Как найти скорость тела через импульс

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Не уверен в ответе?

Найди верный ответ на вопрос ✅ «Как найти скорость если известна масса и импульс? …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Предположим, что нам дан график зависимости равнодействующей силы, приложенной к какому-то объекту, от времени.

Допустим, что этот график описывает изменение равнодействующей силы, приводящей в движение маленький кораблик на радиоуправлении массой 2.5 килограмма, который мы запустили плавать в спокойную речку.

В задаче требуется найти скорость тела через 7 секунд после начала движения (в самом начале оно покоилось).

Как же мы будем работать? Во-первых, мы найдем изменение импульса на трех ключевых участках, хорошо видных на рисунке.

Потом через импульс мы узнаем скорость кораблика в интересующий нас момент времени (мы сможем это сделать, так как знаем массу тела и его начальную скорость, которая равна нулю):

varDelta{vec{p}}=vec{p}-vec{p}_0

varDelta{vec{p}}=mvec{v}-mvec{v}_0

varDelta{vec{p}}=mvec{v}

vec{v}=dfrac{varDelta{vec{p}}}{m}

Начнем с того, что найдем изменение импульса в промежутке от 0 до 3 секунд. Для этого нам достаточно найти площадь прямоугольника, находящегося под графиком на этом участке. Почему так? Изменение импульса равно произведению суммы приложенных к телу сил и времени, в течение которого они действовали:

varDelta{vec{p}}=varSigma{vec{F}}varDelta{t}

Если теперь взглянуть на график, можно заметить, что модуль этого произведения совпадает с площадью нашего прямоугольника.

Итак, модуль изменения импульса на первом участке равен:

varDelta{p}=S_Box=ab=4thickspaceН×3thickspaceс=12thickspaceН⋅с

Равнодействующая сила действовала в положительном направлении, поэтому и изменение импульса будет положительно:

varDelta{vec{p}}_1=12thickspaceН⋅с

Используя графический способ нахождения модуля изменения импульса, найдем его и на двух других участках:

varDelta{p}_2=dfrac{1}{2}×4thickspaceН×2thickspaceс=4thickspaceН⋅с

varDelta{p}_3=dfrac{1}{2}×2thickspaceН×1thickspaceс=1thickspaceН⋅с

Добавим направления:

varDelta{vec{p}}_2=4thickspaceН⋅с

varDelta{vec{p}}_3=-,1thickspaceН⋅с

Найдем суммарное изменение импульса:

varDelta{vec{p}}=varDelta{vec{p}}_1+varDelta{vec{p}}_2+varDelta{vec{p}}_3

varDelta{vec{p}}=12thickspaceН⋅с+4thickspaceН⋅с-1thickspaceН⋅с

varDelta{vec{p}}=15thickspaceН⋅с

Осталось узнать скорость кораблика через 7 секунд после начала движения:

vec{v}=dfrac{varDelta{vec{p}}}{m}=dfrac{15thickspaceН⋅с}{2.5thickspaceкг}=6thickspaceм/с

Здесь, в этой статье, мы обсудим, как найти конечную скорость с ускорением и расстоянием и как на нее влияют импульс и сила. 

Мы рассчитываем конечную скорость объекта, используя различные уравнения, содержащие силу, массу, время, расстояние и импульс. Для каждой переменной мы можем использовать разные уравнения для определения конечной скорости. 

Например, чтобы найти конечную скорость, используя импульс объекта, можно использовать уравнение импульса, котороеР = мв где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит скорость, импульс и массу, поэтому оно может помочь в вычислении конечной скорости, когда известны масса и импульс. Точно так же, если масса дана без импульса, то мы можем использовать математическую форму второго закона движения Ньютона, то есть F = ma, где m — масса объекта, F — передняя работа над объектом, а a — ускорение объекта. Наконец, для времени и расстояния кинематические уравнения движения являются лучшими инструментами для определения скорости кого-либо или объекта.

как найти конечную скорость через ускорение и расстояние

Изображение предоставлено: Быстрая коза
График силы, импульса, ускорения и скорости

Как найти конечную скорость через силу, массу и время?

Как я уже упоминал, математическая форма второго закона движения Ньютона для нахождения конечной скорости с использованием силы, массы и времени. Математическая форма второго закона движения F = ма, где m — масса объекта, F — передняя работа над объектом, а — ускорение объекта. 

Уравнение содержит непосредственно силу, массу и ускорение. 

