Как найти скорость точки тела

Скорость любой точки Вплоской
фигуры равна геометрической сумме двух
скоростей: скорости точкиА, принятой
в качестве полюса, и скорости точкиВпри вращении тела вокруг полюса (рис.
3.2,а)

,
(3.4)

где
– вектор угловой скорости, введенный
так же, как и при рассмотрении вращения
тела вокруг неподвижной оси (здесь этот
вектор располагается на оси, проведенной
через полюс перпендикулярно плоскости
движения);– радиус-вектор точкиМ, проведенный
из точкиА. Вращательная составляющая
скорости точкиперпендикулярна отрезкуAMи направлена
в сторону вращения тела, ее модуль

(3.5)

Модуль и направление скорости
находят построением соответствующего
параллелограмма (см. рис. 3.2,а).

Еще один способ определения скоростей
точек тела при плоскопараллельном
движении основан на использовании
теоремы о равенстве проекций скоростей
двух точек тела: «Проекции
скоростей двух точек тела на прямую,
соединяющую эти точки, равны друг другу
».
Заметим, что эта теорема справедлива
для любого вида движения абсолютно
твердого тела и позволяет легко находить
скорость точки тела, если известны
направление скорости этой точки, а также
направление и величина скорости
какой-либо другой точки этого же тела.

Ускорение любой точки Вплоской
фигуры равно геометрической сумме
ускорения точкиА, принятой в качестве
полюса, и ускорения, которое точка
приобретает при вращении тела вокруг
полюса (рис. 3.2,б):

,
(3.6)

где
– вектор углового ускорения, введенный
так же, как и при рассмотрении вращения
тела вокруг неподвижной оси. Вектор
вращательной составляющей ускорениянаправлен перпендикулярно отрезкуABв сторону углового ускорения, т.е. в
сторону вращения, если оно ускоренное,
и в противоположную сторону, если
замедленное. Вектор осестремительной
составляющей ускорениявсегда направлен от точкиМк полюсуA. Запишем модули этих векторов
соответственно

.
(3.7)

Определять полный вектор ускорения
точкиМцелесообразно не геометрически,
а аналитически с помощью разложения
слагаемых векторов на оси выбранной
системы координат.

3.3. Мгновенный центр скоростей

Простой и наглядный способ определения
скоростей плоской фигуры основан на
понятии о мгновенном центре скоростей(МЦС). Им называют точку подвижной
плоскости, в которой расположена плоская
фигураSи скорость
которой в данный момент времени равна
нулю.

Доказана
теорема о том, что если тело движется
не поступательно, то такая точка
существует, и притом единственная. Из
определения следует, что в общем случае
в каждый момент времени МЦС находится
в различных точках плоскости. При
вращательном движении тела вокруг
неподвижной оси, являющимся частным
случаем плоскопараллельного движения,
МЦС в любой момент времени расположен
на оси вращения. Если же тело движется
поступательно или мгновенно поступательно
(скорости всех точек тела в данный момент
времени равны по величине и совпадают
по направлению), то МЦС находится на
бесконечно большом расстоянии от любой
точки тела. Выбрав в качестве полюса
точку Р, которая является в данный
момент времени МЦС, а значит,
из формулы (3.4) для определения скорости
любой точки плоской фигуры найдем
скорость точкиМ

.
(3.8)

Следовательно,
скорость любой точки тела в данный
момент времени находим так же, как при
вращении вокруг неподвижной оси,
проходящей через МЦС и перпендикулярной
плоскости движения. Таким образом, при
плоскопараллельном движении скорость
любой точки тела перпендикулярна
отрезку, соединяющему эту точку с МЦС,
а модуль скорости пропорционален
расстоянию до МЦС

(3.9)

Угловая
скорость плоской фигуры равна отношению
скорости какой-либо ее точки к расстоянию
от этой точки до МЦС

(3.10)

Способы определения положения
мгновенного центра скоростей:

1) если известны направления скоростей
иточекА иВплоской фигуры, то
МЦС (точкуР) определяют как точку
пересечения перпендикуляров к скоростями,
проведенных из этих точек (рис. 3.3,а);

2) если скорости двух точек тела AиBизвестны по модулю, параллельны
друг другу (||),
и перпендикулярны прямойAB, то МЦС
находят в точке пересечения прямойАВс прямой, соединяющей концы векторов
скоростейи(рис. 3.3,б,в);

3)
при качении без скольжения одного тела
по неподвижной поверхности МЦС находят
в точке соприкосновения тел (рис. 3.3,г),
так как при отсутствии скольжения
скорость этой точки подвижного тела
равна нулю;

4) если скорости точек AиBтелаипараллельны друг другу (||)
и не перпендикулярны прямойАВ, то
перпендикуляры к ним также параллельны
друг другу. В этом случае МЦС находится
в бесконечном удалении от точекAиB, движение тела является мгновенно
поступательным, следовательно, скорости
всех точек тела равны, а его угловая
скорость в данный момент времени равна
нулю.

С помощью МЦС плоскопараллельное
движение можно представить не только
как сложное, состоящее из поступательного
и вращательного движений, но и как
простое движение, состоящее из серии
элементарных последовательных поворотов
вокруг МЦС. Необходимо отметить, что
положение МЦС в пространстве во все
время движения меняется. Геометрическое
место точек МЦС подвижного тела называют
подвижной центроидой, а
неподвижного тела –неподвижной
центроидой
. Таким образом,
плоскопараллельное движение представляет
собой качение без скольжения подвижной
центроиды по неподвижной центроиде.

Пример 1.Колесо катится без
скольжения по неподвижной прямой
поверхности. Скорость точкиOпостоянна и равна 100 см/с (рис. 3.4,а).

Определить угловую скорость колеса,
скорости точек A,B,Cи ускорения
точекA,C,P, еслиR= 50 см,r= 40 см.

Решение

Колесо совершает плоскопараллельное
движение. Качение происходит без
скольжения, следовательно, в данном
случае точка касания колеса с неподвижной
поверхностью – точка P– является
МЦС. Определим угловую скорость колеса
согласно формуле (3.10)

Зная расстояния от точек A,BиCдо МЦС, можно найти их скорости по формуле
(3.9)

Векторы скоростей точек колеса направлены
перпендикулярно отрезкам, соединяющим
их с МЦС (см. рис. 3.4,б). В соответствии с
теоремой о проекциях скоростей двух
точек тела на прямую, соединяющую эти
точки, убеждаемся в правильности
полученных результатов.

Перейдем к определению ускорений, для
чего воспользуемся формулами (3.6) и
(3.7). В качестве полюса выбираем точку
O. Ускорение полюса равно нулю, так
как эта точка движется равномерно и
прямолинейно. Поэтому ускорения точек
будут равны их ускорениям во вращательном
движении вокруг полюса. Например, для
точкиА

.

Дифференцируя по времени выражение
и учитывая, чтоOP = const и= const, получимТаким образом, ускорения всех точек,
включая МЦС, состоят из осестремительных
ускорений во вращении вокруг полюсаО

;

и направлены от соответствующих точек
к полюсу (см. рис 3.4,в).

Пример 2.КривошипОАкривошипно-ползунного механизма,
приведенного на рис. 3.5, вращается вокруг
неподвижной оси с угловой скоростьюи угловым ускорением.
Положение механизма определяется углом.

Найти угловую скорость и угловое
ускорение шатуна АВ, а также скорость
и ускорение ползунаB, если длина
кривошипаОА=10 см, а длина
шатунаАВ=30 см.

Решение

Вначале определим скорость точки Акривошипа

Затем, зная направления скоростей точек
АиВ, найдем положение МЦС на
пересечении перпендикуляров к скоростям
этих точек – точкуP. Для определения
угловой скорости шатунаи скорости точкиВнаходим длины
отрезков, соединяющих точкиАиВс МЦС. Из теоремы синусов следует, что

Вычислим длины отрезков:

.

Теперь
найдем искомые величины:

Определим ускорение точкиВи
угловое ускорение шатунаАВ. Здесь
надо иметь в виду, что расстояние от
точкиАдо МЦС не является постоянным
и зависит от положения механизма, т.е.
от времени. Поэтому продифференцировать
по времени угловую скорость шатуна не
представляется возможным. Поступим
следующим образом. Для нахождения
ускорения точкиВвоспользуемся
векторным равенством (3.6)

и спроецируем его на оси координат xOy
(см. рис. 3.5). При этом учтем, что векторлежит на прямойОВ, так как точкаВдвижется прямолинейно, векторнаправлен к полюсуА, а векторперпендикулярен ему. Получим два
алгебраических уравнения для определения
величин и направлений ускоренийи(вначале направляем искомые векторы
произвольно):

;

.

Предварительно
вычислим составляющие ускорения согласно
формулам (3.7):

Далее
определим:


из 2-го уравнения

– из 1-го уравнения

Знаки показывают, что направление
ускорения
совпадает с принятым, а направление– противоположно направлению, указанному
на рис. 3.5. Зная ускорение,
можно найти угловое ускорение шатуна

Скоростью точки называют кинематическую меру ее движения, равную производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Скорость относительно выбранной системы отсчета это одна из основных характеристик движения точки.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Рассмотрим перемещение точки за малый промежуток времени Δt:

тогда

средняя скорость точки за промежуток времени Dt.

Наш видеоурок по теме:

Другие видео

Скорость точки в данный момент времени

скорость точки

Скорость точки при векторном способе задания движения

Положение движущейся точки М относительно системы отсчета в момент времени t1 определяется радиус-вектором r.

Скорость точки при векторном способе задания движения

Рис. 1

В другой момент времени t1=t+Δt точка займет положение М1 с радиус-вектором r1.

За время Δt радиус-вектор движущейся точки изменится на

Средней скоростью vср называется отношение изменения радиус-вектора Δr к изменению времени Δt.

Скорость точки равна первой производной по времени от ее радиус-вектора.

Скорость точки при координатном способе задания движения

Разложим радиус-вектор и скорость на составляющие, параллельные осям координат. Получим

После дифференцирования

Отсюда следует

Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки.

Модуль скорости и направляющие косинусы равны:

Если точка движется в плоскости, то, выбрав оси координат Ox и Oy в этой плоскости, получим:

Для прямолинейного движения точки координатную ось, например ось Ox, направляем по траектории. Тогда

Скорость точки при естественном способе задания движения

Пусть скорость точки задана естественным способом, т.е. заданы траектория точки и закон ее движения по траектории s=f(t).

Скорость точки при естественном способе задания движения

Рис. 2

Вычислим скорость точки. Используем радиус-вектор r. движущейся точки, начало которого находится в неподвижной точке O1


— единичный вектор, направленный по касательной к траектории в сторону возрастающих расстояний.

При ds>0 направления векторов τ и dr совпадают.

Если точка движется в сторону убывающих расстояний, то ds<0 и направления векторов τ и dr противоположны.

При

вектор скорости направлен по τ, т.е. в сторону возрастающих расстояний;

при

он имеет направление, противоположное τ, т.е. в сторону убывающих расстояний.


— алгебраическая скорость точки, проекция скорости v на положительное направление касательной к траектории.

Естественное задание движения точки полностью определяет скорость по величине и направлению.

Примеры решения задач >
Ускорение точки >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Содержание:

Предмет кинематики:

Кинематикой называют раздел теоретической механики, в котором изучают механическое движение, рассматриваемое без учета сил, приложенных к движущимся объектам

Арифметика наряду с некоторыми другими науками, занимающимися исчислением, является наиболее отвлеченной из математических наук. Для нее достаточно одного понятия «число», и она не нуждается ни в каких других фундаментальных понятиях.

Геометрия не может ограничиться одним понятием числа. Она основывается также и на понятиях, связанных с геометрической формой (длина, поверхность, объем, угол). Геометрия часто пользуется понятием движения; линию геометрия определяет как след точки. Но если точка оставила след, то, следовательно, она передвигалась; фигура, образовавшая тело вращения, поворачивалась вокруг оси, т. е. тоже находилась в движении. Однако геометрию не интересует, совершалось ли это движение в течение многих тысячелетий или же в малые доли секунды. Понятие времени чуждо геометрии. Размерностью геометрических величин является размерность длины L в той или иной степени (площадь измеряется в L2, объем—в L3, размерность углаКинематика точки в теоретической механике

К понятиям числа и геометрической формы добавляется новое понятие — «время» в науке, изучающей геометрические свойства движения и называемой кинематикой.

«В мире нет ничего, кроме движущейся материи, и движущаяся материя не может двигаться иначе, как в пространстве и во времени». Механическое движение, как и все прочие виды движения (теплота, электричество, ядерные процессы, органическая жизнь и пр.), не может происходить вне времени. Напомним, что под механическим движением мы понимаем один из видов движения материи, выражающийся в изменении с течением времени взаимных положений тел или частей тела. Положение тел, а также их механическое движение может быть отмечено лишь относительно других реальных или условных тел. Так, например, положение корабля может быть отмечено относительно берегов или относительно сетки географических долгот и широт; чтобы дать положение летящего самолета, можно указать направление, в котором этот самолет находится, и расстояние до него или же дать его координаты х, у и z относительно системы осей, определенным образом ориентированных в пространстве; чтобы дать положение поезда, можно назвать железную дорогу, по которой он движется, и его расстояние от станции. Реальное или условное твердое тело, по отношению к которому определяется положение других движущихся тел, называют системой отсчета.

Кинематика изучает изменения в положении тел по отношению к системе отсчета. Она дает возможность разобраться в многообразии видов механического движения и установить пространственные и временные меры движения (путь, скорость и т. п.), но не дает возможности предсказать, как будет двигаться тело под действием приложенных сил, или определить, какие силы должны быть приложены к телу для того, чтобы оно совершало то или иное движение. Понятие «силы» чуждо кинематике.

Формулы размерности кинематических величин содержат размерности длины L и времени Т, размерность же силы F или массы M в размерность кинематических величин не входит.

Кинематика является разделом теоретической механики, в котором изучают механическое движение, рассматриваемое без учета сил, приложенных к движущимся объектам. Изучение же механического движения в связи с силами, приложенными к движущимся объектам, составляет предмет динамики.

Кинематика наряду со статикой является необходимой предпосылкой динамики и, следовательно, всех других механических дисциплин. Но кинематика имеет также и непосредственное применение в технике. Техника широко пользуется законами и формулами кинематики. Большое значение кинематика имеет в теории механизмов и машин (TMM) .

История развития кинематики

Кинематика как самостоятельный раздел теоретический механики возникла в XIX столетии

Многие сведения из кинематики были известны еще в глубокой древности. Так, например, в сочинении «Механические проблемы», принадлежащем Аристотелю или кому-либо из его учеников, дан закон сложения двух прямолинейных равномерных движений. В древней астрономии пользовались равномерным круговым движением точки и знали, что проекция этой точки на прямую, лежащую в той же плоскости, совершает гармоническое колебание. Но появление отрывочных сведений еще не является возникновением науки. И хотя основателем кинематики иногда называют Галилея, кинематика как самостоятельный раздел теоретической механики возникла лишь в XIXв.

Упомянем о некоторых из открытий Галилея в области кинематики.

Галилей показал, что пути, проходимые движущимся телом, не всегда пропорциональны времени, и в своих исследованиях он пользовался понятием скорости. Но во времена Галилея считали возможным делить друг на друга только отвлеченные или одноименные числа, и потому Галилей не дал формулы скорости точки как отношения пройденного пути ко времени: Кинематика точки в теоретической механике

Тем более он не мог дать формулы скорости в данное мгновение, которая стала возможной лишь после открытия дифференциального исчисления. Обе эти формулы были введены в науку Эйлером в сочинении «Механика, т. е. наука о движении, изложенная аналитическим методом», изданном в Петербурге в 1736 г.

Совершенно новым понятием, к которому пришел Галилей, возможно, под влиянием работ Бенедетти, было понятие ускоренного прямолинейного движения, хотя Галилей не вводит термина «ускорение» и не приводит формулы ускорения как отношения изменения величины скорости ко времени.

Галилей дал законы равноускоренного движения и свободного падения тел, установив, что пути, проходимые падающим телом за последовательные равные промежутки времени, относятся как ряд нечетных чисел. Так, было установлено, что пути, проходимые свободно падающим телом, пропорциональны квадрату времени, и в современном обозначении
Кинематика точки в теоретической механике

Законы падения тел Галилей вывел экспериментально, наблюдая качение шаров по наклонным плоскостям. Еще Леонардо да Винчи, великому предшественнику Галилея в области механики, была известна зависимость между длинами (и высотами) наклонных плоскостей и временем, в течение которого с этих плоскостей спускаются шары. Но эти работы Леонардо да Винчи не могли оказать влияния на развитие науки, они стали частично известны лишь после того, как в 1797 г. их опубликовал Вентури. Ко времени их опубликования эти работы имели только историческое значение.

Галилей показал, что движение тела, брошенного горизонтально или под углом к горизонту, состоит из двух независимых друг от друга движений: горизонтального равномерного и вертикального равнопеременного. Этим он не только ввел в употребление законы параллелограмма перемещений (см. §27), но в принципе обосновал введенный значительно позднее (в 1742 г.) Маклореном координатный способ определения движения (см. § 21), при котором движение точки рассматривают по движениям ее проекций на неподвижные оси.

Кинематика солнечной системы была создана в развитие теории Коперника астрономом Иоганном Кеплером и выражена в трех законах (1609 и 1619 гг.). Хотя законы Кеплера относятся только к движению планет, они имели громадное влияние на развитие всей теоретической механики.

Гюйгенс установил, что при движении точки по окружности центробежная сила пропорциональна квадрату скорости и обратно пропорциональна радиусу круга, откуда позднее было установлено,что при всяком криволинейном движении нормальное ускорение пропорционально квадрату скорости и обратно пропорционально радиусу кривизны.

Эйлер, по-видимому, первый (1772 г.), а за ним уже Ампер (1834 г.) предложили выделить кинематику в самостоятельный раздел механики — учение о.механическом движении без учета сил, приложенных к движущимся объектам.

Гаспар Кориолис исследовал составное движение и доказал (1831 г.) знаменитую теорему, позднее получившую название теоремы Кориолиса. Эта теорема является основной в механике относительного движения и имеет огромное значение для различных отраслей науки. Несколько позднее на основе этой теоремы в кинематике составного движения точки стали применять ускорение Кориолиса.

Понятие полного ускорения как величины, характеризующей изменение скорости в данное мгновение, установлено сравнительно недавно. Эта честь принадлежит Понселе, впервые начавшему применять понятие и термин «ускорение» в своих лекциях (1841 г.), и Резалю, впервые применившему его в учебнике (1851 и 1862 гг.).
Луи Пуансо в работе «Новая теория вращения тел» (1834 г.) обогатил кинематику рядом блестящих исследований и дал наглядные геометрические интерпретации. В частности, он изучил сложение вращений и вращение тела около неподвижной точки. Эта геометрическая теория позднее была развита Понселе, Шалем, Мебиусом и др.

По-видимому, первую монографию по кинематике под названием «Трактат по чистой кинематике (движение, рассматриваемое независимо от его причин)» издал Резаль (1862 г.). По прикладной кинематике заслуживает упоминания книга проф. П. О. Сомова «Кинематика подобно-изменяемой системы двух измерений» (1885 г.).

В настоящее время кинематика является хорошо исследованной областью науки, и дальнейшее развитие кинематики происходит преимущественно в виде применения ее к различным частным задачам техники.

Кинематика точки

В кинематике изучается движение материальных объектов (точки, твердого тела, сплошной среды) без рассмотрения причин, вызывающих или изменяющих это движение. Такое изучение движения материальных объектов не требует учета материальных характеристик этих объектов — массы, моментов инерции и др.

В кинематике рассматривают такие характеристики движения, как скорость и ускорение точки, угловые скорость и ускорение твердого тела и др.

Движение материальных объектов, в частности материальной точки, совершается в пространстве при изменении времени. Пространство в классической механике считается эвклидовым, не зависящим от времени и движущихся в нем материальных объектов. Время принимается универсальным, не связанным с пространством и не зависящим как от движения наблюдателя, с точки зрения которого рассматривается движение материального объекта, так и от движения самого материального объекта.

Движение материального объекта всегда следует рассматривать относительно какого-либо твердого тела — тела отсчета, т.е. движение является относительным. С телом отсчета скрепляют систему осей координат, например декартовых, принимая ее за систему отсчета, относительно которой рассматривается движение материального объекта. Системой отсчета для трехмерного эвклидова пространства не может служить одна точка, линия или плоскость, а должны быть три оси, не обязательно прямолинейные, но не лежащие в одной плоскости.

Независимость времени от движения означает, что во всех системах отсчета, произвольно движущихся друг относительно друга, оно одно и то же, если за начало отсчета выбрано общее для них событие.

В кинематике сплошной среды телами отсчета, относительно которых рассматривается движение, могут быть также деформируемые тела.

В курсе теоретической механики обычно изучаются движение точки и твердого тела. Соответственно кинематика делится на кинематику точки и кинематику твердого тела. В настоящем курсе дополнительно излагаются также основы кинематики сплошной среды.

В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета.

По виду траекторий движения точки делятся на прямолинейные и криволинейные. Форма траектории зависит от выбранной системы отсчета. Одно и то же движение точки может быть прямолинейным относительно одной системы отсчета и криволинейным относительно другой. Например, если с летящего горизонтально Земле с постоянной скоростью самолета отцеплен груз, то, пренебрегая сопротивлением воздуха и учитывая только действие силы тяжести, получим в качестве траектории движения центра масс груза относительно самолета прямую линию, а относительно Земли — параболу.

Скорость точки

Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, которая изображена в виде декартовой прямоугольной системы координат (рис. 1).

Кинематика точки в теоретической механике

Рис. 1

Положение движущейся точки Кинематика точки в теоретической механике относительно рассматриваемой системы отсчета определяется в момент времени Кинематика точки в теоретической механике радиусом-вектором Кинематика точки в теоретической механике, который соединяет неподвижную точку Кинематика точки в теоретической механике с этой точкой. В другой момент времени Кинематика точки в теоретической механике движущаяся точка займет положение Кинематика точки в теоретической механике и ее радиусом-вектором будет Кинематика точки в теоретической механике. За время Кинематика точки в теоретической механике радиус-вектор движущейся точки изменится на Кинематика точки в теоретической механике.

Средней скоростью Кинематика точки в теоретической механике точки за время Кинематика точки в теоретической механике называют отношение Кинематика точки в теоретической механике , т. е.

Кинематика точки в теоретической механике

Средняя скорость параллельна вектору Кинематика точки в теоретической механике. В общем случае она зависит от времени осреднения Кинематика точки в теоретической механике. У нее нет конкретной точки приложения на траектории.

Введем скорость точки Кинематика точки в теоретической механике в момент Кинематика точки в теоретической механике, которая определяется как предел средней скорости, если промежуток времени, за который определяется средняя скорость, стремится к нулю, т. е.

Кинематика точки в теоретической механике

Скорость точки направлена в сторону ее движения по предельному направлению вектора Кинематика точки в теоретической механике при Кинематика точки в теоретической механике, стремящемся к нулю, т. е. по предельному направлению секущей Кинематика точки в теоретической механике,  которая совпадает с касательной к траектории в точке Кинематика точки в теоретической механике. Таким образом, скорость точки равна первой производной по времени от ее радиуса-вектора. Она направлена по касательной к траектории в сторону движения точки.

Начало радиуса-вектора движущейся точки можно выбрать в любой неподвижной точке. На рис. 1 представлен случай, в котором радиусом-вектором является также р с началом в точке Кинематика точки в теоретической механике. Радиусы-векторы Кинематика точки в теоретической механике и Кинематика точки в теоретической механике имеют одинаковые изменения Кинематика точки в теоретической механике и Кинематика точки в теоретической механике за время Кинематика точки в теоретической механике и поэтому

Кинематика точки в теоретической механике

Размерность скорости в Кинематика точки в теоретической механике получаем из (1):

Кинематика точки в теоретической механике.

Часто скорость выражают в км/ч; Кинематика точки в теоретической механике.

Для характеристики переменного вектора используют понятие его годографа. Годографом вектора называют геометрическое место его концов, если переменный вектор в различные моменты времени откладывать от одной и той же общей точки.

Траектория точки, очевидно, является годографом радиуса-вектора Кинематика точки в теоретической механике или Кинематика точки в теоретической механике (рис. 1). Последовательные положения вектора Кинематика точки в теоретической механике в различные моменты времени откладываются в этом случае от точки Кинематика точки в теоретической механике, а вектора Кинематика точки в теоретической механике — от точки Кинематика точки в теоретической механике.

Первая производная по времени от радиуса-вектора есть скорость точки, направленная по касательной к траектории. Следовательно, параллельно касательной к годографу направлена первая производная по скалярному аргументу от любого переменного вектора.

