

1

=
(

m

2

+
M
)

v

2

;

v

2

=

m

1

v

1

m

2

+
M

;

v

2

=

0
,
01

600

3
+
80

=
0
,
07
м/с.
Ответ: 0,07 м/с.

Понравилась статья? Поделить с друзьями:
  • Как найти в интернете название картины
  • Как найти все разрывы разделов
  • Как найти электронную птс по vin
  • Как составить анкету общие вопросы
  • Как найти библиотеку dll на компьютере