Как найти скорость резания фрезы

Основными параметрами задающими режимы резания являются:

-Частота вращения вала шпинделя (n)
-Скорость подачи (S)
-Глубина фрезерования за один проход

Требуемая частота вращения зависит от:

-Типа и характеристик используемого шпинделя
-Режущего инструмента
-Обрабатываемого материала

Частота вращения шпинделя вычисляется по следующей формуле:

A

D – Диаметр режущей части рабочего инструмента, мм
π – число Пи, 3.14
V – скорость резания (м/мин) — путь пройденный точкой (краем) режущей кромки фрезы в минуту.

Скорость резания (V) берется из справочных таблиц (См ниже).

Обращаем ваше внимание на то, что скорость подачи (S) и скорость резания (V) это не одно и  то же!!!

При расчетах, для фрез малого диаметра значение частоты вращения шпинделя может получиться больше, чем количество оборотов, которое в состоянии обеспечить шпиндель. В данном случае за основу дальнейших расчетов величины (n) берется фактическая максимальная частота вращения шпинделя.

Скорость подачи (S) – скорость перемещения режущего инструмента (оси X/Y), вычисляется по формуле:

B

fz — подача на один зуб фрезы (мм)
z — количество зубьев фрезы
n — частота вращения шпинделя (об/мин)
Подача на зуб берется из справочных таблиц по обработке тех или иных материалов.

Таблица для расчета режимов резания:

E

После теоретических расчетов по формулам требуется подкорректировать значение скорости подачи. Необходимо учитывать жесткость станка. Для станков с высокой жесткостью и качеством механики значения скорости подачи выбираются ближе к максимальным расчетным. Для станков с низкой жесткостью следует выбрать меньшие значения скорости подачи.

Глубина фрезерования за один проход (ось Z) зависит от жесткости фрезы, длины режущей кромки и жесткости станка. Подбирается опытным путем, в ходе наблюдения  за работой станка, постепенным увеличением глубины резания. Если при работе возникают посторонние вибрации, получаемый рез низкого качества – следует уменьшить глубину за проход и произвести коррекцию скорости подачи.

Скорость врезания по высоте (ось Z) следует выбирать примерно 1/3 – 1/5 от скорости подачи (S).

Краткие рекомендации по выбору фрез:

При выборе фрез нужно учитывать следующие их характеристики:
-Диаметр и рабочая длина. Геометрия фрезы.
-Угол заточки
-Количество режущих кромок
-Материал и качество изготовления фрезы.
Лучше всего отдавать предпочтение фрезам имеющих максимальный диаметр и минимальную длину для выполнении конкретного вида работ.

Короткая фреза большого диаметра обладает повышенной жесткостью, создает значительно меньше вибраций при интенсивной работе, позволяет добиться лучшего качества съема материала. Выбирая фрезу большого диаметра следует учитывать механические характеристики станка и мощность шпинделя, чтобы иметь возможность получить максимальную производительность при обработке.

Для обработки мягких материалов лучше использовать фрезы с острым углом заточки режущей кромки, для твердых – более тупой угол в диапазоне до 70-90 градусов.

Пластики и мягкие материалы лучше всего обрабатывать однозаходными фрезами. Древесину и фанеру – двухзаходными. Черные металлы – 3х/4х заходными.
Материал и качество фрезы определяют срок службы, качество реза и режимы. С фрезами низкого качества сложно добиться расчетных значений скорости подачи на практике.

Примерные режимы резания используемые на практике.

Данная таблица имеет ознакомительный характер. Более точные режимы обработки определяются исходя из качества фрез, вида станка, и др. Подбираются опытным путем.

D

Полезные ссылки:

Режимы резания

Фрезерное дело С. В. Аврутин

Создание УП в программе ArtCAM

Выбор фрезы для станка с ЧПУ

Новинки:

Планшетные плоттеры (флюгерный, биговочный, осциллирующий, тангенциальный нож)

Станки с повортным шпинделем

В этой статье мы поговорим о расчёте основных параметров, используемых для выбора режима резания на фрезерных станках, а также немного затронем важные критерии выбора фрез.

