Как найти скорость после неупругого взаимодействия

В механике одним из видов взаимодействия между телами являются соударения, или удары.

Удар — толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии.

В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.

Обрати внимание!

При ударе выполняется закон сохранения импульса.

Предполагается, что на время удара действием внешних сил можно пренебречь. Тогда полный импульс тел при ударе сохраняется. В противном случае нужно учитывать импульс внешних сил. Часть энергии обычно уходит на нагрев тел и звук.

Результат столкновения двух тел можно полностью рассчитать, если известно их движение до удара и механическая энергия после удара.

Если не известны потери энергии, происходит одновременное столкновение нескольких тел или столкновение точечных частиц, то определить однозначно движение тел после удара невозможно.

В общем случае решение задачи о столкновении, кроме знания начальных скоростей, требует дополнительных параметров.

Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется.

В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно.

Пример:

хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков.

Collc.gif

Рис. (1). Центральное и абсолютно упругое столкновение шара с меньшей массой и покоящегося шара с большей массой

Collb1.gif

Рис. (2). Центральное и абсолютно упругое столкновение шара с большей массой и покоящегося шара с меньшей массой

Colla.gif

Рис. (3). Центральное и абсолютно упругое столкновение движущегося и покоящегося шаров одинаковой массы

Математическая модель абсолютно упругого удара работает примерно следующим образом:

1. есть в наличии два абсолютно твёрдых тела, которые сталкиваются.
2. В точке контакта происходят упругие деформации. Кинетическая энергия движущихся тел мгновенно и полностью переходит в энергию деформации.
3. В следующий момент деформированные тела принимают свою прежнюю форму, а энергия деформации полностью обратно переходит в кинетическую энергию.
4. Контакт тел прекращается, и они продолжают движение.

Для математического описания простейших абсолютно упругих ударов используется закон сохранения энергии:

m1u122+m2u222=m1v122+m2v222

;

а также закон сохранения импульса:

где

m1

,

m2

 — массы первого и второго тела,

u1→

,

u2→

 — скорости тел до удара,

v1→

v2→

 — скорости тел после удара соответственно.

Обрати внимание!

Импульсы складываются векторно, а энергии — скалярно.

Пример:

частные случаи упругих ударов и их результаты:

1. абсолютно упругий удар тел равных масс (покоящегося и движущегося).

Слайд1.PNG

Рис. (4). Тела равных масс (покоящееся и движущееся) до удара

Слайд2.PNG

Рис. (5).  Тела равных масс (покоящееся и движущееся) после удара

2. Абсолютно упругий удар двух тел разных масс.

Слайд3.PNG

Рис. (6).  Тела разных масс до удара

Слайд4.PNG

Рис. (7).  Тела разных масс после удара

3. Абсолютно упругий удар тел равных масс, но с различными направлениями и модулями скоростей.

Слайд5.PNG

Рис. (8).  Двигающиеся навстречу друг другу с разными скоростями тела равных масс до удара

Слайд6.PNG

Рис. (9).  Двигающиеся навстречу друг другу с разными скоростями тела равных масс после удара

Слайд7.PNG

Рис. (10).  Двигающиесяв одном направлении с разными скоростями тела равных масс до удара

Слайд8.PNG

Рис. (11).  Двигающиесяв одном направлении с разными скоростями тела равных масс после удара

Абсолютно неупругий удар — удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело.

Пример:

абсолютно неупругий удар тел равных масс (покоящегося и движущегося):

Слайд9.PNG

Рис. (12). Тела равных масс (покоящееся и движущееся) до удара

Слайд10.PNG
Рис. (13). Тела равных масс (покоящееся и движущееся) после удара

Общая скорость тел после неупругого удара может быть найдена из закона сохранения импульса:

где

m1

,

m2

 — массы первого и второго тела,

v1→

v2→

 — скорости тел до удара, 

v→

 — общая скорость тел, полученная после удара.

Обрати внимание!

Импульсы являются величинами векторными, поэтому складываются только векторно.