Как мы знаем, ускорение — это «скорость изменения скорости по отношению ко времени».

Итак, по этой формуле мы можем найти скорость, зная массу, силу и время. Если тело движется с переменной скоростью, что влечет за собой изменение скорости и/или направления, считается, что изменение происходит в этом движении.

Второй закон движения Ньютона, который подразумевает, как сила производит корректировку в движении, касается этого движения. Второй закон движения Ньютона иллюстрирует числовую связь между силой, массой и ускорением и используется для количественной оценки того, что происходит в сценариях, включающих силы и движение. Второй закон чаще всего формулируется численно как F = ма

Как найти конечную скорость через расстояние и время?

Используя первое, второе и третье уравнения движения.

Первое кинематическое уравнение v=u+at представляет собой комбинацию конечной скорости, начальной скорости, ускорения, расстояния и времени. То, какое уравнение следует использовать, будет зависеть от конкретного случая. Иногда можно использовать более одного уравнения.  

Чтобы найти конечную скорость, когда известны начальная скорость и расстояние, третье уравнение движения, которое v2=u2+ 2к может быть использован. И если время дано с расстоянием, и нам нужно вычислить конечную скорость, то, во-первых, мы можем узнать начальную скорость, используя второе уравнение движения, которое s=ut+1/2 в2 а затем, используя третье уравнение движения, которое v2 = ты2+ 2к, мы можем рассчитать конечную скорость объекта. 

Вычисление начальной и конечной скорости является частью нескольких физических формулировок и уравнений. В моделях для сохранение импульса или законы движения, разрыв между начальной и конечной скоростью говорит вам о скорости предмета до и после, что угодно происходит. Это может быть сила, приложенная к предмету, удар или что-то еще, что изменяет траекторию и скорость объекта.

Соответствующее уравнение движения можно использовать для вычисления конечной скорости объекта, испытывающего постоянное ускорение. Чтобы связать их друг с другом, эти уравнения требуют сочетания расстояния, начальной скорости, конечной скорости, ускорения и времени.

Как найти конечную скорость по импульсу?

Используя уравнение импульс то есть P = mv], где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит массу объекта и скорость объекта. Выражение, подобное приведенному выше, можно рассматривать как технику решения вопросов. Можно определить последнюю переменную в формуле, имея целочисленные данные всех переменных, кроме одной, в формулах.

Точно так же выражение можно рассматривать как фразу, объясняющую значимое отношение между двумя переменными. В выражении две переменные можно рассматривать либо как линейно коррелированные, либо как обратно связанные. И масса, и скорость прямо пропорциональны импульсу. При неизменной скорости увеличение массы приведет к увеличению импульса, переносимого предметом.

Соответственно, увеличение скорости (при неизменной массе) приведет к увеличению мамы предмета.энтум. Мы можем предсказать, насколько сильно изменение одной переменной повлияет на другую, рассматривая и вычисляя пропорционально количества. Импульс — это элемент вектора, который имеет величину (математическую величину), а также направление. Вектор импульса обычно движется по той же траектории, что и вектор скорости.

С импульс — это вектор, сложение двух векторов импульса выполняется так же, как сложение любых двух других векторов. Когда два вектора направлены в разные стороны, один из них считается отрицательным, а другой — положительным. В большинстве вопросов этой группы задач для эффективного решения необходимо учитывать векторный характер импульса.

Как найти конечную скорость после столкновения?

Использование выражения для упругих и неупругих столкновений.

Импульс P, то есть P = mv, где m — масса объекта, P — импульс объекта, а v — скорость объекта.

По закону сохранения импульса: «Импульс до столкновение = импульс после столкновение»

Выражение для упругих столкновений

Формула для расчета конечной скорости данного объекта

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

Формула для расчета конечной скорости сталкивающегося объекта

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (vi)

Выражение для неупругого столкновения

m1v1+m2v2=m1v1f+m2v2f

где m1 — масса объекта до столкновения, v1 — скорость данного объекта до столкновения, m2  — масса сталкивающегося объекта до столкновения, v2 – скорость сталкивающегося объекта до столкновения, а v1f – конечная скорость данного объекта, а v2f — конечная скорость сталкивающегося объекта. 

Эластичный или неэластичный столкновения возможны. Оба импульс и кинетическая энергия сохраняются при упругих столкновениях, а кинетическая энергия не сохраняется при неупругих столкновениях. Неупругие столкновения происходят, когда кинетическая энергия не сохраняется, например, при столкновении транспортных средств. Сохранение импульс относится к неупругим столкновениям.