Годографом вектора скорости является линия, на которой располагаются концы этого вектора в различные моменты времени, если их начала совместить в одной общей точке. Для построения годографа вектора скорости выбираем точку, например Кинематика точки в теоретической механике (рис. 2,6), и начала векторов скорости для различных моментов времени переносим в эту точку, не изменяя их величин и направлений. Каждой точке траектории Кинематика точки в теоретической механике (рис. 2, а) будет соответствовать своя изображающая точка Кинематика точки в теоретической механике на годографе вектора скорости (рис. 2,6). Масштаб для скоростей при построении годографа вектора скорости может быть выбран отличным от масштаба для скоростей, изображаемых в точках траектории. При движении точки по траектории соответствующая ей изображающая точка движется по годографу вектора скорости.

Кинематика точки в теоретической механике

Рис. 2

При равномерном движении точки по прямой годографом вектора скорости является одна точка; при неравномерном движении — отрезок прямой, параллельный траектории.

Ускорение точки

Пусть движущаяся точка Кинематика точки в теоретической механике в момент времени Кинематика точки в теоретической механике имеет скорость Кинематика точки в теоретической механике. В момент времени Кинематика точки в теоретической механике эта точка занимает положение Кинематика точки в теоретической механике, имея скорость Кинематика точки в теоретической механике (рис. 3,а). Чтобы изобразить приращение скорости Кинематика точки в теоретической механике за время Кинематика точки в теоретической механике, перенесем вектор скорости Кинематика точки в теоретической механике параллельно самому себе в точку Кинематика точки в теоретической механике.

Средним ускорением точки Кинематика точки в теоретической механике за время Кинематика точки в теоретической механике называют отношение Кинематика точки в теоретической механике, т. е. Кинематика точки в теоретической механике. Среднее ускорение точки параллельно приращению скорости Кинематика точки в теоретической механике. Как и средняя скорость, среднее ускорение не имеет на траектории конкретной течки приложения и изображено в точке Кинематика точки в теоретической механике условно. В общем случае среднее ускорение зависит от времени Кинематика точки в теоретической механике.

Ускорением точки Кинематика точки в теоретической механике в момент времени Кинематика точки в теоретической механике называют предел, к которому стремится среднее ускорение при Кинематика точки в теоретической механике, стремящемся к нулю, т. е.

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 3

Таким образом, ускорение точки равно первой производной по времени от скорости точки.

Приращение скорости Кинематика точки в теоретической механике и, следовательно, среднее ускорение направлены внутрь вогнутости траектории. Так же направлены и их предельные значения при Кинематика точки в теоретической механике, стремящемся к нулю. Поэтому ускорение точки направлено тоже внутрь вогнутости траектории. Кроме того, ускорение как первая производная по времени от скорости, по свойству годографа вектора, параллельна касательной к годографу вектора скорости (рис. 3,6).

Размерность ускорения в Кинематика точки в теоретической механике получаем из (2):

Кинематика точки в теоретической механике

Векторный способ изучения движения

Движение точки относительно рассматриваемой системы отсчета при векторном способе изучения движения задается радиусом-вектором Кинематика точки в теоретической механике этой точки (рис. 4). Движение точки считается заданным, если известен радиус-вектор движущейся точки как функция времени, т. е.

Кинематика точки в теоретической механике

Задание векторного уравнения движения (3) полностью определяет движение точки.

Траекторией точки является годограф радиуса-вектора. Скорость точки направлена по касательной к траектории и вычисляется, согласно ее определению, по формуле

Кинематика точки в теоретической механике

Для ускорения точки соответственно имеем

Кинематика точки в теоретической механике

Таким образом, если движение точки задано векторным способом, то скорость и ускорение вычисляются по формулам (4) и (5).

Определение скорости и ускорения точки сводится к чисто математической задаче вычисления первой и второй производных по времени от радиуса-вектора этой точки. Для практического вычисления скорости и ускорения обычно используют координатный и естественный способы изучения движения. Векторный способ ввиду его краткости и компактности удобен для теоретического изложения кинематики точки.

Кинематика точки в теоретической механике

Рис. 4

Координатный способ изучения движения

Задание движения и траектория:

Движение точки можно изучать используя любую систему координат. Рассмотрим случай декартовых прямоугольных осей координат, которые являются также системой отсчета, относительно которой рассматривается движение точки. Движение точки в декартовых координатах считается заданным, если известны координаты точки как непрерывные, дважды дифференцируемые функции времени (рис. 5), т. е. заданы уравнения движения точки в декартовых координатах:

Кинематика точки в теоретической механике

Уравнения движения точки в декартовых координатах полностью определяют движение точки. Они позволяют найти положение точки, ее скорость и ускорение в любой момент времени. Уравнения движения (6) есть также уравнения траектории точки в параметрической форме. Параметром является время Кинематика точки в теоретической механике. Уравнения траектории в координатной форме из (6) получают исключением параметра Кинематика точки в теоретической механике. Исключая время, например, из первых двух уравнений и затем из второго и третьего, получим уравнения двух поверхностей:

Кинематика точки в теоретической механике

Это и есть уравнения траектории в координатной форме. Траекторией является линия пересечения двух поверхностей. Эти поверхности являются цилиндрическими, так как их уравнения не содержат одной из координат: первое — координаты Кинематика точки в теоретической механике, второе — координаты Кинематика точки в теоретической механике. Ось первой цилиндрической поверхности параллельна оси Кинематика точки в теоретической механике, второй — оси Кинематика точки в теоретической механике.

Исключая время из уравнений движения в другом порядке, получим траекторию точки как линию пересечения двух других цилиндрических поверхностей, например

Кинематика точки в теоретической механике

При исключении параметра Кинематика точки в теоретической механике из уравнений движения могут быть получены отрезки линий или точки, которые не содержатся в уравнениях (6). Эти дополнительные точки не следует считать точками траектории.

Кинематика точки в теоретической механике

Рис. 5

Пример 1.

Даны уравнения движения точки по плоскости

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике, Кинематика точки в теоретической механикеКинематика точки в теоретической механике — положительные постоянные величины. Определить уравнение траектории в координатной форме.

Решение. Уравнения движения (а) есть уравнения траектории точки в параметрической форме с параметром Кинематика точки в теоретической механике. Исключим его из уравнений движения. Для этого достаточно сложить правые и левые части уравнений, разделив предварительно первое уравнение на Кинематика точки в теоретической механике, а второе — на Кинематика точки в теоретической механике. Получим

Кинематика точки в теоретической механике

так как

Кинематика точки в теоретической механике

Уравнение (б) есть уравнение прямой, отсекающей на осях координат отрезки Кинематика точки в теоретической механике и Кинематика точки в теоретической механике (рис. 6).

Кинематика точки в теоретической механике

Рис. 6

Из уравнений (а) следует, что координаты точки Кинематика точки в теоретической механике и Кинематика точки в теоретической механике все время положительны и удовлетворяют условиям Кинематика точки в теоретической механике, Кинематика точки в теоретической механике, т. е. они могут изменяться только в пределах Кинематика точки в теоретической механикеКинематика точки в теоретической механике.  Точки прямой, для которых Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, не содержатся в уравнениях движения (а). Они дополнительно появились при исключении из уравнений параметра Кинематика точки в теоретической механике. Их не следует включать в траекторию.

Траектория точки Кинематика точки в теоретической механике в координатной форме выражается уравнением и двумя неравенствами:

Кинематика точки в теоретической механике

Скорость в декартовых координатах

Разложим радиус-вектор и скорость точки на составляющие, параллельные осям координат (рис. 7). Получим

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике— координаты точки Кинематика точки в теоретической механике—единичные векторы осей координат; Кинематика точки в теоретической механике— проекции скорости на оси координат.

Учитывая (7), согласно определению скорости, имеем

Кинематика точки в теоретической механике

так как  Кинематика точки в теоретической механике не изменяются при движении точки Кинематика точки в теоретической механике. Точки над  Кинематика точки в теоретической механике означают их производные по времени. Сравнивая (7) и (8), получаем для проекций скорости на декартовы оси координат следующие формулы:

Кинематика точки в теоретической механике

Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки. По проекциям определяют числовое значение (модуль) скорости и косинусы углов вектора скорости с осями координат:

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 7

Кинематика точки в теоретической механике

Рис. 8

Если точка движется в плоскости, то, выбрав оси координат Кинематика точки в теоретической механике и Кинематика точки в теоретической механике в этой плоскости, получим:

Кинематика точки в теоретической механике

Соответственно

Кинематика точки в теоретической механике

Для прямолинейного движения точки координатную ось, например Для прямолинейного движения точки координатную ось, например Ох, направляют по траектории (рис. 8). Тогда Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, Кинематика точки в теоретической механике, Кинематика точки в теоретической механике. Проекция скорости и ее модуль определяются по формулам

Кинематика точки в теоретической механике

Уравнение годографа вектора скорости

Известны уравнения движения точки в декартовых координатах. Получим уравнения годографа вектора скорости. На рис. 9, а изображены траектория точки и несколько векторов скорости в выбранном масштабе для различных моментов времени, а на рис. 9,6 представлен годограф вектора скорости этого движения. Точке Кинематика точки в теоретической механике на траектории соответствует точка Кинематика точки в теоретической механике на годографе вектора скорости.

Координаты точки Кинематика точки в теоретической механике, согласно определению годографа, выражаются через проекции вектора скорости на оси координат Кинематика точки в теоретической механике по формулам

Кинематика точки в теоретической механике

Если оси координат для годографа вектора скорости параллельны соответствующим осям координат, относительно которых заданы уравнения движения точки, то

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 9

Параметрические уравнения годографа вектора скорости принимают такую форму:

Кинематика точки в теоретической механике

Исключая из этих уравнений параметр Кинематика точки в теоретической механике, получим уравнения годографа вектора скорости в координатной форме.

Годограф вектора скорости дает наглядное представление о скоростях движущейся точки в разные моменты времени. Он также позволяет определить направление вектора ускорения, так как ускорение параллельно касательной к годографу вектора скорости.

Ускорение точки в декартовых координатах

Разложим ускорение точки на составляющие, параллельные осям декартовой системы координат. Получим

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике— проекции ускорения на координатные оси. Согласно определению ускорения и формулам (7) и (8), имеем

Кинематика точки в теоретической механике

Сравнивая (11) и (12), получаем формулы для проекций ускорения на оси декартовой системы координат:

Кинематика точки в теоретической механике

Проекция ускорения на какую-либо координатную ось равна второй производной по времени от соответствующей координаты движущейся точки.

Числовое значение ускорения и косинусы углов вектора ускорения с осями координат определяем по формулам

Кинематика точки в теоретической механике

При движении точки по плоскости оси Кинематика точки в теоретической механике и Кинематика точки в теоретической механике выбирают в этой же плоскости. Тогда Кинематика точки в теоретической механике, Кинематика точки в теоретической механике. Формулы для ускорения и его проекций на оси координат примут вид

Кинематика точки в теоретической механике

Соответственно

Кинематика точки в теоретической механике

Для прямолинейного движения ось Кинематика точки в теоретической механике направим по траектории точки. Тогда Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механикеКинематика точки в теоретической механике. Формулы для ускорения и его проекции на ось Кинематика точки в теоретической механике принимают вид

Кинематика точки в теоретической механике

Соответственно для числового значения ускорения имеем

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 10

Пример 2.

Движение точки по плоскости Кинематика точки в теоретической механике задано уравнениями Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике—постоянные положительные величины. Определить уравнение траектории в координатной форме, значения скорости и ускорения точки в момент времени Кинематика точки в теоретической механике, а также уравнение годографа вектора скорости.

Решение. Уравнение траектории в координатной форме находим исключением времени из уравнений движения. Для этого поделим первое уравнение на Кинематика точки в теоретической механике, второе — на Кинематика точки в теоретической механике, возводим в квадрат и складываем. Получаем уравнение эллипса (рис. 10, а) с полуосями Кинематика точки в теоретической механике и Кинематика точки в теоретической механике:

Кинематика точки в теоретической механике

так как

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике точка имеет координаты Кинематика точки в теоретической механике, т. е. занимает положение Кинематика точки в теоретической механике. Определим проекции скорости и ускорения на оси координат. Имеем:

Кинематика точки в теоретической механике

Для момента времени Кинематика точки в теоретической механике получаем:

Кинематика точки в теоретической механике

По проекциям устанавливаем направление скорости по касательной к траектории и направление ускорения по радиусу-вектору к точке Кинематика точки в теоретической механике. Изображаем эти векторы в точке Кинематика точки в теоретической механике и дополнительно в точках Кинематика точки в теоретической механике и Кинематика точки в теоретической механике.

Если выбрать для годографа вектора скорости оси Кинематика точки в теоретической механике и Кинематика точки в теоретической механике параллельными осям Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, то для его текущих координат имеем

Кинематика точки в теоретической механике

Исключая из этих параметрических уравнений годографа вектора скорости время г, получим следующее его уравнение в координатной форме:

Кинематика точки в теоретической механике

На рис. 10,6 отмечены три изображающие точки годографа Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, соответствующие точкам траектории Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, а также указаны направления ускорения в этих точках.

Естественный способ изучения движения

Естественный способ задания движения:

При естественном способе задания движения задаются траектория и закон движения точки по траектории. Движение точки рассматривается относительно фиксированной системы отсчета. Задание траектории относительно выбранной системы отсчета осуществляется различными способами: уравнениями (возможно, вместе с неравенствами), словесно или в виде графика (в каком-либо масштабе). Например, можно сказать, что траекторией автомобиля, принимаемого за точку, является дуга окружности радиусом 10 км и т. д.

Для задания закона движения точки по траектории необходимо выбрать на траектории точку Кинематика точки в теоретической механике, принимаемую за начало отсчета расстояний (рис. 11). Расстояния в одну сторону от точки Кинематика точки в теоретической механике по траектории считаются положительными (например, вправо), в другую — отрицательными. Кроме того, следует задать начало отсчета времени. Обычно за Кинематика точки в теоретической механике принимают момент времени, в который движущаяся точка проходит через точку Кинематика точки в теоретической механике, или момент начала движения. Время до этого события считается отрицательным, а после него — положительным.

Если в момент времени Кинематика точки в теоретической механике движущаяся точка занимает положение М, то закон движения точки по траектории задается зависимостью от времени расстояния Кинематика точки в теоретической механике, отсчитываемого от точки Кинематика точки в теоретической механике до точки Кинематика точки в теоретической механике, т. е. Кинематика точки в теоретической механике. Эта функция должна быть непрерывной и дважды дифференцируемой. Расстояние Кинематика точки в теоретической механике берется по траектории, какой бы сложной ни была форма траектории. Это расстояние не имеет прямого отношения к пройденному точкой пути за время Кинематика точки в теоретической механике, так как за начало отсчета расстояний может быть выбрана, в частности, и конечная точка пути. К тому же движение точки может быть колебательным вокруг начальной точки Кинематика точки в теоретической механике.

Кинематика точки в теоретической механике

Рис. 11

От задания движения в декартовых координатах можно перейти к его заданию естественным способом. Закон движения точки по траектории в дифференциальной форме через декартовы координаты выражается в виде

Кинематика точки в теоретической механике

и после интегрирования —в конечной форме

Кинематика точки в теоретической механике

если

Кинематика точки в теоретической механике

За начало отсчета расстояний принята точка траектории, в которой находится движущаяся точка в начальный момент времени. Знак у квадратного корня определяется выбором направления положительных и отрицательных расстояний.

Скорость точки при естественном способе задания движения

Пусть движение точки задано естественным способом, т. е. заданы траектория точки и закон ее движения по траектории Кинематика точки в теоретической механике. Вычислим скорость точки. Для этого используем радиус-вектор Кинематика точки в теоретической механике движущейся точки, начало которого находится в неподвижной точке Кинематика точки в теоретической механике (рис. 12). При движении точки ее радиус-вектор изменяется с течением времени, а следовательно, он изменяется в зависимости от расстояния. Используя определение скорости, имеем

Кинематика точки в теоретической механике

или Кинематика точки в теоретической механике, где Кинематика точки в теоретической механике. Вектор Кинематика точки в теоретической механике направлен по касательной к траектории как производная от вектора по скалярному аргументу и является единичным вектором. Модуль этого вектора равен единице, как предел отношения длины хорды Кинематика точки в теоретической механике к длине стягивающей ее дуги Кинематика точки в теоретической механике при стремлении ее к нулю.

Единичный вектор Кинематика точки в теоретической механике всегда направлен по касательной к траектории в сторону возрастающих (положительных) расстояний независимо от направления движения точки. При Кинематика точки в теоретической механике направления векторов Кинематика точки в теоретической механике и Кинематика точки в теоретической механике совпадают. Вектор Кинематика точки в теоретической механике в этом случае направлен в сторону возрастающих расстояний. Если точка движется в сторону убывающих расстояний, то Кинематика точки в теоретической механике и направления векторов Кинематика точки в теоретической механике и Кинематика точки в теоретической механике противоположны. Но вектор Кинематика точки в теоретической механике направлен в сторону убывающих расстояний, а следовательно, вектор Кинематика точки в теоретической механике опять направлен в сторону возрастающих расстояний.

При Кинематика точки в теоретической механике вектор скорости направлен по Кинематика точки в теоретической механике, т. е. в сторону возрастающих расстояний; при Кинематика точки в теоретической механике он имеет направление, противоположное Кинематика точки в теоретической механике, т. е. в сторону убывающих расстояний.

Величина Кинематика точки в теоретической механике называется алгебраической скоростью точки. Ее можно считать проекцией скорости на положительное направление касательной к траектории, совпадающее с направлением единичного вектора Кинематика точки в теоретической механике.

Кинематика точки в теоретической механике

Рис. 12

Естественное задание движения точки полностью определяет скорость точки по величине и направлению. Алгебраическую скорость находят дифференцированием по времени закона изменения расстояний. Единичный вектор Кинематика точки в теоретической механике определяют по заданной траектории.

Геометрические понятия. Дифференцирование единичного вектора

Радиус кривизны и соприкасающаяся плоскость. В точке Кинематика точки в теоретической механике кривой линии проведем касательную Кинематика точки в теоретической механике (рис. 13). В другой близкой точке кривой Кинематика точки в теоретической механике, отстоящей от точки Кинематика точки в теоретической механике на расстоянии Кинематика точки в теоретической механике, построим касательную Кинематика точки в теоретической механике. В общем случае пространственной кривой касательные Кинематика точки в теоретической механике и Кинематика точки в теоретической механике будут скрещиваться. Проведем в точке Кинематика точки в теоретической механике прямую линию Кинематика точки в теоретической механике параллельную Кинематика точки в теоретической механике. Угол Кинематика точки в теоретической механике между линиями Кинематика точки в теоретической механике и Кинематика точки в теоретической механике называется углом смежности. Кривизной кривой Кинематика точки в теоретической механике в точке Кинематика точки в теоретической механике называют предел, к которому стремится угол смежности, приходящийся на единицу расстояния Кинематика точки в теоретической механике, причем Кинематика точки в теоретической механике стремится к нулю, т. е.

Кинематика точки в теоретической механике

Радиусом кривизны кривой Кинематика точки в теоретической механике в точке Кинематика точки в теоретической механике называют величину, обратную кривизне кривой в этой точке, т. е.

Кинематика точки в теоретической механике

Вычислим радиус кривизны дуги окружности радиусом Кинематика точки в теоретической механике(рис. 14). Дуга окружности длиной Кинематика точки в теоретической механике, опирающаяся на центральный угол Кинематика точки в теоретической механике, выражается зависимостью Кинематика точки в теоретической механике. Для радиуса кривизны имеем

Кинематика точки в теоретической механике

т. е. для окружности радиус кривизны в каждой ее точке один и тот же и совпадает с радиусом окружности.

Участок кривой из малой окрестности какой-либо ее точки лучше всего аппроксимирует по сравнению с дугами других окружностей элемент дуги окружности, радиус которой равен радиусу кривизны кривой в рассматриваемой точке.

Кинематика точки в теоретической механике

Рис. 13

Кинематика точки в теоретической механике

Рис. 14

Для определения понятия соприкасающейся плоскости проводим вспомогательную плоскость через две пересекающиеся прямые Кинематика точки в теоретической механике и Кинематика точки в теоретической механике (см. рис. 13). Предельное положение этой плоскости при совпадении в пределе точки Кинематика точки в теоретической механике с точкой Кинематика точки в теоретической механике называется соприкасающейся плоскостью кривой в точке Кинематика точки в теоретической механике.

Кинематика точки в теоретической механике

Рис. 15

В случае плоской кривой соприкасающейся плоскостью для всех точек кривой является сама плоскость, в которой расположена эта кривая.

Естественный трехгранник

Построим в точке Кинематика точки в теоретической механике кривой линии естественные оси этой кривой (рис. 15). Первой естественной осью является касательная Кинематика точки в теоретической механике. Ее положительное направление совпадает с направлением единичного вектора касательной Кинематика точки в теоретической механике, направленного в сторону возрастающих расстояний.

Перпендикулярно касательной Кинематика точки в теоретической механике располагается нормальная плоскость кривой. Нормаль, расположенная в соприкасающейся плоскости, называется главной нормалью Кинематика точки в теоретической механике. Она является линией пересечения нормальной плоскости с соприкасающейся плоскостью. По главной нормали внутрь вогнутости кривой направим единичный вектор Кинематика точки в теоретической механике. Он определяет положительное направление второй естественной оси.

Нормаль, перпендикулярная главной нормали, называется бинормалью. Единичный вектор Кинематика точки в теоретической механике, направленный по бинормали так, чтобы три вектора Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике образовывали правую систему осей координат, определит положительное направление третьей естественной оси.

Три взаимно перпендикулярные оси Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, положительные направления которых совпадают с направлениями единичных векторов Кинематика точки в теоретической механике, Кинематика точки в теоретической механике, Кинематика точки в теоретической механике, называются естественными осями кривой. Эти оси образуют в точке Кинематика точки в теоретической механике естественный трехгранник. При движении точки по кривой естественный трехгранник движется вместе с точкой как твердое тело, поворачиваясь вокруг вершины, совпадающей с движущейся точкой.

Дифференцирование единичного вектора

Вычислим производную от единичного вектора по скалярному аргументу. В кинематике точки скалярными аргументами обычно являются время и расстояние по траектории. В качестве единичного вектора выберем Кинематика точки в теоретической механике, направленный по касательной к траектории, и вычислим его производную по времени.

Производная Кинематика точки в теоретической механике перпендикулярна самому единичному вектору Кинематика точки в теоретической механике. Для доказательства этого используем тождество

Кинематика точки в теоретической механике

Дифференцируя по времени обе части этого тождества, получим

Кинематика точки в теоретической механике

Каждый из сомножителей этого выражения не равен нулю, поэтому векторы Кинематика точки в теоретической механике и Кинематика точки в теоретической механике перпендикулярны друг другу. Это справедливо для любого другого вектора, числовая величина (модуль) которого постоянна. Направим по вектору Кинематика точки в теоретической механике единичный вектор Кинематика точки в теоретической механике. Тогда

Кинематика точки в теоретической механике

Годографом вектора Кинематика точки в теоретической механике является кривая, расположенная на сфере единичного радиуса, так как единичный вектор изменяется только по направлению (рис. 16).

Кинематика точки в теоретической механике

Рис. 16

По определению модуля производной от вектора имеем

Кинематика точки в теоретической механике

Длина малой хордыКинематика точки в теоретической механике с точностью до малых величин более высокого порядка равна длине дуги, которую стягивает хорда, т. е.

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — угол, опирающийся на эту дугу. Используя это выражение, получим

Кинематика точки в теоретической механике

Подставляя это значение в (14) и используя выражение для радиуса кривизны и переменную Кинематика точки в теоретической механике, получим

Кинематика точки в теоретической механике

Радиус кривизны Кинематика точки в теоретической механике считаем положительным.

Вектор Кинематика точки в теоретической механике и совпадающий с ним по направлению единичный вектор Кинематика точки в теоретической механике направлены параллельно предельному положению вектора Кинематика точки в теоретической механике при Кинематика точки в теоретической механике, стремящемся к нулю, т. е. они расположены в соприкасающейся плоскости кривой. Единичный вектор Кинематика точки в теоретической механике перпендикулярен вектору Кинематика точки в теоретической механике, направленному по касательной к кривой. Следовательно, вектор Кинематика точки в теоретической механике направлен по главной нормали кривой в сторону ее вогнутости, так как в эту сторону направлено предельное положение вектора Кинематика точки в теоретической механике.

Если имеем любой другой вектор Кинематика точки в теоретической механике с постоянным модулем, то для него остается справедливым все, что было получено для единичного вектора, только радиус годографа следует заменить его модулем Кинематика точки в теоретической механике. Получим

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — теперь единичный вектор,  перпендикулярный вектору Кинематика точки в теоретической механике и направленный параллельно Кинематика точки в теоретической механике.