фрезеровка по дереву

Подбираем параметры фрезеровки

При подборе режима резки на фрезерном станке следует рассчитать следующие параметры:

Частота вращения вала шпинделя (n) — зависит от типа и характеристик используемого шпинделя и фрезы, а также от особенностей обрабатываемого материала. Этот параметр вычисляется по следующей формуле: n (об/мин) = 1000 * V/ π * D, где V – скорость резания (м/мин), π – число Пи (3.14), а D – это диаметр режущей части фрезы (мм). Скорость резания (V) — это пройденный за минуту точкой режущей кромки фрезы путь и данный параметр следует брать из справочных таблиц (пример такой таблицы представлен ниже).

Когда расчёт ведётся для фрез с небольшим диаметром частота вращения шпинделя может оказаться больше, чем количество оборотов, которое сможет обеспечить шпиндель, поэтому в этом случае для дальнейших расчетов частоты вращения берется фактическая максимальная частота вращения шпинделя.

Скорость подачи (S) – это скорость перемещения режущего инструмента, которая вычисляется по следующей формуле: S (мм/мин) = fz * z * n, где fz — подача на зуб фрезы (мм), z — количество зубьев фрезы, n — частота вращения шпинделя (об/мин). Подачу на зуб (fz) при обработке определённых материалов можно взять из справочных таблиц, например из таблицы ниже:

Таблица для расчёта скорости резания и подачи на зуб

Обрабатываемый материал Скорость резания (V), м/мин Подача на один зуб фрезы (fz) по её диаметру (d), мм
0.5мм 1-2мм 3-4мм 5-6мм 8-10мм
Пластик 300-400 0.02 0.06 0.15 0.20 0.30
Оргстекло 100-150 0.02 0.05 0.10 0.18 0.25
Дерево 200-450 0.02 0.035 0.055 0.09 0.12
Алюминий, Латунь, Бронза, Медь 120-250 0.01 0.02 0.03 0.04 0.07
Алюминий мягкий 120-500 0.01 0.03 0.04 0.05 0.08
Магний 150-300 0.01 0.02 0.035 0.04 0.075
Сталь 35-50 0.005 0.01 0.015 0.02 0.03
Чугун 40-60 0.005 0.015 0.02 0.03 0.04
Титан 20-30 0.005 0.01 0.02 0.03 0.04

После расчёта значения скорости подачи его подкорректировать ориентируясь на жесткость станка. Если станок обладает высокой жесткостью и качеством механики, то скорость подачи подбирается ближе к максимальным расчетным, если же у станка жесткость является довольно низкой, то выбираются меньшие значения скорости подачи. Скорость врезания по оси Z должна находиться в пределах от 1/3 до 1/5 от скорости подачи (S).

Глубина фрезерования за один проход (по оси Z) – данный параметр напрямую зависит от длины режущей кромки, а также жесткости фрезы и станка. Глубину фрезерования стоит подбирать, постепенно увеличивая данный параметр и наблюдая за результатами работы. Если вы заметите низкое качества реза или посторонние вибрации при работе, то для решения данной проблемы вам понадобится уменьшить глубину за проход и подкорректировать скорость подачи.

На что смотреть при выборе фрезы?

От правильного выбора режущего инструмента будет зависеть его срок службы и качество реза, а также режим работы станка. Фрезы низкого качества могут не обеспечить расчетных значений скорости подачи на практике. При выборе фрезы стоит подумать о том, какую задачу она должна выполнять, и исходя из этого подобрать необходимый инструмент, ориентируясь на подходящие к цели характеристики. Важными характеристиками фрезы являются:

Диаметр и рабочая длина;

Геометрия фрезы;

Угол заточки;

Количество режущих кромок;

Материал, из которого изготовлена фреза.

Наилучшим выбором станут режущие инструменты, имеющие максимальный диаметр и минимальную длину для выполнения определённой цели, ведь подобные фрезы обладают высокой жесткостью и в связи с этим создают меньше вибраций во время эксплуатации, что позволит обеспечить качественный съём материала. Подбирая фрезу с большим диаметром, помните о механических характеристиках станка и мощности шпинделя, чтобы выбрать вариант, имеющий максимальную производительность при обработке.

Обрабатываемый материал также имеет большую важность при выборе фрезы. Для мягких материалов лучше подходят фрезы с острым углом заточки режущей кромки, а для твердых – с тупым (70-90 градусов). Мягкие материалы и пластик стоит обрабатывать однозаходными фрезами, древесину и фанеру – двухзаходными, а черные металлы – трёх- или четырёхзаходными.