В результате импульс до удара равен импульсу после контакта. Слово «импульс» соответствует количеству переменных, содержащихся в движущемся предмете. Произведение массы на скорость — вот как это называется. а его единицы — кгм/с.

Можно эффективно определить скорость транспортного средства после столкновения, используя приведенную ниже формулу, если мы знаем начальную массу и скорость транспортного средства и сталкивающегося объекта.

Когда частицы сталкиваются в неупругое столкновение, они не действуют как упругие во время столкновения. Это указывает на то, что частицы не деформируются упруго в месте столкновения; вместо этого они могут необратимо деформироваться, что приводит к рассеиванию энергии во время столкновения. Это отличается от упругого столкновения, при котором частицы упруго изгибаются в месте удара, ведя себя как безупречно упругие пружины, поглощая и высвобождая равное количество энергии.   

Как найти конечную скорость без учета времени?

С помощью третьего уравнения движения. 

Третье уравнение движения не содержит времени, поэтому оно не зависит от времени.  

Третье уравнение движения, которое есть v2=u2+2asis комбинация начальной скорости, конечной скорости, ускорения и расстояния. Таким образом, мы можем легко вычислить конечную скорость, когда известны другие переменные. И ему не нужно время, чтобы быть Познанным. 

Если положение объекта меняется относительно стандартного местоположения, считается, что он находится в движении относительно этой стандартной точки, а если нет, то считается, что он находится в неподвижном состоянии относительно этой точки. Мы создаем несколько классических формул, относящихся к определениям расстояния, смещения, скорости, скорости и ускорения объекта, с помощью формул, называемых уравнениями движения для хорошего понимания или взаимодействия с различными условиями покоя и движения.  

Как найти конечную скорость без ускорения? 

Как мы обсуждали ранее, приведенная ниже формула содержит начальную скорость объекта и сталкивающегося объекта до столкновения, а также массу объекта и сталкивающегося объекта до столкновения и конечную скорость. Итак, отсюда легко вычислить конечную энергию объекта, не зная его ускорения.  

Учитывая м1 — масса объекта до столкновения, v1 — скорость данного объекта до столкновения, м2  — масса сталкивающегося объекта до столкновения, v2 — скорость сталкивающегося объекта до столкновения, а v1f — конечная скорость данного объекта и v2f — конечная скорость сталкивающегося объекта. 

Для упругого столкновения;  

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (v1i) 

Для неупругого столкновения; 

m1v1+m2v2=m1v1f+m2v2f

Если у нас есть исходная масса и скорость предоставленного объекта и сталкивающегося предмета, мы можем использовать приведенную ниже формулу для вычисления скорости предмета после столкновения. 

Как найти конечную скорость без начальной скорости?

Если начальная скорость объекта не указана, то можно считать, что изначально объект находился в состоянии покоя.

Таким образом, мы можем рассчитать конечную скорость по различным формулам, таким как кинематические уравнения, приравняв начальную скорость к нулю. Также мы можем найти скорость объекта по числовой форме второго закона движения, если известна масса объекта. Другой способ найти скорость — использовать формулу импульса, если известны масса и импульс объекта.  

Примеры 

Пример 1 

Допустим, автомобиль массой 100 кг движется со скоростью 80 м/с. Другой автомобиль массой 120 кг движется со скоростью 100 м/с. Они сталкиваются друг с другом. Конечная скорость первого автомобиля после столкновения равна 100 м/с. Какой будет конечная скорость второго автомобиля после столкновения? 

дорожный знак-дорожный-знак-щит-6771.png

Изображение предоставлено: Быстрая коза
Столкнулись две машины

Решения

В этом случае масса m1 то есть масса первого автомобиля до столкновения, скорость v1 первого автомобиля перед столкновением, масса m2 второго автомобиля до столкновения, скорость v2 второго автомобиля перед столкновением и конечной скоростью v1f первого автомобиля после столкновения известны. 

Данный; 

m1= 100 кг

v1= 80 м/см2= 120 кг

v2= 100 м / с

v1f = 100 м / с

Используя формулу упругого столкновения, мы можем вычислить конечную скорость второго автомобиля после столкновения. 

v2f=m2-m1/m1+m2 (vf)+m1-m2/m1+m2 (vi)  

v2f=(120- 100/120+ 100)100+(120(100+20))80

v2f= (0.090) 100 + 43.6363

v2f= 52.64 м / с

Таким образом, конечная скорость второго автомобиля после столкновения равна v.2f= 52.64 м / с.

