Как найти скорость с помощью радиуса

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Исследовательская работа «Определение линейной и угловой скоростей точки, равномерно движущейся по окружности»

ОГЭ 2021 по физике ›

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​( T )​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​( [,T,] )​ = 1 с.

Частота обращения ​( (n) )​ — число полных оборотов тела за одну секунду: ​( n=N/t )​. Единица частоты обращения — ( [,n,] ) = 1 с-1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​( n=1/T )​.

Пусть некоторое тело, движущееся по окружности, за время ​( t )​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​( varphi )​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​( omega )​ — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​( omega=varphi/t )​. Единица угловой скорости — радиан в секунду, т.е. ​( [,omega,] )​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​( 2pi )​. Поэтому ​( omega=2pi/T )​.

Линейная скорость тела ​( v )​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​( vec=l/t )​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​( vec=2pi!R/T )​. Связь между линейной и угловой скоростью выражается формулой: ​( v=omega R )​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​( vec=frac<Deltavec> )​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​( a=frac )​. Так как ​( v=omega R )​, то ​( a=omega^2R )​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности.

Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T

. Путь, который преодолевает точка — это есть длина окружности.

Общие понятия

Кинематика, входящая в состав механики, занимается изучением закономерностей движения. Под этим понятием понимается изменение положения тела относительно других объектов. Основная задача науки состоит в определении координат рассматриваемого предмета в любой момент. Кинематика изучает перемещение без учёта воздействия его вызвавшего. Любое движение считается относительным. Поэтому для его описания используют систему координат с начальной и конечной точкой отсчёта.

Для облегчения понимания процессов размерами исследуемого тела пренебрегают. Считая, что любой объект представляет собой совокупность материальных точек, повторяющих одинаковое движение при сравнении с друг другом. Существует несколько видов изменения положения. Различают их по траектории — воображаемой линии, повторяющей путь прохождения объекта. Сравнивая виды движения, выделяют два типа перемещения: прямолинейное и криволинейное.

Кроме этого, если рассматривать изменение положения во времени, движение можно различать по равномерности. При перемещении с постоянной скоростью движение называют равномерным, а при изменении её — неравномерным.

Более узкая классификация разделяет перемещение по характеру на следующие виды:

  • равноускоренное — это перемещение, обусловленное движением тела, при котором ускорение будет постоянным по направлению;
  • равнозамедленное — движение, при котором происходит отрицательное ускорение, до полного замедления объекта;
  • равнопеременное — при таком виде перемещения скорость изменяется на одинаковое значение в любом промежутке времени;
  • поступательное — если на перемещаемое тело нанести линии, они будут перемещаться параллельно сами себе;
  • вращательное — это периодическое движение, при котором материальная точка описывает окружность.

Частным случаем криволинейного движения, то есть по траектории, отличной от прямой линии, является равномерное движение по окружности. Определение понятия включает в себя центростремительное ускорение и постоянную по модулю скорость. Под этим видом понимают изменение положения, при котором изменяется только направление скорости.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение тел

Под вращением понимают тип движения, при котором траектория перемещающегося тела представляет собой окружность. Вращение может происходить вокруг оси или вокруг фиксированной точки. Вращение колеса, планет по своим орбитам, спортсменов во время соревнований по фигурному катанию — все это примеры указанного типа движения.

По аналогии с линейным перемещением, главной формулой динамики вращения является следующая:

Здесь M и I — моменты силы и инерции, соответственно, α — ускорение угловое.

Для описания вращения удобно пользоваться не линейной, а угловой скоростью. Она определяется так:

Где θ — угол, на который тело повернулось за время t. С записанным ускорением α скорость ω связана следующим равенством:

Для измерения всех угловых величин используются радианы.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:

Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано. Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется
инертностью.
Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией.
Инерциальными системами отсчёта
называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:

во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса
— это мера инертности тела
Сила
— это количественная мера взаимодействия тел.

Второй закон Ньютона:

Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой: $F↖ <→>= m⋅a↖<→>$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:

Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению: $F_1↖ <→>= -F_2↖ <→>$

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).

Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места. Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости

записывают в виде где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения.

Различают трение покоя и трение скольжения.
Сила трения скольжения
подсчитывается по формуле где N — сила реакции опоры, µ — коэффициент трения. Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

называют силы, с которыми любые два тела притягиваются друг к другу.
Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R — расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

— это сила, с которой все тела притягиваются к Земле: При неподвижной опоре вес тела равен по модулю силе тяжести: Если тело движется по вертикали с ускорением, то его вес будет изменяться. При движении тела с ускорением, направленным вверх, его вес Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес В этом случае вес тела меньше веса покоящегося тела.

называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила — сила тяжести.
Искусственный спутник Земли
— это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли На спутник Земли действует только одна сила — сила тяжести, направленная к центру Земли
Первая космическая скорость
— это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите. где R — расстояние от центра планеты до спутника. Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное.
Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это
устойчивое равновесие.
Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это
неустойчивое положение
; если никаких сил не возникает —
безразличное
(см. рис. 3). Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю. Здесь d —плечо силы.
Плечом силы
d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:

алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением
называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:

давление распространяется по всем направлениям без изменений. Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей где ρ — плотность жидкости, h — глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае Высоты столбов жидкости обратно пропорциональны плотностям:

представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой. Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют
силой Архимеда
Величину выталкивающей силы устанавливает
закон Архимеда
: на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом: где ρжидк — плотность жидкости, в которую погружено тело; Vпогр — объём погружённой части тела.

Условие плавания тела

— тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела
называют физическую величину, равную произведению массы тела на его скорость:

Импульс — векторная величина.

=кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы.

Это произведение силы на время её действия Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется
закон сохранения импульса
: сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой
называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

— это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией.

Механическую энергию делят на
кинетическую и потенциальную.
Если тело может совершать работу за счёт своего движения, говорят, что оно обладает
кинетической энергией.
Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает
потенциальной энергией.
Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле где h — высота подъёма

Энергия сжатой пружины:

где k — коэффициент жёсткости пружины, x — абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию.

Для изолированной системы тел в механике справедлив
закон сохранения механической энергии
: если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

При равномерном движении по окружности вектор скорости тела меняется (скорость направлена по касательным к окружности), а модуль скорости тела (числовое значение) остается постоянным. Поэтому если один полный оборот тела по окружности обозначить как s (пройденный путь), а время, за которое он был совершен, как t, то найдем модуль скорости тела, движущегося равномерно по окружности:

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости — радиан в секунду ( р а д с ).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

Мгновенная и средняя скорости

Как найти линейную скорость? Формулу, согласно определению величины, можно записать следующую:

Где dl¯ — вектор перемещения тела за время dt. Эта скорость называется мгновенной, поскольку рассчитывается за чрезвычайно короткий промежуток времени dt. Мгновенная скорость в действительности является величиной не стабильной и постоянно меняющейся. Например, представим, что по дороге движется автомобиль. На первый взгляд можно полагать, что в любой момент времени его мгновенная скорость будет постоянной, однако, это не так. Мгновенная скорость испытывает колебания. Если спидометр автомобиля достаточно чувствителен, то он фиксирует эти колебания.

Формула линейной скорости средней ничем не отличается от таковой для мгновенной, однако, измеряется она за более длительный промежуток времени Δt:

В примере с автомобилем выше, хотя мгновенная скорость испытывает колебания, средняя скорость остается постоянной с определенной точностью на всем участке пути Δl¯.

При решении задач, как правило, используют среднюю скорость. Мгновенная же величина имеет смысл только в случае движения с ускорением.

Занимательный пример

Пусть имеется некая планета, которая совершила полтора оборота за сорок два часа, при этом метеостанция, располагающаяся на её экваторе, прошла путь равный 50 тыс. километров, делённых на час. Нужно определить линейную и угловую скорости планеты при её вращении вокруг собственной оси. Кроме этого, вычислить, чему равны сутки, и найти радиус планеты. При этом считать, что форма космического тела — идеальный шар.

Для решения задачи следует обозначить буквой эн число оборотов: n = 1,5, а t — время, за которое планета их совершила. Путь же, который прошла станция, можно представить в виде материальной точки и принять за l = 50 000 км. Найти же будет нужно линейную и угловую скорости. Кроме этого, по условию задачи нужно найти сутки, длина которых равняется периоду — полному обороту планеты вокруг оси.

В такой задаче необязательно переводить данные в систему СИ. Можно использовать километры и часы, так как в задании не требуется дать ответ в соответствии с СИ, тем более что метры и секунды использовать неудобно.

Первое, что можно найти, это линейную скорость, равную отношению пройденного пути ко времени: v = l / t = 50000 / 42. Решив дробь, примерный результат будет равняться 1190 км /ч. Теперь можно найти скорость угла поворота. Нужно разделить угол, на который изменилось положение точки, на время. Так как один полный оборот — это 2p, то полтора оборота будут составлять 3p. Тогда искомая скорость будет равняться: w = φ / t = 3p / 42 = 0,22 рад/ч.

Сутки, то есть период обращения, будут определяться как полный период вращения, который можно разделить на число оборотов за это время. Формула для расчёта будет выглядеть следующим образом: T = t / N. Подставив значения, можно найти искомый период. Он будет составлять: T = 42 / 1,5 = 28 часов.

Осталось вычислить радиус, который равняется отношению линейной скорости к угловой: R = v / w. Так как в качестве ответов записывались примерные значения, то для предотвращения арифметической ошибки подставлять уже найденные числа не следует. Поэтому лучше подставить алгебраические выражения. Тогда: R = (l /t) / (φ / t) = l / φ = 50000 / 3p = 5305 км. Задача решена.

источники:

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.


Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Связь со вторым законом Ньютона

Как вывести формулу центростремительного ускорения

Движение по циклоиде*

Человек регулярно сталкивается с разными видами движения. Перемещение тела по окружности позволяет понять многие физические процессы. На основе закономерностей такого явления работают разнообразные механизмы. Рассчитать характеристики движения по окружности достаточно просто, если знать и уметь применять несколько основных формул.