Формулу (15′) можно выразить векторным произведением:

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — вектор угловой скорости поворота вектора Кинематика точки в теоретической механике, модуль которого Кинематика точки в теоретической механике. Вектор угловой скорости Кинематика точки в теоретической механике следует направить перпендикулярно плоскости, в которой расположены векторы Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, причем так, чтобы с его стрелки увидеть поворот вектора Кинематика точки в теоретической механике к Кинематика точки в теоретической механике в этой плоскости на угол Кинематика точки в теоретической механике против часовой стрелки. Подробнее понятие вектора угловой скорости дается при рассмотрении вращения твердого тела вокруг неподвижной оси и в других случаях его движений.

Ускорение точки при естественном способе задания движения

Учитывая, что для скорости точки имеем

Кинематика точки в теоретической механике

в соответствии с определением ускорения и (15) получаем

Кинематика точки в теоретической механике

так как Кинематика точки в теоретической механике и Кинематика точки в теоретической механике направлен внутрь вогнутости траектории параллельно единичному вектору главной нормали Кинематика точки в теоретической механике.

Получено разложение ускорения точки по осям естественного трехгранника. Часть ускорения

Кинематика точки в теоретической механике

называется касательной составляющей ускорения. Другая часть ускорения

Кинематика точки в теоретической механике

называется нормальной составляющей ускорения. Она направлена внутрь вогнутости траектории, т. е. в сторону положительного направления единичного вектора главной нормали Кинематика точки в теоретической механике, так как внутрь вогнутости траектории направлено полное ускорение. Таким образом, ускорение точки

Кинематика точки в теоретической механике

Из (17) получим формулы для проекций ускорения на естественные оси. Имеем:

Кинематика точки в теоретической механике

Проекция ускорения на положительное направление касательной, совпадающее с направлением единичного вектора Кинематика точки в теоретической механике, называется касательным ускорением, а на главную нормаль, направленную по единичному вектору Кинематика точки в теоретической механике,— нормальным ускорением. Проекция ускорения на бинормаль, направленную по единичному вектору Кинематика точки в теоретической механике, равна нулю; следовательно, ускорение точки расположено в соприкасающейся плоскости траектории. В этой плоскости находятся единичные векторы касательной и главной нормали.

Учитывая ортогональность Кинематика точки в теоретической механике и Кинематика точки в теоретической механике (рис. 17), в соответствии с уравнением (18) имеем

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 17

Нормальная составляющая ускорения Кинематика точки в теоретической механике всегда направлена внутрь вогнутости траектории. Касательная составляющая Кинематика точки в теоретической механике при Кинематика точки в теоретической механике направлена в положительную сторону касательной, т. е. по направлению единичного вектора Кинематика точки в теоретической механике, а при Кинематика точки в теоретической механике — в отрицательную, противоположно Кинематика точки в теоретической механике.

При Кинематика точки в теоретической механике и Кинематика точки в теоретической механике векторы скорости и касательной составляющей ускорения направлены в одну сторону — по Кинематика точки в теоретической механике. Движение точки является ускоренным в положительном направлении касательной к траектории. При Кинематика точки в теоретической механике и Кинематика точки в теоретической механике опять векторы скорости и касательной составляющей ускорения имеют одинаковые направления и, следовательно, движение точки является ускоренным, но в отрицательном направлении касательной к траектории.

Если Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, то вектор скорости направлен по Кинематика точки в теоретической механике, а вектор касательной составляющей ускорения противоположен ему по направлению. Движение точки является замедленным в положительном направлении касательной к траектории. При Кинематика точки в теоретической механике и Кинематика точки в теоретической механике имеем замедленное движение точки в отрицательную сторону касательной к траектории точки.

Случаи обращения в нуль касательного ускорения получают из условия

Кинематика точки в теоретической механике

Это условие выполняется все время, пока Кинематика точки в теоретической механике, т.е. при равномерном движении точки по траектории любой формы. Касательное ускорение обращается в нуль также в те моменты времени, в которые алгебраическая скорость Кинематика точки в теоретической механике достигает экстремума, например максимума или минимума. Для изображенного на рис. 18 изменения алгебраической скорости в зависимости от времени касательное ускорение равно нулю в моменты времени Кинематика точки в теоретической механике и Кинематика точки в теоретической механике. При колебаниях маятника (рис. 19) эти моменты соответствуют его прохождению через точку Кинематика точки в теоретической механике. При движении маятника в одну сторону алгебраическая скорость в точке Кинематика точки в теоретической механике достигает максимума, при движении в обратном направлении — минимума.

Кинематика точки в теоретической механике

Рис. 18

Кинематика точки в теоретической механике

Рис. 19

Кинематика точки в теоретической механике

Рис. 20

Случаи обращения в нуль нормального ускорения следуют из условия

Кинематика точки в теоретической механике

Это условие выполняется при Кинематика точки в теоретической механике, т. е. при прямолинейном движении точки. При движении точки по криволинейной траектории Кинематика точки в теоретической механике в точках перегиба, в которых происходит изменение выпуклости траектории на вогнутость, и наоборот (рис. 20). Нормальное ускорение обращается также в нуль в моменты времени, в которые Кинематика точки в теоретической механике, т. е. в моменты изменения направления движения точки по траектории. Для маятника такими моментами являются моменты отклонения маятника на наибольший угол как в одну сторону, так и в другую. Эти моменты соответствуют мгновенным остановкам маятника.

Случаи обращения в нуль касательного и нормального ускорений, а также общие формулы для них показывают, что касательное ускорение характеризует изменение вектора скорости по величине, а нормальное— по направлению.

Кинематика точки в теоретической механике

Рис. 21

Пример 3.

Точка Кинематика точки в теоретической механике движется по дуге окружности радиусом Кинематика точки в теоретической механике по закону Кинематика точки в теоретической механике, где Кинематика точки в теоретической механике. Начало отсчета расстояний и времени, а также направление положительных расстояний указаны на рис. 21. Определить скорость и ускорение точки в момент времени Кинематика точки в теоретической механике, а также их значения в точке Кинематика точки в теоретической механике и в точке траектории Кинематика точки в теоретической механике, в которой скорость обращается в нуль.

Решение. Скорость и проекции ускорения на естественные оси определяем по формулам  (16) и (19). Имеем:

Кинематика точки в теоретической механике

Скорость обращается в нуль, если Кинематика точки в теоретической механике, т. е. в момент времени Кинематика точки в теоретической механике и другие моменты времени, которые в этом примере не рассматриваются. При , т. е. в момент изменения направления движения точки, имеем

Кинематика точки в теоретической механике

Подставляя в формулы для Кинематика точки в теоретической механике и Кинематика точки в теоретической механике значение Кинематика точки в теоретической механике, получаем

Кинематика точки в теоретической механике

Касательное ускорение в этот момент времени обращается в нуль, так как алгебраическая скорость достигает своего максимума.

Частные случаи движения точки

Равномерное движение

При равномерном движении точки по траектории любой формы Кинематика точки в теоретической механике; следовательно, постоянна и алгебраическая скорость Кинематика точки в теоретической механике, которая может отличаться от Кинематика точки в теоретической механике только знаком. Так как

Кинематика точки в теоретической механике

то

Кинематика точки в теоретической механике

если принять при Кинематика точки в теоретической механике.

Равнопеременное движение

Равнопеременным движением называют такое движение по траектории любой формы, при котором касательное ускорение Кинематика точки в теоретической механике. Движение является равноускоренным, если алгебраическая скорость Кинематика точки в теоретической механике и касательное ускорение Кинематика точки в теоретической механике имеют одинаковые знаки. Если Кинематика точки в теоретической механике и Кинематика точки в теоретической механике имеют разные знаки, то движение является равнозамедленным.

Получим формулы для алгебраической скорости и расстояния при равнопеременном движении. Имеем:

Кинематика точки в теоретической механике

следовательно,

Кинематика точки в теоретической механике

если принять при Кинематика точки в теоретической механике.

Так как Кинематика точки в теоретической механике, то с учетом (21)

Кинематика точки в теоретической механике

если при Кинематика точки в теоретической механике. Выполняя интегрирование, получим

Кинематика точки в теоретической механике

Из (21) и (22) можно определить любые две неизвестные величины, если известны остальные три величины, входящие в эти формулы.

Скорость и ускорение точки в полярных координатах

Рассмотрим движение точки по плоскости. В этом случае движение можно задать в полярных координатах. Для этого примем какую-либо точку Кинематика точки в теоретической механике плоскости за полюс и проведем из нее полярную ось, например ось Кинематика точки в теоретической механике (рис. 22). Положение движущейся точки Кинематика точки в теоретической механике на плоскости известно, если заданы радиус-вектор Кинематика точки в теоретической механике и полярный угол Кинематика точки в теоретической механике как функции времени, т. е.

Кинематика точки в теоретической механике

Полярный угол считается положительным, если он откладывается от полярной оси до радиуса-вектора против часовой стрелки. Радиус-вектор как расстояние от точки Кинематика точки в теоретической механике до точки Кинематика точки в теоретической механике принимает только положительные значения.

Уравнения (23) называются уравнениями движения точки в полярных координатах. Они являются также уравнениями траектории точки в параметрической форме. Если из (23) исключить параметр — время Кинематика точки в теоретической механике, то получим уравнение траектории в полярных координатах:

Кинематика точки в теоретической механике

Введем единичный вектор Кинематика точки в теоретической механике, направленный по радиусу-вектору от полюса Кинематика точки в теоретической механике к точке Кинематика точки в теоретической механике. Тогда

Кинематика точки в теоретической механике

Для скорости Кинематика точки в теоретической механике получаем

Кинематика точки в теоретической механике

Согласно (15), для производной по времени от единичного вектора имеем

Кинематика точки в теоретической механике

где вместо единичного вектора Кинематика точки в теоретической механике введен единичный вектор Кинематика точки в теоретической механике, направление которого получается поворотом вектора Кинематика точки в теоретической механике на Кинематика точки в теоретической механике в положительном направлении угла Кинематика точки в теоретической механике, т. е. против часовой стрелки (рис. 22). После этого для скорости точки получаем

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 22    

Это разложение скорости точки на радиальную Кинематика точки в теоретической механике и трансверсальную (поперечную) Кинематика точки в теоретической механике составляющие, т. е.

Кинематика точки в теоретической механике

где

Кинематика точки в теоретической механике

Для проекций скорости на оси, положительные направления которых совпадают с направлениями единичных векторов Кинематика точки в теоретической механике и Кинематика точки в теоретической механике из (24), получаем

Кинематика точки в теоретической механике

Они соответственно называются радиальной и трансверcальной скоростями. В зависимости от знаков производных Кинематика точки в теоретической механике и Кинематика точки в теоретической механике радиальная и трансверсальная скорости могут быть как положительными, так и отрицательными.

Используя (24), определяем ускорение точки в полярных координатах. Имеем

Кинематика точки в теоретической механике

Выполняя дифференцирование, получим

Кинематика точки в теоретической механике

Для производной по времени от единичного вектора Кинематика точки в теоретической механике имеем

dp°ldt =

так как вектор Кинематика точки в теоретической механике поворачивается с той же угловой скоростью Кинематика точки в теоретической механике, что и вектор Кинематика точки в теоретической механике, а единичным вектором, по которому направлен вектор Кинематика точки в теоретической механике, является вектор Кинематика точки в теоретической механике.

После подстановки в выражение для ускорения производных от единичных векторов и объединения слагаемых имеем

Кинематика точки в теоретической механике

Получили разложение ускорения точки на радиальную Кинематика точки в теоретической механике и трансверсальную Кинематика точки в теоретической механике составляющие, т. е.

Кинематика точки в теоретической механике

Для проекций ускорения на оси Кинематика точки в теоретической механике и Кинематика точки в теоретической механике получаем

Кинематика точки в теоретической механике

Ускорение Кинематика точки в теоретической механике называется радиальным, а Кинематика точки в теоретической механикетрансверсальным. Трансверсальное ускорение можно выразить также в форме

Кинематика точки в теоретической механике

Это выражение для трансверсального ускорения широко используется при рассмотрении движения планет и искусственных спутников Земли.

Кинематика точки в теоретической механике

Рис. 23

Радиальная и трансверсальная составляющие ускорения взаимно перпендикулярны, поэтому

Кинематика точки в теоретической механике

Отметим, что для неподвижных осей координат Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике справедливы формулы

Кинематика точки в теоретической механике

Для подвижных осей Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, как следует из (26) и (28), Кинематика точки в теоретической механике и Кинематика точки в теоретической механике не равны производным по времени от Кинематика точки в теоретической механике и Кинематика точки в теоретической механике.

Частные случаи

 1. Если Кинематика точки в теоретической механике, то имеем прямолинейное движение по прямой Кинематика точки в теоретической механике. В этом случае Кинематика точки в теоретической механике и из (26) и (28) получаем:

Кинематика точки в теоретической механике

Эти величины совпадают с ранее полученными выражениями для них при изучении движения точки в декартовых координатах. Только расстояние Кинематика точки в теоретической механике следует заменить на координату Кинематика точки в теоретической механике.

2. При Кинематика точки в теоретической механике (рис. 23) получаем движение точки по окружности. В этом случае Кинематика точки в теоретической механике. Из (26) и (28) имеем:

Кинематика точки в теоретической механике

В этих формулах Кинематика точки в теоретической механике является угловой скоростью вращения радиуса-вектора, а Кинематика точки в теоретической механике — его угловым ускорением.

Пример 4.

Движение точки задано в полярных координатах уравнениями

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике и Кинематика точки в теоретической механике—постоянные величины. Определить уравнение траектории, скорость и ускорение точки в полярных координатах для момента времени Кинематика точки в теоретической механике и момента времени Кинематика точки в теоретической механике.

Решение. Исключая из уравнений движения параметр Кинематика точки в теоретической механике, получим следующее уравнение траектории в полярных координатах:

Кинематика точки в теоретической механике

Это уравнение кардиоиды (рис. 24).

Проекции скорости и ускорения на полярные оси определяем по формулам (26) и (28). Имеем:

Кинематика точки в теоретической механике

Для момента времени Кинематика точки в теоретической механике из этих формул получаем:

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Векторы скорости и ускорения для моментов времени Кинематика точки в теоретической механике и Кинематика точки в теоретической механике изображаем на рисунке.

Пример 5.

Движение точки задано в прямоугольной системе координат уравнениями

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике и Кинематика точки в теоретической механике—в метрах, Кинематика точки в теоретической механике — в секундах.

Определить уравнение траектории в координатной форме, а также скорость, ускорение, касательное и нормальное ускорения, радиальную и трансверсальную составляющие скорости и радиус кривизны траектории в момент времени Кинематика точки в теоретической механике. Изобразить на рисунке траекторию, скорости и ускорения в указанный момент времени.

Решение. Уравнения движения представляют собой уравнение траектории в параметрической форме. Для определения уравнения траектории в координатной форме следует из уравнений движения исключить время Кинематика точки в теоретической механике. Имеем:

Кинематика точки в теоретической механике

следовательно,

Кинематика точки в теоретической механике

Это уравнение параболы. He все точки параболы являются точками траектории. Так как при любых значениях Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, то из уравнений движения получаем дополнительные ограничения для координат точек траектории Кинематика точки в теоретической механике.

Таким образом, точки траектории удовлетворяют условиям

Кинематика точки в теоретической механике

Часть точек параболы, не являющихся точками траектории, дополнительно появилась при исключении из уравнений движения параметра Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 24

Кинематика точки в теоретической механике

Рис. 25

На рис. 25 приведена траектория точки. Траекторией является только часть параболы Кинематика точки в теоретической механике.

Определяем проекции скорости на оси и скорость в любой момент времени:

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Проекции ускорения в любой момент времени определяем по формулам Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Для модуля касательного ускорения при Кинематика точки в теоретической механике имеем

Кинематика точки в теоретической механике

Нормальное ускорение при Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Для вычисления радиальной скорости предварительно определяем радиус-вектор:

Кинематика точки в теоретической механике

Тогда при Кинематика точки в теоретической механике получаем

Кинематика точки в теоретической механике

Трансверсальную скорость при Кинематика точки в теоретической механике определяем по формуле

Кинематика точки в теоретической механике

Координаты движущейся точки при Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

По координатам отмечаем положение движущейся точки на траектории и, выбрав масштабы, изображаем векторы скорости и ускорения по их проекциям на оси. Для радиальной составляющей скорости Кинематика точки в теоретической механике учитываем ее направление, противоположное единичному вектору  Кинематика точки в теоретической механике, так как Кинематика точки в теоретической механике получилось со знаком минус.

Для трансверсальной составляющей скорости определено только числовое значение. Из рис. 25 следует, что направление вектора Кинематика точки в теоретической механике противоположно направлению единичного вектора Кинематика точки в теоретической механике(направление Кинематика точки в теоретической механике получается поворотом на Кинематика точки в теоретической механике вектора Кинематика точки в теоретической механике против часовой стрелки). Следовательно, в рассматриваемом случае Кинематика точки в теоретической механике надо взять со знаком минус, т.е. Кинематика точки в теоретической механике.

Для проверки правильности определения Кинематика точки в теоретической механике можно использовать формулы

Кинематика точки в теоретической механике

Нормальное ускорение Кинематика точки в теоретической механике всегда направлено внутрь вогнутости траектории. Направление касательного ускорения Кинематика точки в теоретической механике, определяем по Кинематика точки в теоретической механике и Кинематика точки в теоретической механике; оно оказалось направленным по вектору скорости. Следовательно, точка в рассматриваемый момент времени движется ускоренно.

Определим радиус кривизны траектории в момент времени Кинематика точки в теоретической механике. Все необходимые величины для этого уже имеются. Получим

Кинематика точки в теоретической механике

Скорость и ускорение точки в цилиндрических координатах

При движении точки в пространстве иногда используются цилиндрические оси координат. Они получаются добавлением к полярным координатам на плоскости координаты Кинематика точки в теоретической механике, отсчитываемой вдоль неподвижном оси Кинематика точки в теоретической механике, перпендикулярной плоскости, в которой расположены полярные оси координат (рис. 26).

Положение точки Кинематика точки в теоретической механике определяют заданием трех ее цилиндрических координат как функций времени:

Кинематика точки в теоретической механике

Разложение векторов скорости и ускорения на составляющие, параллельные осям цилиндрической системы координат Кинематика точки в теоретической механике, Кинематика точки в теоретической механике, Кинематика точки в теоретической механике, выразится в следующей форме:

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — единичные векторы, направленные по осям цилиндрической системы координат. Оси Кинематика точки в теоретической механике и Кинематика точки в теоретической механике расположены в одной плоскости с осями Кинематика точки в теоретической механике и Кинематика точки в теоретической механике.

Представим радиус-вектор Кинематика точки в теоретической механике точки Кинематика точки в теоретической механике как сумму двух векторов, т. е.

Кинематика точки в теоретической механике

Скорость точки получим дифференцированием радиуса-вектора Кинематика точки в теоретической механике по времени:

Кинематика точки в теоретической механике

Первое слагаемое в этом выражении вычислялось при выводе формулы (24) для скорости точки в полярных координатах. Было получено

Кинематика точки в теоретической механике

Во втором слагаемом постоянный по модулю и направлению единичный вектор Кинематика точки в теоретической механике можно вынести за знак производной. Для скорости получается следующее разложение на составляющие, параллельные осям цилиндрической системы координат:

Кинематика точки в теоретической механике

Сравнивая (32) с (30), получаем формулы для проекций скорости на цилиндрические оси координат:

Кинематика точки в теоретической механике

Так как составляющие скорости Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, параллельные осям цилиндрической системы координат, взаимно перпендикулярны, то для модуля скорости имеем

Кинематика точки в теоретической механике

Ускорение точки получим дифференцированием по времени вектора скорости:

Кинематика точки в теоретической механике

Первое слагаемое в этом выражении вычислялось при выводе ускорения в полярных координатах:

Кинематика точки в теоретической механике

Во втором слагаемом при дифференцировании выносим вектор Кинематика точки в теоретической механике за знак производной. Объединяя результаты дифференцирования, получим следующее разложение ускорения на составляющие, параллельные осям цилиндрической системы координат:

Кинематика точки в теоретической механике

Сравнивая его с (31), получаем формулы для проекций ускорения на цилиндрические оси координат

Кинематика точки в теоретической механике

Составляющие ускорения Кинематика точки в теоретической механике взаимно перпендикулярны, поэтому для модуля ускорения имеем

Кинематика точки в теоретической механике

Скорость и ускорение точки в криволинейных координатах

Положение точки в пространстве в декартовой системе координат определяется тремя координатами: Кинематика точки в теоретической механике. Можно выбрать другие три параметра Кинематика точки в теоретической механике и назвать их криволинейными или обобщенными координатами точки. Декартовы координаты будут зависеть от криволинейных:

Кинематика точки в теоретической механике

Движение точки в криволинейных координатах задается уравнениями

Кинематика точки в теоретической механике

Радиус-вектор Кинематика точки в теоретической механике движущейся точки, начало которого находится в неподвижной точке выбранной системы отсчета для рассматриваемого движения, является функцией как декартовых, так и криволинейных координат, т. е.

Кинематика точки в теоретической механике

Выберем точку Кинематика точки в теоретической механике, в которой криволинейные координаты равны нулю, и рассмотрим зависимость Кинематика точки в теоретической механике. Получим уравнение в векторной форме координатной линии для Кинематика точки в теоретической механике, проходящей через точку Кинематика точки в теоретической механике. Аналогично  получаются уравнения координатных линий Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, проходящих через точку Кинематика точки в теоретической механике для координат Кинематика точки в теоретической механике и Кинематика точки в теоретической механике.

Через каждую точку пространства можно провести три координатные линии, пересекающиеся в этой точке. Вдоль каждой из координатных линий изменяется только одна криволинейная координата, а две другие сохраняют постоянные значения, соответствующие рассматриваемой точке.

Рассмотрим частные производные Кинематика точки в теоретической механике. Они как производные от вектора по скалярному аргументу направлены по касательным к координатным линиям, являющимся годографами радиуса-вектора. Введем единичные векторы, направленные по векторам Кинематика точки в теоретической механике. Эти три единичных вектора Кинематика точки в теоретической механике называются базисными векторами. Базисные векторы, как и Кинематика точки в теоретической механике, направлены в каждой точке по касательным к координатным линиям в сторону возрастания криволинейных координат. Направления возрастания и начало отсчета криволинейных координат выбираются при задании движения.

В общем случае базисные векторы могут быть неортогональными. Используя базисные векторы, получаем

Кинематика точки в теоретической механике

или

Кинематика точки в теоретической механике

Скалярные величины Кинематика точки в теоретической механике называются коэффициентами Ламэ.

Для вычисления Кинематика точки в теоретической механике учтем, что радиус-вектор через декартовы координаты можно выразить в форме

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — единичные векторы, направленные по осям декартовой системы координат. Из (37) имеем

Кинематика точки в теоретической механике

и, следовательно

Кинематика точки в теоретической механике

Скорость точки в криволинейных координатах

При движении точки ее радиус-вектор через обобщенные координаты зависит от времени, т. е.

Кинематика точки в теоретической механике

По определению скорости и правилу дифференцирования сложных функций имеем

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике называется обобщенной скоростью точки.

Используя (36), из (39) получаем

Кинематика точки в теоретической механике

Получено разложение скорости по осям, направление которых совпадает с направлением базисных векторов.

Для величин составляющих скорости по базисным векторам из (40) имеем

Кинематика точки в теоретической механике

В случае ортогональности базисных векторов по формуле (40′) вычисляются проекции вектора скорости на оси, направленные по базисным векторам. В этом случае для квадрата скорости получаем

Кинематика точки в теоретической механике

Ускорение в ортогональных криволинейных координатах

Криволинейные координаты считаются ортогональными, если ортогональны их базисные векторы. В приложениях обычно встречается этот случай. Для ортогональных базисных векторов проекции ускорения точки на их направления вычисляем по формулам

Кинематика точки в теоретической механике

Выражая базисные векторы по (36), из (41) получим

Кинематика точки в теоретической механике

Для дальнейших преобразований (42) следует воспользоваться тождествами

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Тождество (43) представляет собой известное правило дифференцирования скалярного произведения двух векторов. Докажем справедливость тождеств Лагранжа (44) и (45). Тождество (44) получим из (39) дифференцированием Кинематика точки в теоретической механике, например, по Кинематика точки в теоретической механике. Учитывая,    что производные  Кинематика точки в теоретической механике  не могут зависеть от Кинематика точки в теоретической механике имеем

Кинематика точки в теоретической механике

Аналогично, 

Кинематика точки в теоретической механике

т.е.

Кинематика точки в теоретической механике

Справедливость тождества (44) установлена.