Пример 2  

Автомобиль начал двигаться с начальной скоростью 30 м/с и преодолел расстояние 5 км. Автомобиль достигает ускорения a=10 м/с.2. Какой должна быть конечная скорость автомобиля и сколько времени это займет? 

В этом примере известна начальная скорость автомобиля, ускорение автомобиля и перемещение автомобиля, а конечная скорость автомобиля и время, затраченное автомобилем, задаются.  

Для нахождения конечной скорости мы будем использовать третье уравнение движения, которое представляет собой комбинацию начальной скорости, конечной скорости, смещения и ускорения. 

Данный; 

Начальная скорость, u = 30 м / с

Ускорение, а=10м/с2

Водоизмещение, с=5000м

Для нахождения конечной скорости мы будем использовать третье уравнение движения, то есть; 

v2 = u2 + 2as

где v — конечная скорость объекта, u — начальная скорость объекта, а — ускорение объекта при смещении объекта.   

Ввод заданных значений в приведенную выше формулу 

v2= 30 м / с2+2(10м2s2)(5000м)

v2= 900 m2s2+(20м/s2)(5000м)

v2= 900 m2s2+100000m2/s2

v2= 100900 m2/s2

v = 317.645 м / с

Значит, конечная скорость автомобиля будет равна 317.645 м/с.

Теперь, чтобы найти время, необходимое для покрытия заданного перемещения, мы будем использовать первое уравнение движения, которое имеет вид v=u+at. 

Подставляя заданные значения в это уравнение, мы получим 

317.645 м/с=30 м/с+ 10 м/с2t

317.645 м/с-30 м/с= 10м/с2t

287.645 м/с = 10м/с2t

t=287.645 м/с / 10 м/с}

t = 28.7 с

Таким образом, время, которое потребуется машине, чтобы добраться до конечной точки, составляет 28.7 секунды.  

Часто задаваемые вопросы | Часто задаваемые вопросы  

В. С точки зрения физики, что такое импульс? 

Импульс — это двумерная величина, которая включает в себя как величину, так и направление. Поскольку у импульса есть направление, его можно использовать для прогнозирования направления и скорости движения сталкивающихся тел. 

В. Какую роль играет импульс в движении? 

Когда два тела сталкиваются друг с другом, тело, имеющее большую скорость, что приводит к большему импульсу, передает большую мощность телу, имеющему меньшую скорость или движущемуся медленнее. 

Тело с малой стартовой скоростью должно сместиться с большей скоростью и импульсом по сравнению с телом с большей скоростью при старте после столкновения. 

В. Каковы подходы к сохранению импульса? 

Переменная, называемая импульсом, которая определяет движение в замкнутом наборе компонентов и никогда не меняется в соответствии с принципом сохранения импульса; то есть «общий импульс системы остается постоянным». 

Импульс эквивалентен импульсу, необходимому для остановки предмета за заданный промежуток времени, когда его масса умножается на его скорость. Общий импульс набора сущностей равен сумме их различных импульсов.

Однако, поскольку импульс — это вектор, который включает в себя как направление, так и амплитуда движения, импульсы объектов, движущихся в противоположных направлениях, могут компенсироваться, давая общую сумму нулю. 

Любое тело, обладающее скоростью, обладает импульсом.

Скорость тела будет меняться, когда на него подействует сила и появится ускорение. Об этом сообщает второй закон Ньютона. А если изменяется скорость тела, то будет изменяться его импульс.

Второй закон Ньютона в импульсной форме описывает изменение импульса тела под действием силы.

Формула второго закона Ньютона в импульсной форме

Импульсная форма записи второго закона выглядит так:

[ large boxed{ overrightarrow{Delta p} = overrightarrow{ F cdot Delta t} } ]

Словами это выражение можно сформулировать так:

[ large boxed { text {Изменение импульса тела = импульсу силы }} ]

(overrightarrow{Delta p} left( text{кг} cdot frac{text{м}}{c}right) ) – вектор изменения импульса тела;

( overrightarrow{ F cdot Delta t} left( H cdot text{м} right) ) – вектор импульса силы;

Слева и справа в формуле находятся два вектора. Так как между ними записан знак равенства, значит у векторов (overrightarrow{Delta p} ) и ( overrightarrow{ F cdot Delta t} ) совпадают обе характеристики — направление и длина.