Как и при любом ударе, при абсолютно неупругом ударе выполняется закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Часть кинетической энергии соударяемых тел в результате неупругих деформаций переходит в тепловую.

Пример:

хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики.

Пластилиновые шарики.png
Рис. (14). Сталкивающиеся пластилиновые шарики

Источники:

Рис. 1. Центральное и абсолютно упругое столкновение шара с меньшей массой и покоящегося шара с большей массой.. www.rau.am, Анимации физических процессов
Рис. 2. Центральное и абсолютно упругое столкновение шара с большей массой и покоящегося шара с меньшей массой. www.rau.am, Анимации физических процессов
Рис. 3. Центральное и абсолютно упругое столкновение движущегося и покоящегося шаров одинаковой массы. www.rau.am, Анимации физических процессов
Рис. 4. Тела равных масс (покоящегося и движущегося) до удара. © ЯКласс.
Рис. 5. Тела равных масс (покоящегося и движущегося) после удара. © ЯКласс.
Рис. 6. Тела разных масс до удара. © ЯКласс.
Рис.7. Тела разных масс после удара. © ЯКласс.
Рис. 8. Двигающиеся навстречу друг другу с разными скоростями тела равных масс до удара. © ЯКласс.
Рис. 9. Двигающиеся навстречу друг другу с разными скоростями тела равных масс после удара. © ЯКласс.
Рис. 10. Двигающиеся в одном направлении с разными скоростями тела равных масс до удара. © ЯКласс.
Рис. 11. Двигающиеся в одном направлении с разными скоростями тела равных масс после удара. © ЯКласс.
Рис. 12. Тела равных масс (покоящееся и движущееся) до удара. © ЯКласс.
Рис. 13. Тела равных масс (покоящееся и движущееся) после удара. © ЯКласс.
Рис. 14. Сталкивающиеся пластилиновые шарики. © ЯКласс. 

Содержание:

Столкновения:

Наиболее общим явлением, наблюдаемым в природе, является взаимодействие материальных тел. Бильярдные шары, сближаясь, в момент соприкосновения взаимодействуют друг с другом. В результате этого меняются скорости шаров, их кинетические энергии. О таком взаимодействии шаров говорят как об их столкновениях.

Но понятие «столкновение» относится не только к взаимодействиям, происходящим в результате соприкосновения материальных тел. Комета, прилетевшая из отдаленных областей пространства и прошедшая в окрестности Солнца, меняет свою скорость и удаляется. Этот процесс также является столкновением. хотя непосредственного соприкосновения между кометой и Солнцем не произошло, а осуществлено оно было посредством сил тяготения.

Характерная особенность этого взаимодействия, дающая нам возможность рассматривать его как столкновение, заключается в том, что область пространства, в котором оно произошло, относительно мала. Заметное изменение скорости кометы происходит вблизи Солнца (рис. 129).

Столкновения в физике - виды, формулы и определения с примерами

Приведенные примеры позволяют нам дать следующее определение столкновения.

Что такое столкновение

Столкновением называется взаимодействие двух и большего числа тел, которое происходит в относительно малой области пространства в течение относительно малого промежутка времени. Вне этого промежутка времени можно говорить о начальных и конечных импульсах тел, когда тела можно считать невзаимодействующими.

Столкновение материальных тел часто называется ударом. Удар определяется как процесс, при котором изменяются импульсы соударяющихся тел без существенного изменения их положений. Это частный случай столкновения, например столкновение шаров, шайб, автомобилей и т. п.

Процессы столкновения являются чрезвычайно сложными. Например, при столкновении двух шаров в момент их соприкосновения начинается деформация шаров. В результате часть кинетической энергии переходит в потенциальную энергию деформации. Затем энергия деформации снова превращается в кинетическую, однако не полностью — часть энергии превращается во внутреннюю. Кроме того, после столкновения шары будут вращаться по иному, чем до столкновения.