Для доказательства тождества (45) продифференцируем Кинематика точки в теоретической механике из (39) по Кинематика точки в теоретической механике. Получим

Кинематика точки в теоретической механике

Учитывая, что Кинематика точки в теоретической механике не может зависеть от обобщенных скоростей, и дифференцируя ее по времени как сложную функцию времени, имеем

Кинематика точки в теоретической механике

Правые части (46) и (47) совпадают, так как они отличаются только порядком частного дифференцирования, от которого частные производные не зависят. Следовательно, тождество (45) доказано. Используя тождества, преобразуем выражение в скобках из (42). Получим

Кинематика точки в теоретической механике

Учитывая, что Кинематика точки в теоретической механике, и вводя функцию Кинематика точки в теоретической механике, из (42) с учетом (48) имеем

Кинематика точки в теоретической механике

По формулам (49) можно вычислить проекции ускорения точки на оси, направленные по базисным ортогональным векторам.

Скорость и ускорение в сферических координатах

В качестве примера использования полученных формул вычислим скорость и ускорение точки в сферических координатах. Сферическими координатами точки Кинематика точки в теоретической механике являются величины Кинематика точки в теоретической механике (рис. 27). Координатной линией для Кинематика точки в теоретической механике является прямая Кинематика точки в теоретической механике с базисным вектором Кинематика точки в теоретической механике. Координатной линией для Кинематика точки в теоретической механике служит параллель сферы с базисным вектором Кинематика точки в теоретической механике и координатной линией Кинематика точки в теоретической механике — меридиан сферы с базисным вектором Кинематика точки в теоретической механике.

Базисные векторы оказались ортогональными. Декартовы координаты Кинематика точки в теоретической механике точки Кинематика точки в теоретической механике через сферические выражаются следующими зависимостями:

Кинематика точки в теоретической механике

По формулам (38) вычисляем коэффициенты Ламэ. Имеем:

Кинематика точки в теоретической механике

Проекции скорости на оси, направленные по базисным векторам, определяем согласно (40′). Получаем

Кинематика точки в теоретической механике

После этого

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 27

Для квадрата скорости и функции Кинематика точки в теоретической механике имеем

Кинематика точки в теоретической механике

Проекции ускорения на оси, направленные по базисным векторам, вычисляем по формулам (49). Имеем

Кинематика точки в теоретической механике

Для вектора ускорения получаем

Кинематика точки в теоретической механике

Модуль ускорения будет иметь следующее выражение:

Кинематика точки в теоретической механике

Аналогично можно вычислить ранее полученные скорость и ускорение точки в цилиндрических координатах.

Справочный материал по кинематике точки

Кинематика изучает механическое движение тел без учета факторов, обусловливающих это движение.

Основными понятиями в кинематике являются движение, ‘пространство и время.

Движение, как было отмечено раньше, обнимает собой все происходящие во вселенной изменения.

Пространство и время представляют собой формы существования материи, без которых немыслимы ни существование, ни движение материи.

Отделить движение от материи нельзя, так же как нельзя себе представить движение материи, происходящее вне времени и пространства.

В кинематике, так же как и вообще в теоретической механике, мы будем рассматривать простейшую форму движения материи — механическую, т. е. перемещение тел в пространстве и во времени. Движение тела будет кинематически определено, если в каждый данный момент времени будет известно положение тела относительно выбранной системы отсчета. Положение тела при его движении определяется по отношению к какой-либо системе координат, связанной с другим телом, например с Землей.

Однако при изучении движения некоторых механических систем эта система отсчета может оказаться недостаточно точной. Так, при опыте с маятником Фуко, где заметно сказывается вращение Земли, за «неподвижную» систему следует принять Солнце. В других вопросах и этого оказывается недостаточно. Тогда неподвижную систему придется перенести на «неподвижную» звездную систему.

В том случае, когда положение рассматриваемого тела остается с течением времени неизменным по отношению к выбранной системе отсчета, про такое тело говорят, что оно находится в покое по отношению к данной системе отсчета.

По отношению к различным системам отсчета тело может совершать различные движения или находиться в покое. Так, например, если тело находится в относительном покое по отношению к Земле, оно уже не будет находиться в покое по отношению к Солнцу, так как это тело будет двигаться вместе с Землей вокруг Солнца. В этом смысле покой и движение тела относительны и зависят от выбранной системы отсчета.

В последующем изложении, если об этом не будет сделано специальной оговорки, мы будем рассматривать движение материальной точки или абсолютно твердого тела, происходящее по отношению к координатным осям, связанным с Землей, которую условно будем считать неподвижной.

При вычислениях все линейные величины мы обычно будем выражать в метрах или сантиметрах, а время в секундах.

При измерении времени следует различать понятия: начальный момент времени, момент времени и промежуток времени.

Начальным моментом времени называется произвольный момент.времени, принятый условно за начало отсчета времени Кинематика точки в теоретической механике.

Под моментом времени понимается число секунд, прошедшее от начального момента времени, соответствующего началу движения тела (или когда мы начали наблюдать за этим движением), до данного момента.

Промежуток времени определяет число секунд, отделяющих два каких-либо последовательных Момента времени Кинематика точки в теоретической механике

Способы задания движения точки

Первый способ задания движения точки

Изучение кинематики начнем с рассмотрения движения точки.

Пусть точка М (рис. 139) совершает движение, описывая в пространстве кривую АВ. Эта непрерывная кривая, которую описывает точка М при своем движении, называется ее траекторией. Если траектория прямая, то движение точки называется прямолинейным, если же кривая, то — криволилейным.

Очевидно, что траектория точки есть годограф радиуса-вектора Кинематика точки в теоретической механике, определяющего положение точки М на ее траектории. При движении точки М радиус-вектор Кинематика точки в теоретической механике, определяющий ее положение, изменяется по величине и направлению с течением времени. Функциональная зависимость радиуса-вектора Кинематика точки в теоретической механике от времени Кинематика точки в теоретической механике может быть выражена равенством:

Кинематика точки в теоретической механике

Если зависимость (66) задана, то тем самым можно определить и положение точки М в пространстве в любой момент времени. Это есть первый способ задания движения точки.

Кинематика точки в теоретической механике

Рис. 139.

Второй способ задания движения точки

Однако движение точки может быть задано иначе. В самом деле, положение движущейся точки в пространстве в данный момент определяется тремя координатами Кинематика точки в теоретической механике. Эти координаты при движении являются функциями времени (рис. 139):

Кинематика точки в теоретической механике

Если известна зависимость координат от времени, то .можно в любой момент указать положение, движущейся точки в пространстве.

Поэтому второй способ задания движения точки заключается в том,что нам даны уравнения движения (67). Если точка движется в плоскости, то ее положение будет определяться двумя уравнениями:

Кинематика точки в теоретической механике

Исключая, например, из уравнений (67а) время t, получим уравнение траектории точки, движущейся в плоскости:

Кинематика точки в теоретической механике

Уравнения (67) и (67а) могут рассматриваться так же, как параметрические уравнения траектории, причем роль параметра играет время t.

Координаты Кинематика точки в теоретической механике точки М можно рассматривать как проекции радиуса вектора Кинематика точки в теоретической механике на координатные оси. Поэтому, обозначив единичные векторы координатных осей через Кинематика точки в теоретической механике на основании равенства (4) будем иметь:

Кинематика точки в теоретической механике

Если движение точки происходит в плоскости, например, хОу (рис. 140), то уравнение (66) может быть сведено к заданию модуля Кинематика точки в теоретической механике и полярного угла Кинематика точки в теоретической механике, как функций времени:

Кинематика точки в теоретической механике

Уравнения (69) называются уравнениями движения точки в полярных координатах.

Между уравнениями движения (67а) и (69) имеется такая же зависимость, как между прямоугольными и полярными координатами. Из треугольника ОАВ (рис. 140) имеем: Кинематика точки в теоретической механикеи обратно: Кинематика точки в теоретической механике и 

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 140.

Третий способ задания движения точки

Наконец, движение точки М может быть задано по третьему способу. Пусть точка М движется по заданной траектории (рис. 139).

Для определения положения точки М в данный момент времени выберем на ее траекторий неподвижную точку О, которую назовем началом отсчета. Тогда положение точки в данный момент будет определяться расстоянием ее от начала отсчета. Условимся пройденные расстояния считать положительными, если точка находится по одну сторону от начала отсчета, и отрицательными — если по другую. Следует заметить, что при Кинематика точки в теоретической механике точка М не обязательно будет находиться в начале отсчета О, а может занимать некоторое положение Кинематика точки в теоретической механике определяемое расстоянием Кинематика точки в теоретической механике от начала отсчета. Это расстояние, соответствующее начальному моменту, называется начальным расстоянием. Так как пройденный путь Кинематика точки в теоретической механике изменяется с течением времени, то, следовательно, Кинематика точки в теоретической механике является некоторой функцией от t:

Кинематика точки в теоретической механике

Уравнение (70) называется уравнением движения, или законом движения точки.

Заданием траектории и уравнения движения (70) вполне определяется положение движущейся точки в пространстве в любой момент времени. В этом заключается третий способ задания движения точки.    ‘

Задача №1

Для следующих случаев задания движения точки требуется:

a)    найти уравнение траектории и вычертить ее;

b)    указать начальное положение точки на ее траектории;

c)    найти закон расстояний, приняв за начало отсчета путей начальное положение точки;

d)    показать направление движения точки по ее траектории.

Кинематика точки в теоретической механике

Решение. Для вычерчивания траектории мы могли бы дать времени Кинематика точки в теоретической механике ряд значений, например, Кинематика точки в теоретической механике и т. д. (см. табл. 5), для которых получили бы ряд точек с известными координатами. Соединив полученные точки плавной кривой, получим траекторию движущейся точки. Однако в большинстве случаев важно получить уравнение траектории, которое выражает аналитически зависимость между х и у. Для этого, как мы знаем, следует из уравнений движения исключать время Кинематика точки в теоретической механике.

Таблица 5                                      Таблица 6

Кинематика точки в теоретической механике

Решая первое из уравнений движения относительно Кинематика точки в теоретической механике и подставляя найденное значение Кинематика точки в теоретической механике во второе уравнение, имеем:

Кинематика точки в теоретической механике

Полученное уравнение является уравнение параболы. Посторим ее (рис. 141) по точкам (талб. 6).

Кинематика точки в теоретической механике

Рис. 141.

Для нахождения начального положения точки на ее траектории подставим в заданные уравнения движения значение Кинематика точки в теоретической механике. Тогда получим: Кинематика точки в теоретической механике и Кинематика точки в теоретической механике; поэтому в начальный момент точка находится в начале координат.

Закон пройденных расстояний (70) найдется, если воспользоваться известной из дифференциальной геометрии зависимостью между дифференциалом дуги Кинематика точки в теоретической механике и дифференциалом координат Кинематика точки в теоретической механике и Кинематика точки в теоретической механике (рис. 141):

Кинематика точки в теоретической механике
 

но так как Кинематика точки в теоретической механике, то

Кинематика точки в теоретической механике

Отсюда находим:

Кинематика точки в теоретической механике

Так как по условию начало отсчета следует взять в начальном положении точки, то, полагая в последнем выражении Кинематика точки в теоретической механике, получим Кинематика точки в теоретической механике; тогда:

Кинематика точки в теоретической механике

Направление движения точки по траектории найдем, если в уравнения движения точки (67а) или (70) вместо t подставим ряд положительных возрастающих значений, например t = 0, t = 1, t = 2 (табл. 5). Мы видим, что при возрастании t возрастают также и координаты движущейся точки, а поэтому движение точки будет происходить в направлении, показанном стрелкой (рис. 141).

Кинематика точки в теоретической механике

Ответ: прямая линия Кинематика точки в теоретической механикеКинематика точки в теоретической механике

Кинематика точки в теоретической механике

Решение. Для исключения времени t возведем обе части равенства каждого из уравнений в квадрат и сложим; тогда имеем:

Кинематика точки в теоретической механике

Отсюда заключаем, что траектория точки — окружность радиусом 3 единицы и с центром в начале координат (рис. 142).

Кинематика точки в теоретической механике

Рис. 142.

При Кинематика точки в теоретической механике, а поэтому в начальный момент точка находится на оси Кинематика точки в теоретической механике в положении Кинематика точки в теоретической механике. Беря производную от координат по времени, получим:

Кинематика точки в теоретической механике

далее:    

Кинематика точки в теоретической механике

откуда Кинематика точки в теоретической механике

Из уравнений движения видно, что при возрастании t абсцисса х уменьшается, ордината увеличивается, а поэтому точка будет двигаться против часовой стрелки в направлении, указанном стрелкой.

Кинематика точки в теоретической механике

Указание: для нахождения уравнения движения берем производную по времени t от координат х и у, после чего получаем Кинематика точки в теоретической механике. Интегрируя полученное равенство, находим Кинематика точки в теоретической механике Постоянная интегрирования Кинематика точки в теоретической механике определяется из условия, что при Кинематика точки в теоретической механике

Ответ: прямая Кинематика точки в теоретической механике

Задача №2

С дирижабля, летящего на высоте 600 м, сбросили груз, движение которого в недрах и секундах выражается уравнениями: Кинематика точки в теоретической механике Найти уравнение траектории груза, дальность его полета в горизонтальном направлении и время падения.

Решение. Исключая из уравнений движения время t, найдем, что траекторией груза будет парабола: Кинематика точки в теоретической механике . Подставляя в уравнение траектории вместо у значение Кинематика точки в теоретической механике, получим дальность полета груза в горизонтальном направлении: Кинематика точки в теоретической механике. Время падения груза найдем, если, например, в первое из уравнений движения груза вместо х подставим Кинематика точки в теоретической механике и решим уравнение относительно t; имеем:

Кинематика точки в теоретической механике

Задача №3

Движение точки в сантиметрах и секундах выражается уравнением:

Кинематика точки в теоретической механике

Построить график расстояний.

Решение. Графиком расстояний называется кривая зависимости пройденного расстояния В нашем случае кривая расстояний представляет собой синусоиду. Построим ее по точкам (табл. 7).

Таблица 7

Кинематика точки в теоретической механике

Имея график расстояний (рис. 142а), можно для любого момента времени найти величину пути,  пройденного движущейся точкой от начала отсчета, а следовательно, и указать положение точки на ее траектории, которая должна быть дана. 

Кинематика точки в теоретической механике

Рис. 142а.

Скорость точки

Бели точка движется по траектории так, что в любые два равных промежутка времени она проходит равные пути, то такое движение точки называется равномерным.

Скоростью равномерного движения называется путь, пройденный точкой в единицу времени, например в секунду, минуту, час и т. п. Пусть в начальный момент точка находилась на расстоянии Кинематика точки в теоретической механике от начала отсчета, а в момент t — на расстоянии s; тогда, согласно определению, величина скорости этого движения будет постоянна и определится по формуле:

Кинематика точки в теоретической механике

откуда расстояние точки s от начала отсчета в любой момент времени t будет:

Кинематика точки в теоретической механике

Уравнение (71) называется уравнением равномерного движения.   

Найдем теперь скорость любого движения точки. В этом случае она определяется в зависимости от того, как задано движение точки.

Пусть движение точки задано по первому способу, т. е. по уравнению (66); допустим, что в момент t движущаяся точка находилась в положении М, определяемом радиусом-вектором Кинематика точки в теоретической механике (рис. 15).

За малый промежуток времени Кинематика точки в теоретической механике точка перейдет в положение Кинематика точки в теоретической механике, определяемое уже другим радиусом-вектором Кинематика точки в теоретической механике, при этом вектор перемещения Кинематика точки в теоретической механике точки М за время Кинематика точки в теоретической механике равен Кинематика точки в теоретической механике

Если бы точка М двигалась не по дуге кривой Кинематика точки в теоретической механике а по хорде Кинематика точки в теоретической механике то, предположив, что эту хорду точка проходит движением равномерным, найдем среднюю скорость ее, как отношение вектора перемещения Кинематика точки в теоретической механике к сбответствующему промежутку времени Кинематика точки в теоретической механике, т. е. Кинематика точки в теоретической механике  Направление же вектора средней скорости совпадает с направлением вектора перемещения Кинематика точки в теоретической механике.

Истинную скорость движущейся точки в рассматриваемом положении мы должны принять, как векторную величину, равную пределу отношения вектора перемещения Кинематика точки в теоретической механике к соответствующему промежутку времени Кинематика точки в теоретической механике стремящемуся к нулю:

Кинематика точки в теоретической механике

Что касается направления истинной скорости, то она, следуя направлению хорды, будет в пределе направлена по касательной к траектории в данной точке.

Следовательно, вектор скорости равен векторной производной радиуса-вектора по времени и направлен по касательной к траектории в сторону движения точки.

Для нахождения скорости точки, если задано ее движение по второму способу, т. е. по уравнениям (67), выразим сначала радиус-вектор Кинематика точки в теоретической механике точки через его компоненты по формуле (68):

Кинематика точки в теоретической механике

Тогда на основании уравнения (72) имеем:

Кинематика точки в теоретической механике

С другой стороны, обозначая проекции скорости на координатные оси через Кинематика точки в теоретической механике, напишем:

Кинематика точки в теоретической механике

Сравнивая коэффициенты при одинаковых единичных векторах, найдем проекции скорости на координатные оси:

Кинематика точки в теоретической механике

В дальнейшем первые производные по времени будем обозначать Кинематика точки в теоретической механике, а вторые производные — Кинематика точки в теоретической механике

Итак, проекция скорости на неподвижную ось равна первой производной от соответствующей координаты по времени. Модуль скорости находим по выражению:    

Кинематика точки в теоретической механике

Направление же вектора скорости к координатным осям определится через косинусы углов, которые составляет вектор скорости с осями координат.

Пусть теперь движение точки задано траекторией и законом движения, выраженным формулой (70).

Допустим, что за промежуток времени Кинематика точки в теоретической механике точка перешла из положения М в положение Кинематика точки в теоретической механике (рис. 143), пройдя путь, равный длине дуги Кинематика точки в теоретической механике

Заменим движение точки М по дуге кривой Кинематика точки в теоретической механике движением по хорде Кинематика точки в теоретической механике ; тогда, рассматривая это движение, как равномерное, найдем, что вектор средней скорости точки за промежуток времени Кинематика точки в теоретической механике равен Кинематика точки в теоретической механике

Направление же средней скорости воображаемого движения будет совпадать с направлением вектора перемещения Кинематика точки в теоретической механике направленного по хорде. Заменив криволинейную траекторию точки ломаной линией Кинематика точки в теоретической механике мы тем самым криволинейное движение заменяем рядом прямолинейных и равномерных движений, причем переход от одного прямолинейного движения к другому происходит скачками.

Кинематика точки в теоретической механике

Рис. 143.

Увеличивая число хорд и тем самым уменьшая их длины, мы будем точнее приближаться к действительному криволинейному движению, так как разности между дугами Кинематика точки в теоретической механике и хордами Кинематика точки в теоретической механике будут уменьшаться. Вместе с этим переход от одной хорды к другой будет постепенно сглаживаться. Когда число хорд будет стремиться к бесконечности, а длина каждой хорды — к нулю, средние скорости будут стремиться также к некоторому пределу, который представит собой истинную скорость в данной точке траектории:

Кинематика точки в теоретической механике

Что касается направления истинной скорости, то она, следуя направлению хорды, будет в пределе направлена по касательной к траектории в данной точке.

Умножив числитель и знаменатель последнего равенства на Кинематика точки в теоретической механике, получим:

Кинематика точки в теоретической механике

Но так как предел отношения длины хорды к длине дуги равен единице, а направление Кинематика точки в теоретической механике в пределе совпадает с касательной, тоКинематика точки в теоретической механике является единичным вектором Кинематика точки в теоретической механике касательной в точке М.

Отсюда находим:

Кинематика точки в теоретической механике

где 

Кинематика точки в теоретической механике                           

Задача №4

Движение точки в метрах и секундах выражается уравнениями: Кинематика точки в теоретической механике

Найти уравнение траектории, величину и направление скорости.

Решение. Уравнение траектории прямаяКинематика точки в теоретической механике По формулам (73) найдем проекции скорости на координатные оси:

Кинематика точки в теоретической механике

Величина скбрости найдется по формуле (74):

Кинематика точки в теоретической механике

Направление же скорости определяется косинусами углов, которые составляет вектор скорости с координатными осями:

Кинематика точки в теоретической механике

откуда Кинематика точки в теоретической механике

Задача №5

Движение снаряда в метрах и секундах выражается уравнениями: Кинематика точки в теоретической механике

Требуется найти: уравнение траектории; высоту Кинематика точки в теоретической механике и дальность Кинематика точки в теоретической механике полета; скорости Кинематика точки в теоретической механике в наивысшей точке и в момент, когда снаряд пересечет ось Ох (рис. 144).

Кинематика точки в теоретической механике

Рис. 144.

Решение. Траекторией снаряда является равнобочная парабола:

Кинематика точки в теоретической механике

Дальность полета снаряда определится, если принять в уравнении траектории Кинематика точки в теоретической механике Кинематика точки в теоретической механике откуда Кинематика точки в теоретической механике и Кинематика точки в теоретической механике; ясно, что Кинематика точки в теоретической механике 

Для нахождения высоты полета снаряда следует в уравнении траектории принять: Кинематика точки в теоретической механике тогда получим:

Кинематика точки в теоретической механике

Найдем теперь проекции скорости снаряда на координатные оси:

Кинематика точки в теоретической механике

В наивысшей точке вектор скорости горизонтален, а потому:

Кинематика точки в теоретической механике

Для определения скорости снаряда в момент, когда он пересекает ось Ох, вычислим время полета снаряда, взяв хотя бы первое из уравнений движения и приняв Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

откуда находим:

Кинематика точки в теоретической механике

Направление скорости определится косинусами углов:

Кинематика точки в теоретической механике

откуда Кинематика точки в теоретической механике

Задача №6

Определить траекторию точки, если проекции ее скорости на координатные оси в сантиметрах и секундах выражаются уравнениями: Кинематика точки в теоретической механике в момент Кинематика точки в теоретической механике ордината точки равнялась 2 см, а абсцисса — нулю.

Решение. Найдем сначала уравнения движения точки, для чего проинтегрируем заданные уравнения проекций скорости:

Кинематика точки в теоретической механике

Постоянные интегрирования Кинематика точки в теоретической механике и Кинематика точки в теоретической механике найдутся из начальных условий; при Кинематика точки в теоретической механике и Кинематика точки в теоретической механике; далее, при Кинематика точки в теоретической механике и Кинематика точки в теоретической механике

Подставляя вместо Кинематика точки в теоретической механике и Кинематика точки в теоретической механике их значения, найдем: Кинематика точки в теоретической механике иКинематика точки в теоретической механике

Исключая из полученных уравнений движения время t, найдем, что траекторией точки является окружность Кинематика точки в теоретической механике с центром С(0; 4).

Задача №7

Даны графики скоростей двух точек, движущихся по одной прямой от одного начального положения (рис. 145). По истечении какого времени точки встретятся?

Решение. Вообще графиком скорости называется кривая зависимости скорости от времени:

Кинематика точки в теоретической механике

Между пройденным расстоянием и величиной скорости точки имеется зависимость (75), из которой найдем элементарное перемещение точки Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 145.

Расстояние же s, пройденное точкой между моментами Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, найдется как сумма ее элементарных перемещений и выразится определенным интегралом:

Кинематика точки в теоретической механике

 Отсюда заключаем, что путь, пройденный точкой за время Кинематика точки в теоретической механике численно равен площади, заключенной между осью Ох, ординатами Кинематика точки в теоретической механике и кривой Кинематика точки в теоретической механике

В нашей задаче точки встретятся, когда расстояния, пройденные ими от начала движения, будут одинаковы, а для этого необходимо, чтобы соответствующие площади треугольников, взятых с графиков скоростей, были равны. Обозначая неизвестное время встречи точек через t, скорость первой точки в момент встречи через Кинематика точки в теоретической механике , а скорость второй — через Кинематика точки в теоретической механике , имеем:

Кинематика точки в теоретической механике

так как:

Кинематика точки в теоретической механике

окончательно получим Кинематика точки в теоретической механике

Ускорение точки

Остановимся на некоторых вопросах геометрии. Пусть имеется некоторая неплоская кривая (рис. 146). Возьмем на ней две весьма близко расположенные точки Кинематика точки в теоретической механике и проведем в них касательные Кинематика точки в теоретической механике к кривой. Обозначим единичные векторы касательных черезКинематика точки в теоретической механике, а дугу Кинематика точки в теоретической механике — через Кинематика точки в теоретической механике. Проведем через касательную Т плоскость, параллельную Кинематика точки в теоретической механике, для чего достаточно перенести Кинематика точки в теоретической механике, в точку М и тогда плоскость Н, проходящая через Кинематика точки в теоретической механике , будет искомой. При приближении точки Кинематика точки в теоретической механике к точке М плоскость Н приближается к некоторому предельному положению, которое называется соприкасающейся плоскостью в точке М. В случае плоской кривой сама кривая расположена в соприкасающейся плоскости. Плоскость, проведенная в точке М перпендикулярно к касательной Т, называется нормальной плоскостью. Все прямые, проходящие через точку М и лежащие в нормальной плоскости, называются нормалями, а линия пересечения плоскостей нормальной и соприкасающейся называется главной нормалью и обозначается буквой N.