Режимы резания для определённых материалов

Оптимальные режимы резания стоит подбирать опытным путем, но в качестве примера можно ориентироваться на следующую таблицу:

Таблица для расчёта режимов резания для определённых материалов

Обрабатываемый материал Вид работы Вид режущего инструмента Частота вращения вала шпинделя (об/мин) Подача(XY) Подача(Z) Примечание
Акрил Раскрой/выборка Фреза спиральная однозаходная d=3.175 мм 18000 900 300-360 Попутное фрезерование 3-8 мм за проход. Рекомендуется использование охлаждения с помощью СОЖ или воздуха
ПВХ до 10 мм Раскрой/выборка Фреза спиральная однозаходная d=3.175 мм 18000-24000 2200-3400 800-1200 Встречное фрезерование
Композит Раскрой Фреза спиральная однозаходная d=3.175 мм 15000-18000 1500-2400 500-720 Встречное фрезерование
Древесина/Фанера/ДСП/ЛДСП/МДФ/ДВП Раскрой/выборка
Фреза d=3.175 мм 18000-24000 900-1800 300-600 Фреза двухзаходная. Встречное фрезерование. Глубина за проход не более 2d. Для фрез с длиной режущей кромки>6d — не более 1d за проход
Фреза d=4 мм 18000-24000 1200-2200 400-720
Фреза d=6 мм 15000-22000 2000-3000 720-900
Фреза d=8 мм 15000-18000 3000-3600 900-1200
3D обработка Фреза коническая круглая R=0.5-2 мм 18000-24000 1800-3000 500-720 20-30 мм за проход. Шаг между проходами не более 10% 2R. Наклонное врезание для первого прохода со скоростью 10-40% от номинальной скорости обработки
Латунь/Бронза Фрезеровка Фреза спиральная двухзаходная d=2 мм 15000 500-720 60-120 По 0.5 мм за проход. Рекомендуется использование охлаждения с помощью СОЖ
Дюралюминий Фрезеровка Фреза спиральная однозаходная d=3.175 мм (по алюминию) 15000-20000 600-1200 60-120 По 0.2-0.5 мм за проход. Рекомендуется использование охлаждения с помощью СОЖ

Здесь приведены полезные формулы и определения, необходимые для фрезерования: процесс обработки, фрезы, методы фрезерования и т. д. Умение правильно рассчитать скорость резания, подачу на зуб и скорость съёма металла имеет решающее значение для получения хороших результатов при выполнении любой фрезерной операции.

Формулы для фрезерования

Параметр Значение Метрические единицы Дюймовые единицы
ae Ширина фрезерования мм дюйм
ap Осевая глубина резания мм дюйм
DCap​ Диаметр резания при глубине резания ap мм дюйм
Dm Обрабатываемый диаметр (диаметр детали)​ мм дюйм
fz Подача на зуб мм дюйм
fn Подача на оборот мм/об дюйм
N Частота вращения шпинделя об/мин об/мин
vc Скорость резания м/мин фут/мин
ve Эффективная скорость резания мм/мин дюйм/мин
vf Минутная подача мм/мин дюйм/мин
zc Эффективное число зубьев шт. шт.
hex Максимальная толщина стружки мм дюйм
hm Средняя толщина стружки мм дюйм
kc Удельная сила резания Н/мм2 Н/дюйм2
Pc Потребляемая мощность кВт л.с.
Mc Крутящий момент Н·м фунт-сила/фут
Q Скорость съёма металла см3/мин дюйм3/мин
KAPR Главный угол в плане град

PSIR Угол в плане (дюйм.)

град
BD Диаметр корпуса мм дюйм
DC Диаметр резания мм дюйм
LU Рабочая длина мм дюйм

Основные определения

  • Скорость резания, vc​

    Окружная скорость перемещения режущей кромки относительно заготовки.

  • Эффективная или фактическая скорость резания, ve

    Окружная скорость на эффективном диаметре резания (DCap). Это значение необходимо для определения режимов резания при фактической глубине резания (ap). Это особенно важно при использовании фрез с круглыми пластинами, фрез со сферическим концом и всех фрез с большим радиусом при вершине, а также фрез с главным углом в плане менее 90 градусов.​

  • Частота вращения шпинделя, n

    Число оборотов фрезы, закрепленной в шпинделе, совершаемое за минуту. Этот параметр связан с характеристиками станка и вычисляется на основе рекомендованной скорости резания для данной операции.