Движение тела по окружности — какими законами описывается

Движением по окружности в теории называют вращение какой-либо материальной точки или тела относительно оси, неподвижной в выбранной системе отсчета и не проходящей через центр тела.

Тело может двигаться по окружности двумя способами:

  • равномерно;
  • неравномерно.

Равномерное движение тела характеризуется постоянной угловой скоростью. Для описания такого перемещения применяют следующие формулы:

  • угловая скорость: (omega =frac{2pi }{T})
  • скорость движения: (V =frac{2pi R}{T}=omega R)
  • угол поворота: (phi =2pi frac{t}{T}=omega t)
  • ускорение: (frac{2pi v}{T}=omega ^{2}R)

Неравномерное движение возможно при переменной угловой скорости тела. В данном случае применимы формулы:

  • тангенциальное ускорение: (a_{t}=frac{dv}{dt})
  • центростремительное ускорение: (a_{n}=frac{v^{2}}{R}=omega ^{2}R)

В представленных уравнениях используются такие параметры, как:

  • Т — период вращения;
  • t — время;
  • ω — угловая скорость;
  • R — радиус;
  • at — тангенциальное ускорение;
  • an — центростремительное или полное ускорение.

При отсутствии специальных оговорок, в процессе решения задач движение тела по окружности принимают за равномерное. Для расчета пройденного пути используют формулу:

(S=frac{v}{t})

где:

  • S является расстоянием, которое преодолело тело;
  • v представляет собой скорость движения тела;
  • t определяет время движения.

Таким образом, справедливы выражения:

(v=frac{S}{t})

(t =frac{v}{S})

Величины, которые применяют для решения задач, характеризуются положительными значениями:

S > 0, v > 0, t > 0

При решении задач принято все величины переводить в единицы измерения, согласно системе СИ.

Секретом заданий на движение тела по окружности является то, что обгоняющий будет преодолевать на 1 круг больше при первом обгоне. Данное расстояние считается на n кругов больше, если первый объект обогнал другого в n-ый раз.

Часы

Источник: phototass3.cdnvideo.ru

Задачи на движение по окружности от простых до сложных

Задачи на движение тела по окружности отличаются по степени сложности. Можно рассмотреть примеры простых заданий.

Задача 1

Длина круговой трассы составляет 8 километров. Из ее точки в один момент времени в одинаковом направлении выехали два автомобиля. Первый автомобиль развил скорость 114 км/ч и, спустя 20 минут после начала движения, обогнал второй автомобиль на один круг. Требуется определить скорость, с которой двигался второй автомобиль. Ответ необходимо представить в км/ч.

Решение

Известно, что старт произошел одновременно для обоих автомобилей. Через 20 минут после начала движения первое транспортное средство опережало второе на один круг. Таким образом, в течение 20 минут или 1/3 часа первый автомобиль преодолел на 1 круг больше, то есть на 8 км больше. За час первый автомобиль проехал на 8*3=24 км больше, чем второй. Скорость второго транспортного средства на 24 км/ч меньше по сравнению с первым, и равна 114-24=90 км/ч.

Ответ: второй автомобиль двигался со скоростью 90 км/ч.

Задача 2

Из пункта А круговой трассы выехал велосипедист, а спустя полчаса стартовал мотоциклист. Через 10 минут после начала пути водитель мотоцикла догнал велосипедиста в первый раз. Спустя еще 30 минут мотоциклист догнал велосипедиста повторно. Требуется определить, какова скорость мотоциклиста, в том случае, когда длина трассы составляет 30 км. Ответ необходимо представить в км/ч.

Решение

В первую очередь требуется перевести минуты в часы. Скорости мотоциклиста и велосипедиста можно обозначить х и у. В первый раз водитель мотоцикла обогнал велосипедиста, спустя 10 минут или 1/6 часа после начала движения. До этого момента велосипедист находился в движении 40 минут или 2/3 часа.

Можно упростить запись условий задачи:

велосипедист: v = х, t = 2/3, S = 2/3*х;

мотоциклист: v = у, t = 1/6, S = 1/6*у.

Велосипедист и мотоциклист преодолели одинаковый путь:

(frac{1}{6}y=frac{2}{3}x)

Спустя 30 минут или 1/2 часа после первого обгона мотоциклист выполнил второй обгон велосипедиста.

Таким образом:

велосипедист: v = х, t = 1/2, S = 1/2*х;

мотоциклист: v = у, t = 1/2, S = 1/2*у.

Требуется определить расстояния, которые преодолели гонщики. Мотоциклист обогнал велосипедиста, то есть проехал больше на один круг. Это является ключевым моментом в данной задаче. Один круг составляет 30 километров. Второе уравнение будет иметь вид:

(frac{1}{2}y-frac{1}{2}x=30)

Далее необходимо решить полученную систему:

у = 4х

у – х = 60

Таким образом, х = 20, у = 80.