С помощью математики фразу «длины векторов равны» можно записать так:

( left| overrightarrow{Delta p} right | = left| overrightarrow{ F cdot Delta t} right | )

Как посчитать длину вектора, и как ее обозначать, читайте тут.

Пояснения и вывод формулы с помощью геометрии

Чтобы получить импульсный вид записи для второго закона, рассмотрим такую задачу.

Представим, что мы склонились над бильярдным столом и смотрим на него сверху. А в это время по столу катится бильярдный шар с какой-то постоянной скоростью.

Примечание: с постоянной скоростью, значит — с одной и той же скоростью. О такой скорости физики часто говорят «с неизменной скоростью», а математики применяют для нее запись ( vec{v} = const ).

Пусть для определенности масса шара равна двум килограммам.

( m = 2 left( text{кг} right) )

Пусть до того, как мы подействовали на шар, он двигался по столу в направлении, указанном на рисунке 1а. Шар вначале движется по горизонтали (рис. 1а), вектор начальной скорости обозначен ( vec{v_{0}} ).

Подействуем теперь на шар, ударив его кием под углом к начальной скорости.  Направление, вдоль которого мы ударили, показано на рисунке 1б с помощью вектора силы ( vec{F} ) .

После удара шар будет катиться уже не по горизонтали на рисунке. Физики скажут: направление движения шара изменилось. Направление, в котором шар движется после удара, обозначено вектором ( vec{v} ) на рисунке 2в. Вектор ( vec{v} )  — конечная скорость шара.

Показаны направления движения шара до – а) и после – в) удара, направление вектора силы – б).

Рис. 1. Направление движения шара а) — до удара, в) – после удара, б) – в эту сторону шар подтолкнули силой

Нам известны начальная и конечная скорости тела, а также, его масса. Мы можем вычислить импульс тела до удара (рис 2а), и после удара (рис 2б).

( m cdot vec{v_{0}} = vec{p_{0}}) – импульс тела до удара (начальный);

( m cdot vec{v} = vec{p}) – импульс тела после удара (конечный).

Вектор скорости тела умножаем на скаляр - массу тела, получаем вектор импульса тела

Рис. 2. Вектор скорости тела умножаем на скаляр — массу тела, получаем вектор импульса тела

Обратите внимание, что у векторов начального импульса ( vec{p_{0}}) и начальной скорости ( vec{v_{0}}) направления совпадают. Вектор конечного импульса ( vec{p}), так же, сонаправлен с вектором ( vec{v}) конечной скорости тела.

Для удобства совместим начала векторов ( vec{p_{0}})  и ( vec{p}) (рис. 3). Зададимся вопросом, как из вектора начального импульса ( vec{p_{0}}) получить конечный ( vec{p}) вектор?

Совмещены начала векторов импульса тела до (черный) и после (красный) удара

Рис. 3. Начала векторов импульса тела до (черный) и после (красный) удара совмещены

Очевидно, нужно к вектору ( vec{p_{0}}) прибавить еще один вектор. Обозначим этот вектор ( overrightarrow{Delta p} ), он представлен на рисунке 4.

Конечный вектор импульса тела – это сумма начального вектора импульса и вектора изменения импульса

Рис. 4. К начальному вектору импульса прибавили вектор изменения импульса и получили конечный вектор импульса тела

Подробнее о том, как складывать векторы, написано тут.

Сумму можно записать так:

( vec{p_{0}} + overrightarrow{Delta p} = vec{p} )

Это уравнение записано в векторном виде. Стрелки над символами подчеркивают тот факт, что векторы складывают с помощью геометрии, то есть, учитывают их направления.

Выразим теперь вектор, обозначенный ( overrightarrow{Delta p} ). Для этого, из обеих частей уравнения вычтем вектор ( vec{p_{0}} ).

( overrightarrow{Delta p} = vec{p} — vec{p_{0}} )

Видно, что вектор ( overrightarrow{Delta p} ) – это разница между конечным ( vec{p} ) и начальным ( vec{p_{0}} ) векторами импульса тела.

Физики для вектора ( overrightarrow{Delta p} ) используют такое название:

( overrightarrow{Delta p} left( text{кг} cdot frac{text{м}}{c} right) ) – вектор изменения импульса тела.