  • Подача на зуб, fz

    Параметр для расчёта минутной подачи. Подача на зуб определяется исходя из рекомендуемых значений максимальной толщины стружки.

  • Подача на оборот, fn

    Вспомогательный параметр, показывающий, на какое расстояние перемещается инструмент за один полный оборот. Измеряется в мм/об и используется для расчёта минутной подачи и нередко является определяющим параметром в отношении чистовой обработки.

  • Минутная подача, vf

    Её также называют скоростью подачи. Это скорость движения инструмента относительно заготовки, выражаемая в пройденном пути за единицу времени. Она связана с подачей на зуб и количеством зубьев фрезы. Число зубьев фрезы (zn) может превышать эффективное число зубьев (zc), то есть количество зубьев в резании, которое используется для определения минутной подачи. Подача на оборот (fn) в мм/об (дюйм/об) используется для расчёта минутной подачи и нередко является определяющим параметром в отношении чистовой обработки.

  • Максимальная толщина стружки, hex

    Этот параметр связан с подачей на зуб (fz), шириной фрезерования (ae) и главным углом в плане (kr). Толщина стружки – важный критерий при выборе подачи на зуб для обеспечения наиболее высокой минутной подачи.

    Подача на зуб: формула и схема

    Максимальная толщина стружки (схема)

  • Средняя толщина стружки, hm

    Полезный параметр для определения удельной силы резания, используемой для расчёта потребляемой мощности.​

  • Скорость съёма металла, Q (cм3/мин)

    Объём снятого металла в кубических миллиметрах в минуту (дюйм3/мин). Определяется на основе глубины и ширины резания и подачи.

  • Удельная сила резания, kct

    Постоянная материала, используемая для расчёта мощности и выражаемая в Н/мм2

  • Время обработки, Tc (мин)

    Отношение обрабатываемой длины (lm) к минутной подаче (vf).​

  • Потребляемая мощность, Pc и КПД, ηmt

    Характеристики станка, помогающие рассчитать потребляемую мощность и оценить возможность применения инструмента на данном оборудовании для данной операции обработки.​

Методы фрезерования

  • Линейное врезание

    Одновременное поступательное перемещение инструмента в осевом и радиальном направлениях.

  • Круговая интерполяция

    Перемещение инструмента по круговой траектории при постоянной координате z.

  • Круговое фрезерование с врезанием под углом

    Перемещение инструмента по круговой траектории с врезанием (винтовая интерполяция).

  • Фрезерование в одной плоскости

    Фрезерование с постоянной координатой z.

  • Фрезерование с точечным контактом

    Неглубокое радиальное врезание фрезами с круглыми пластинами или сферическим концом, при котором зона резания смещается от центра инструмента.

  • Профильное фрезерование

    Формирование повторяющихся выступов при профильной обработке поверхностей сферическим инструментом.

Формулы для разных типов фрез

Формулы для фрез с прямой режущей кромкой

Фрезы с прямой режущей кромкой (схема и формулы)

Формулы для фрез с с круглыми пластинами

Фрезы с круглыми пластинами (схема и формулы)

Фрезы со сферическим концом

Фрезы со сферическим концом (схема и формулы)

Винтовая интерполяция (по 3 осям) или круговая интерполяция (по 2 осям) — внутренняя обработка

Формулы

Винтовая интерполяция (по 3 осям) или круговая интерполяция (по 2 осям) — наружная обработка

Формулы

Параметры пластин для фрезерования

Геометрия пластин

Важными параметрами геометрии режущей кромки пластины являются:

  • главный передний угол (γ)
  • угол заострения (β)

Макрогеометрия создаётся для работы в лёгких, средних и тяжёлых условиях.

  • Геометрия L (для лёгких условий) имеет более позитивную, но более слабую кромку (большой угол γ, маленький угол β)
  • Геометрия H (для тяжёлых условий) имеет более прочную, но менее позитивную кромку (маленький угол γ, большой угол β)

Макрогеометрия влияет на многие параметры резания. Пластина с прочной кромкой может работать под большими нагрузками, но при этом создаёт большие силы резания, потребляет больше энергии и выделяет больше тепла. Оптимизированные геометрии имеют специальные буквенные обозначения по классификации ISO.