Главный интерес при рассмотрении столкновений заключается в знании не самого процесса, а результата. Ситуация до столкновения называется начальным состоянием, а после — конечным. Между величинами, характеризующими начальное и конечное состояния, соблюдаются определенные соотношения. независящие от детального характера взаимодействия. Такими величинами. в частности, являются импульс и энергия системы тел.

В зависимости от характера изменения кинетической энергии тел все столкновения делятся на упругие и неупругие.

Если при столкновении кинетическая энергия тел сохраняется, то столкновение называется упругим, если же не сохраняется — неупругим.

Рассмотрим вначале абсолютно неупругое столкновение (абсолютно неупругий удар). Это частный случай неупругого столкновения, при котором после столкновения тела «слипаются» и движутся вместе.

Пусть в некоторой инерциальной системе отсчета первое тело массой m1 движется до столкновения со скоростью υ1, а второе тело массой m2 — со скоростью υ2. Следовательно, импульсы тел до столкновения равны соответственно: Столкновения в физике - виды, формулы и определения с примерами

Процесс столкновения обычно наглядно представляют с помощью векторной диаграммы импульсов (рис. 130). Нетрудно убедиться, что кинетическая энергия системы не сохраняется. До столкновения она составляет:
Столкновения в физике - виды, формулы и определения с примерами

после столкновения —

Столкновения в физике - виды, формулы и определения с примерами

Изменение кинетической энергии:
Столкновения в физике - виды, формулы и определения с примерами   (2)

Для расчета выберем оси координат так, как показано на рисунке 130, и спроектируем на них равенство (1). B результате получим:
Столкновения в физике - виды, формулы и определения с примерами

Столкновения в физике - виды, формулы и определения с примерами
Рис. 130

Отсюда легко находится квадрат скорости тел после столкновения:

Столкновения в физике - виды, формулы и определения с примерами

Подставив полученное выражение в (2), получим после несложных преобразований:

Столкновения в физике - виды, формулы и определения с примерами

Как видно, кинетическая энергия системы уменьшилась. Часть кинетической энергии превратилась в теплоту.

Если тела при столкновении не «слипаются», то скорости тел после столкновения можно найти из закона сохранения импульса:
Столкновения в физике - виды, формулы и определения с примерами

где штрихом отмечены импульсы тел после столкновения.

При этом кинетическая энергия может как уменьшаться, так и увеличиваться. Последнее происходит, например, при различных взрывах. В этом случае часть внутренней энергии превращается в кинетическую энергию осколков.

Как уже отмечалось, при упругом столкновении выполняется закон сохранения импульса и механической энергии.

Рассмотрим вначале лобовое столкновение, т. е. такое столкновение, при котором импульсы тел до и после столкновения параллельны некоторой прямой. Эту прямую мы примем за ось Ox (рис. 131). Закон сохранения импульса в этом случае примет вид:
Столкновения в физике - виды, формулы и определения с примерами

а закон сохранения кинетической энергии —

Столкновения в физике - виды, формулы и определения с примерами

Из этих уравнений найдем скорости тел после удара. Для этого перепишем (3) и (4) следующим образом:

Столкновения в физике - виды, формулы и определения с примерами

Столкновения в физике - виды, формулы и определения с примерами

Воспользовавшись тем, что a2 — b2 = (a-b)(a + b), из выражений (5) и (6) легко получить:

Столкновения в физике - виды, формулы и определения с примерами

Выразив отсюда, например, Столкновения в физике - виды, формулы и определения с примерамии подставив его в (5), после несложных преобразований находим:

Столкновения в физике - виды, формулы и определения с примерами

Аналогично:

Столкновения в физике - виды, формулы и определения с примерами
Проекции импульсов тел после столкновения равны соответственно:

Столкновения в физике - виды, формулы и определения с примерами

и 

Столкновения в физике - виды, формулы и определения с примерами

Проанализируем полученные выражения для некоторых частных случаев.
Предположим, что тело 2 до столкновения покоилось, т. е. Столкновения в физике - виды, формулы и определения с примерами.

