Как найти скорость по формуле силы лоренца

На чтение 8 мин. Просмотров 27.3k. Опубликовано 18 ноября
Обновлено 18 ноября

Нигде еще школьный курс физики так сильно не перекликается с большой наукой, как в электродинамике. В частности, ее краеугольный камень – воздействие на заряженные частицы со стороны электромагнитного поля, нашло широкое применение в электротехнике.

Содержание

  1. Формула силы Лоренца
  2. Определение и формула силы Лоренца
  3. Направление силы Лоренца
  4. Следствия свойств силы Лоренца
  5. Формула силы Лоренца при наличии магнитного и электрического полей
  6. Единицы измерения силы Лоренца
  7. Понятие напряженности электрического поля
  8. Напряженность электрического поля
  9. Примеры задачи
  10. Задача 1
  11. Задача 2
  12. Задача 3

Формула силы Лоренца

Формула описывает взаимосвязь магнитного поля и основных характеристик движущегося заряда. Но сперва нужно разобраться, что же оно собой представляет.

Определение и формула силы Лоренца

В школе очень часто показывают опыт с магнитом и железными опилками на бумажном листе. Если расположить его под бумагой и слегка потрясти, то опилки выстроятся по линиям, которые принято называть линиями магнитной напряженности. Говоря простыми словами, это силовое поле магнита, которое окружает его подобно кокону. Оно замкнуто само на себя, то есть не имеет ни начала, ни конца. Это векторная величина, которая направлена от южного полюса магнита к северному.

сила Лоренца пример

Если бы в него влетела заряженная частица, то поле воздействовало бы на него очень любопытным образом. Она бы не затормозилась и не ускорилась, а всего лишь отклонилась в сторону. Чем она быстрее и чем сильнее поле, тем больше на нее действует эта сила. Ее назвали силой Лоренца в честь ученого-физика, впервые открывшего это свойство магнитного поля.

Вычисляют ее по специальной формуле:

FЛ=qvB,

здесь q – величина заряда в Кулонах, v – скорость, с которой движется заряд, в м/с, а B – индукция магнитного поля в единице измерения Тл (Тесла).

Направление силы Лоренца

Ученые заметили, что есть определенная закономерность между тем, как частица влетает в магнитное поле и тем, куда оно ее отклоняет. Чтобы ее было легче запомнить, они разработали специальное мнемоническое правило. Для его запоминания нужно совсем немного усилий, ведь в нем используется то, что всегда под рукой – рука. Точнее, левая ладонь, в честь чего оно носит название правила левой руки.

пример силы Лоренца

Итак, ладонь должна быть раскрыта, четыре пальца смотрят вперед, большой палец оттопырен в сторону. Угол между ними составляет 900. Теперь необходимо представить, что магнитный поток представляет собой стрелу, которая впивается в ладонь с внутренней стороны и выходит с тыльной. Пальцы при этом смотрят туда же, куда летит воображаемая частица. В таком случае большой палец покажет, куда она отклонится.

Интересно!

Важно отметить, что правило левой руки действует только для частиц со знаком «плюс». Чтобы узнать, куда отклонится отрицательный заряд, нужно четыре пальца направить в сторону, откуда летит частица. Все остальные манипуляции остаются прежними.

Следствия свойств силы Лоренца

Тело влетает в магнитном поле под каким-то определённым углом. Интуитивно понятно, что его величина имеет какое-то значение на характер воздействия на него поля, здесь нужно математическое выражение, чтобы стало понятнее. Следует знать, что как сила, так и скорость являются векторными величинами, то есть имеют направление. То же самое относится и к линиям магнитной напряженности. Тогда формулу можно записать следующим образом:

FЛ=qvBsinα,

sin α здесь – это угол между двумя векторными величинами: скоростью и потоком магнитного поля.

Как известно, синус нулевого угла также равен нулю. Получается, что если траектория движения частицы проходит вдоль силовых линий магнитного поля, то она никуда не отклоняется.