Конструкция вершины пластины

Самый важный для получения требуемого качества обработанной поверхности элемент режущей кромки – это параллельная фаска bs1 или, если применимо, выпуклая фаска Wiper bs2, или радиус при вершине rε.

Схемы конструкций вершины пластины

Определения для фрез

  • Главный угол в плане (kr), град.

    Главный угол в плане (kr) является основным геометрическим параметром фрезы, так как он определяет направление силы резания и толщину стружки.​

  • Диаметр фрезы (Dc), мм

    Диаметр фрезы (Dc) измеряется через точку (PK), где основная режущая кромка пересекается с параллельной фаской.

    Наиболее информативный параметр – (Dcap) – эффективный диаметр резания при текущей глубине резания (ap), он используется для расчёта скорости резания. D3 – максимальный диаметр по пластинам, для некоторых типов фрез он равен Dc.

    Схемы диаметра фрезы

  • Глубина резания (ap), мм

    Глубина резания (ap) – это расстояние между обработанной и необработанной поверхностями, измеряемое вдоль оси фрезы. Максимальное значение ap ограничивается, главным образом, размером пластины и мощностью станка.

    При выполнении черновых операций существенное значение имеет величина передаваемого момента. На чистовых этапах обработки более важным становиться наличие или отсутствие вибраций.​

    Глубина резания (схемы)

  • Ширина фрезерования (ae), мм

    Шириной фрезерования (ae) называют величину срезаемого припуска, измеренную в радиальном направлении. Данный параметр особенно важен при плунжерном фрезеровании. Максимальное значение ae также играет значимую роль при возникновении вибрации на операциях фрезерования в углах.

  • Ширина перекрытия (ae/Dc)

    Ширина перекрытия (ae/Dc) – это отношение ширины фрезерования к диаметру фрезы.

  • Эффективное число зубьев фрезы (zc)

    Данная величина используется для определения минутной подачи (vf) и производительности. Нередко это решающим образом влияет на эвакуацию стружки и стабильность обработки.

    Эффективное число зубьев фрезы (схемы и формулы)

  • Число зубьев фрезы (zn)

    Величина выбирается с учетом соблюдения условия равномерности процесса фрезерования. Именно количество заходов определяет вид фрезерования, группу материалов для обработки и её жесткость.

  • Шаг зубьев фрезы (u)

    Для определённого диаметра фрезы можно выбрать различный шаг зубьев: крупный (L), нормальный (M), мелкий (H). Буква X в коде фрезы указывает на особо мелкий шаг зубьев

    Шаг зубьев фрезы (схема)

  • Неравномерный шаг зубьев фрезы

    Означает, что расстояние между зубьями фрезы не одинаковое. Это очень эффективный способ свести к минимуму риск возникновения вибрации.​

    Схема неравномерного шага зубьев фрезы

При создании статьи использованы справочники Sandvik


Каталог фрез по металлу на онлайн-выставке Enex: https://enex.market/catalog/Raskhodnye_materialy/metallorezhushchiy_instrument/frezy_po_metallu/. 

Из этого материала вы узнаете:

  • Суть процесса фрезерования
  • Этапы металлообработки при фрезеровании
  • Скорость резания при фрезеровании
  • Выбор режима глубины резания и подачи при фрезеровании стали и других металлов
  • Расчет параметров обработки для фрезерования, сверления и резьбонарезания по формуле
  • Как выбрать режим на практике

Расчет режимов и скорости резания при фрезеровании очень важен при обработке разных материалов. И хотя фрезерный станок можно назвать универсальным в металлообработке, для каждой процедуры необходима отдельная настройка. Пренебрежение этими характеристиками может привести к порче заготовки.

Большинство современных фрезерных станков оснащено числовым программным управлением (ЧПУ). Но и здесь необходимо знание режимов и скорости резания. На самом деле уже давно не нужно производить все необходимые расчеты вручную. Для выбора оптимального режима резания при фрезеровании можно воспользоваться таблицами из этого материала.

Суть процесса фрезерования

Фрезеровка – это один из способов механической обработки, осуществляемый на специализированном станке. В процессе выполняется удаление верхнего или глубинного слоя во внутренней части детали. Может использоваться любой материал. Самые востребованные в данном случае – это дерево и металл. На основании этого мы больше внимания уделим металлообработке.