Для окружности направление главной нормали совпадает с направлением ее радиуса. Прямая, перпендикулярная к касательной Т и к главной нормали N, называется бинормалью и обозначается буквой В. Таким образом, три взаимно-перпендикулярных направления N, В и Т могут быть приняты за координатные оси, скрепленные с некоторой точкой М, выбранной на кривой (рис. 147).

Кинематика точки в теоретической механике

Рис. 146                                                                       Рис. 147

Такие оси, перемещающиеся вместе с движущейся точкой М, называются естественными осями. Эти оси являются ребрами естественного триэдра, или естественного трехгранника, образованного тремя плоскостями, проходящими через каждые две естественные оси. На рисунке 147 соприкасающаяся плоскость проходит через оси Т и N, нормальная — через N и В и третья плоскость триэдра проходит через В и Т.

Единичные векторы естественных осей обозначены через Кинематика точки в теоретической механике, Кинематика точки в теоретической механике и Кинематика точки в теоретической механике.

Угол Кинематика точки в теоретической механике между касательными Кинематика точки в теоретической механике (рис. 146) называется углом смежности, а отношение Кинематика точки в теоретической механике называется средней кривизной кривой. Кривизной кривой К в данной точке называется предел отношения Кинематика точки в теоретической механике при Кинематика точки в теоретической механике, т. е.:

Кинематика точки в теоретической механике

Величина Кинематика точки в теоретической механике, обратная кривизне, называется радиусом кривизны и равна:

Кинематика точки в теоретической механике

Если от точки М (рис. 146) в сторону вогнутости кривой отложить в соприкасающейся плоскости отрезок, равный Кинематика точки в теоретической механике, то конец его С определит центр кривизны кривой в данной ее точке.

Для прямой Кинематика точки в теоретической механике, поэтому ее кривизна Кинематика точки в теоретической механике, а радиус кривизны равен бесконечности:

Кинематика точки в теоретической механике

Для окружности:

Кинематика точки в теоретической механике

На этом мы заканчиваем изучение вопросов геометрии и рассмотрим далее изменение вектора скорости движущейся точки. Пусть в моменты Кинематика точки в теоретической механикедвижущаяся точка будет находиться в положениях Кинематика точки в теоретической механике и будет иметь соответствующие скорости Кинематика точки в теоретической механике (рис. 148,а). Если векторы всех скоростей перенести в общее произвольное начало О (рис. 148,0), то геометрическим местом концов векторов всех скоростей, перенесенных в точку О, будет кривая, которая называется годографом скоростей.

Кинематика точки в теоретической механике

Рис. 148.                                                         Рис. 149.

Вообще говоря, с течением времени скорость будет изменяться и по величине и по направлению. Взяв изменение скорости Кинематика точки в теоретической механике за какой-либо промежуток времени Кинематика точки в теоретической механике, назовем средним ускорением отношение Кинематика точки в теоретической механике (рис. 149). На рисунке 149 изменение скорости Кинематика точки в теоретической механике представлено для наглядности в виде двух компонентов Кинематика точки в теоретической механике из которых первый Кинематика точки в теоретической механике характеризует изменение скорости только но направлению, а второй Кинематика точки в теоретической механике — только по величине. Предел же этого отношения при Кинематика точки в теоретической механике  называется истинным ускорением в данной точке траектории. Обозначив вектор ускорения точки через Кинематика точки в теоретической механике, получим:

Кинематика точки в теоретической механике

на основании равенства (72). Следовательно, вектор ускорения равен первой векторной производной вектора скорости по времени или второй векторной производной радиуса вектора по времени. Подставляя в последнее равенство вместо вектора Кинематика точки в теоретической механике его значение Кинематика точки в теоретической механике , определяемое равенством (75а), имеем:

Кинематика точки в теоретической механике

Ha основании равенства (22) находим:

Кинематика точки в теоретической механике

но так как согласно формулам (75), (77) и (78)

Кинематика точки в теоретической механике

то окончательно имеем:

Кинематика точки в теоретической механике

Таким образом, полное ускорение точки Кинематика точки в теоретической механике состоит из двух компонентов Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, из которых первый называется касательным или тангенциальным ускорением, направлен по касательной к траектории и характеризует изменение скорости вдоль ее направления, второй же называется нормальным ускорением, направлен по главной нормали к центру кривизны и характеризует изменение скорости перпендикулярно к ее направлению.

Обозначая соответственно касательное ускорение через Кинематика точки в теоретической механике, а нормальное — через Кинематика точки в теоретической механике, имеем (рис. 150):

Кинематика точки в теоретической механике 

Кинематика точки в теоретической механике

Рис. 150.

Модули касательного и нормального ускорений можно рассматривать так же, как проекции полного ускорения на касательную и главную нормаль; проекция же полного ускорения на бинормаль равна нулю, так как полное ускорение расположено в соприкасающейся плоскости. Итак, имеем:

Кинематика точки в теоретической механике

ПриКинематика точки в теоретической механике вектор Кинематика точки в теоретической механике имеет направление Кинематика точки в теоретической механике, при Кинематика точки в теоретической механике — направление, противоположное Кинематика точки в теоретической механике.

Если точка движется прямолинейно, то Кинематика точки в теоретической механике, так как Кинематика точки в теоретической механике, а если при этом и равномерно, то и Кинематика точки в теоретической механике, так как Кинематика точки в теоретической механике

Движение точки с постоянным касательным ускорением называется равнопеременным. Рассмотрим равнопеременное и прямолинейное движение точки. В этом случае Кинематика точки в теоретической механике , а потому Кинематика точки в теоретической механике Интегрируя полученное выражение два раза, имеем:

Кинематика точки в теоретической механике

откуда Кинематика точки в теоретической механике и, следовательно,

Кинематика точки в теоретической механике

Далее:

Кинематика точки в теоретической механике

при Кинематика точки в теоретической механике , а поэтому:

Кинематика точки в теоретической механике

Уравнения (82) и (83) называются уравнениями равнопеременного движения. Здесь Кинематика точки в теоретической механике — начальное расстояние, a Кинематика точки в теоретической механике — начальная скорость. Если Кинематика точки в теоретической механике, то движение называется равноускоренным, если Кинематика точки в теоретической механике равнозамедленным.

Уравнения (82) и (83) применимы также и для случая криволинейного движения точки, положив Кинематика точки в теоретической механике

Посмотрим теперь, как находится ускорение точки в том случае, когда движение ее задано по второму способу, т. е. по уравнениям (67). Так как ускорение точки Кинематика точки в теоретической механике а по уравнению (72) Кинематика точки в теоретической механике то, следовательно,

Кинематика точки в теоретической механике

Выражая вектор Кинематика точки в теоретической механике через компоненты, имеем:

Кинематика точки в теоретической механике

с другой стороны, обозначив проекции ускорения на координатные оси через Кинематика точки в теоретической механике , имеем:

Кинематика точки в теоретической механике

Сравнивая коэффициенты при одинаковых единичных векторах, получим:

Кинематика точки в теоретической механике
 

Следовательно, проекция ускорения на неподвижную ось равна второй производной от соответствующей координаты по времени. Модуль ускорения будет: 

Кинематика точки в теоретической механике

Направление же вектора ускорения к координатным осям определится через косинусы углов.

Задача №8

Найти нормальное и касательное ускорения точки, движение которой в метрах и секундах выражается уравнениями:

Кинематика точки в теоретической механике

Решение. Найдем сначала по формулам (73) и (84) проекции скорости и ускорения на координатные оси:

Кинематика точки в теоретической механике

Далее находим, что Кинематика точки в теоретической механике и Кинематика точки в теоретической механике

С другой стороны, по формуле (80): Кинематика точки в теоретической механике; но так как по равенству (81): Кинематика точки в теоретической механике, то Кинематика точки в теоретической механике

Нормальное ускорение Кинематика точки в теоретической механике можно было бы найти иначе. Исключая из уравнения движения время t, найдем, что уравнение траектории — окружность Кинематика точки в теоретической механике радиус которой  Кинематика точки в теоретической механикеПо формуле (81):

Кинематика точки в теоретической механике

  • Заказать решение задач по теоретической механике

Задача №9

Движение точки выражается в метрах и секундах уравнениями: Кинематика точки в теоретической механике

Найти скорость точки, ускорение, траекторию и радиус кривизны в наивысшей точке.

Указание: в наивысшей точке параболы (рис. 144) вектор скорости, направленный по касательной, горизонтален, поэтому Кинематика точки в теоретической механикеКинематика точки в теоретической механике и Кинематика точки в теоретической механике Зная Кинематика точки в теоретической механике, по формуле (81) находим Кинематика точки в теоретической механике

Траектория точки — парабола Кинематика точки в теоретической механике радиус кривизны в наивысшей точке Кинематика точки в теоретической механике

Ответ: Кинематика точки в теоретической механике

Задача. Точка движется по некоторой кривой так, что в момент / = 4 сек, вектор ее полного ускорения составляет угол 30° с направлением нормали к траектории. Определить радиус кривизны
 

Задача №10

Движение автомобиля по дороге, имеющей форму двух четвертей окружности радиуса Кинематика точки в теоретической механике и прямой вставки между ними, выражается в метрах и секундах уравнением Кинематика точки в теоретической механике. Построить графики пути, скорости, касательного и нормального ускорений автомобиля, приняв за начало отсчета пройденных путей точку О (рис. 151, а).

Решение. По формулам (75) и (81) находим выражение скорости, касательного и нормального ускорений автомобиля:

Кинематика точки в теоретической механике

Графики пути, скорости нормального и касательного ускорений легко строятся по точкам (рис. 151, б, в, г, д). Следует обратить внимание на то, что на прямолинейном участке пути Кинематика точки в теоретической механике, так как Кинематика точки в теоретической механике. Для того чтобы узнать граничные промежутки времени, когда Кинематика точки в теоретической механике, надо в заданное уравнение движения Кинематика точки в теоретической механике вместо Кинематика точки в теоретической механике подставить сначала длину первого закругления, равную 15,7 м, а затем длину первого закругления, сложенную с длиной прямой вставки, равную 25,7 м.

Кинематика точки в теоретической механике

Рис. 151.

Отсюда получаем два граничных момента времени: Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, соответствующих равенству нулю нормального ускорения.

Задача №11

Для точки, движущейся по прямой, диаграмма расстояний представляет собой четверть эллипса (рис. 152). Выразить расстояние, скорость и ускорение движущейся точки, как функции времени. Построить диаграммы (графики) скоростей и ускорений.

Кинематика точки в теоретической механике

Рис. 152.

Решение. Выразим сначала аналитически зависимости: Кинематика точки в теоретической механике Кинематика точки в теоретической механике и Кинематика точки в теоретической механике

Зависимость между расстоянием s и временем t по заданному графику пути может быть выражена в форме уравнения эллипса (рис. 152):

Кинематика точки в теоретической механике

откуда: 

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике а при Кинематика точки в теоретической механике т.е. составленное уравнение движения иточки удовлетворяет заданному графику пути.

Выразим теперь Кинематика точки в теоретической механике, как функцию времени. По формуле (75) находим:

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике а при Кинематика точки в теоретической механике

Величина ускорения найдется по первой из формул (81):

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике а при Кинематика точки в теоретической механике

На рисунке 152 изображены графики: скорости Кинематика точки в теоретической механике и ускорения Кинематика точки в теоретической механике

Последние два графика можно построить по точкам, зная Кинематика точки в теоретической механике и Кинематика точки в теоретической механике, как функции времени, или же получить графически, путем графического дифференцирования графика пути Кинематика точки в теоретической механике Следует отметить, что графиком ускорений вообще называется кривая:

Кинематика точки в теоретической механике

Задача №12

Найти величину и направление ускорения и радиус кривизны траектории точки М колеса радиуса R = 1 м, катящегося без скольжения по горизонтальной оси Ох (рис. 153). Известно, что скорость центра колеса Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 153.

Решение. Если в начальный момент точка М колеса находилась в начале координат О, то в момент Кинематика точки в теоретической механике координаты этой точки определятся:

Кинематика точки в теоретической механике

Так как дуга AM равна отрезку ОА, то Кинематика точки в теоретической механике и, следовательно:

Кинематика точки в теоретической механике

Поэтому уравнения движения точки М будут:

Кинематика точки в теоретической механике

Проекции ускорения точки М на координатные оси найдутся по формулам:

Кинематика точки в теоретической механике

Величина полного ускорения точки М равна:

Кинематика точки в теоретической механике

Направление вектора полного ускорения определяется по направляющим косинусам:

Кинематика точки в теоретической механике

Из последних равенств следует, что вектор ускорения направлен по МС к центру катящегося колеса.

Скорость точки М найдется на основании равенств:

Кинематика точки в теоретической механике

Касательное и нормальное, ускорения точки М соответственно определятся:

Кинематика точки в теоретической механике

Радиус кривизны траектории точки М найдется из выражения для нормального ускорения:

Кинематика точки в теоретической механике

Так как Кинематика точки в теоретической механике, то Кинематика точки в теоретической механике и, следовательно, длина хорды: 

Кинематика точки в теоретической механике

поэтому Кинематика точки в теоретической механике

Перейдем теперь к изучению движения точки по окружности. Пусть точка движется по окружности радиуса а (рис. 154) и занимает в начальный момент положение Кинематика точки в теоретической механике Определим начальное положение точки постоянным углом Кинематика точки в теоретической механике который составляет радиус Кинематика точки в теоретической механике с осью Ох. По прошествии времени Кинематика точки в теоретической механике точка перейдет в положение М и радиус а, определяющий положение точки, будет составлять с осью Ох уже иной угол, равный Кинематика точки в теоретической механике Из рассмотрения треугольника ОМВ составляем уравнения движения точки М:

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис.154. 

Ясно, что угол Кинематика точки в теоретической механике — переменный и является функцией времени Кинематика точки в теоретической механике, т. е. Кинематика точки в теоретической механике

Согласно равенствам (73) найдем проекции скорости точки М на координатные оси:

Кинематика точки в теоретической механике

Величина Кинематика точки в теоретической механике, характеризующая быстроту изменения угла Кинематика точки в теоретической механике, называется угловой скоростью. Обозначая угловую скорость буквой Кинематика точки в теоретической механике можем написать:    

Кинематика точки в теоретической механике

тогда

Кинематика точки в теоретической механике

Модуль линейной скорости точки определится по формуле (74):

Кинематика точки в теоретической механике

Но, так как

Кинематика точки в теоретической механике

то

Кинематика точки в теоретической механике

т. е. линейная скорость точки, движущейся по окружности, равна произведению угловой скорости на радиус.

Величины нормального и касательного ускорений точки, движущейся по окружности, найдутся по формулам (81):

Кинематика точки в теоретической механике

Величина Кинематика точки в теоретической механике характеризующая быстроту изменения угловой скорости Кинематика точки в теоретической механикеназывается угловым ускорением.

Обозначим угловое ускорение буквой Кинематика точки в теоретической механике и принимая во внимание равенство (87), получим:

Кинематика точки в теоретической механике

Если Кинематика точки в теоретической механике, то Кинематика точки в теоретической механике, и точка согласно равенству (89) движется равномерно по окружности. Пользуясь равенством. (90), получим:

Кинематика точки в теоретической механике

Полное ускорение точки (рис. 155):

Кинематика точки в теоретической механике

Если Кинематика точки в теоретической механике то Кинематика точки в теоретической механике имеет то же направление, что и Кинематика точки в теоретической механике если Кинематика точки в теоретической механике то Кинематика точки в теоретической механике имеет направление, противоположное Кинематика точки в теоретической механике Из рисунка 155 видно, что угол, который образует вектор полного ускорения точки с радиусом ОМ, или, что то же, с нормальным ускорением Кинематика точки в теоретической механике составляет:

Кинематика точки в теоретической механике

или

Кинематика точки в теоретической механике

Обычно угловая скорость измеряется в Кинематика точки в теоретической механике но на практике часто угловую скорость измеряют в Кинематика точки в теоретической механике в этом случае угловую скорость обозначают буквой Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 155.

Найдем зависимость между угловой скоростью Кинематика точки в теоретической механике и числом оборотов в минуту Кинематика точки в теоретической механике 

Пусть радиус ОМ (рис. 155) вместе с точкой М совершит в минуту Кинематика точки в теоретической механике оборотов. За один оборот радиус повернется на угол Кинематика точки в теоретической механике радиан, а за Кинематика точки в теоретической механике оборотов — на угол Кинематика точки в теоретической механике радиан в минуту; в секунду же он повернется на:

Кинематика точки в теоретической механике

Таким образом:    

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике выражено в об/мин, а Кинематика точки в теоретической механике в 1/сек.

Задача №13

Кривошипно-шатунный механизм состоит из кривошипа Кинематика точки в теоретической механике, шатуна Кинематика точки в теоретической механике и ползуна В, могущего перемещаться по неподвижной прямой ОВ (рис. 156).

Кинематика точки в теоретической механике

Рис. 156.

Кривошип ОА вращается с постоянной угловой скоростью Кинематика точки в теоретической механике. Требуется:

1)    найти закон движения ползуна В, величину его скорости и ускорения в момент t.

2)    на ординатах Кинематика точки в теоретической механике, соответствующих крайним и среднему положениям ползуна В, построить графики скоростей и ускорений. 

Решение. Примем за начало отсчета расстояний ползуна В точку О и обозначим отрезок ОВ  через х. Из чертежа видно:

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — угол поворота кривошипа ОА изменяется пропорционально времени, так как по условию вращение кривошипа равномерное.

Зависимость между углами Кинематика точки в теоретической механике выразим из Кинематика точки в теоретической механике по теореме синусов:

Кинематика точки в теоретической механике

откуда

Кинематика точки в теоретической механике

Далее:

Кинематика точки в теоретической механике

Раскладывая полученное выражение по формуле бинома Ньютона, найдем:

Кинематика точки в теоретической механике

Ограничившись первыми двумя членами разложения, получим приближенное уравнение движения ползуна:

Кинематика точки в теоретической механике

при

Кинематика точки в теоретической механике

при

Кинематика точки в теоретической механике

что соответствует чертежу.

Выражения скорости и ускорения ползуна найдутся путем дифференцирования по времени t его уравнения движения:

Кинематика точки в теоретической механике

Графики скорости и ускорения ползуна можно построить по точкам, давая углу Кинематика точки в теоретической механике;

при Кинематика точки в теоретической механике 

       Кинематика точки в теоретической механике

при Кинематика точки в теоретической механике

         Кинематика точки в теоретической механике

при Кинематика точки в теоретической механике

         Кинематика точки в теоретической механике

        
Кинематика точки в теоретической механике

Рис. 157.

Отсюда видно, что в крайних положениях ползуна скорость его равна нулю, а ускорения не равны нулю, но при этом получаются неравными между собой.

Графики Кинематика точки в теоретической механике и Кинематика точки в теоретической механике построены на чертеже.

Рассмотрим, наконец, гармоническое колебательное движение точки. Пусть по окружности радиуса а равномерно движется точка М с угловой скоростью Кинематика точки в теоретической механике (рис. 157).

При этом закон движения проекции равномерно движущейся точки на одну из координатных осей, например ось Ох, выразится уравнением:

Кинематика точки в теоретической механике

где  Кинематика точки в теоретической механике так как точка М движется равномерно.

Прямолинейное движение точки, совершающееся по закону синуса или косинуса, называется гармоническим колебательным движением.

В уравнении (95) гармонического колебательного движения величина а наибольшего удаления точки Кинематика точки в теоретической механике от точки О (центра колебаний) называется амплитудой колебания,угол Кинематика точки в теоретической механике — фазой колебания, а угол Кинематика точки в теоретической механике, определяющий начальное положение точки, — начальной фазой колебания.

При Кинематика точки в теоретической механике из уравнения (95) находим:

Кинематика точки в теоретической механике

Но это выражение (рис. 157) дает закон движения другой проекции точки М, а именно проекции ее Кинематика точки в теоретической механике на ось Кинематика точки в теоретической механике. Таким образом, если точка М равномерно движется по окружности, то обе проекции ее Кинематика точки в теоретической механике на координатные оси совершают гармоническое колебательное движение, причем, как видно из чертежа:

Кинематика точки в теоретической механике

т. е. движение точки Кинематика точки в теоретической механике по оси Оу — тоже гармоническое с начальной фазой Кинематика точки в теоретической механике.

Промежуток времени Т, в течение которого вспомогательная точка М опишет полную окружность, а ее проекция Кинематика точки в теоретической механике или Кинематика точки в теоретической механике совершит одно полное колебание (пройдет путь, равный четырем амплитудам, или двум размахам), называется периодом колебания и по определению найдется: Кинематика точки в теоретической механике, откуда: 

Кинематика точки в теоретической механике

Величина Кинематика точки в теоретической механике, определяющая число колебаний в секунду, называется частотой колебаний. Но этим термином часто называют величину Кинематика точки в теоретической механике (угловая или циклическая частота); в дальнейшем мы будем величину Кинематика точки в теоретической механике называть также циклической частотой колебаний. Из уравнения (96) находим:

Кинематика точки в теоретической механике

Если точка Кинематика точки в теоретической механике совершает в минуту Кинематика точки в теоретической механике колебаний, то период колебаний:

Кинематика точки в теоретической механике

а поэтому частота:

Кинематика точки в теоретической механике

Отсюда число колебаний в минуту, выраженное через циклическую частоту колебаний, будет:

Кинематика точки в теоретической механике

Задача №14

Движения трех точек в сантиметрах и секундах выражаются соответственно уравнениями:

Кинематика точки в теоретической механике

и

Кинематика точки в теоретической механике

Построить графики расстояний этих точек.

Кинематика точки в теоретической механике

Рис. 158.

Решение. Каждая из трех точек совершает гармоническое колебательное движение. Для построения графиков расстояний проводам вспомогательную окружность радиуса а см, равного амплитуде колебания, и наносим на окружности последовательно ряд положений I, II, III и т. д. вспомогательной точки М, например через каждые Кинематика точки в теоретической механике секунд, или, что то же, — через угол Кинематика точки в теоретической механике (рис. 158).

Выбираем, далее, на продолжении горизонтального диаметра произвольную точку Кинематика точки в теоретической механике, откладываем от нее в произвольном масштабе равные промежутки времени Кинематика точки в теоретической механике секунд каждый, проводим через точки деления вертикальные прямые и нумеруем их цифрами I, II, III и т. д., соответствующими положениям вспомогательной точки М. Проводам затем через точки I, II, III и т. д. окружности горизонтальные прямые до пересечения с вертикальными прямыми соответственной нумерации и, соединяя точки пересечения непрерывными кривыми, получим графики расстояний точек b, с и d. Как видно из чертежа, формы графиков расстояний трех точек одинаковы, только положение их различно; это объясняется тем, что колеблющиеся точки имеют различные начальные фазы Кинематика точки в теоретической механике , вследствие чего происходит сдвиг фаз. Так, кривая d сдвинута вперед относительно кривой b на 180°, а кривая с —.на 45°.    ‘

Задача №15

Выразить через переменное расстояние х ускорение точки Кинематика точки в теоретической механике представляющей проекцию точки А конца стержня Кинематика точки в теоретической механике на горизонтальную прямую (рис. 159). Стержень ОА вращается в плоскости чертежа с постоянной угловой скоростью Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Рис. 159.

Решение. Из Кинематика точки в теоретической механике имеем: Кинематика точки в теоретической механике Скорость и ускорение точки Кинематика точки в теоретической механикенайдутся но уравнениям:

Кинематика точки в теоретической механике

т. е. точка Кинематика точки в теоретической механике, совершающая гармоническое колебание, обладает ускорением, пропорциональным отклонению точки от центра колебаний и направленным к этому центру.

Всё о кинематике

Кинематика — наука о движении геометрических тел. В ней рассматривается само движение без изучения причин, вызывающих это движение. Впервые термин «кинематика» ввел А.Ампер (1775-1836), взяв за основу греческое слово Кинематика точки в теоретической механикеозначающее движение.

Простейшим объектом в кинематике является точка. В кинематике точки рассматриваются следующие функции времени t: радиус-вектор Кинематика точки в теоретической механике скорость Кинематика точки в теоретической механике и ускорение Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Движение тела в кинематике начинают изучать с поступательного и вращательного движения. Во вращательном движении вводятся понятия угла поворота тела Кинематика точки в теоретической механике угловой скорости и углового ускорения. Последние две величины векторные, но для вращательного движения их направление всегда постоянно — по оси вращения. Поэтому в решении часто используются скалярные величины Кинематика точки в теоретической механике имеющие смысл проекций этих векторов на ось вращения Кинематика точки в теоретической механике Точкой будем обозначать производную по времени.