Ответ: скорость мотоциклиста равна 80 км/ч.

Бывают задания на движение тела по окружности с повышенной степенью сложности. Как правило, подобные примеры при невозможности проведения экспериментов требуют сложных вычислений.

Задача 3

На часах со стрелками время 8 часов 00 минут. Требуется определить, через сколько минут минутная стрелка в четвертый раз догонит часовую стрелку.

Решение

Спустя один час минутная стрелка преодолевает один круг, а часовая проходит лишь 1/12 циферблата. Допустим, что скорости равны 1 круг в час и 1/12 круга в час соответственно. Начало движения приходится на 8.00. Необходимо определить время, в течение которого минутной стрелке в первый раз удастся догнать часовую.

Минутная стрелка преодолеет на 2/3 круга больше. Исходя из этого, можно записать уравнение:

(1*t-frac{1}{12}t=frac{2}{3})

Таким образом, спустя 8/11 часа стрелки совпадут. Предположим, что через время z стрелки совпадут повторно. Минутная стрелка преодолеет расстояние 1*z, а часовая 1/12*z. При этом минутной стрелкой будет пройдено на один круг больше. Можно записать уравнение:

(1*z-frac{1}{12}z=1)

Решение данного уравнения будет таким:

(z=frac{12}{11})

Таким образом, через 12/11 часа стрелки совпадут повторно. Спустя еще 12/11 часа они встретятся вновь и так далее. Поэтому при старте в 8.00 в четвертый раз минутная стрелка догонит часовую через:

(frac{8}{11}+3frac{12}{11}) часа

Ответ: минутная и часовая стрелки совпадут в четвертый раз через (frac{8}{11}+3frac{12}{11})часа.

Нередко при решении задач на движение по окружности требуется рассчитать среднюю скорость тела. Важно, что данная величина не совпадает со средним арифметическим скоростей. Средняя скорость определяется с помощью формулы:

(v=frac{S_{0}}{t_{0}})

где v является средней скоростью;

S0 представляет собой общий путь;

t0 определяет общее время.

При наличии двух участков пути средняя скорость рассчитывается по формуле:

(v=frac{S_{1}+S_{2}}{t_{1}+t_{2}})

Наиболее сложными задачами считаются примеры с пятизначными дискриминантами. Рассмотрим алгоритм действий в таком случае.

Гонки

Источник: kramar-motorsport.ru

Задача 4

Пара гонщиков участвует в соревновании. Путь, который требуется преодолеть, равен 60 кругам кольцевой трассы в 3 км. После одновременного старта первый гонщик пересек финиш раньше, чем второй на 10 минут. Требуется рассчитать среднюю скорость второго гонщика. Известно, что впервые первый участник обогнал второго на круг, спустя 15 минут после начала движения. Ответ требуется записать в км/ч.

Решение

Первый участник гонки, находясь в движении 15 минут, догнал второго гонщика на первом круге. Таким образом, в течение 15 минут он преодолел на 1 круг или на 3 км больше, чем второй. За час первый гонщик проехал 3*4=12 километров больше. При этом скорость его движения на 12 км/ч превышает скорость второго гонщика. 10 минут соответствует ¼ часа. Можно записать уравнение:

(frac{180}{x}-frac{180}{x+12}=frac{1}{6})

Далее необходимо преобразовать выражение к квадратному уравнению:

(x^{2}+12x-12960=0)

Таким образом, получен пятизначный дискриминант. Есть более простой вариант решения задачи. Можно записать уравнение:

(frac{180}{x}-frac{180}{x+12}=frac{1}{6})

В нем 180 можно поделить на 12. Заменим х=12z:

(frac{180}{12z}-frac{180}{12z+12}=frac{1}{6})

(frac{15}{z}-frac{15}{z+1}=frac{1}{6})

(frac{90}{z}-frac{90}{z+1}=1)

Данное равенство можно преобразить в квадратное уравнение. Целый положительный корень такого выражения z=9. Тогда получим:

(х=12z=108)

Ответ: средняя скорость второго гонщика равна 108 км/ч.

Нахождение линейной скорости при движении по окружности

Любая точка, находящаяся на окружности, перемещается с некоторой скоростью. Данная величина называется линейной скоростью. Вектор линейной скорости всегда совпадает по направлению с касательной к окружности. К примеру, стружка из точильного станка движется, повторяя направление мгновенной скорости.

Нахождение линейной скорости

Источник: msk.edu.ua

Можно рассмотреть какую-то точку на окружности, совершившую один оборот. При этом было затрачено время равное периоду Т. Расстояние или путь, пройденный точкой, представляет собой длину рассматриваемой окружности.

Линейная скорость

Источник: msk.edu.ua

Формулы

Источник: msk.edu.ua

Задачи на тему равномерное движение по окружности

Задача 1

Радиус выпуклого моста равен 90 м. Требуется определить скорость, с которой автомобиль должен пройти его середину, чтобы пассажир на мгновение ощутил невесомость.