полная формула

В однородном магнитном поле силовые линии имеют одинаковое и постоянное расстояние друг от друга. Теперь представим, что в таком поле перпендикулярно этим линиям движется частица. В этом случае сила Лоуренса заставит двигаться ее по окружности в плоскости, перпендикулярной силовым линиям. Чтобы найти радиус этой окружности, нужно знать массу частицы:

R=mvqB

Значение заряда не случайно взято как модуль. Это означает, что неважно, отрицательная или положительная частица входит в магнитное поле: радиус кривизны будет одинаков. Изменится только направление, в котором она полетит.

Во всех остальных случаях, когда заряд имеет определенный угол α с магнитным полем, он будет двигаться по траектории, напоминающей спираль с постоянным радиусом R и шагом h. Его можно найти по формуле:

R=mvsinαqB

h=2mvcosαqB

Еще одним следствием свойств этого явления является тот факт, что она не совершает никакой работы. То есть она не отдает и не забирает энергию у частицы, а лишь меняет направление ее движения.

сила Лоренца

Самая яркая иллюстрация этого эффекта взаимодействия магнитного поля и заряженных частиц – это северное сияние. Магнитное поле, окружающее нашу планету, отклоняет заряженные частицы, прилетающие от Солнца. Но так как оно слабее всего на магнитных полюсах Земли, то туда проникают электрически заряженные частицы, вызывая свечение атмосферы.

Центростремительное ускорение, которое придается частицам, используется в электрических машинах – электродвигателях. Хотя уместнее здесь говорить о силе Ампера – частном проявлении силы Лоуренса, которая воздействует на проводник.

Принцип действия ускорителей элементарных частиц также основан на этом свойстве электромагнитного поля. Сверхпроводящие электромагниты отклоняют частицы от прямолинейного движения, заставляя их двигаться по кругу.

работа силы Лоренца

Самое любопытное заключается в том, что сила Лоренца не подчиняется третьему закону Ньютона, который гласит, что всякому действию есть свое противодействие. Связано это с тем, что Исаак Ньютон верил, что всякое взаимодействие на любом расстоянии происходит мгновенно, однако это не так. На самом деле оно происходит с помощью полей. К счастью, конфуза удалось избежать, так как физикам удалось переработать третий закон в закон сохранения импульса, который выполняется в том числе и для эффекта Лоуренса.

Формула силы Лоренца при наличии магнитного и электрического полей

Магнитное поле имеется не только у постоянных магнитов, но и у любого проводника электричества. Только в данном случае помимо магнитной составляющей, в ней присутствует еще и электрическая. Однако даже в этом электромагнитном поле эффект Лоуренса продолжает свое воздействие и определяется по формуле:

FЛ=qE+vB

где v – скорость электрически заряженной частицы, q – ее заряд, B и E – напряженности магнитного и электрических полей поля.

Единицы измерения силы Лоренца

Как и большинство других физических величин, которые действуют на тело и изменяют его состояние, она измеряется в ньютонах и обозначается буквой Н.

Понятие напряженности электрического поля

Электромагнитное поле на самом деле состоит из двух половин – электрической и магнитной. Они точно близнецы, у которых все одинаково, но вот характер разный. А если приглядеться, то во внешности можно заметить небольшие различия.

сила Лоренца формула

То же самое касается и силовых полей. Электрическое поле тоже обладает напряженностью – векторной величиной, которая является силовой характеристикой. Она воздействует на частицы, которые в неподвижности находятся в нем. Само по себе оно не является силой Лоренца, ее просто нужно принимать во внимание, когда вычисляется воздействие на частицу в условиях наличия электрического и магнитного полей.

Напряженность электрического поля

Напряженность электрического поля воздействует только на неподвижный заряд и определяется по формуле:

E=Fq

Единицей измерения является Н/Кл или В/м.

Примеры задачи

Задача 1

На заряд в 0,005 Кл, который движется в магнитном поле с индукцией 0,3 Тл, действует сила Лоренца. Вычислить ее, если скорость заряда 200 м/с, а движется он под углом 450 к линиям магнитной индукции.

Дано:

q = 0,005 Кл

B = 0,3 Тл

v = 200 м/с

α = 450

Решение:

В условиях задачи нет упоминания электрического поля, поэтому силу Лоренца можно найти по следующей формуле:

FЛ=qvBsinα=0,005×200×0,3×sin 450 =0,3×22=0,21 Н

Задача 2

Определить скорость тела, имеющего заряд и которое движется в магнитном поле с индукцией 2 Тл под углом 900. Величина, с которой поле воздействует на тело, равна 32 Н, заряд тела – 5 × 10-3 Кл.