Тогда

Столкновения в физике - виды, формулы и определения с примерами

Столкновения в физике - виды, формулы и определения с примерами

При равных массах тел m1 = m2 получим:

Столкновения в физике - виды, формулы и определения с примерами

Столкновения в физике - виды, формулы и определения с примерами

Значит, первое тело остановится, а второе придет в движение с таким же импульсом.

Теперь предположим, что масса второго тела намного больше массы первого. Тогда, пренебрегая m1 по сравнению с m2 , получим:

Столкновения в физике - виды, формулы и определения с примерами

Столкновения в физике - виды, формулы и определения с примерами

Значит, первое тело отскочит назад с таким же по модулю импульсом, а тело 2 получит импульс, равный удвоенному значению импульса первого тела.

Найдем кинетическую энергию тел после столкновения для случая, когда Столкновения в физике - виды, формулы и определения с примерами = 0:

Столкновения в физике - виды, формулы и определения с примерами        (10)

Столкновения в физике - виды, формулы и определения с примерами        (10)

где K1 — кинетическая энергия первого тела до столкновения.

Из полученных выражений следует, что при m1 = m2 первое тело останавливается, а второе приобретает ту же энергию. Если масса второго тела m2 намного больше массы первого m1 то из (10) и (11) следует, что Столкновения в физике - виды, формулы и определения с примерами, Столкновения в физике - виды, формулы и определения с примерами. Значит, кинетическая энергия первого тела не изменяется, а второе тело получает импульс, но его энергия не изменяется.

  • Заказать решение задач по физике

Главные выводы:

  1. Столкновением называется взаимодействие двух и большего числа тел, которое происходит в относительно малой области пространства в течение относительно малого промежутка времени.
  2. Удар определяется как процесс, при котором изменяются импульсы соударяющихся тел без существенного изменения их положений.
  3. Столкновение тел называется упругим, если кинетическая энергия тел сохраняется. При неупругом столкновении кинетическая энергия тел не сохраняется.
  4. При столкновениях тел выполняется закон сохранения импульса.

Определение столкновения

Законы сохранения энергии и импульса позволяют провести теоретическое исследование процессов столкновения тел без описания сил, действующих между ними.

Под столкновениями понимают механические процессы взаимодействия между телами, происходящие за очень короткий промежуток времени. При этом силы взаимодействия между сталкивающимися телами настолько велики, что внешними силами, действующими на систему, можно пренебречь.

Вследствие того, что длительность столкновения мала по сравнению со временем наблюдения, различают механические состояния до и после столкновения, причем тела, находящиеся на большом расстоянии друг от друга, считают свободными.

Длительность столкновения бильярдных шаров Столкновения в физике - виды, формулы и определения с примерами что намного меньше характерного времени движения шаров по столу Столкновения в физике - виды, формулы и определения с примерами
Различают упругие (абсолютно упругие) и неупругие столкновения. В первом случае не происходит выделения теплоты, и механическая энергия сохраняется. Во втором случае выделяется некоторое количество теплоты, поэтому механическая энергия после столкновения уменьшается.

Примером упругих столкновений служат столкновения металлических шаров, а примером неупругих — столкновения пластилиновых шаров, которые при этом слипаются и продолжают движение как одно целое.

Для макроскопических тел в большей степени характерными являются неупругие столкновения, в то время как для физики элементарных частиц, ядер атомов, молекул определяющую роль играет упругое взаимодействие.

Если в процессе столкновения тел на них не действуют внешние силы, то к телам применим закон сохранения импульса, а во многих случаях — и закон сохранения механической энергии. Именно эти законы позволяют, зная скорости тел до столкновения, определить их скорости после столкновения, совершенно не интересуясь тем, что происходило во время него.

При абсолютно неупругом столкновении скорости обоих взаимодействующих тел оказываются одинаковыми. Примером таких тел являются тела из различных пластичных веществ. Такое столкновение можно наблюдать, если подвесить тары из пластилина, развести их в разные стороны и отпустить. После столкновения они оба будут двигаться вместе с одинаковой скоростью.