Решение

Согласно условиям задачи:

R = 90 м

N = 0

Сила реакции опоры обладает нулевым значением, так как пассажир в состоянии невесомости не оказывает давление на сиденье автомобиля.

Сила реакции опоры

Источник: static-interneturok.cdnvideo.ru

Решение задачи необходимо представить в системе отсчета, которая связана с Землей. Человек совершает движение вместе с автомобилем. Ускорение при этом направлено вниз. На пассажира действует сила притяжения Земли, которая будет центростремительной:

(mg=mfrac{v^{2}}{R})

Таким образом:

(v=sqrt{frac{Rmg}{m}}=sqrt{Rg}=sqrt{90*10}=30) м/с

Ответ: скорость автомобиля составляет 30 м/с.

Задача 2

Масса девочки 40 кг. Она качается на качелях, длина подвеса которых составляет 4 м. Требуется определить силу, с которой девочка давит на сиденье при прохождении среднего положения со скоростью 5 м/с.

Задача 2

Источник: static-interneturok.cdnvideo.ru

Решение

На девочку действует сила тяжести (mvec{g}) и сила реакции опоры (vec{N}).

Качели находятся под действием силы давления  (vec{F_{g}}), которая направлена вниз. Согласно третьему закону Ньютона, данная сила соответствует взятой со знаком минус силе реакции опоры:

(vec{F_{g}}=-vec{N})

Таким образом, решением задачи является определение силы реакции опоры. Исходя из закона динамики:

(mvec{g}+vec{N}= mvec{a})

В проекции на ось Х:

(N-mg=mfrac{v^{2}}{R})

Из чего следует вывод:

(F_{g}=left|N right|=m(g+frac{v^{2}}{R}))

(F_{g}=40(10+frac{5^{2}}{4})=650) Н

Ответ: сила равна 650 Н.

Задача 3

Шарик привязали с помощью нити к подвесу. Он описывает в горизонтальной плоскости окружность, совершая движение с постоянной скоростью. Нить обладает длиной 0,6 м и составляет с вертикалью угол в 60 градусов. Необходимо рассчитать, какова скорость шарика.

Задача 3

Источник: static-interneturok.cdnvideo.ru

Решение

Сумма сил (mvec{g}) и натяжения (vec{F_{n}}), исходя из правила параллелограмма, соответствует результирующей силе, направленной в центр вращения (sum_{i}^{}{vec{F}_{i}}):

(sum_{i}^{}{vec{F}_{i}}= mvec{g}+vec{F_{n}}= mvec{a})

Силы в сумме определяются из прямоугольного треугольника с углом α равным 60 градусам. Исходя из того, что (vec{F_{n}}) является противолежащим катетом, получим:

(vec{F_{n}}=mg*tg α)

Таким образом:

(mg*tg α= mvec{a}= mfrac{v^{2}}{R})

(v^{2}=frac{mg*tan alpha *R}{m}=gR*tan alpha)

R включен в прямоугольный треугольник, в котором длина нити представляет собой гипотенузу. R является катетом, противолежащий углу α в 60 градусов.

(R=l*sin alpha)

Преобразив формулу квадрата скорости шарика с помощью подстановки выражения для радиуса, получим:

(v^{2}=gl*sin alpha *tan alpha )

(v=sqrt{gl*sin alpha *tan alpha }=sqrt{10*0.6*frac{sqrt{3}}{2}*sqrt{3}}=3) м/с

Ответ: скорость шарика составляет 3 м/с.

Задача 4

Необходимо определить максимальную скорость мотоцикла по горизонтальной плоскости, который описывает при этом дугу окружности с радиусом 100 м. Коэффициент трения резины о плоскость составляет 0,4.

Задача 4

Источник: static-interneturok.cdnvideo.ru

Решение

Во время поворота мотоцикл наклоняется к центру поворота. На транспортное средство оказывают действие:

  • сила тяжести (mvec{g});
  • сила реакции опоры (vec{N});
  • сила трения (vec{F_{tr}});
  • сила тяги (vec{F_{t}});
  • сила сопротивления (vec{F_{c}}).

Данные силы в сумме составляют:

(mvec{g}+vec{N}+vec{F_{tr}}+vec{F_{t}}+vec{F_{c}}= mvec{a})

Согласно выражениям:

(mvec{g}+vec{N}=0)

(vec{F_{t}}+vec{F_{c}}=0)

Получим:

(vec{F_{tr}}= mvec{a})

Сила трения составляет:

(F_{tr}= mu mg)

Таким образом:

(mu mg=ma= mfrac{v^{2}}{R})

(v=sqrt{frac{mu mgR}{m}}=sqrt{mu gR}=sqrt{0.4*10*100}=20) м/с

Ответ: максимальная скорость равна 20 м/с.

Задания

Источник: avatars.mds.yandex.net

Задачи разной сложности по теме движения тела по кружности часто встречаются не только в школьной программе, но и во время обучения в вузе. Знание основных закономерностей позволит быстро найти решение примера любой сложности. Если в процессе расчетов возникают трудности, всегда можно обратиться за помощью к сервису Феникс.Хелп.