Дано:

q = 0,005 Кл

B = 2 Тл

FЛ = 32 Н

α = 900

Решение:

Чтобы найти скорость заряда, необходимо несколько видоизменить формулу для нахождения силы Лоренца:

FЛ=qvBsinαv=FЛqBsinα

v=320,005×2×sin900=320,01×1=32000мс=32 км/с

Задача 3

Электрон движется в однородном магнитном поле под углом 900 ее силовым линиям. Величина, с которой поле воздействует на электрон, равна 5 × 10-13 Н. Величина магнитной индукции равна 0,05 Тл. Определить ускорение электрона.

Дано:

q = -1,6 × 10-19 Кл

B = 0,05 Тл

FЛ = 5 × 10-13 Н

α = 900

Решение:

В этой задаче сила Лоренца ко всему прочему еще и заставляет двигаться электрон по окружности. Поэтому здесь под ускорением следует понимать центростремительное ускорение:

aц=v2R

На данный момент неизвестны ни скорость электрона, ни радиус окружности, по которой он движется.

v=FЛqBsinα=5×10-13-1,6×10-19×0,05∙sin900=6×107мс

R=mvqB=9×10-31×6×107-1,6×10-19×0,05=6,8×10-3мс

aц=v2R=6×10726,8×10-3=5×1017мс2

Электродинамика оперирует такими понятиями, которым трудно подобрать аналогию в обычном мире. Но это совсем не значит, что их невозможно постичь. С помощью различных наглядных экспериментов и природных явлений процесс познания мира электричества может стать по настоящему захватывающим.

Как вывести скорость из формулы Лоренца?

Вы зашли на страницу вопроса Как вывести скорость из формулы Лоренца?, который относится к
категории Физика. По уровню сложности вопрос соответствует учебной
программе для учащихся 10 — 11 классов. В этой же категории вы найдете ответ
и на другие, похожие вопросы по теме, найти который можно с помощью
автоматической системы «умный поиск». Интересную информацию можно найти в
комментариях-ответах пользователей, с которыми есть обратная связь для
обсуждения темы. Если предложенные варианты ответов не удовлетворяют,
создайте свой вариант запроса в верхней строке.

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле Сила Лоренца - основные понятия, формулы и определение с примерами

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде
Сила Лоренца - основные понятия, формулы и определение с примерами
где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), Сила Лоренца - основные понятия, формулы и определение с примерами — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда
Сила Лоренца - основные понятия, формулы и определение с примерами
где Сила Лоренца - основные понятия, формулы и определение с примерами — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:
Сила Лоренца - основные понятия, формулы и определение с примерами

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости Сила Лоренца - основные понятия, формулы и определение с примерамисоставляющая вектора индукции Сила Лоренца - основные понятия, формулы и определение с примерами магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца Сила Лоренца - основные понятия, формулы и определение с примерами действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы Сила Лоренца - основные понятия, формулы и определение с примерами (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
Сила Лоренца - основные понятия, формулы и определение с примерами

и радиус окружности

Сила Лоренца - основные понятия, формулы и определение с примерами
описываемой частицей в магнитном поле.

Сила Лоренца - основные понятия, формулы и определение с примерами

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Сила Лоренца - основные понятия, формулы и определение с примерами

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

Сила Лоренца - основные понятия, формулы и определение с примерами

где Сила Лоренца - основные понятия, формулы и определение с примерами — электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная Сила Лоренца - основные понятия, формулы и определение с примерами Сила Лоренца - основные понятия, формулы и определение с примерами — магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда Сила Лоренца - основные понятия, формулы и определение с примерами, а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

Сила Лоренца - основные понятия, формулы и определение с примерами

где I — сила тока; е — заряд частицы; Сила Лоренца - основные понятия, формулы и определение с примерами— концентрация частиц в проводнике; V — объем; Сила Лоренца - основные понятия, формулы и определение с примерами — скорость движения частиц; S площадь поперечного сечения проводники.