В плоском движении тела каждая точка тела движется в плоскости, параллельной некоторой фиксированной плоскости. Само тело вовсе не обязательно должно быть плоским. Говорить о скорости тела или его ускорении в общем случае не имеет смысла: тело состоит из множества точек, каждая из которых может иметь свою скорость и ускорение. Исключение составляет поступательное движение тела, при котором равны скорости и ускорения всех точек. Кроме того, в некоторых задачах иногда говорят, например, о скорости катящегося цилиндра или о скорости автомобиля, подразумевая при этом скорость точек центральной оси цилиндра или скорость кузова автомобиля. принимая его за точку.

Угловая скорость и ускорение для плоского движения — векторные величины, но их направления всегда перпендикулярны плоскости движения. Введем декартову систему координат, в которой плоскость ху совпадает с плоскостью движения. Тогда угловая скорость Кинематика точки в теоретической механике и ускорение Кинематика точки в теоретической механике направлены вдоль оси Кинематика точки в теоретической механике В решении задач удобно использовать скалярные величины — проекции этих векторов на осьКинематика точки в теоретической механике

Скорость точки А тела при плоском движении вычисляют через известную скорость какой-либо точки В того же тела, принимаемой за полюс (рис. 81):

Кинематика точки в теоретической механике

Для расчета скоростей точек многозвенного механизма, каждое звено которого совершает плоское движение, формулу (1) применяют последовательно для всех точек, переходя от одной точки, принимаемой за полюс, к другой.

Кинематика точки в теоретической механике

Схему вычислений в этом случае удобно записывать в виде структурных формул (графов [15])

Кинематика точки в теоретической механике

где над стрелкой указан номер тела или наименование стержня, которому принадлежат точки, а снизу — угол Кинематика точки в теоретической механике между осью х и вектором Кинематика точки в теоретической механике В проекциях на оси х, у граф (2) дает уравнения

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике — проекция угловой скорости тела 1 на ось z, перпендикулярную плоскости движенияКинематика точки в теоретической механике . Если вращение происходит против часовой стрелки, то Кинематика точки в теоретической механике а если — по часовой стрелке, то Кинематика точки в теоретической механике

Ускорения точек тела при плоском движении связаны формулой Кинематика точки в теоретической механике

Кинематика точки в теоретической механикеПравило «трех С» для запоминания формулы (3): в первом уравнении (проекции на ось х) «икС», «минуС», «синуС».

Изучаем тему: кинематика точки

При изучении темы КИНЕМАТИКА ТОЧКИ вы познакомитесь с простейшими понятиями кинематики. Этот раздел теоретической механики наиболее близко примыкает к математике. Умение дифференцировать и понимать смысл найденных производных — необходимые условия для освоения этой темы.

Проверить и «оживить» решение задачи можно с помощью программы, написанной для математической системы Maple V.

Движение точки в плоскости

Постановка задачи. Точка движется по закону

Кинематика точки в теоретической механике

Для заданного момента времени найти скорость, ускорение точки и радиус кривизны траектории.

План решения:

1. Определяем траекторию движения точки, исключая t из закона движения (1).

2. Дифференцируя (1) по времени t, находим проекции скорости точки на оси х, у:

Кинематика точки в теоретической механике

3. Модуль скорости вычисляем по формуле Кинематика точки в теоретической механике

4.Дифференцируя (2), находим компоненты вектора ускорения Кинематика точки в теоретической механике

5. Определяем модуль ускорения Кинематика точки в теоретической механике

6. Вычисляем тангенциальное (касательное) ускорение. Дифференцируя скорость Кинематика точки в теоретической механике как сложную функцию времени,

Кинематика точки в теоретической механике

7.Вычисляем нормальное ускорение Кинематика точки в теоретической механике

8. Нормальное ускорение зависит от скорости точки и радиуса кривизны траектории:

Кинематика точки в теоретической механике

Отсюда находим радиус кривизны

Кинематика точки в теоретической механике

Задача №16

Точка движется по закону

Кинематика точки в теоретической механике

Для момента времени Кинематика точки в теоретической механике найти скорость, ускорение точки и радиус кривизны траектории. Координаты х, у даны в см, время — вс.

Решение

1. Определяем траекторию движения точки, исключая t из закона движения (3). Параметрическим представлением траектории является сам закон движения (3). Координатную форму .уравнения движения точки получаем, исключая из закона движения (3) время:

Кинематика точки в теоретической механике

Для того, чтобы окончательно получить ответ на вопрос о траектории, необходимо еще выделить область определения функции (4). Не все точки кривой, определяемой этой функцией, являются точками траектории. При Кинематика точки в теоретической механике имеем

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике Эту же формулу можно вывести иначе, исходя из того, что величина Кинематика точки в теоретической механике равна проекции ускорения на касательную к траектории:

Кинематика точки в теоретической механике

6.1.Движение точки в плоскости 

т.о. траекторией является правая ветвь параболы (4) (рис. 82). График строим по точкам (отмечены звездочками), через равные промежутки времени 0.1 с.

2. Дифференцируя (3) по времени t, находим проекции скорости точки на оси х, у:

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике имеем следующие численные значения компонентов скорости:

Кинематика точки в теоретической механике

3. Модуль скорости вычисляем по формуле

Кинематика точки в теоретической механике

Вектор скоростиКинематика точки в теоретической механике строим на рисунке в масштабе по известным компонентам Кинематика точки в теоретической механике Если в вычислениях нет ошибок, то вектор скорости будет направлен по касательной к траектории (рис. 82).

4. Дифференцируя (6), находим компоненты вектора ускорения:

Кинематика точки в теоретической механике

При Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

5. Определяем модуль ускорения

Кинематика точки в теоретической механике

Вектор ускорения строим на чертеже в масштабе ускорений (не обязательно совпадающем с масштабом скоростей). Вектор ускорения направлен внутрь вогнутости кривой.

6.Вычисляем тангенциальное ускорение Кинематика точки в теоретической механике :

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике Наличие тангенциального ускорения точки видно уже из рис. 82. Расстояние между первыми двумя точками меньше, чем между двумя последними, хотя интервал времени одинаков. Характеристикой такого изменения является величина Кинематика точки в теоретической механике

7. Вычисляем нормальное ускорение:

Кинематика точки в теоретической механике

8. Находим радиус кривизны траектории в указанном положении точки:

Кинематика точки в теоретической механике

Кинематика точки в теоретической механике
Центр кривизны траектории лежит на нормали к кривой на расстоянии R = 5.208 см внутри вогнутости кривой. Окружность радиусом R с центром в этой точке максимально близко совпадет с кривой в малой окрестности от нее.

6.2. Путь, пройденный точкой

Постановка задачи. Точка движется по закону

Кинематика точки в теоретической механике

Определить длину пути, пройденного точкой за время Кинематика точки в теоретической механике

 План решения

1. Дифференцируя (1) по времени t, находим проекции скорости точки на оси Кинематика точки в теоретической механике

2. Считая, что время отсчитывается от нуля, находим длину пути Кинематика точки в теоретической механике :

Кинематика точки в теоретической механике

Задача №17

Точка движется по закону

Кинематика точки в теоретической механике

гдеКинематика точки в теоретической механике Определить длину пути, пройденного точкой за время Кинематика точки в теоретической механике

Решение

1. Дифференцируя (2) по времени t, находим проекции скорости точки на оси х, у:

Кинематика точки в теоретической механике

2. Считая, что время отсчитывается от нуля, находим длину пути:

Кинематика точки в теоретической механике

Подставляя числовые значения Кинематика точки в теоретической механике получаем Кинематика точки в теоретической механике

Движение точки в пространстве

ПОСТАНОВКА ЗАДАЧИ. Точка движется по закону

Кинематика точки в теоретической механике

Определить скорость, ускорение точки и радиус кривизны траектории в заданный момент времени.

План решения

1. Дифференцируя (1) по времени t, находим проекции скорости точки на оси х,у и z:Кинематика точки в теоретической механике

Гл.6.Кинематика  точки

2. Вычисляем модуль скорости Кинематика точки в теоретической механике

3.Дифференцируя (2), находим компоненты вектора ускорения:

Кинематика точки в теоретической механике

4. Определяем модуль ускорения Кинематика точки в теоретической механике

5. Вычисляем модуль тангенциального ускорения:

Кинематика точки в теоретической механике

6. Вычисляем нормальное ускорение Кинематика точки в теоретической механике

7.Находим радиус кривизны траектории в указанном положении точки: Кинематика точки в теоретической механике

Задача №18

Точка движется по закону

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механикес найти скорость, ускорение точки и радиус кривизны ее траектории.

Решение

1. Дифференцируя (3) по времени t, находим проекции скорости точки на оси х, у и z:

Кинематика точки в теоретической механике

2.Вычисляем модуль скорости

Кинематика точки в теоретической механике

3.Дифференцируя (4), находим компоненты вектора ускорения: Кинематика точки в теоретической механике

4. Определяем модуль ускорения:

Кинематика точки в теоретической механике

5. Вычисляем модуль тангенциального ускорения:

Кинематика точки в теоретической механике

6.3.Движение точки в пространстве

6. Вычисляем нормальное ускорение:

Кинематика точки в теоретической механике

7. Находим радиус кривизны траектории в указанном положении точки:

Кинематика точки в теоретической механике

Радиус кривизны в данной задаче не зависит от времени. Кривая представляет собой винтовую линию постоянной кривизны. Получаем значения искомых величин при Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

Ответы занесем в таблицу (скорости — в см/с, ускорения — в Кинематика точки в теоретической механике радиус кривизны — в см):

Кинематика точки в теоретической механике

Естественный способ задания движения точки

Постановка задачи. Точка движется по плоской кривой

Кинематика точки в теоретической механике

с постоянной скоростью Кинематика точки в теоретической механике Определить ускорение точки, радиус кривизны траектории и косинус угла наклона касательной к траектории с осью ох, при заданном значении х.

План решения:

1. Находим зависимость между компонентами скорости. Дифференцируя (1) по t, используя правило дифференцирования сложной функции Кинематика точки в теоретической механике получаем

Кинематика точки в теоретической механике

6.4.Естественный способ задания движения точки

где штрихом обозначена производная по координате, Кинематика точки в теоретической механике а точкой, как всегда, — по времени, Кинематика точки в теоретической механике

2.  Дополняя (2) уравнением Кинематика точки в теоретической механике получаем систему уравнений, из которой находим компоненты скорости Кинематика точки в теоретической механике

3. Находим косинус угла наклона касательной к траектории с осью ox: Кинематика точки в теоретической механике

4. Находим зависимость между компонентами ускорения. Дифференцируя (2) по t, получаем

Кинематика точки в теоретической механике

где Кинематика точки в теоретической механике

5. Так как по условию Кинематика точки в теоретической механике то тангенциальное ускорение равно нулю. Отсюда получаем уравнение

Кинематика точки в теоретической механике

которое совместно с (3) дает систему для определения проекций ускорения. Решаем систему и находим Кинематика точки в теоретической механике

6. Вычисляем модуль ускорения Кинематика точки в теоретической механике

7. Согласно п.5, тангенциальное ускорение равно нулю и нормаль-нос ускорение совпадает с полным: Кинематика точки в теоретической механикеТак как Кинематика точки в теоретической механике находим отсюда радиус кривизны траектории:

Кинематика точки в теоретической механике

Задача №19

Точка движется по плоской кривой

Кинематика точки в теоретической механике

с постоянной скоростью Кинематика точки в теоретической механике Определить ускорение точки, радиус кривизны траектории и косинус угла касательной к траектории с осью ох при х= 1м.

Решение

1. Находим зависимость между компонентами скорости. Дифференцируем (4) по t. Используя правило дифференцирования сложной функции,получаем

Кинематика точки в теоретической механике

где

Кинематика точки в теоретической механике

При x = 1 имеем Кинематика точки в теоретической механике и Кинематика точки в теоретической механике

2. Дополняя (5) уравнением Кинематика точки в теоретической механике получаем систему уравнений, из которой находим компоненты скорости Кинематика точки в теоретической механике

Кинематика точки в теоретической механике

3. Находим косинус угла касательной к траектории с осью ох:

Кинематика точки в теоретической механике

4.Находим зависимость между компонентами ускорения. Дифференцируя (5) по t, получаем

Кинематика точки в теоретической механике

где

Кинематика точки в теоретической механике

При х = 1 м вычисляем Кинематика точки в теоретической механике С учетом ранее найденной величины х =3.002, получаем

Кинематика точки в теоретической механике

5. Из условия Кинематика точки в теоретической механике следует, что

Кинематика точки в теоретической механике

Решая это уравнение совместно с (6), находим проекции вектора ускорения:

Кинематика точки в теоретической механике

6. Вычисляем модуль ускорения:

Кинематика точки в теоретической механике

7. Находим радиус кривизны траектории:

Кинематика точки в теоретической механике

Ответы заносим в таблицу:Кинематика точки в теоретической механике

Замечание. В механике гибких стержней и сопротивлении материалов для нахождения радиуса кривизны кривой, заданной в форме у = у(х), существует формула

Кинематика точки в теоретической механике

Решенная задача представляет собой кинематический вывод этой формулы. Проверку решения можно выполнить, подставив в (7) найденные значения Кинематика точки в теоретической механике

Как и следовало ожидать, радиус кривизны траектории R от скорости движения точки не зависит, как не зависит, например, форма рельсового пути от скорости движения трамвая (если, конечно, не учитывать деформации).

Движение точки в полярных координатах

Постановка задачи. Задан закон движения точки в полярных координатах:

Кинематика точки в теоретической механике

Найти скорость и ускорение точки в полярных, декартовых и естественных координатах в заданный момент времени.

План решения:

1. Вычисляем полярные координаты точки в заданный момент времени: Кинематика точки в теоретической механике

2. Дифференцируя (1) по времени t, находим производные полярного радиуса р и полярного угла:

Кинематика точки в теоретической механике

3. Вычисляем компоненты скорости в полярных координатах:

Кинематика точки в теоретической механике

6.5. Движение точки в полярных координатах

4.Находим модуль скорости Кинематика точки в теоретической механике

5.Декартовы х, у и полярные координаты Кинематика точки в теоретической механике связаны соотношениями

Кинематика точки в теоретической механике

Дифференцируя (3), вычисляем компоненты скорости точки в декартовых координатах:

Кинематика точки в теоретической механике

6. Делаем проверку, вычисляя модуль скорости по декартовым компонентам:Кинематика точки в теоретической механике

7. Дифференцируя (2), находим вторые производные полярного радиуса р и полярного угла: Кинематика точки в теоретической механике

8.Вычисляем компоненты ускорения точки в полярных координатах: Кинематика точки в теоретической механике

9. Модуль ускорения вычисляем по формуле Кинематика точки в теоретической механике

10. Вычисляем компоненты ускорения точки в декартовых координатах, дважды дифференцируя (3):

Кинематика точки в теоретической механике

11. Делаем проверку, вычисляя модуль ускорения по декартовым компонентам: Кинематика точки в теоретической механике

12. Находим модуль тангенциального ускорения,:

Кинематика точки в теоретической механике

и проверяем его по формуле

Кинематика точки в теоретической механике

13. Вычисляем нормальное ускорение Кинематика точки в теоретической механике

Задача №20

Задан закон движения точки в полярных координатах:

Кинематика точки в теоретической механике

Найти скорость и ускорение точки в полярных, декартовых и естественных координатах при t = 1 с. Радиус дан в метрах.

Решение

1.Вычисляем полярные координаты точки в заданный момент времениКинематика точки в теоретической механике

2. Дифференцируя (4) по времени it, находим производные полярного радиуса р и полярного угла:

Кинематика точки в теоретической механике

При t = 1 имеем Кинематика точки в теоретической механике Кинематика точки в теоретической механике

3. Вычисляем компоненты скорости в полярных координатах:

Кинематика точки в теоретической механике

4.Вычисляем модуль скорости: Кинематика точки в теоретической механике

5.Вычисляем компоненты скорости в декартовых координатах:

Кинематика точки в теоретической механике

6. Делаем проверку, вычисляя модуль скорости по декартовым компонентам:

Кинематика точки в теоретической механике

7. Дифференцируя (5), находим вторые производные полярного радиуса р и полярного угла:

Кинематика точки в теоретической механике

При t = 1 получаем Кинематика точки в теоретической механике

8. Вычисляем компоненты ускорения в полярных координатах:

Кинематика точки в теоретической механике

9. Определяем модуль ускорения: Кинематика точки в теоретической механике
*) Аргументы тригонометрических функций измеряются в радианах.

10. Находим компоненты ускорения в декартовых координатах:

Кинематика точки в теоретической механике

11. Делаем проверку, вычисляя модуль ускорения по декартовым компонентам:

Кинематика точки в теоретической механике

12. Находим модуль касательного ускорения,

Кинематика точки в теоретической механике

и проверяем его по формуле

Кинематика точки в теоретической механике

13. Вычисляем нормальное ускорение

Кинематика точки в теоретической механике

Ответы заносим в таблицу (скорости — в м/с, ускорения — в Кинематика точки в теоретической механикеКинематика точки в теоретической механике

  • Плоское движение твердого тела
  • Мгновенный центр скоростей
  • Мгновенный центр ускорений
  • Мгновенный центр вращения
  • Плоская система сил
  • Трение
  • Пространственная система сил
  • Центр тяжести


Загрузить PDF


Загрузить PDF

Скорость — это быстрота перемещения объекта в заданном направлении. [1]
В общих целях нахождение скорости объекта (v) — простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt), то есть представляет собой производную от формулы для вычисления средней скорости тела.[2]

  1. Изображение с названием Calculate Instantaneous Velocity Step 1

    1

    Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени),[3]
    то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне — члены с переменной t (время).[4]
    Например:

    s = -1.5t2 + 10t + 4

    • В этом уравнении:
      Перемещение = s. Перемещение — пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 — 7 = 3 м (а на 10 + 7 = 17 м).
      Время = t. Обычно измеряется в секундах.
  2. Изображение с названием Calculate Instantaneous Velocity Step 2

    2

    Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная — это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*xn, то производная = a*n*xn-1. Это правило применяется к каждому члену многочлена.

    • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

      s = -1.5t2 + 10t + 4
      (2)-1.5t(2-1) + (1)10t1 — 1 + (0)4t0
      -3t1 + 10t0
      -3t + 10

  3. Изображение с названием Calculate Instantaneous Velocity Step 3

    3

    Замените «s» на «ds/dt», чтобы показать, что новое уравнение — это производная от исходного уравнения (то есть производная s от t). Производная — это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

    • В нашем примере уравнение производной должно выглядеть следующим образом:

      ds/dt = -3t + 10

  4. Изображение с названием Calculate Instantaneous Velocity Step 4

    4

    В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени.[5]
    Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 м/с

    • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время — в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с — правильная.

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 5

    1

    Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке).[6]
    Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.

    • По оси Y откладывайте перемещение, а по оси X — время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
    • График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) — мы не измеряем скорости объектов, движущихся назад во времени!
  2. Изображение с названием Calculate Instantaneous Velocity Step 6

    2

    Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел — состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

    • Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
  3. Изображение с названием Calculate Instantaneous Velocity Step 7

    3

    Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (yQ — yP)/(xQ — xP), где H — наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

    H = (yQ — yP)/(xQ — xP)
    H = (7 — 3)/(4 — 1)
    H = (4)/(3) = 1.33

  4. Изображение с названием Calculate Instantaneous Velocity Step 8

    4

    Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):

    Q = (2,4.8): H = (4.8 — 3)/(2 — 1)
    H = (1.8)/(1) = 1.8

    Q = (1.5,3.95): H = (3.95 — 3)/(1.5 — 1)
    H = (.95)/(.5) = 1.9

    Q = (1.25,3.49): H = (3.49 — 3)/(1.25 — 1)
    H = (.49)/(.25) = 1.96

  5. Изображение с названием Calculate Instantaneous Velocity Step 9

    5

    Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

    • В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2.
    • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 10

    1

    Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t3 — 3t2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

    • Сначала вычислим производную этого уравнения:

      s = 5t3 — 3t2 + 2t + 9
      s = (3)5t(3 — 1) — (2)3t(2 — 1) + (1)2t(1 — 1) + (0)9t0 — 1
      15t(2) — 6t(1) + 2t(0)
      15t(2) — 6t + 2

    • Теперь подставим в уравнение производной значение t = 4:

      s = 15t(2) — 6t + 2
      15(4)(2) — 6(4) + 2
      15(16) — 6(4) + 2
      240 — 24 + 2 = 22 м/с

  2. Изображение с названием Calculate Instantaneous Velocity Step 11

    2

    Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t2 — t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.

    • Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.

      s = 4t2 — t

      t = 2: s = 4(2)2 — (2)
      4(4) — 2 = 16 — 2 = 14, so Q = (2,14)

      t = 1.5: s = 4(1.5)2 — (1.5)
      4(2.25) — 1.5 = 9 — 1.5 = 7.5, so Q = (1.5,7.5)

      t = 1.1: s = 4(1.1)2 — (1.1)
      4(1.21) — 1.1 = 4.84 — 1.1 = 3.74, so Q = (1.1,3.74)

      t = 1.01: s = 4(1.01)2 — (1.01)
      4(1.0201) — 1.01 = 4.0804 — 1.01 = 3.0704, so Q = (1.01,3.0704)

    • Теперь вычислим H:

      Q = (2,14): H = (14 — 3)/(2 — 1)
      H = (11)/(1) = 11

      Q = (1.5,7.5): H = (7.5 — 3)/(1.5 — 1)
      H = (4.5)/(.5) = 9

      Q = (1.1,3.74): H = (3.74 — 3)/(1.1 — 1)
      H = (.74)/(.1) = 7.3

      Q = (1.01,3.0704): H = (3.0704 — 3)/(1.01 — 1)
      H = (.0704)/(.01) = 7.04

    • Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).

    Реклама

Советы

  • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
  • Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
  • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

Реклама

Об этой статье

Эту страницу просматривали 83 497 раз.

Была ли эта статья полезной?

Содержание:

  1. Плоское движение тела
  2. Определение скоростей точек тела
  3. Уравнения плоского движения
  4. Скорости точек фигуры. Мгновенный центр скоростей
  5. Определение положения мгновенного центра скоростей
  6. Порядок решения задач на тему: Определение скоростей точек тела
  7. Примеры решения задач на тему: Определение скоростей точек тела
  8. Решение задачи графоаналитическим способом
  9. Решение задачи с помощью мгновенного центра скоростей
  10. Определение ускорений точек тела
  11. Ускорения точек плоской фигуры
  12. Порядок решения задач на тему: Определение ускорений точек тела
  13. Примеры решения задач на тему: Определение ускорений точек тела
  14. План скоростей
  15. Порядок решения задач на тему: План скоростей
  16. Примеры решения задач на тему: План скоростей
  17. План ускорений
  18. Примеры решения задач на тему: План ускорений

Плоское движение тела — это такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Плоское движение тела

Плоскопараллельное движение (плоское движение) — вид движения абсолютно твёрдого тела, при котором траектории всех точек тела располагаются в плоскостях, параллельных заданной плоскости. Примером плоскопараллельного движения по отношению к вертикальной плоскости, относительно которой тело движется в параллельном направлении, является качение колеса по горизонтальной дороге

Определение скоростей точек тела

Скорости точек тела пропорциональны их расстояниям до мгновенного центра скоростей, и это отношение определяет угловую скорость тела в данный момент времени: Частные случаи определения положения мгновенного центра скоростей. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого, то точка касания Р имеет в данный момент времени скорость равную нулю, и, следовательно является мгновенным центром скоростей .

Уравнения плоского движения

Плоским называется такое движение тела, при котором траектории всех его точек лежат в плоскостях, параллельных данной неподвижной плоскости.

При таком движении все точки твердого тела, лежащих на перпендикуляре к этой плоскости, имеют одинаковые траектории, скорости и ускорения.

Плоское движение фигуры можно рассматривать как сложное (то есть, абсолютное) движение, которое включает поступательное движение вместе с произвольно выбранной точкой Плоское движение тела, что называется полюсом (переносное движение), и на вращательное движение фигуры вокруг этой точки (относительное движение).

На рис.4.1 с телом Плоское движение тела связана подвижная система координат Плоское движение тела. При движении тела начало координат Плоское движение тела и угол поворота Плоское движение тела подвижной системы координат относительно неподвижной системы Плоское движение тела со временем меняются. Таким образом, чтобы однозначно задать положение тела при плоском движении нужно задать закон движения начала подвижной системы координат (полюса Плоское движение тела) и угол поворота подвижной системы относительно неподвижной системы координат, то есть:

Плоское движение тела

Уравнения (4.1) называются уравнениями плоского движения твердого тела.