В этой статье мы увидим, как найти скорость с ускорением, а также на некоторых примерах и решим некоторые проблемы.

Ускорение объекта прямо пропорционально изменению скорости со временем. Для объекта, ускоряющегося по круговому или параболическому пути, скорость остается касательной к дуге.

Как определить скорость по угловому ускорению?

Угловое ускорение определяется как изменение угловой скорости относительно изменения продолжительности времени и представлено как

а=Δω/Δt—(1)

Угловая скорость может быть определена путем вычисления изменения угла θ во времени. Следовательно,

так как ω = d/dt — (2)

Следовательно, мы можем записать предыдущее уравнение как

поэтому а=d2θ/дт2

Из уравнения (1),

dω = adt

Интегрируя уравнение

∫ dω =∫ adt

ω = at+C—(3)

Когда t=0, ω=ω0

И, следовательно, C=ω0

Подставляя это в уравнение (3)

ю = ю0+в -(4)

Это показывает, что угловая скорость объекта при круговом движении равна его начальной угловой скорости и ускорению объекта во времени.

Рассмотрим частицу, движущуюся по окружности с угловой скоростью ω

Пусть s — расстояние, пройденное частицей за время t. Если радиус кругового пути равен ‘r’, тогда ‘θ’ будет углом, образованным частицей, перемещающейся на расстояние ‘s’.

как найти скорость с ускорением

Угловое ускорение частицы

Тогда линейная скорость частицы будет равна перемещению частицы за время t. Смещение здесь — s. Следовательно, скорость задается как

v=Δs/Δt—(5)

Изменение угла θ при смещении частицы равно отношению длины дуги к радиусу окружности.

Δθ = с/р

поэтому s=Δθr

Подставляя это в уравнение (5)

v=r Δθ/Δt

Поскольку угловая скорость равна изменению угла во времени; мы можем переписать уравнение в виде

v=rω—(6)

Где ω — угловая скорость

Это подразумевает, что линейная скорость частицы является произведением радиуса кругового пути, пройденного частицей, и угловой скорости.

Problem1: Человек, стоящий в гравитроне диаметром 6 м, ускоряется со скоростью 15 м / с. Какой должна быть линейная скорость гравитрона. Начальная скорость гравитрона 4 м / с. Какое ускорение гравитрона за время 3 мин?

Дано: Радиус r = 3м

Начальная угловая скорость ω0= 4 м / с

Конечная угловая скорость ω=15м/с

Линейная скорость гравитрона при достижении угловой скорости 15 м / с.

v = rω

v=3*15=45м/с

Ускорение гравитрона за время 3 мин.

ω=ω0+ в

15=4+а*3

11=а*3

а=11/3

а = 3.67 м / с2

Следовательно, ускорение в момент времени t = 3 мин составляет 3.67 м / с.

Problem2: Автомобиль, разгоняющийся по круговой дорожке, набирает начальную скорость 20 км/ч и разгоняется до скорости 15 км/ч^2. Какова скорость автомобиля через 15 минут?

Дано: ω0=20 км/ч

а = 15 км / ч2

t=15 минут=15/60=0.25 часа

Следовательно,

ю = ю0+ в

ш =20+15*0.25

ω =20+3.75=23.75 км/ч

Следовательно, скорость автомобиля через 15 минут будет 23.75 км / ч.

Связь между скоростью, смещением и ускорением

Мы вывели уравнение для расчета конечной скорости на основе ускорения и зная начальную скорость системы.

Рассматривая то же уравнение (4) из приведенного выше, мы можем записать

v = v0+ в

Где v — конечная скорость

v0 начальная скорость

А — ускорение частицы.

Скорость определяется как изменение положения объекта между временным интервалом.

дх/дт=в0+ в

дх=(v0+в)дт

Интегрируя приведенное выше уравнение

∫dx=∫(v0+в)дт

]х=v0t+1/2 в2 -(Один)

Поскольку скорость определяется перемещением в единицу времени, перемещение равно произведению средней скорости и времени.

х=vт — (8)

Где v средняя скорость, равная v=v0т+в/2

Из уравнения (4) получаем t=vv0/a

Подставляя это в приведенное выше уравнение (), мы имеем

х=v+v0/2*вв0/a

х=v2 -v02/2а —(9)

Преобразуя это уравнение

v2=v02+2 топор—(10)

Это еще одно кинематическое уравнение для частицы в прямолинейное движение.

Как определить скорость по центростремительному ускорению?

Скорость объекта, ускоряющегося по круговой траектории, перпендикулярна направлению центростремительной силы, действующей внутрь.

Центростремительная сила и скорость движущегося объекта задаются соотношением

Fc=мв2/ г—(11)

Где r — радиус круга

V — линейная скорость

M — масса частицы

Объект массы m, ускоряющийся по круговой траектории радиуса r, линейная скорость равна радиусу круговой траектории и угловой скорости частицы.

v = rω

Где ω угловая скорость частицы

И сила равна произведению массы на ускорение объекта.