Как выполняется фрезеровка. Закрепите на станине нужную заготовку для обработки. Необходимо выбрать требуемую фрезу или шлифовальный элемент. Это может быть абразивный диск или круг. Технологический элемент будет выполнять кругообразные движения вокруг своей оси. Кроме того, будет перемещаться и по двум поверхностям. Совместно с этим осуществляется продольное движение детали к резцу.

Фрезеровочный станок отличается от токарного тем, что в нем заготовки вращаются, т. е. происходит круговая обработка. Поэтому вы сможете обработать детали разной формы, обточить ровную плоскость, проделать выемки и любые другие фигурные прорези.

Металлообработку делят на черновую и чистовую. Чтобы создать нужное сечение слоя в виде канавок или зубцов, нужно совершить не менее двух или трех проходов.

Работающий механизм двигается прерывисто. Уникальный аспект, который отличает фрезерование от сверления или обточки, – это состояние отдельного зубца при рабочем моменте. Зубцы касаются слоя детали не сразу все, а по отдельности. Таким образом, нагрузка на все плоскости резца увеличивается. Поэтому при фрезеровке уменьшить воздействие сможет лишь совершенствование режимов резки.

Этапы металлообработки при фрезеровании

Металлообработка делится на следующие этапы:

  • Обдирный. Это первичная, максимально грубая обработка поверхностного слоя, при которой устраняются видимые изъяны и снимается ржавчина.
  • Черновой. Процедура второго приближения, при которой снимается слой и убирается стружка. На данном этапе очень низкий класс точности и шероховатости. Поверхностный слой заготовки при этом оставляют до 7 мм.

2-min.jpg

  • Получистовой. В этот момент начинается зачистка и подготовительный процесс к завершающим стадиям. Отличается этот этап тем, что здесь уже используют инструмент гораздо тоньше, чтобы увеличить класс точности до 4–6 и получить более тонкую стружку.
  • Чистовой этап металлообработки. В большинстве случаев он является завершающим. На нем добиваются приемлемой шероховатости, а размеры получаются довольно точными.
  • Финишный или тонкий этап – это максимально точная фрезеровка на очень больших скоростях. Происходит снятие сверхтонкой металлической пыли.
  • Шлифовка. Используют шлифовальные резцы с напылением.

Выполнить расчет режимов обработки при фрезеровке можно онлайн или при помощи формул и таблиц, основываясь на этапах металлообработки. Следовательно, выбирают и разновидность сверл.

Скорость резания при фрезеровании

Одним из главных критериев фрезеровки является скорость резания. По нему можно понять, сколько времени потребуется для снятия конкретного слоя материала с плоскости. Чаще всего на оборудовании устанавливают постоянный режим скорости.

Чтобы выбрать правильный параметр этого режима, необходимо учитывать, из какого материала используемая деталь:

  1. Если работать с нержавеющей сталью, то из-за наличия в ее составе разных химических элементов, изменяются некоторые показатели, в том числе и твердость. Поэтому скорость резания при фрезеровании снижается и составляет 45–95 м/мин.
  2. Бронза – используется при изготовлении множества различных деталей. Ее относят к относительно мягким сплавам, и на основании этого выбирают скоростной режим фрезеровки в районе 90–150 м/мин.
  3. Большую популярность при изготовлении запорных конструкций или любых клапанов приобретает латунь. При высоком нагревании повышается ее пластичность. Имея более мягкий состав, этот сплав позволяет увеличить скоростной режим фрезерования до 130–320 м/мин.
  4. В настоящее время при металлообработке распространен и сплав алюминия. Скорость резания его колеблется в диапазоне 200–420 м/мин. Это связано с тем, что бывают различные методы исполнения, при которых характеризуются разные эксплуатационные свойства. Также не стоит забывать, что алюминий при высоком скоростном режиме резания повышает показатели пластичности.

3-min.jpg

Существует много разных таблиц, которые помогают вычислить базовые режимы работы. Чтобы определить количество оборотов в скоростном режиме фрезерования для любого типа обрабатываемого сырья, нужно воспользоваться формулой: n = 1000 × V/D, где V – это рекомендуемая скорость, а D – диаметр фрезы. Скорость резания при фрезеровке измеряется в метрах за минуту резания.

Важно помнить, что специалисты не советуют эксплуатировать шпиндель по максимуму, так как он быстро изнашивается и может повредить оборудование. Чтобы этого избежать, рекомендуют результат уменьшить на 10–15 %. Учитывая данный параметр, выбирают подходящий инструмент.