При абсолютно упругом столкновении в обоих телах не остается никаких деформаций. Кроме того, вся кинетическая энергия, которой тела обладали до столкновения, снова превращается в кинетическую энергию. Примерами таких тел являются шары из стали или слоновой кости.
Рассмотрим простейшее столкновение — центральное, когда скорости тел находятся на линии, соединяющей их центры. Очень часто такое столкновение называют лобовым.

Скорость движения Столкновения в физике - виды, формулы и определения с примерами после абсолютно неупругого столкновения тел массами Столкновения в физике - виды, формулы и определения с примерами движущихся до столкновения со скоростями Столкновения в физике - виды, формулы и определения с примерами можно определить из закона сохранения импульса:
Столкновения в физике - виды, формулы и определения с примерами
Откуда находим
Столкновения в физике - виды, формулы и определения с примерами
Определим «потери» механической энергии, найдя кинетическую энергию
тел до столкновения:
Столкновения в физике - виды, формулы и определения с примерами
и после столкновения:

Столкновения в физике - виды, формулы и определения с примерами

Тогда часть механической энергии, перешедшая во внутреннюю, определяется выражением:

Столкновения в физике - виды, формулы и определения с примерами

Следовательно, она зависит от масс сталкивающихся тел и относительной скорости Столкновения в физике - виды, формулы и определения с примерами их движения до столкновения.

Задача о центральном абсолютно неупругом столкновении впервые была решена Дж. Валлисом в 1669 г.
При абсолютно упругом столкновении двух тел массами Столкновения в физике - виды, формулы и определения с примерами на основании закона сохранения импульса и закона сохранения энергии можно записать

Столкновения в физике - виды, формулы и определения с примерами

Столкновения в физике - виды, формулы и определения с примерами
Здесь Столкновения в физике - виды, формулы и определения с примерами — скорости тел до столкновения, Столкновения в физике - виды, формулы и определения с примерами — после столкновения.

Преобразуем систему уравнений (3), перенеся в правую часть все величины, относящиеся к первому телу, а в левую — ко второму:

Столкновения в физике - виды, формулы и определения с примерами

Разделив второе уравнение на первое, получим

Столкновения в физике - виды, формулы и определения с примерами

Перепишем это уравнение в виде Столкновения в физике - виды, формулы и определения с примерами.

Из него следует, что при центральном абсолютно упругом столкновении тел любой массы их относительная скорость до и после столкновения не изменяется.

Теперь можно дать еще одно определение неупругого столкновения: если относительная скорость тел при центральном столкновении изменяется, то такое столкновение называется неупругим.

Меру неупругости k можно определить как отношение относительных скоростей сталкивающихся тел после и до столкновения:Столкновения в физике - виды, формулы и определения с примерами

Она называется коэффициентом восстановления и впервые была измерена Ньютоном в 1687 г. В частности, Ньютон получил значения коэффициента для стали k = 0,55 и стекла k = 0,94, которые приводят и современные справочники.

Абсолютно неупругим является столкновение, при котором скорости тел после столкновения равны Столкновения в физике - виды, формулы и определения с примерами т. е. k = 0.
Решая уравнение (4) совместно с первым уравнением системы (3), находим скорости тел после столкновения:

Столкновения в физике - виды, формулы и определения с примерами

На самом деле при столкновении всегда происходят «потери» механической энергии, т. е. переход части ее в теплоту. Но при малых «потерях» действительный процесс достаточно хорошо описывается абсолютно упругим столкновением.

Задача о центральном абсолютно упругом столкновении впервые была решена X. Гюйгенсом и К. Реном в 1669 г.
Отметим, что осуществить центральное, или лобовое, столкновение на практике очень трудно. Подавляющее число столкновений являются нецентральными.