Рассмотрим теперь совместно векторы ( overrightarrow{Delta p} ) и ( vec{F} ) на одном рисунке (рис. 5).

Векторы изменения импульса тела и силы, действующей на тело, сонаправлены, модули векторов отличаются

Рис. 5. Вектор изменения импульса тела сонаправлен с вектором силы, действующей на тело, длины векторов отличаются

Направления векторов совпадают, а длина – различается.

Примечание: Математики вместо выражения «длина вектора» употребляют термин «модуль вектора».

Предположим, у нас есть точный хронометр и мы измерили кусочек времени, в течение которого сила действовала на бильярдный шар.

Умножим теперь вектор ( vec{F} )  на этот промежуток времени ( Delta t ) — скаляр. Результат умножения представлен на рисунке 6.

Вектор импульса силы – это вектор силы, действующей на тело, умноженный на скаляр – промежуток времени, в течение которого сила действовала

Рис. 6. Вектор силы, действующей на тело, умножаем на скаляр – промежуток времени, в течение которого сила действовала, получили вектор импульса силы

Из рисунка 6 видно, что у векторов (overrightarrow{Delta p} ) и ( overrightarrow{ F cdot Delta t} ) совпадают не только направления, но и длины.

Если у векторов совпадают обе характеристики, то их можно приравнять. Подробнее о том, какие у векторов есть характеристики, написано тут.

[ large boxed{ overrightarrow{Delta p} = overrightarrow{ F cdot Delta t} } ]

Это выражение называют вторым законом Ньютона, записанным в импульсной форме.

Примечания

1). Сумму векторов

( vec{p_{0}} + overrightarrow{Delta p} = vec{p} )

можно теперь переписать в таком виде:

( vec{p_{0}} + overrightarrow{ F cdot Delta t} = vec{p} )

2). Складывать можно векторы, у которых размерность совпадает.

О сложении векторов простым языком написано тут.

Обратим внимание на размерность.

(overrightarrow{Delta p} left( text{кг} cdot frac{text{м}}{c}right) )

( overrightarrow{ F cdot Delta t} left( H cdot c right) )

На первый взгляд, она отличается, но с помощью простых преобразований можно показать, что

[ large 1 text{кг} cdot frac{ 1text{м}}{1 c} = 1 H cdot 1 c ]

Вывод формулы с помощью алгебры

Второй закон Ньютона в импульсной форме можно получить из алгебраических соображений.

Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона:

(displaystyle vec{a} = frac{vec{F}}{m})

Применим выражение для ускорения

(displaystyle vec{a} = frac{overrightarrow{Delta v}}{Delta t })

В этих уравнениях слева находится величина (vec{a}). Так как левые части уравнений равны, можно приравнять правые их части

(displaystyle frac{vec{F}}{m} = frac{vec{Delta v}}{Delta t })

Полученное выражение является пропорцией. Применив одно из свойств пропорции, получим такое выражение:

( overrightarrow{F cdot Delta t} = overrightarrow {Delta vcdot m} )

В правой части находится вектор (overrightarrow {Delta v} = vec {v} — vec {v_{0}} ) – это разница между конечной и начальной скоростью.

Преобразуем правую часть

(overrightarrow{Delta v}cdot m = left( vec {v} — vec {v_{0}} right) cdot m)

Раскрыв скобки, получим

(overrightarrow{Delta v}cdot m = vec {v} cdot m — vec {v_{0}} cdot m )

Вспомним обозначения:

(vec {v} cdot m = vec {p})

(vec {v_{0}} cdot m = vec {p_{0}} )

Подставляя их, получим

(overrightarrow{Delta v}cdot m = vec {p} — vec {p_{0}})

(vec {p} — vec {p_{0}}=overrightarrow{Delta p})

Или, сокращенно

(overrightarrow{Delta v}cdot m = overrightarrow{Delta p})

То есть, вектор (overrightarrow {Delta vcdot m}) – это вектор (overrightarrow {Delta p}).

Тогда второй закон Ньютона в импульсной форме запишем так

( overrightarrow{F cdot Delta t} = overrightarrow{Delta p})

Понравилась статья? Поделить с друзьями:
  • Известен периметр прямоугольника как найти его площадь
  • Как найти алгебраическую сумму одночленов
  • Как найти грамматическую основу предложения образец
  • Как составить сценарный план мероприятия пример
  • Как найти свою ценность женщины