  • Заказать решение задач по физике

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Сила Лоренца - основные понятия, формулы и определение с примерами

или

Сила Лоренца - основные понятия, формулы и определение с примерами

Если учесть, то Сила Лоренца - основные понятия, формулы и определение с примерами

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Сила Лоренца - основные понятия, формулы и определение с примерами

Это и есть формула для расчета магнитной составляющей силы Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Магнитная составляющая силы Лоренца
Сила Лоренца - основные понятия, формулы и определение с примерами

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (Сила Лоренца - основные понятия, формулы и определение с примерами≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если
Сила Лоренца - основные понятия, формулы и определение с примерами

Откуда 

Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.

Сила Лоренца - основные понятия, формулы и определение с примерами
Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10-4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10м/с. Найти радиус окружности, по которой движется электрон.

Отсюда 
Сила Лоренца - основные понятия, формулы и определение с примерами

Подставим значения физических величин:

Сила Лоренца - основные понятия, формулы и определение с примерами

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10-2 м.

  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

Сила Лоренца — основные понятия, формулы и определение с примерами

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде

где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда

где — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности

и радиус окружности


описываемой частицей в магнитном поле.

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

где — электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная — магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда , а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

где I — сила тока; е — заряд частицы; — концентрация частиц в проводнике; V — объем; — скорость движения частиц; S площадь поперечного сечения проводники.

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Если учесть, то

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Это и есть формула для расчета магнитной составляющей силы Лоренца:

Магнитная составляющая силы Лоренца

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если


Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.


Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.


Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10 -4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10 6 м/с. Найти радиус окружности, по которой движется электрон.

Отсюда

Подставим значения физических величин:

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10 -2 м.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Сила Лоренца: определение, формула, применение на практике

Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

Определение и формула

Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

Рис. 1. Выводы Лоренца

Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

Учитывая, что

(здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

Так, как nSdl общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

Модуль F вычисляется по формуле:

Из формулы следует:

  1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
  2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
  3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

Рис. 2. Заряженная частица между полюсами магнитов Рис. 3. Ориентация вектора в зависимости от полярности заряда

Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

В чём измеряется?

Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10 -n Н, где 0

Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

Направление силы Лоренца

Мы уже упоминали, что направление возникшей силы Лоренца, кроме магнитных параметров, определяется (в том числе) полярностью заряда. Если бы мы имели возможность наблюдать заряженную элементарную частицу, пребывающую в магнитном поле, то по вектору её перемещения можно было бы определить направление вектора силы F.

Но на практике наблюдать элементарные заряды очень сложно из-за крохотных размеров. Поэтому для определения этого направления применяют способ, известен, как правило левой руки (рис. 4).

Рис. 4. Нахождение вектора силы Лоренца

Ладонь необходимо развернуть так, чтобы вектор индукции входил в неё. В случае с положительным зарядом, вытянутые пальцы располагают по движению частицы. (для отрицательного заряда пальцы направляют в противоположную сторону). Большой палец под прямым углом указывает искомое направление.

Если известна ориентация вектора скорости частицы, то определить направления остальных векторов можно, применяя правило правой руки, которое понятно из рисунка 5.

Рис. 5. Пример применения правила правой руки

Применение на практике

Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров Рис. 6). Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

Рис. 6. Применение учения Лоренца

На рисунке справа изображена схема масспектрографа – прибора для разделения заряженных частиц по величине их зарядов.

Ещё один пример – бесконтактный электромагнитный метод определения скорости течения (вязкости) электропроводных жидкостей. Методика может быть применима к расплавленным металлам, например к алюминию. Бесконтактный способ определения вязкости очень полезен при работе с агрессивными жидкими электропроводными веществами (рис. 7).

Рис. 7. Измерение текучести жидких веществ

Работа ускорителей была бы невозможной без участия силы Лоренца. В этих устройствах заряженные частицы удерживаются и разгоняются до околосветовых скоростей благодаря электромагнитам, расположенным вдоль кольцевой трассы.

Мощная электронная лампа – Магнетрон также работает на принципе взаимодействия электронов с магнитными полями, которые направляют высокочастотное излучение в нужном направлении. Магнетрон является основной рабочей деталью микроволновых печей.

На основании действия силы Лоренца создано много других устройств, используемых на практике.