Подставляя это в уравнение (7);

F=мистер2ω2/r

F=мрω2

ма=мрω2

а=rω2 -(Один)

Следовательно, ускорение и скорость частицы при центростремительном движении связаны уравнением (8), согласно которому Ускорение движущейся частицы является произведением радиуса круговой траектории и квадрата угловой скорости, достигнутой частицей..

Problem3: Мальчик привязал камень к одному концу веревки длиной 1 м, а другой конец веревки держит в руке и вращает круговыми движениями со скоростью 2 оборота в секунду. Рассчитать угловую скорость камня?

Решение: Поскольку длина каната составляет 1 м, радиус круговой траектории равен 1 м.

За 1 секунду камень совершает 2 оборота, которые равны двум окружностям кругового пути, пройденного камнем.

Окружность кругового пути

С=2π г=2π* 1=2π

Следовательно, камни преодолевают расстояние 2 * 2π = 4π за одну секунду.

Следовательно, угловое ускорение камня равно

а =4π/с

Следовательно, угловая скорость камня равна

поэтому а=rω2

4π =1*ω2

ω =√4π =0.6 м/с

Problem4: Шар радиуса 0.3 м движется со скоростью 5 м / с по окружности диаметром 5 м. Какая угловая скорость мяча?

Дано: r = 5m

V = 5m / с

Используя уравнение v=ωr

Угловая скорость мяча равна

ω = v / r

ω=5/5=1 об/с

Подробнее о центростремительное ускорение.

Как определить скорость по переменному ускорению?

Считается, что объект движется с переменным ускорением, если его скорость часто меняется в разные промежутки времени.

Если ускорение частицы равно а, то а=dv/dt, которое меняется со временем t. Скорость можно вычислить, интегрируя уравнение dv=adt.

Рассмотрим частицу ускорение со скоростью v1 в случайном движении. Если частица вдруг изменит свое направление и скорость от v1 к V2 после временного интервала t1 к т2.Тогда ускорение a1 частицы

a1=v2-v1/t2-t1

Если в момент t1= 0, v1= 0, а при t2= 30 секунд, v2= 3 м / с, то

a1=3-0/30-0=3/30=0.1m/s2

Опять же, частица меняет направление и достигает скорости v3 в момент t3.

Теперь ускорение из-за изменения скорости частицы становится

a1=v3-v3/t3-t3

Если в t3= 60 секунд v3 = 8 м / с,

a1=8-3/60-30=5/30=0.167m/s2

Следовательно, изменение ускорения теперь из-за случайного движения частицы равно

Δа=а2-a1=0.167-0.1=0.067 м/с2

Что составляет примерно 0.07 м/с.2

Problem5: Если ускорение частицы задается уравнением a=6t2+4t, найти скорость частицы в момент времени t=2 с.

Решение: а=6t2+ 4т

дв/дт=6t2+ 4т

дв=(6t2+4т)дт—————(13)

Вышеупомянутое уравнение является переменным со временем t, поэтому оно называется переменным ускорением, потому что время не является постоянным.

Интегрирующее уравнение (13)

∫dv=∫6t2+4дт

v=6t3/3+4т2/2

v=2t3+ 2т2

v=2(т3+t2)

Когда время t = 2 секунды

v=2(23+22)

v = 2 (8 + 4)

v=2*12=24 м/с

Следовательно, скорость частицы составляет 24 м / с.

Как найти скорость с помощью ускорения и радиуса?

Когда объект ускоряется по кругу, он создает центростремительную силу, направленную к центру круга.

Если r — радиус круга, а m — масса объекта, то центростремительная сила, действующая на объект, определяется выражением

Fc=мв2/r

Так как Фc=ма

ма=мв2/r

а=в2/ г—(14)

v=√ar—(15)

Следовательно, скорость прямо пропорциональна квадратному корню из произведения ускорения и радиуса круга.

Как найти скорость с помощью ускорения и угла?

Ускорение определяется как отношение изменения угловой скорости во времени.

Для объекта, движущегося по круговой траектории, скорость и, следовательно, ускорение объекта измеряются в единицах изменения угла θ.

а=dω/dθ

Используя приведенное выше уравнение (4)

ю = ю0+ в

Так как ω = dθ /dt

Следовательно,

dθ/dt=ω0+ в

dθ=(ω0+ат) дт

Интегрируя это уравнение

∫dθ=∫(ω0+ат) дт

θ=ω0+1/2 в2

ω0=θ т-1-1/2 в -(16)

Вышеприведенное уравнение показывает связь между скоростью omega _0, ускорением «а» и углом θ.

Problem6: Угловая скорость двигателя увеличивается с 1800 об/мин до 2400 об/мин за 10 секунд. Найти угловое ускорение и количество оборотов мотора за это время?

Начальная угловая скорость в рад / сек.

ω0=2π*1800

=2π*1800/60=60π рад/с

Конечная угловая скорость в рад / сек.