Основные формулы

Импульс телаСтолкновения в физике - виды, формулы и определения с примерами   Столкновения в физике - виды, формулы и определения с примерами
Закон изменения импульса системы тел:    
Столкновения в физике - виды, формулы и определения с примерами  
Закон сохранения импульса системы тел:  

Столкновения в физике - виды, формулы и определения с примерами 
Работа: Столкновения в физике - виды, формулы и определения с примерами
Средняя мощность:    Столкновения в физике - виды, формулы и определения с примерами
Мгновенная мощность:   Столкновения в физике - виды, формулы и определения с примерами
Кинетическая энергия:   Столкновения в физике - виды, формулы и определения с примерами

Теорема о кинетической энергии:

Столкновения в физике - виды, формулы и определения с примерами
Потенциальная энергия: Столкновения в физике - виды, формулы и определения с примерами

Потенциальная энергия упруго деформированного тела:

Столкновения в физике - виды, формулы и определения с примерами

Закон сохранения механической энергии:
Столкновения в физике - виды, формулы и определения с примерами

  • Рычаг в физике
  • Блоки в физике
  • Движение тела под действием нескольких сил
  • Наклонная плоскость в физике
  • Свободное падение тела
  • Равнодействующая сила и движение тела под действием нескольких сил 
  • Сила давления в физике и единицы давления
  • Механическое давление в физике

§6. Задачи на столкновения и законы сохранения импульса и энергии

В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном — как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы — тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами и энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц.

Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими – уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль. С такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

Неупругие столкновения

Два куска пластилина массами `m_1` и `m_2`, летящие со скоростями `vecv_1` и `vecv_2` слипаются. Найдите наибольшее `Q_max` и наименьшее количество `Q_min` теплоты, которое может выделиться в результате абсолютно неупругого соударения.

Рассмотрим абсолютно неупругое соударение («слипание») тел, движущихся в ЛСО скоростями `vecv_1` и `vecv_2` соответственно. В процессе абсолютно неупругого соударения импульс системы сохраняется.

`m_1vecv_1+m_2vecv_2=(m_1+m_2)vecv`.

Отсюда находим скорость составного тела

`vecv=(m_1vecv_1+m_2vecv_2)/(m_1+m_2)`.

Закон сохранения энергии принимает вид

`(m_1vecv_1^2)/2+(m_2vecv_2^2)/2=((m_1+m_2)*vecv)/2+Q`.

Из приведенных соотношений находим убыль кинетической энергии

`Q=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(vecv_2-vecv_1)^2`,

здесь `mu=(m_1m_2)/(m_1+m_2)` — приведенная масса системы тел.

Итак, при абсолютно неупругом соударении во внутреннюю энергию переходит кинетическая энергия тела приведенной массы, движущегося с относительной скоростью.

Убыль механической энергии достигает наибольшей величины

`Q_max=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(v_1+v_2)^2` 

при `vecv_1 uarr darr vecv_2`.

Убыль механической энергии будет наименьшей

`Q_min=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(v_2-v_1)^2` 

при `vecv_1 uarr uarr vecv_2`.

Упругие столкновения

На гладкой горизонтальной поверхности лежит гладкая шайба массой `M`. На него налетает гладкая шайба массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шайб. Найдите скорости `vecv_1` и `vecv_2` шайб после соударения. При каком условии налетающая шайба будет двигаться после соударения в прежнем направлении?

Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шайб в момент соударения. Внешние силы, действующие на  шайбы в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шайб в процессе взаимодействия не изменяется. По закону сохранения импульса   `m vec v = m vecv_1 + M vecv_2`.

Переходя к проекциям на ось `Ox`, получаем `mv = mv_(1x) + Mv_2`,  здесь учтено, что направление скорости `vecv_1` налетающей шайбы после соударения не известно. По закону сохранения энергии

`(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

Полученные соотношения перепишем в виде

`m(v — v_(1x)) = Mv_2`,

`m(v^2 — v_(1x)^2) = Mv_2^2`.

Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v — v_(1x)) = Mv_2`, решение которой имеет вид

`v_(1x) = (m — M)/(m + M) v`,   `v_2 = (2m)/(m + M) v`.

Налетающая шайба будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающей шайбы больше массы по­коящейся шайбы.

Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности со скоростями `vecv_1` и `vecv_2`. Найдите скорости `vecv_1^’` и `vecv_2^’` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 16).