Сила Лоренца

Сила Лоренца. Определение и формула

Сила Ампера, воздействующая на часть проводника длиной Δ l с некоторой силой тока I , находящийся в магнитном поле B , F = I · B · Δ l · sin α может выражаться через действующие на конкретные носители заряда силы.

Пускай заряд носителя обозначается как q , а n является значением концентрации носителей свободного заряда в проводнике. В этом случае произведение n · q · υ · S , в котором S представляет собой площадь поперечного сечения проводника, эквивалентно току, протекающему в проводнике, а υ – это модуль скорости упорядоченного движения носителей в проводнике:

Формула силы Ампера может записываться в следующем виде:

F = q · n · S · Δ l · υ · B · sin α .

По причине того, что полное число N носителей свободного заряда в проводнике сечением S и длиной Δ l равняется произведению n · S · Δ l , действующая на одну заряженную частицу сила равняется выражению: F Л = q · υ · B · sin α .

Найденная сила носит название силы Лоренца. Угол α в приведенной формуле эквивалентен углу между вектором магнитной индукции B → и скоростью ν → .

Направление силы Лоренца, которая воздействует частицу с положительным зарядом, таким же образом, как и направление силы Ампера, находится по правилу буравчика или же с помощью правила левой руки. Взаимное расположение векторов ν → , B → и F Л → для частицы, несущей положительный заряд, проиллюстрировано на рис. 1 . 18 . 1 .

Рисунок 1 . 18 . 1 . Взаимное расположение векторов ν → , B → и F Л → . Модуль силы Лоренца F Л → численно эквивалентен произведению площади параллелограмма, построенного на векторах ν → и B → и заряда q .

Сила Лоренца направлена нормально, то есть перпендикулярно, векторам ν → и B → .

Сила Лоренца не совершает работы при движении несущей заряд частицы в магнитном поле. Данный факт приводит к тому, что модуль вектора скорости в условиях движения частицы так же не меняет своего значения.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость ν → лежит в плоскости, которая направлена нормально по отношению к вектору B → , то частица будет совершать движение по окружности некоторого радиуса, рассчитывающегося с помощью следующей формулы:

Сила Лоренца в данном случае применяется в качестве центростремительной силы (рис. 1 . 18 . 2 ).

Рисунок 1 . 18 . 2 . Круговое движение заряженной частицы в однородном магнитном поле.

Для периода обращения частицы в однородном магнитном поле будет справедливо следующее выражение:

T = 2 π R υ = 2 π m q B .

Данная формула наглядно демонстрирует отсутствие зависимости заряженных частиц заданной массы m от скорости υ и радиуса траектории R .

Применение силы Лоренца

Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:

ω = υ R = υ q B m υ = q B m .

Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.

Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).

На рисунке 1 . 18 . 3 приводится принципиальная схема циклотрона.

Рисунок 1 . 18 . 3 . Движение заряженных частиц в вакуумной камере циклотрона.

Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D -образного электрода в циклотроне.

К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 М э В .

Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.

Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.

Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne 20 и Ne 22 ). На рис. 1 . 18 . 4 изображен простейшая версия масс-спектрометра. Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ → заряженных частиц направлена перпендикулярно векторам E → и B → .

Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы q E → и магнитной силы Лоренца. В условиях, когда выполняется E = υ B , данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ = E B .

После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B → камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R = m υ q B ‘ . В процессе измерения радиусов траекторий при известных значениях υ и B ‘ , мы имеем возможность определить отношение q m . В случае изотопов, то есть при условии q 1 = q 2 , масс-спектрометр может разделить частицы с разными массами.

С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10 – 4 .

Рисунок 1 . 18 . 4 . Селектор скоростей и масс-спектрометр.

Магнитное поле

В случае, когда скорость частицы υ → имеет составляющую υ ∥ → вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектор υ → , а шаг спирали p – от модуля продольной составляющей υ ∥ (рис. 1 . 18 . 5 ).

Рисунок 1 . 18 . 5 . Движение заряженной частицы по спирали в однородном магнитном поле.

Исходя из этого, можно сказать, что траектория заряженной частицы в каком-то смысле «навивается» на линии магнитной индукции. Данное явление используется в технике для магнитной термоизоляции высокотемпературной плазмы — полностью ионизированного газа при температуре порядка 10 6 K . При изучении управляемых термоядерных реакций вещество в подобном состоянии получают в установках типа «Токамак». Плазма не должна касаться стенок камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. На рисунке 1 . 18 . 6 в качестве примера проиллюстрирована траектория движения несущей заряд частицы в магнитной «бутылке» (или ловушке).