При этом, поступательная часть плоского движения описывается двумя уравнениями:

Плоское движение тела

а относительная вращательная вокруг полюса — третьим уравнением:

Плоское движение тела

Координаты любой точки Плоское движение тела плоской фигуры Плоское движение тела (рис.4.1), если за полюс выбрана точка Плоское движение тела и задан угол Плоское движение тела, определяются по уравнениям:

Плоское движение тела

Плоское движение тела

Скорости точек фигуры. Мгновенный центр скоростей

Поскольку плоское движение тела состоит из поступательного вместе с полюсом и вращательного вокруг него, то скорость любой точки тела Плоское движение тела (рис.4.2) геометрически состоит из абсолютной скорости Плоское движение тела точки Плоское движение тела, которую принято за полюс, и относительной скорости Плоское движение тела в относительном вращательном движении точки Плоское движение тела вместе с телом вокруг полюса Плоское движение тела:

Плоское движение тела

Плоское движение тела

Вектор относительной скорости Плоское движение тела точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону угловой скорости.

Модуль и направление абсолютной скорости Плоское движение тела находится построением соответствующего параллелограмма на векторах Плоское движение тела и Плоское движение тела (рис.4.2). Таков путь решения векторного уравнения, когда по записанному уравнению строят векторную фигуру, называется графоаналитическим.

Относительная скорость Плоское движение тела в относительном вращательном движении точки Плоское движение тела вместе с телом вокруг полюса Плоское движение тела по модулю равна:

Плоское движение тела

где Плоское движение тела — угловая скорость вращения тела вокруг полюса.

Найти скорость любой точки тела можно также на основе теоремы, которая гласит:

Проекции скоростей двух точек фигуры на прямую, что соединяет эти точки, равны между собой.

Согласно этой теореме (рис.4.3) :

Плоское движение тела

или

Плоское движение тела

Плоское движение тела

Если известна скорость Плоское движение тела точки Плоское движение тела тела, то:

Плоское движение тела

При плоском движении тела в каждый момент времени существует точка тела, скорость которой равна нулю. Эта точка называется мгновенным центром скоростей и, как правило, обозначается буквой Плоское движение тела.

Если мгновенный центр скоростей известен, то легко можно найти мгновенное распределение скоростей всех точек тела (рис.4.4).

Плоское движение тела

Выберем за полюс поступательного движения мгновенный центр скоростей Плоское движение тела. Тогда для точек Плоское движение тела и Плоское движение тела тела можно записать векторные уравнения (4.3):

Плоское движение тела

где Плоское движение тела — вектор абсолютной скорости полюса Плоское движение тела;

Плоское движение тела — вектор относительной скорости точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела, направлен перпендикулярно Плоское движение тела;

Плоское движение тела — вектор относительной скорости точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела, направлен перпендикулярно Плоское движение тела.

Поскольку скорость выбранного полюса Плоское движение тела равна нулю Плоское движение тела, то:

Плоское движение тела

По модулю скорости вращения точек Плоское движение тела и Плоское движение тела вокруг полюса Плоское движение тела равны:

Плоское движение тела

Разделив Плоское движение тела на Плоское движение тела получим:

Плоское движение тела

Таким образом, мгновенное распределение скоростей точек тела при его плоском движении, такое же, какое было бы при его вращательном движении вокруг мгновенного центра скоростей.

Определение положения мгновенного центра скоростей

Существует несколько способов нахождения положения мгновенного центра скоростей.

Случай 1. Известна скорость Плоское движение тела одной точки Плоское движение тела тела и угловая скорость его вращения Плоское движение тела (рис.4.5).

Плоское движение тела

Мгновенный центр скоростей Плоское движение тела лежит на перпендикуляре к скорости Плоское движение тела точки Плоское движение тела, на расстоянии:

Плоское движение тела

Для нахождения направления перпендикуляра надо повернуть вектор Плоское движение тела относительно точки Плоское движение тела на угол Плоское движение тела в сторону угловой скорости.

Случай 2. Известны направления скоростей Плоское движение тела и Плоское движение тела двух точек Плоское движение тела и Плоское движение тела тела (рис.4.6).

Плоское движение тела

Мгновенный центр скоростей должен лежать как на перпендикуляре к вектору Плоское движение тела, так и на перпендикуляре к вектору Плоское движение тела, то есть мгновенный центр скоростей Плоское движение тела лежит в точке пересечения этих перпендикуляров.

Случай 3. Скорости двух точек Плоское движение тела и Плоское движение тела тела параллельны между собой, а перпендикуляры к ним не совпадают (рис.4.7).

Плоское движение тела

Говорят, что в этом случае мгновенный центр скоростей лежит на бесконечности. Угловая скорость вращения равна нулю, а скорости всех точек тела геометрически равны, то есть в данный момент времени тело выполняет поступательное движение.

Случай 4. Скорости двух точек Плоское движение тела и Плоское движение тела параллельны, направлены в одну сторону и не равны по модулю. Кроме того, Плоское движение тела и Плоское движение тела перпендикулярны отрезку Плоское движение тела (рис.4.8).

Плоское движение тела

Мгновенный центр скоростей находится на продолжении отрезка Плоское движение тела той точки, скорость которой меньше. Расстояние от точки к мгновенному центру скоростей можно найти из пропорции (4.6):

Плоское движение тела

Решив это уравнение относительно Плоское движение тела, получим:

Плоское движение тела

Таким образом, для определения положения мгновенного центра скоростей надо знать не только направления скоростей, но и их величину.

Случай 5. Скорости двух точек Плоское движение тела и Плоское движение тела тела параллельны друг другу, перпендикулярны отрезку Плоское движение тела, но направлены в разные стороны (рис.4.9).

Плоское движение тела

Мгновенный центр скоростей лежит на отрезке Плоское движение тела и делит его на части пропорциональные скоростям. Поскольку Плоское движение тела, то по формуле (4.6) можно записать:

Плоское движение тела

Решив уравнение относительно Плоское движение тела, получим:

Плоское движение тела

Таким образом, для нахождения положения мгновенного центра скоростей надо знать величины и направления скоростей обеих точек.

Случай 6. Тело катится без проскальзывания по неподвижной поверхности (рис.4.10).

Плоское движение тела

В этом случае мгновенный центр скоростей находится в точке Плоское движение тела прикосновения тела к поверхности. Действительно, если отсутствует скольжение тела относительно поверхности, то скорости точек прикосновения тела и поверхности должны быть одинаковыми. Но скорости точки Плоское движение тела, принадлежащей неподвижной поверхности, равна нулю.

Тогда и скорость точки Плоское движение тела, которой в данный момент времени движущееся тело прикасается к неподвижной поверхности, тоже равна нулю.

Порядок решения задач на тему: Определение скоростей точек тела

а) решение графоаналитическим методом:

  • выбрать за полюс ту точку тела, скорость которой известна по величине и направлению или легко определяется из условий задачи;
  • найти точку тела, направление скорости которой известно;
  • пользуясь формулами плоского движения найти скорость этой точки;
  • определить угловую скорость тела в данный момент времени;
  • по известной угловой скорости и скорости полюса, пользуясь формулами плоского движения найти скорости других точек тела.

б) решение с помощью мгновенного центра скоростей:

  • определить положение мгновенного центра скоростей одним из известных способов;
  • определить значение мгновенного радиуса той точки тела, скорость которой известна, и найти угловую скорость тела;
  • найти скорости других точек тела.

Примеры решения задач на тему: Определение скоростей точек тела

Задача №1

Стержень Плоское движение тела (рис.4.11) длиной Плоское движение тела выполняет плоское движение. Вектор скорости точки Плоское движение тела образует угол Плоское движение тела с осью стержня и в данный момент времени равен Плоское движение тела. Вектор скорости точки Плоское движение тела в этот же момент времени образует угол Плоское движение тела с осью стержня.

Плоское движение тела

Определить величину скорости точки Плоское движение тела, положение мгновенного центра скоростей, угловую скорость стержня и скорость точки Плоское движение тела, которая лежит на середине стержня.

Решение задачи графоаналитическим способом

1. Выберем за полюс точку Плоское движение тела (рис.4.11), поскольку известны направление и величина скорости этой точки.

2. Используя формулу распределения скоростей при плоском движении, запишем векторное уравнение для определения скорости точки Плоское движение тела:

Плоское движение тела

где Плоское движение тела — скорость полюса точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела.

Данное векторное уравнение можно решить построением векторного треугольника скоростей (рис.4.12). Для этого из произвольной точки плоскости Плоское движение тела надо построить правую и левую часть векторного уравнения (1).

Плоское движение тела

При построении правой части уравнения (1) из точки Плоское движение тела в произвольном масштабе отложим вектор скорости Плоское движение тела, который является известным и по величине и по направлению. К вектору Плоское движение тела надо добавить вектор относительной скорости Плоское движение тела, направление которого является известным, поскольку скорость точки Плоское движение тела у ее относительном вращательном движении вокруг полюса Плоское движение тела перпендикулярна радиусу вращения, в данном случае радиус вращения — отрезок Плоское движение тела. Величина вектора Плоское движение тела неизвестна и поэтому через точку Плоское движение тела проводится только его направление (прямая Плоское движение тела рис.4.12).

Теперь из точки Плоское движение тела построим левую часть уравнения (1). Направление скорости точки Плоское движение тела является известным (по условию задачи), но неизвестна ее величина, и потому, из точки Плоское движение тела проводим линию параллельную Плоское движение тела.

Точка Плоское движение тела пересечения прямых, параллельных Плоское движение тела и Плоское движение тела, и будет решением данного векторного уравнения.

В результате построения получили замкнутый треугольник скоростей, стороны которого в выбранном масштабе определяют искомую скорость точки Плоское движение тела и относительную скорость этой же точки при ее вращении вместе с телом вокруг полюса Плоское движение тела.

В этом треугольнике известны все углы и одна сторона Плоское движение тела. С треугольника Плоское движение тела находим:

Плоское движение тела

3. Определим угловую скорость вращения стержня Плоское движение тела. Поскольку Плоское движение тела, то :

Плоское движение тела

4. Найдем скорость точки Плоское движение тела, лежащей посередине отрезка Плоское движение тела. Для этого запишем формулу для скорости точки Плоское движение тела относительно того же самого полюса точки Плоское движение тела:

Плоское движение тела

где Плоское движение тела — скорость полюса точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела.

Скорость Плоское движение тела имеет то же направление, что и Плоское движение тела, а по модулю равна:

Плоское движение тела

Отложив от точки Плоское движение тела (рис.4.12) вектор Плоское движение тела, равный половине вектора Плоское движение тела , получим точку Плоское движение тела. Вектор, проведенный из точки начала построения (точки Плоское движение тела ) в точку Плоское движение тела изображает скорость Плоское движение тела точки Плоское движение тела.

Поскольку стороны Плоское движение тела и Плоское движение тела треугольника Плоское движение тела равны между собой Плоское движение тела и угол между ними Плоское движение тела, то треугольник равносторонний. Таким образом: Плоское движение тела

Решение задачи с помощью мгновенного центра скоростей

1. Определим положение мгновенного центра скоростей. Для этого с точек Плоское движение тела и Плоское движение тела (рис.4.13) проведем перпендикуляры к скоростям Плоское движение тела и Плоское движение тела. Пересечение этих перпендикуляров (точка Плоское движение тела) будет мгновенным центром скоростей.

Плоское движение тела

2. Определим мгновенные радиусы. Поскольку треугольник Плоское движение тела прямоугольный, то:

Плоское движение тела

3. Вычислим угловую скорость вращения фигуры вокруг мгновенного центра скоростей:

Плоское движение тела

4. Найдем скорости точек Плоское движение тела и Плоское движение тела:

Плоское движение тела

где Плоское движение тела — мгновенный радиус точки Плоское движение тела, поскольку треугольник Плоское движение тела равносторонний (Плоское движение тела угол между ними Плоское движение тела), то Плоское движение тела

Если надо было бы определить только величину скорости Плоское движение тела, то можно было бы воспользоваться теоремой о равенстве проекций двух точек плоской фигуры на прямую, соединяющую эти точки:

Плоское движение тела

Тогда:

Плоское движение тела

Ответ: Плоское движение тела

Задача №2

Колесо радиусом Плоское движение тела катится по горизонтальной поверхности. В момент рассматриваемого времени скорость центра Плоское движение тела и угловая скорость колеса Плоское движение тела (рис.4.14).

Определить: скорости точек Плоское движение тела, Плоское движение тела и Плоское движение тела, которые лежат на концах вертикального и горизонтального диаметров.

Плоское движение тела

Решение.

1. В качестве полюса выберем точку Плоское движение тела, направление и величина скорости которой известны.

2.Используя формулу распределения скоростей точек тела при плоском движении определяем скорости других точек колеса.

Для точки Плоское движение тела колеса:

Плоское движение тела

где Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вокруг полюса Плоское движение тела.

По модулю Плоское движение тела равна:

Плоское движение тела

Скорость Плоское движение тела направлена перпендикулярно Плоское движение тела в сторону угловой скорости, то есть по направлению Плоское движение тела и Плоское движение тела будут совпадать.

Из точки Плоское движение тела (рис.4.14) строим уравнение (1): откладываем вектор Плоское движение тела, а с его конца по тому же направлению Плоское движение тела.

Тогда:

Плоское движение тела

Векторное уравнение для определения скорости точки Плоское движение тела, будет иметь вид:

Плоское движение тела

где Плоское движение тела — скорость точки Плоское движение тела в ее вращательном движении вокруг полюса Плоское движение тела.

Эта скорость параллельна скорости Плоское движение тела, но будет направлена в противоположную сторону и по модулю равна:

Плоское движение тела

Из точки Плоское движение тела (рис.4.14) строим векторное уравнение (2): откладываем вектор Плоское движение тела, а с его конца в противоположную сторону Плоское движение тела.

Поскольку векторы коллинеарны, то:

Плоское движение тела

Таким образом, скорость точки Плоское движение тела равна Плоское движение тела и направлена в противоположную сторону от Плоское движение тела. Колесо катится со скольжением по поверхности.

Составляем векторное уравнение для определения скорости точки Плоское движение тела:

Плоское движение тела

где Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вокруг полюса Плоское движение тела.

По модулю Плоское движение тела равна:

Плоское движение тела

Скорость Плоское движение тела направлена перпендикулярно Плоское движение тела в сторону угловой скорости Плоское движение тела, то есть вертикально вниз.

Из точки Плоское движение тела (рис.4.14) строим уравнение (3): откладываем вектор Плоское движение тела, а с его конца вектор Плоское движение тела вертикально вниз. Соединив точку Плоское движение тела с концом вектора Плоское движение тела получим вектор Плоское движение тела скорости точки Плоское движение тела.

Поскольку векторы Плоское движение тела и Плоское движение тела между собой перпендикулярны, то вектор Плоское движение тела является гипотенузой прямоугольного треугольника:

Плоское движение тела

Ответ: Плоское движение тела

Задача №3

Колесо радиусом Плоское движение тела катится без проскальзывания по горизонтальной поверхности со скоростью центра колеса Плоское движение тела

Определить: скорости точек Плоское движение тела, Плоское движение телаПлоское движение тела (рис.4.15).

Плоское движение тела

Решение. Решим задачу с помощью мгновенного центра скоростей.

1. Определим положение мгновенного центра скоростей. Поскольку колесо катится по неподвижной поверхности, то мгновенный центр скоростей находится в точке Плоское движение тела прикосновения колеса к неподвижной поверхности.

2. Мгновенный радиус для точки Плоское движение тела равен Плоское движение тела. Тогда с формулы (4.4) получим угловую скорость Плоское движение тела колеса:

Плоское движение тела

Направлена угловая скорость по ходу часовой стрелки.

3. Определим величину и направление скоростей точек Плоское движение тела, Плоское движение телаПлоское движение тела.

Соединим точки Плоское движение тела, Плоское движение телаПлоское движение тела с мгновенным центром скоростей Плоское движение тела. Векторы скоростей Плоское движение тела, Плоское движение тела и Плоское движение тела будут направлены перпендикулярно мгновенным радиусам Плоское движение тела и Плоское движение тела, соответственно.

По модулю скорости будут равны:

Плоское движение тела

где

Плоское движение тела

Ответ: Плоское движение тела

Задачи, которые рекомендуются для самостоятельной работы: 16.2; 16.4; 16.11; 16.12 [2]

Определение ускорений точек тела

Теорема: ускорение любой точки плоской фигуры равно геометрической сумме ускорения полюса и ускорения этой точки во вращательном движении фигуры вокруг полюса.

Ускорения точек плоской фигуры

Формула распределения ускорений при плоском движении тела имеет вид:

Плоское движение тела

где Плоское движение тела — ускорение полюса, точки Плоское движение тела, в поступательном движении;

Плоское движение тела — относительное ускорение точки Плоское движение тела в ее вращательном движении вместе с телом вокруг полюса Плоское движение тела;

Плоское движение тела — ускорение любой точки Плоское движение тела тела.

Ускорение любой точки Плоское движение тела плоской фигуры равно геометрической сумме ускорения точки, которую выбрано за полюс, и ускорения точки Плоское движение тела при его вращении вместе с телом вокруг этого полюса.

Графическое определение ускорения точки Плоское движение тела выполняется следующим образом (рис.4.16):

Плоское движение тела

Плоское движение тела

Вычисление величины ускорения точки Плоское движение тела с помощью рассматриваемого параллелограмма затрудняет расчеты, поскольку предварительно надо определить угол между векторами Плоское движение тела и Плоское движение тела.

Учитывая, что Плоское движение телапредставляет собой относительное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг полюса Плоское движение тела, то это ускорение можно разложить на относительную тангенциальную (касательную) и относительную нормальную (центростремительную) составляющие:

Плоское движение тела

где

Плоское движение тела

Вектор Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону углового ускорения, а вектор Плоское движение тела всегда направлен от точки Плоское движение тела к выбранному полюсу Плоское движение тела (рис.4.17).

Тогда уравнение (4.10) примет вид:

Плоское движение тела

Если точка Плоское движение тела, которая выбрана за полюс поступательного движения, движется не прямолинейно, то ее ускорение, в свою очередь, тоже можно разложить на тангенциальную Плоское движение тела и нормальную Плоское движение тела составляющие:

Плоское движение тела

Плоское движение тела

Порядок решения задач на тему: Определение ускорений точек тела

1. Выбрать точку, которая будет полюсом при записи уравнения плоского движения (как правило выбирают точку, ускорение которой известно).

2. Записать векторное уравнение распределения ускорений.

3. Спроектировать уравнение распределения ускорений на две взаимно перпендикулярные оси, одна из которых совпадает с нормальным ускорением, а вторая – с тангенциальным.

4. Определить мгновенное угловое ускорение плоской фигуры.

5. Найти искомые ускорения точек с помощью уравнения распределения ускорений.

Примеры решения задач на тему: Определение ускорений точек тела

Задача №1

Прямоугольная (рис.4.18, а) пластина Плоское движение тела движется в плоскости чертежа. Ускорение точки Плоское движение тела в данный момент времени равно Плоское движение тела и образует с прямой Плоское движение тела угол Плоское движение тела.

Ускорение точки Плоское движение тела составляет Плоское движение тела и образует угол Плоское движение тела с прямой Плоское движение тела.

Плоское движение тела

Определить мгновенную угловую скорость и мгновенное угловое ускорение пластины, и ускорение точки Плоское движение тела, если Плоское движение тела

Решение.

1. Выберем за полюс точку Плоское движение тела, поскольку ее ускорение известно (задано в исходных данных).

2. Составим векторное уравнение для ускорения точки Плоское движение тела пластины:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее вращательном движении вместе с телом вокруг точки Плоское движение тела. Вектор этого ускорения направлен от точки Плоское движение тела к точке Плоское движение тела и по модулю равен: Плоское движение тела

Плоское движение тела — относительное тангенциальное (касательное) ускорение точки Плоское движение тела в ее вращении вместе с телом вокруг точки Плоское движение тела. Направлен вектор этого ускорения перпендикулярно Плоское движение тела в сторону углового ускорения и по модулю равен Плоское движение тела.

Поскольку направление углового ускорения неизвестное, то направлением Плоское движение тела на рис. 4.18,а задаемся.

3. Спроектируем составленное уравнение (1) на оси Плоское движение тела и Плоское движение тела.

В проекции на ось Плоское движение тела получим:

Плоское движение тела

В проекции на ось Плоское движение тела:

Плоское движение тела

4. Из уравнения (2) получим величину нормального ускорения:

Плоское движение тела

Найдем мгновенную угловую скорость фигуры:

Плоское движение тела

5. Из уравнения (3) получим величину тангенциального ускорения:

Плоское движение тела

Угловое ускорение фигуры:

Плоское движение тела

Поскольку величина Плоское движение тела положительная, то направление тангенциального, а соответственно и углового ускорений выбрано верно.

6. Определим ускорение точки Плоское движение тела.

Для вычисления ускорения точки Плоское движение тела лучше за полюс выбрать точку Плоское движение тела, поскольку ускорение этой точки уже известно и задана сторона Плоское движение тела прямоугольника:

Плоское движение тела

Направление векторов Плоское движение тела и Плоское движение тела показано на рис. 4.18,б.

Спроектируем записанное уравнение на оси Плоское движение тела и Плоское движение тела:

Плоское движение тела

где

Плоское движение тела

Полное ускорение точки Плоское движение тела:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

Задача №2

Равносторонний треугольник Плоское движение тела движется в плоскости чертежа. Ускорение вершин Плоское движение тела и  Плоское движение тела в данный момент времени равны Плоское движение тела и направлены вдоль сторон треугольника (рис.4.19).

Определить ускорение вершины Плоское движение тела.

Решение. Если известны ускорения двух точек плоской фигуры, например Плоское движение тела и  Плоское движение тела, то задачу рекомендуется решать в следующей последовательности:

1. Рассматривая первую точку Плоское движение тела как полюс поступательного движения, записать векторное уравнение распределения ускорений при плоском движении для точки Плоское движение тела и спроектировать это уравнение на прямую Плоское движение тела, соединяющую обе точки.

2. Из уравнения проекций определить величину нормального ускорения Плоское движение тела и значение  угловой скорости фигуры Плоское движение тела.

3. Спроектировать векторное уравнение распределения ускорений при плоском движении на прямую, которая перпендикулярна Плоское движение тела, и определить из уравнения проекций величину тангенциального ускорения Плоское движение тела и значение углового ускорения фигуры Плоское движение тела.

4. Если нужно, то, используя формулу распределения ускорений при плоском движении, определить ускорение любой другой точки плоской фигуры.

Решим задачу, придерживаясь приведенной последовательности.

1. Выберем за полюс точку Плоское движение тела. Для точки Плоское движение тела треугольника можно записать:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела;

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела, направлением задаемся (рис.4.19).

Спроектируем записанное равенство (1) на прямую Плоское движение тела:

Плоское движение тела

Плоское движение тела

2. Откуда: 

Плоское движение тела

Поскольку Плоское движение тела то:

Плоское движение тела

3. Спроектируем векторное уравнение на прямую, которая перпендикулярна Плоское движение тела:

Плоское движение тела

Откуда: 

Плоское движение тела

Учитывая то, что Плоское движение тела, получим:

Плоское движение тела

Поскольку величина тангенциального ускорения Плоское движение тела положительная, то его направление на рис. 4.19 выбрано верно. Отсюда следует, что угловое ускорение направлено против хода часовой стрелки.

4. Определим ускорение точки Плоское движение тела, приняв за полюс точку Плоское движение тела:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела;

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела в сторону углового ускорение фигуры Плоское движение тела.

Учитывая, что Плоское движение тела, определим модули относительного нормального и тангенциального ускорений:

Плоское движение тела

От точки Плоское движение тела (рис.4.20) отложим векторы ускорений, которые составляют правую часть уравнения (2).

Выберем систему координат Плоское движение тела, причем ось Плоское движение тела направим вдоль стороны Плоское движение тела треугольника.

Спроектируем равенство (2) на оси выбранной системы координат:

Плоское движение тела

Подставляя числовые данные, получим:

Плоское движение тела

Таким образом, ускорение вершины Плоское движение тела треугольника равно:

Плоское движение тела

Поскольку проекция ускорения Плоское движение тела на ось Плоское движение тела равна нулю и величина проекции на ось Плоское движение тела положительная, то вектор ускорения точки Плоское движение тела будет направлен вдоль стороны Плоское движение тела треугольника от точки Плоское движение тела к точке Плоское движение тела.

Ответ: Плоское движение тела

Задача № 3

В шарнирном механизме (рис.4.21) в данный момент времени угловая скорость и угловое ускорение кривошипа Плоское движение тела равны Плоское движение тела Точка Плоское движение тела механизма движется по дуге окружности радиусом Плоское движение тела и в момент времени, что рассматривается, лежит на прямой Плоское движение тела.