Выбор режима глубины резания и подачи при фрезеровании стали и других металлов

Глубина резания при фрезеровке подбирается в соответствии с материалом детали.

Также главным фактором в выборе глубины резания является то, какой этап металлообработки выполняется – чистовой или черновой. Если первый, то из-за меньшей скорости глубина резания будет большой. При выполнении чистового этапа обработки скорость вращения будет выше, соответственно, будет сниматься тонкий слой материала.

4-min.jpg

Но показатель глубины может ограничиваться, так как режущая часть используемого инструмента может иметь разные размеры.

Производительность металлообрабатывающего станка сильно влияет на параметр данного показателя. Иногда глубина резания подбирается в зависимости от того, какая в итоге должна получиться поверхность.

Тип станка и вид используемой фрезы влияет на то, с какой мощностью проходит резание при фрезеровании. Если требуется снять толстый слой материала, то черновой этап обработки нужно выполнить в несколько проходов.

Важный технологический процесс в металлообработке – это фрезерование пазов. Образуют подобные выемки уже непосредственно после чистового этапа обработки, так как глубина их очень большая. А при фрезеровке Т-образных пазов используют специальный инструмент.

Один из важных параметров режима резания в металлообработке заготовок – это подача. Представляет собой рабочее движение подвижных элементов оборудования. От данного показателя зависит долговечность используемых инструментов. Но есть ряд особенностей, которые влияют на эту характеристику:

  • какой слой металла убирается за один проход;
  • какой объем работы выполняет станок за определенное количество времени;
  • можно ли проводить черновой и чистовой этап металлообработки.

При фрезеровании применяют подачу на зуб. Данный показатель определяется производителями инструментов. Зависит от частоты вращения шпинделя и количества зубьев фрезы.

5-min.jpg

Вышеперечисленные показатели являются составляющими режимов фрезеровки и взаимосвязаны между собой, например, скорость резания и подача:

  • Скоростной режим резания уменьшится, если увеличить величину подачи. Это обусловлено тем, что за один проход усиливается нагрузка оси из-за снятия толстого слоя металла. Если вы установите высокий скоростной режим и подачу, то произойдет быстрый износ или поломка инструмента.
  • Если подача снижается, то увеличивается нормальный скоростной режим. Если фреза будет вращаться быстро, то качество обрабатываемой детали улучшится. На чистовом этапе обработки устанавливается наименьшее значение подачи и высокий скоростной режим резания. При использовании специализированного оборудования вы получите почти зеркальную поверхность.

Часто устанавливаемый диапазон подачи – от 0,1 до 0,25. Такой показатель обеспечит достойный результат обработки самых востребованных материалов во многих отраслях промышленности.

Расчет параметров обработки для фрезерования, сверления и резьбонарезания по формуле

На многих производствах технологические карты разрабатывает техническая служба предприятия, в соответствии с ними мастер задает рассчитанные параметры и устанавливает подходящий инструмент. Перед работой специалист должен проверить состояние станочного оборудования, чтобы предельные значения не привели к выходу его из строя.

А если технологическая карта отсутствует, то работник сам устанавливает подходящие режимы фрезеровки:

Частота вращения n (об/мин)

N = 1000 × Vc / π × Dc (об/мин)

Подача стола станка (скорость подачи) Vf (мм/мин)

Vf = Fz × n × Zn (мм/мин)

Подача на зуб fz (мм/зуб)

Fz = Vf / n × Zn (мм/зуб)

Подача на оборот fn (мм/об)

Fn = Vf / n (мм/об)

Время обработки Tc (мин)

Tc = 1000 × Vc / π × Dc (мин)

Объем удаленного материала Q (см3/мин)

Q = Ap × Ab × Vf / 1000 (см3/мин)

Как выбрать режим на практике

Существуют некоторые критерии, которые должны учитываться при расчетах режимов фрезеровки:

  • Тип используемого металлообрабатывающего оборудования. Применение более новых, имеющих высокие технологические возможности станков с ЧПУ, на которых есть возможность установить максимальные параметры фрезерования. Старое оборудование, введенное в эксплуатацию более 10 лет назад, позволяет установить только низкие параметры резания. Также важно учитывать и техническое состояние станков, когда рассчитываются необходимые параметры.