Рисунок 1 . 18 . 6 . Магнитная «бутылка». Заряженные частицы не выходят за ее пределы. Необходимое магнитное поле может быть создано с помощью двух круглых катушек с током.

Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.

Быстрые заряженные частицы из космоса, по большей степени от Солнца, «перехватываются» магнитным полем Земли, вследствие чего образуются радиационные пояса (рис. 1 . 18 . 7 ), в которых частицы, будто в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за доли секунды.

Исключением являются полярные области, в которых часть частиц прорывается в верхние слои атмосферы, что может приводить к возникновению таких явлений, как «полярные сияния». Радиационные пояса Земли простираются от расстояний около 500 к м до десятков радиусов нашей планеты. Стоит вспомнить, что южный магнитный полюс Земли находится поблизости с северным географическим полюсом на северо-западе Гренландии. Природа земного магнетизма до сих пор не изучена.

Рисунок 1 . 18 . 7 . Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.

Возможно их вторжение в верхние слои атмосферы, служащее причиной возникновения «северных сияний».

Рисунок 1 . 18 . 8 . Модель движения заряда в магнитном поле.

Рисунок 1 . 18 . 9 . Модель Масс-спектрометра.

Рисунок 1 . 18 . 10 . Модель селектора скоростей.

источники:

http://www.asutpp.ru/sila-lorentsa.html

http://zaochnik.com/spravochnik/fizika/magnitnoe-pole/sila-lorentsa/

Решение задач – обязательная практика в жизни всех студентов-технарей. В сегодняшней статье разберемся, как решать задачи на силу Лоренца. 

Если вам скучно читать про решение задач, переходите в наш телеграм-канал. Там найдется интересная информация и новости для всех специальностей. А еще, у нас есть второй канал, где мы рассказываем об акциях нашего сервиса и дарим приятные скидки. Проверьте — и не упустите выгоду!

Задачи по теме «сила Лоренца»

Даже если вы не новичок, прежде чем решать задачи, прочтите общую памятку и на всякий случай держите под рукой полезные формулы. 

Задача на силу Лоренца №1

Условие 

Электрон с энергией 300 эВ движется перпендикулярно линиям индукции однородного магнитного поля напряженностью 465 А/м. Определить силу Лоренца, скорость и радиус траектории электрона.

Решение

Скорость электрона можно найти из формулы кинетической энергии:

Eк=m·v22v=2Eкm

Сила Лоренца является центростремительной силой, значит, по второму закону Ньютона, можно записать:

Задача на силу Лоренца №1

Магнитная индукция равна напряженности, умноженной на магнитную постоянную. Подставив ранее найденное выражение для скорости в формулу для радиуса и силы Лоренца, запишем:

R=m2Eктqμ0H=2Eктqμ0HFл=q2Eктμ0H

Теперь осталось только подставить значения и вычислить:

v=2·4,8·10-169,1·10-31=3,25·107 мсFл=4·3,14·10-7·465·1,6·10-19·3,25·107=3·10-15НR=2·4,8·10-16·9,1·10-314·3,14·10-7·465·1,6·10-19=0,32 м

Ответ: v=3,25·107 мс; Fл=3·10-15Н; R=0,32 м.

Задача на силу Лоренца №2

Условие

Альфа-частица влетает в магнитное поле с индукцией 1 Тл перпендинулярно силовым линиям. Найти момент импульса частицы относительно центра окружности, по которой она будет двигаться.

Решение

Когда частица влетает в поле перпендикулярно силовым линиям, на нее начинает действовать сила Лоренца, которая выполняет роль центростремительной силы. Радиус окружности, по которой будет двигаться частица:

R=mvQBm=6,65·10-27 кг — масса альфа частицыQ=2e=3,2·10-19Кл — заряд альфа частицы

Момент импульса частицы относительно центра окружности найдем по формуле:

L=mvR=m2v2QB=6,65·10-272·0,35·10723,2·10-19·1=5,42·10-21кг·м2с

Ответ: 5,42·10-21 кг·м2с.