ω =2π*2400

=2π*2400/60=80πрад/с

Угловое ускорение a=ω-ω0/t

a=(80-60)π/10=2π рад/с2

Угловое ускорение двигателя 2π рад/с.2

Угловое смещение во времени t определяется выражением

θ=ω0t+1/2 в2

=60π*10+1/2 * 2 Пи π *102

=600π +100π=700π

Число оборотов = 700π/2π=350

Следовательно, двигатель делает 350 оборотов в секунду.

Как найти скорость с помощью ускорения и силы?

Нормальная сила определяется как произведение массы и ускорения, тогда как сила, приложенная к объекту, равна отношению проделанной работы и смещения объекта.

При центростремительном движении сила пропорциональна квадрату скорости объекта, отслеживающего круговой путь, и массе объекта и обратно пропорциональна удалению объекта от центра кругового пути.

При прямолинейном движении конечная скорость объекта связана с ускорением по уравнению

v = u + при

Поскольку F = ma

а=Ф/м

Подставив это в приведенное выше уравнение

v=u+F/мт

Когда объект совершает круговое движение, скорость связана с ускорением соотношением

а=в2/r

Следовательно, скорость связана с силой уравнением

v2=Фр/м

Подробнее о Как определить конечную скорость без ускорения: факты, проблемы, примеры.

Часто задаваемые вопросы

Как ускорение зависит от времени и скорости?

Ускорение изменяется во времени и равно изменению скорости объекта во времени.

Ускорение зависит от времени и скорости объекта соотношением

v=u+at. Следовательно, a=vu/t

В чем разница между скоростью и скоростью?

Скорость — это скалярная величина, тогда как скорость — это векторная величина.

Скорость измеряется с точки зрения пути, пройденного объектом за время t, тогда как скорость не касается пути, пройденного объектом, а зависит от его начального и конечного положения.

Почему мы испытываем внезапный рывок назад при ускорении автомобиля?

При разгоне изменяется скорость движущегося автомобиля.

Изменение скорости одновременно изменяет импульс автомобиля и испытывает силу, которая ощущается на теле. Это может быть представлено соотношением как F=ma=mdv/dt=d/dt(mv)=dp/dt

Равномерное движение по окружности.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: движение по окружности с постоянной по модулю скоростью, центростремительное ускорение.

Равномерное движение по окружности — это достаточно простой пример движения с вектором ускорения, зависящим от времени.

Пусть точка вращается по окружности радиуса r. Скорость точки постоянна по модулю и равна v. Скорость v называется линейной скоростью точки.

Период обращения — это время одного полного оборота. Для периода T имеем очевидную формулу:

T=frac{displaystyle 2pi r}{displaystyle v}. (1)

Частота обращения — это величина, обратная периоду:

nu =frac{displaystyle 1}{displaystyle T}.

Частота показывает, сколько полных оборотов точка совершает за секунду. Измеряется частота в об/с (обороты в секунду).

Пусть, например, T=0,1 c. Это означает, что за время 0,1 c точка совершает один полный
оборот. Частота при этом получается равна: nu = 1/0,1 = 10 об/с; за секунду точка совершает 10 полных оборотов.

Угловая скорость.

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1).

Рис. 1. Равномерное движение по окружности

Пусть M_{0} — начальное положение точки; иными словами, при t = 0 точка имела координаты (r, 0). Пусть за время t точка повернулась на угол varphi и заняла положение M.

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

omega =frac{displaystyle varphi }{displaystyle t}. (2)

Угол varphi, как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол 2pi . Поэтому

omega =frac{displaystyle 2pi }{displaystyle t}. (3)

Сопоставляя формулы (1) и (3), получаем связь линейной и угловой скоростей:

v= omega r. (4)

Закон движения.

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1, что

x=r cos varphi, y=r sin varphi.

Но из формулы (2) имеем: varphi= omega t. Следовательно,

x=r cos omega t, y=r sin omega t. (5)

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

Центростремительное ускорение.

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5):

v_{displaystyle x}=dot{x}=-omega r sin omega t, v_{displaystyle y}=dot{y}=omega r cosomega t,

a_{x}=dot{v_{x}}=-omega ^{2}rcosomega t, a_{y}=dot{v}y=-omega ^{2}rsinomega t.

С учётом формул (5) имеем:

a_{x}=-omega^{2}x, a_{y}=-omega^{2}y. (6)

Полученные формулы (6) можно записать в виде одного векторного равенства:

vec{a}=-omega^{2}vec{r}, (7)

где vec{r} — радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

a=omega^{2}r. (8)

Выразим угловую скорость из (4)

omega =frac{displaystyle v}{displaystyle r}

и подставим в (8). Получим ещё одну формулу для центростремительного ускорения:

a=frac{displaystyle v^{2}}{displaystyle r}.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Равномерное движение по окружности.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • График туриста как составить для новичка
  • Прервано ошибка загрузки при скачивании как исправить
  • Как найти интегралы с максимумом
  • Как составить памятка покупателя
  • Как найти паспортные данные хозяина авто