В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется 

`vecp_1 + vecp_2 = vecp_1^’ + vecp_2^’`,      

здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_1^’ = m_1 vecv_1^’`, `vecp_2^’ = m_2 vecv_2^’` — импульсы шайб до и после соударения.

Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия — направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^’`, `p_(2y) =  p_(2y)^’`  находим `y`-составляющие скоростей шайб после соударения

 `vecv_(1y)^’ = v_(1y)`,   `v_(2y)^’ = v_(2y)`,

т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

`(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^’)^2 + (v_(1y)^’)^2))/2 + (m_2 ((v_(2x)^’)^2 + (v_(2y)^’)^2))/2`.

С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид

`(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^’)^2)/2 + (m_2 (v_(2x)^’)^2)/2`.

Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`

`m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^’ + m_2 v_(2x)^’`.

Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую — ко второй, и разде­лить `(v_(1x) != v_(1x)^’)` полученные соотношения. Это приводит к линей­ному уравнению

`v_(1x) + v_(1x)^’ = v_(2x) + v_(2x)^’`.

Решая систему из двух последних уравнений, находим

`v_(1x)^’ = ((m_1 — m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

`v_(2x)^’ = (2m_1 v_(1x) + (m_2 — m_1) v_(2x))/(m_1 + m_2)`.

Полученные соотношения для `v_(1x)^’`, `v_(1y)^’` и `v_(2x)^’`, `v_(2y)^’` решают вопрос о проекциях и величинах скоростей шайб после соударения

 `v_1^’ = sqrt((v_(1x)^’)^2 + (v_(1y)^’)^2)`,      `v_2^’ = sqrt((v_(2x)^’)^2 + (v_(2y)^’)^2)`, 

а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_1^’` и `vecv_2^’` образуют с положительным направлением оси `Ox`:

`bbb»tg»  alpha_1 = (v_(1y)^’)/(v_(1x)^’)`,   `bbb»tg»  alpha_2 = (v_(2y)^’)/(v_(2x)^’)`.

Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц).

  • Форум сайта alsak.ru »
  • Задачи и вопросы по физике »
  • Механика »
  • Импульс »
  • Найти модуль скорости тел после неупругого удара

Тема: Найти модуль скорости тел после неупругого удара  (Прочитано 14350 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Fiz

Здравствуйте!
Рисунок и решение помогите пожалуйста.

2 тела массами 5 кг и 8 кг, движущиеся навстречу друг другу со скоростями υ1 = 2 м/с, υ2 = 10 м/с неупруго сталкиваются. Найти модуль скорости тел после удара.

Думаю здесь надо использовать закон сохранения импульса при неупругом ударе: m⋅υ? а дальше как?

« Последнее редактирование: 26 Марта 2011, 07:21 от alsak »


Записан


Так как удар неупругий, то выполняется только закон сохранения импульса. Запишем его (рис. 1):

[ m_{1} cdot vec{upsilon}_{1} + m_{2} cdot vec{upsilon}_{2} = left(m_{1} + m_{2} right) cdot vec{upsilon}, ]

0Х: m1⋅υ1m2⋅υ2 = (m1 + m2)⋅υх.

(куда направлена скорость тел после удара мы не знаем). Тогда

[ upsilon_{x} = frac{m_{1} cdot upsilon_{1} — m_{2} cdot upsilon_{2}}{m_{1} + m_{2}}, ]

υx = –5,4 м/c или υ = 5 м/с.

Примечание. Знак «–» указывает на то, что найденная скорость направлена против выбранной оси.


Записан


  • Форум сайта alsak.ru »
  • Задачи и вопросы по физике »
  • Механика »
  • Импульс »
  • Найти модуль скорости тел после неупругого удара

Понравилась статья? Поделить с друзьями:
  • Как найти правильный код октмо
  • Как найти квартиру в твери
  • Как найти катеты в тупоугольном треугольнике
  • Файл mkv слишком велик для конечной файловой системы как исправить
  • Как составить перечень повреждений