Задача на силу Лоренца №3

Условие

В однородном магнитном поле с индукцией  В = 0,5 Тл вращается с частотой n = 10 с-1 стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определите разность потенциалов U на концах стержня.

Решение

Задача на силу Лоренца №3

Рассмотрим физическую суть процессов, проходящих в стержне. Когда стержень движется в магнитном поле, в нем возникает ЭДС индукции, которая обусловлена действием силы Лоренца на заряды стержня.

Под действием этой силы в стержне происходит разделение зарядов: свободные электроны перемещаются вверх и между концами стержня возникает разность потенциалов.

Заряды на концах стержня создают поле E, препятствующее дальнейшему разделению зарядов. В какой-то момент сила Лоренца уравновесится с силой возникающего поля:

Fл=e·ЕЕ=Fле=evBe=vB

Скорость нижнего конца стержня, а значит, и скорость электронов в нем, можно найти, зная частоту вращения и длину стержня:

v=2π·n·l

C учетом этого, перепишется выражения для напряженности электрического поля:

 Е=2πnlB

Индуцируемая разность потенциалов, по определению, равна:

U=Е·lU=2πnl2B=2·3,14·10-1·0,22·0,5=1,3В

Ответ: 1,3 В.

Задача на силу Лоренца №4

Условие

Какая сила действует на заряд 0,005 Кл, движущийся в магнитном поле с индукцие 0,5 Тл со скоростью 150 м/с под углом 45 градусов к вектору магнитной индукции?

Решение

Это простейшая задача на определение силы Лоренца. Вспомним формулу и запишем, что на заряд действует сила Лоренца, равная:

F=q·v·B·sinα

Подставим значения и вычислим:

F=0,005·150·0,5·22=0,26 Н

Ответ: 0,26 Н.

Задача на силу Лоренца №5

Условие

На тело с зарядом 0,8 мКл, движущееся в магнитном поле, со стороны поля действует сила, равная 32Н. Какова скорость тела, если вектор магнитного поля перпендикулярен ей?

Решение

Это классическая задача на применение формулы силы Лоренца. Так как векторы скорости и магнитной индукции перпендикулярны, можно записать:

F=qvBsinα=qvBv=FqB=320,8·10-3·2=20·103 мс

Ответ: 20000 м/с.

Проходите магнитостатику? Вам также может быть интересно:

  1. Задачи на закон Био-Савара-Лапласа.
  2. Задачи на теорему о циркуляции магнитного поля.

Вопросы на тему «Сила Лоренца»

Вопрос 1. Что такое сила Лоренца?

Ответ. Сила Лоренца — это сила, с которой магнитное поле действует на заряженную частицу, движущуюся в нем.

Сила Лоренца действует только на движущиеся заряды.

Вопрос 2. Как определить направление силы Лоренца?

Ответ. Направление силы Лоренца определяется по правилу левой руки:

Если левую руку расположить так, чтобы составляющая вектора В, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движении положительного заряда (= против движения отрицательного заряда), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Вопросы на тему «Сила Лоренца»

Вопрос 3. Зависит ли сила Лоренца от знака заряда?

Ответ. Да, зависит. Для противоположных зарядов сила Лоренца будет направлена в противоположные стороны.

Вопрос 4. Совершает ли сила Лоренца работу?

Ответ. Нет. Сила Лоренца не совершает работу, т.к., являясь перпендикулярной вектору скорости частицей, может изменить лишь направление скорости, но не ее значение. Работа силы Лоренца всегда равна нулю!

Вопрос 5. По какой траектории движется частица, попадающая в магнитное поле, перпендикулярное вектору скорости?

Ответ. Частица, влетающая в магнитное поле перпендикулярно линиям магнитной индукции, будет двигаться в этом поле по окружности определенного радиуса под действием силы Лоренца.

Нужна помощь в решении задач и других заданий по учебе? Профессиональный сервис для студентов посодействует, обращайтесь в любое время!

Понравилась статья? Поделить с друзьями:
  • Как найти косинус если известно число
  • Как найти общий язык по гороскопу
  • Как найти дракона во сне
  • Как найти номер сертификата ребенка пфдо
  • Как найти площадь фигуры несколькими способами