6-min.jpg

  • Еще один момент, от которого зависит выбора, это тип инструмента, применяющийся при обработке. Фреза изготавливается из различных материалов, поэтому и параметры будут разными. Если нужно обработать металл с высоким скоростным режимом резания, то берут фрезу из быстрорежущей стали. При фрезеровке твердого сплава с максимальными параметрами подачи фреза должна быть с тугоплавкими напайками. Также важны такие критерии, как угол заточки режущей кромки и диаметр. Если увеличивается диаметр резца, то скоростной режим резания и подача снижаются.
  • Самый важный критерий из всех, на основании которых выбирают режимы резания, – это вид используемого материала. Сплавы делятся по твердости и по степени обрабатываемости. Если вы работаете с мягкими цветными сплавами, то выбирают максимальные показатели скоростного режима и подачи. При использовании каленой стали или титана параметры уменьшают. Также важно учитывать подбор фрезы – как в режиме резания, так и при выборе вида материала, из которого будет производиться деталь.
  • На основании поставленной цели подбирается режим резания. Например, резание при черновой или чистовой обработке. На черновом этапе – высокая подача и низкий показатель скорости резания, на чистовом – наоборот. Чтобы получить канавки или другие отверстия в заготовке, все показатели необходимо рассчитать индивидуально.
  • На практике при черновой металлообработке глубину резания чаще всего делят на несколько проходов. При чистовой будет один проход. Чтобы облегчить поставленную задачу, для разных изделий существует таблица режимов резания. Либо используют специальные калькуляторы, которые автоматически проводят необходимые вычисления нужных показателей по введенным в него данным.

Итак, в настоящее время существует множество технологических карт, которыми можно пользоваться для изготовления нужных заготовок. В расчетах учитывайте вид материала детали, тип инструмента и предложенное оборудование.

Не стоит самому разрабатывать режимы резания при фрезеровании. Это довольно сложно, кроме того, необходимо будет выполнить начальную проверку введенных данных. Иначе инструмент может испортиться, а оборудование выйти из строя.

На практике выбор оптимальных режимов резания происходит опытным путем, непосредственно при производстве. Так происходит, поскольку настройки зависят не только от инструмента, но и от станка, материала, приспособлений (система СПИД: Станок-Приспособление-Инструмент-Деталь). Однако опираться стоит на расчетные значения, которые можно определить с помощью справочных таблиц и формул.

Давайте рассмотрим, как вычислить основные параметры для установки режимов резания: скорость вращения и скорость подачи.

1) Скорость вращения (n)для большинства стандартных шпинделей находится в диапазоне 12000-24000 об/мин, для высокоскоростных — 40000 -60000 об/мин и вычисляется по формуле:

n=(V*1000)/(П*d)

Где:

d – диаметр режущей части инструмента (мм) 

П – число Пи, постоянная величина = 3.14 

V – скорость резания (м/мин) берется из справочных таблиц для обрабатываемого материала. Физически это путь, пройденный точкой режущей кромки фрезы в единицу времени.

2) Скорость подачи (S)– это скорость перемещения фрезы, вычисляется по формуле:

S=fz*z*n

fz — подача на один зуб фрезы (мм)

z — количество зубьев 

n- скорость вращения (об/мин)

Для определения подачи на зуб лучше использовать рекомендации производителя фрез, однако не у все бренды предоставляют такую информацию. В таком случае можно воспользоваться справочной таблицей ниже.

Скорость резания (V) и подача на зуб (fz)

режимы резания

Примечания:

  • Для фрез с малым диаметром при расчете скорости подачи следует брать фактическую скорость вращения. Поскольку в данном случае расчетная (n) может оказаться существенно выше максимальной скорости вращения шпинделя.
  • Скорость врезания по оси Z (Sz) определяется как 1/3 от скорости подачи по оси XY (S)
  • Выбор скорости резания в рамках указанного диапазона зависит от жесткости системы СПИД:
    • при низкой жесткости следует выбирать значения ближе минимальным
    • при средней и высокой жесткости — ближе к средним и максимальным значениям.

Понравилась статья? Поделить с друзьями:
  • Приходный ордер как его составить
  • Как найти ответы на зачет
  • Как исправить ошибку в приложении сервисы google play произошла ошибка на планшете
  • Среднее арифметическое это как найти
  • Как найти вероятность объединения двух независимых событий