Плоское движение тела

Найти ускорение точки Плоское движение тела и мгновенное угловое ускорение шатуна Плоское движение тела, если Плоское движение тела 

Решение. Скорость точки Плоское движение тела кривошипа, который вращается вокруг точки Плоское движение тела равен:

Плоское движение тела

Направлена скорость Плоское движение тела перпендикулярно Плоское движение тела в сторону угловой скорости Плоское движение тела (рис.4.21).

Точка Плоское движение тела шатуна вращается вокруг центра Плоское движение тела и ее линейная скорость направлена перпендикулярно Плоское движение тела.

Поскольку скорости точек Плоское движение тела и Плоское движение тела шатуна параллельны, то мгновенный центр скоростей шатуна лежит в бесконечности и мгновенное движение шатуна является поступательным, то есть

Плоское движение тела

Ускорение точки Плоское движение тела равно геометрической сумме нормального и тангенциального ускорений:

Плоское движение тела

где 

Плоское движение тела

Направления ускорений Плоское движение тела и Плоское движение тела показаны на рис.4.21.

Выберем точку Плоское движение тела за полюс для шатуна Плоское движение тела. Тогда для точки Плоское движение тела шатуна:

Плоское движение тела

или

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение телаПлоское движение тела

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела, направлением задаемся (рис.4.22), Плоское движение тела

Свяжем с точкой Плоское движение тела прямоугольную систему координат Плоское движение тела (рис.4.22) и спроектируем уравнение (1), помня, что Плоское движение тела, на оси выбранной системы координат:

Плоское движение тела

С другой стороны, при движении точки Плоское движение тела по дуге окружности радиуса Плоское движение тела, точка приобретет ускорения Плоское движение тела:

Плоское движение тела

где Плоское движение тела — нормальное ускорение точки Плоское движение тела в ее вращательном движении вокруг точки Плоское движение тела направлено к центру вращения;

Плоское движение тела — тангенциальное ускорение точки Плоское движение тела в ее вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела, задаемся направлением (рис.4.22).

Плоское движение тела

По величине нормальное Плоское движение тела и тангенциальное Плоское движение тела ускорения соответственно равны:

Плоское движение тела

Спроектируем уравнение (4) на оси выбранной системы координат:

Плоское движение тела

Подставим в (3) все рассчитанные величины:

Плоское движение тела

Поскольку

Плоское движение тела

то

Плоское движение тела

Положительное значение величины Плоское движение тела указывает на то, что направление Плоское движение тела было выбрано верно.

Угловое ускорение тела Плоское движение тела равно:

Плоское движение тела

Угловое ускорение Плоское движение тела направлено в сторону Плоское движение тела, то есть против хода часовой стрелки.

Для определения тангенциального ускорения Плоское движение тела в уравнение (2) подставим Плоское движение тела из (5):

Плоское движение тела

Откуда

Плоское движение тела

Поскольку величина Плоское движение тела отрицательная, то направление тангенциального ускорения Плоское движение тела выбрано не в ту сторону.

Полное ускорение точки Плоское движение тела:

Плоское движение тела

Ответ: Плоское движение тела

Задачи, которые рекомендуются для самостоятельной работы: 18.12; 18.14; 18.22 [2].

План скоростей

План скоростей и план ускорений – физическое изображение векторных уравнений, связывающих скорости и ускорения точек механизма. Изображение механизма, выполненное с помощью условных обозначений (см. выше) называется структурной схемой механизма.

Определение скоростей различных точек движущейся плоской фигуры легко может быть выполнено графически с помощью построения плана скоростей.

План скоростей – это графическое изображение из единого центра (полюса) векторов абсолютных скоростей точек фигуры в фиксированный момент ее движения.

План скоростей может быть построен, если:

  • известная скорость одной точки плоской фигуры и направление скорости другой точки;
  • известная скорость одной точки плоской фигуры и мгновенная угловая скорость фигуры

Пусть известные скорости Плоское движение тела, Плоское движение тела, Плоское движение тела и Плоское движение тела, вершин прямоугольника Плоское движение тела (рис. 4.23, а). Для построения плана скоростей с произвольной точки Плоское движение тела (рис.4.23,б), которая называется полюсом плана скоростей, отложим направленные отрезки Плоское движение тела и Плоское движение тела, которые в выбранном масштабе будут изображать скорости Плоское движение тела, Плоское движение тела, Плоское движение тела и Плоское движение тела. Полученные точки Плоское движение тела и Плоское движение тела, которые называются вершинами плана скоростей, соединим между собой прямыми линиями.

Плоское движение тела

Установим свойства и правила построения плана скоростей.

По уравнению распределения скоростей при плоском движении фигуры, если за полюс принять точку Плоское движение тела, то для точки Плоское движение тела получим:

Плоское движение тела

где Плоское движение тела — вектор абсолютной скорости точки Плоское движение тела;

Плоское движение тела — вектор относительной скорости точки Плоское движение тела в относительном вращательном движении вместе с телом вокруг точки Плоское движение тела, направлена перпендикулярно Плоское движение тела и по модулю равна Плоское движение тела

С другой стороны для векторов треугольника Плоское движение тела плана скоростей (рис.4.23,б) можно записать:

Плоское движение тела

Учитывая, что векторы Плоское движение тела и Плоское движение тела изображают в выбранном масштабе абсолютные скорости Плоское движение тела и Плоское движение тела и, сравнивая уравнения (4.14) и (4.15), можно сделать вывод, что отрезок Плоское движение тела изображает в масштабе скорость Плоское движение тела.

Таким образом, отрезок Плоское движение тела плана скоростей направлен перпендикулярно стороне Плоское движение тела фигуры и по модулю равен: 

Плоское движение тела

где Плоское движение тела — масштабный коэффициент, который принят при построении плана скоростей.

Аналогично:

Плоское движение тела

Отсюда мгновенная скорость вращения плоской фигуры:

Плоское движение тела

Вектор Плоское движение тела согласно уравнению (4.14) направлен на плане скоростей от точки Плоское движение тела к точке Плоское движение тела. Если этот вектор перенести в точку Плоское движение тела фигуры, то можно определить направление вращения точки Плоское движение тела вокруг точки Плоское движение тела вместе с фигурой (в данном случае, по ходу часовой стрелки). Направление же мгновенной угловой скорости Плоское движение тела плоской фигуры будет совпадать с направлением ее вращения.

Из рассматриваемого вытекает:

Порядок решения задач на тему: План скоростей

1. Изображают на чертеже в выбранном масштабе плоскую фигуру и вектор скорости той точки, скорость которой известна.

2. Определяют направление скорости второй точки плоской фигуры.

3. Записывают векторное уравнение распределения скоростей при плоском движении, принимая за полюс точку, скорость которой известна, а за искомую ту точку, направление скорости которой известно.

4. Решают записанное векторное уравнение графически путем построения в выбранном масштабе плана скоростей.

5. Определяют мгновенную угловую скорость вращения плоской фигуры.

6. Определяют скорость других точек плоской фигуры.

Примеры решения задач на тему: План скоростей

Задача №1

Найти угловую скорость Плоское движение тела шатуна 2 и скорость точки Плоское движение тела ползуна 3 кривошипно-шатунного механизма (рис. 4.24), если : 

Плоское движение тела

Плоское движение тела

Решение.

1. Согласно исходным данным в произвольном масштабе строим схему механизма (рис.4.25, а).

2. Учитывая, что кривошип 1 вращается вокруг неподвижной точки Плоское движение тела с угловой скоростью Плоское движение тела определяем скорость точки Плоское движение тела кривошипа 1 и шатуна 2:

Плоское движение тела

Направлена скорость Плоское движение тела перпендикулярно Плоское движение тела в сторону угловой скорости Плоское движение тела.

3. Следующей точкой шатуна, скорость которого можно определить, является точка Плоское движение тела, поскольку она, кроме шатуна, одновременно принадлежит и ползуну 3, что движется поступательно в горизонтальных направляющих. То есть направление этой скорости известно.

Для определения скорости точки Плоское движение тела запишем уравнение распределения скоростей при плоскопараллельном движении, принимая за полюс точку Плоское движение тела, скорость которой известна:

Плоское движение тела

где Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном 2 вокруг точки Плоское движение тела. Вектор Плоское движение тела направлен перпендикулярно ;

Плоское движение тела — абсолютная скорость точки Плоское движение тела, которая движется прямолинейно вместе с ползуном 3 в горизонтальных направляющих.

Плоское движение тела

4. Решим уравнение (1) графически (рис.4.25, б). Для этого с произвольной точки Плоское движение тела (полюса плана скоростей) отложим направленный отрезок Плоское движение тела, который в определенном масштабе будет изображать вектор скорости Плоское движение тела. Через точку Плоское движение тела этого отрезка проведем линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор скорости Плоское движение тела, длина и направление которого неизвестны.

Вектор который будет на плане скоростей изображать абсолютную скорость точки Плоское движение тела, выходит из полюса Плоское движение тела параллельно Плоское движение тела к пересечению с линией Плоское движение тела в точке Плоское движение тела.

Определим направление отрезка Плоское движение тела, который на плане скоростей изображает относительную скорость Плоское движение тела. Поскольку, согласно уравнению (1), вектор Плоское движение тела надо прибавить к вектору Плоское движение тела, который на плане скоростей изображается вектором Плоское движение тела, то вектор Плоское движение тела будет направлен от точки Плоское движение тела к точке Плоское движение тела.

Полученный векторный треугольник Плоское движение тела представляет собой план скоростей для кривошипно-шатунного механизма в положении, что рассматривается. Стороны этого треугольника в определенном масштабе изображают: Плоское движение тела — абсолютную скорость точки Плоское движение тела; Плоское движение тела — относительную скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном Плоское движение тела вокруг точки Плоское движение тела; Плоское движение тела — абсолютную скорость точки Плоское движение тела.

Перенесем из плана скоростей в точку Плоское движение тела на рис.4.25, а найденные направления скоростей Плоское движение тела и Плоское движение тела.

Поскольку скорость Плоское движение тела на плане изображается вектором Плоское движение тела, а Плоское движение тела — вектором Плоское движение тела, то угол при вершине Плоское движение тела равен углу между этими двумя векторами скоростей. Если на рис.4.25, а перенести Плоское движение тела и Плоское движение тела в точку Плоское движение тела, то угол между ними будет составлять Плоское движение тела, то есть Плоское движение тела

Аналогично, Плоское движение тела равен углу между векторами Плоское движение тела и Плоское движение тела. Учитывая, что Плоское движение тела, с рис.4.25, а получим:

Плоское движение тела

Таким образом, и угол при вершине Плоское движение тела тоже будет равняться Плоское движение тела, а треугольник Плоское движение тела будет равносторонним, то есть:

Плоское движение тела, или Плоское движение тела

5. Определяем мгновенную угловую скорость шатуна 2. Поскольку Плоское движение тела, то:

Плоское движение тела

где Плоское движение тела, исходя из того, что треугольник Плоское движение тела (рис.4.25,а) равнобедренный.

Направление угловой скорости Плоское движение тела определяется вектором Плоское движение тела. В данном случае Плоское движение тела направлена против хода часовой стрелки.

Ответ: Плоское движение тела

Задача №2

Найти угловые скорости шатуна 2 и коромысла 3 и абсолютные скорости точек Плоское движение тела и Плоское движение тела рычажного механизма (рис.4.26), если: Плоское движение тела Плоское движение тела Плоское движение тела

Угловая скорость кривошипа 1 — Плоское движение тела 

Плоское движение тела

Решение.

1. В соответствии с исходными данными в произвольном масштабе строим схему механизма (рис.4.27, а).

2. Так как точка Плоское движение тела принадлежит кривошипу 1, который вращается вокруг шарнира Плоское движение тела с угловой скоростью Плоское движение тела, то:

Плоское движение тела

Вектор скорости Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону вращения кривошипа (рис.4.27, а).

2. Шатун 2 механизма движется плоскопараллельно. Скорость точки Плоское движение тела шатуна 2 равна скорости точки Плоское движение тела кривошипа 1. Второй точкой шатуна, направление скорости которой известно, есть точка Плоское движение тела. Точка Плоское движение тела, кроме шатуна, принадлежит и коромыслу 3, которое вращается вокруг центра Плоское движение тела. Таким образом, скорость точки Плоское движение тела направлена перпендикулярно радиусу вращения Плоское движение тела.

3. Для определения скорости точки Плоское движение тела запишем формулу распределение скоростей:

Плоское движение тела

где Плоское движение тела — абсолютная скорость точки Плоское движение тела, которая направлена перпендикулярно Плоское движение тела;

Плоское движение тела — абсолютная скорость точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном 2 вокруг полюса Плоское движение тела. Направлен вектор Плоское движение тела перпендикулярно Плоское движение тела.

4. Решаем записанное уравнение графически. Для этого из произвольной точки Плоское движение тела (полюса плана скоростей) (рис.4.27,б) проводим вектор Плоское движение тела параллельно Плоское движение тела, который в определенном масштабе будет изображать скорость точки Плоское движение тела.

Плоское движение тела

Через конец вектора Плоское движение тела проводим линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор относительной скорости Плоское движение тела. Длина и направление этого вектора неизвестны.

Скорость точки Плоское движение тела направлена перпендикулярно Плоское движение тела и, по правилу, должна проходить через полюс плана скоростей. Исходя из этого, через точку Плоское движение тела проводим линию перпендикулярную коромыслу 3 к пересечению в точке Плоское движение тела с линией Плоское движение тела.

Полученный на рис. 4.27, б векторный треугольник Плоское движение тела являет собой план скоростей механизма в данном положении. В этом треугольнике вектор Плоское движение тела изображает абсолютную скорость точки Плоское движение тела, вектор Плоское движение тела направлен от полюса к точке Плоское движение тела — абсолютную скорость точки Плоское движение тела, а вектор Плоское движение тела направлен от точки Плоское движение тела к точке Плоское движение тела — относительную скорость Плоское движение тела, поскольку, согласно уравнению (2), эта скорость прибавляется к Плоское движение тела.

Перенесем направления скоростей Плоское движение тела и Плоское движение тела в точку Плоское движение тела на рис. 4.27, а.

Поскольку Плоское движение тела, а Плоское движение тела, то угол при вершине Плоское движение тела равен углу при вершине Плоское движение тела треугольника Плоское движение тела на схеме механизма (рис. 4.28), который образован путем продолжения кривошипа Плоское движение тела и коромысла Плоское движение тела к пересечению.

Плоское движение тела

Таким образом

Плоское движение тела

Угол при вершине Плоское движение тела будет равняться углу Плоское движение тела между продолжением прямой Плоское движение тела (рис.4.28) и прямой Плоское движение тела, поскольку сторона Плоское движение тела, а прямая Плоское движение тела. Учитывая, что Плоское движение тела, то:

Плоское движение тела

Тогда угол при вершине Плоское движение тела:

Плоское движение тела

Для определения сторон Плоское движение тела плана скоростей воспользуемся теоремой синусов:

Плоское движение тела

Из уравнения (1) получим:

Плоское движение тела

Плоское движение тела

Таким образом:

Плоское движение тела

5. Определим мгновенные угловые скорости шатуна 2 и коромысла 3. Поскольку Плоское движение тела, то:

Плоское движение тела

Направление угловой скорости Плоское движение тела определяется направлением относительной скорости Плоское движение тела. С рис.4.27,а видно, что угловая скорость Плоское движение тела будет направлена против хода часовой стрелки.

Угловая скорость коромысла 3 равна:

Плоское движение тела

где

Плоское движение тела

Направление Плоское движение тела определяет скорость Плоское движение тела. Направлена угловая скорость коромысла 3 (рис.4.27,а) по ходу часовой стрелки.

6. Определить величины скоростей Плоское движение тела и Плоское движение тела можно непосредственно и путем измерения соответствующих отрезков на построенном плане скоростей.

Поскольку вектор Плоское движение тела на плане скоростей изображается отрезком Плоское движение тела, то масштабный коэффициент плана скоростей будет равен:

Плоское движение тела

Скорости Плоское движение тела на плане скоростей соответствует отрезок Плоское движение тела, а скорости Плоское движение телаПлоское движение тела.

Тогда:

Плоское движение тела

7. Для определения скорости точки Плоское движение тела воспользуемся теоремой подобия.

Поскольку фигура Плоское движение тела на схеме механизма и фигура Плоское движение тела на плане скоростей должны быть подобными, то можно составить пропорцию:

Плоское движение тела

В левой части пропорции (2) отношение отрезков на схеме механизма, а в правой — на плане скоростей.

Из уравнения (2) получим расстояние от точки Плоское движение тела к точке Плоское движение тела на плане скоростей:

Плоское движение тела

Поскольку на схеме механизма отрезок Плоское движение тела перпендикулярен Плоское движение тела, то и на плане скоростей отрезок Плоское движение тела надо провести перпендикулярно Плоское движение тела, причем в ту сторону, чтобы обход точек Плоское движение тела, Плоское движение тела и Плоское движение тела на плане скоростей должен был быть против хода часовой стрелки, как и для точек Плоское движение тела, Плоское движение тела и Плоское движение тела на схеме механизма.

Вектор скорости Плоское движение тела точки Плоское движение тела на плане скоростей в масштабе будет изображаться вектором Плоское движение тела, а величина скорости точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела Плоское движение тела Плоское движение тела

Задача №3

В состав рычажного механизма (рис.4.29) входят два кривошипа 1 и 4, и два шатуна 2 и 3. Кривошип 1 вращается с угловой скоростью Плоское движение тела, а кривошип 4 с угловой скоростью Плоское движение тела.

Плоское движение тела

Найти угловые скорости шатунов 2 и 3 и абсолютные скорости точек Плоское движение тела и Плоское движение тела, если: Плоское движение тела Плоское движение тела В данном положении механизма кривошип 1 расположен вертикально, а кривошип 2 – горизонтально.

Решение. Особенность этой задачи заключается в том, что определить сразу направление скорости точки Плоское движение тела невозможно. Но точка Плоское движение тела одновременно принадлежит к двум телам (шатуну Плоское движение тела и шатуну Плоское движение тела), и для нее можно записать два векторных уравнения распределения скоростей при плоском движении (относительно точек Плоское движение тела и Плоское движение тела), что позволяет решить задачу.

1. В соответствии с исходными данными в произвольном масштабе строим схему механизма (рис.4.30, а).

2. Так как точка Плоское движение тела принадлежит кривошипу 1, который вращается вокруг шарнира Плоское движение тела с угловой скоростью Плоское движение тела, то:

Плоское движение тела

Вектор скорости Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону вращения кривошипа 1 (рис.4.30, а).

Шатун 2 механизма движется плоскопараллельно. Скорость точки Плоское движение тела шатуна 2 равна скорости точки Плоское движение тела кривошипа 1.

Для определения скорости точки Плоское движение тела шатуна 2 запишем формулу распределения скоростей при плоском движении:

Плоское движение тела

где Плоское движение тела — абсолютная скорость точки Плоское движение тела, величина и направление которой является неизвестным;

Плоское движение тела — абсолютная скорость точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела при ее вращении вместе с шатуном 2 вокруг полюса Плоское движение тела. Направлен вектор Плоское движение тела перпендикулярно Плоское движение тела.

В уравнении (1) три неизвестных: величина и направление скорости точки Плоское движение тела; величина скорости Плоское движение тела. Поскольку векторное уравнение

Плоское движение тела

для плоскости позволяет определить только две неизвестных, то решить уравнение (1) невозможно.

3. Рассмотрим определение скорости точки Плоское движение тела шатуна 3 относительно точки Плоское движение тела.

Скорость точки Плоское движение тела кривошипа 4 равна:

Плоское движение тела

Вектор скорости Плоское движение тела направлен перпендикулярно Плоское движение тела в сторону вращения кривошипа 4 (рис.4.30, а).

Учитывая, что шатун 3 механизма движется плоскопараллельно, то для определения скорости точки Плоское движение тела шатуна 3 запишем формулу распределения скоростей при плоском движении:

Плоское движение тела

где Плоское движение тела — абсолютная скорость точки Плоское движение тела;

Плоское движение тела — относительная скорость точки Плоское движение тела в ее относительном вращательном движении вместе с шатуном 3 вокруг полюса Плоское движение тела. Направлен вектор Плоское движение тела перпендикулярно Плоское движение тела.

В записанной системе векторных уравнений (1,2) четыре неизвестных: величина и направление скорости точки Плоское движение тела; величина скорости Плоское движение тела; величина скорости Плоское движение тела. Поскольку из каждого уравнения можно определить две неизвестных, то записанная система является определенной и ее можно решить.

4. Решаем записанную систему векторных уравнений (1) и (2) графически. Для этого из произвольной точки Плоское движение тела построим сначала уравнение (1), а затем (2) (рис.4.30, б).

Согласно уравнению (1) из произвольной точки Плоское движение тела проводим вектор Плоское движение тела параллельно Плоское движение тела, который будет изображать скорость точки Плоское движение тела. Длину отрезка Плоское движение тела выберем Плоское движение тела.

Тогда масштабный коэффициент плана скоростей будет равен:

Плоское движение тела

Через конец вектора Плоское движение тела проводим линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор относительной скорости Плоское движение тела. Длина и направление этого вектора неизвестны.

Теперь построим из того же самого полюса Плоское движение тела уравнение (2). Сначала отложим вектор Плоское движение тела параллельно Плоское движение тела, который в масштабе Плоское движение тела будет изображать скорость точки Плоское движение тела. Длина этого вектора соответственно равна:

Плоское движение тела

Через конец вектора Плоское движение тела проводим линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой от точки Плоское движение тела будет направлен вектор относительной скорости Плоское движение тела.

Точка пересечения Плоское движение тела прямых Плоское движение тела и Плоское движение тела, которая одновременно удовлетворяет векторным уравнением (1) и (2), и будет решением системы, а вектор который на плане скоростей изображает Плоское движение тела будет направлен от полюса Плоское движение тела к точке Плоское движение тела.

Полученный на рис. 4.30,б четырехугольник Плоское движение тела представляет собой план скоростей механизма в данном положении. В этом четырехугольнике: вектор Плоское движение тела определяет относительную скорость Плоское движение тела; вектор Плоское движение тела — относительную скорость Плоское движение тела; Плоское движение тела — абсолютную скорость точки Плоское движение тела.

Перенесем направления скоростей Плоское движение тела и Плоское движение тела на рис. 4.30,а и, померив длины соответствующих отрезков, определим величины этих скоростей:

Плоское движение тела

5. Определим мгновенные угловые скорости шатунов.

Поскольку Плоское движение тела, то:

Плоское движение тела

Направление угловой скорости Плоское движение тела определяется направлением относительной скорости Плоское движение тела. С рис.4.30, а видно, что Плоское движение тела будет направлена против хода часовой стрелки.

Аналогично, угловая скорость шатуна 3 равна:

Плоское движение тела

Направление Плоское движение тела определяется относительной скоростью Плоское движение тела. Направлена угловая скорость шатуна 3 по ходу часовой стрелки.

Для определения скорости точки Плоское движение тела воспользуемся теоремой подобия. Поскольку точка Плоское движение тела на схеме механизма лежит посередине шатуна Плоское движение тела, то и на плане скоростей она должна лежать посередине отрезка Плоское движение тела.

Вектор скорости Плоское движение тела точки Плоское движение тела на плане скоростей в масштабе будет изображаться вектором Плоское движение тела, а величина скорости точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

План ускорений

План ускорений – построенный в определенном масштабе векторный график, характеризующие ускорения всех точек и звеньев механизма. Произвольная точка ра, из которой производится построение плана ускорений, называется полюсом плана ускорений.

Рассмотрим графический способ определения ускорений точек плоской фигуры (тела) с помощью плана ускорений.

Планом ускорений плоской фигуры является геометрическое место концов векторов ускорений любых точек фигуры, что отложены из одной произвольной точки, которую называют полюсом плана ускорений.

Построение плана ускорений основано на представлении ускорения Плоское движение тела любой точки Плоское движение тела фигуры в виде суммы трех векторов:

Плоское движение тела

где  Плоское движение тела — ускорение точки фигуры, которую принято за полюс поступательного движения;

Плоское движение тела — относительное нормальное (центростремительное) ускорение точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела. Направлено это ускорение от точки Плоское движение тела к точке Плоское движение тела и по модулю равно Плоское движение тела

Плоское движение тела — относительное тангенциальное (касательное) ускорение точки Плоское движение тела в ее относительном вращательном движении вместе с телом вокруг полюса Плоское движение тела. Направлено это ускорение перпендикулярно Плоское движение тела (отрезка Плоское движение тела ) в сторону углового ускорения Плоское движение тела тела и по модулю равно Плоское движение тела

Поскольку для определения величины Плоское движение тела надо знать угловую скорость Плоское движение тела плоской фигуры, то, если она не задана, предварительно надо построить план скоростей. Из плана скоростей определить относительную скорость вращения одной точки фигуры относительно второй и найти угловую скорость относительного вращательного движения (занятие 7).

Для того, чтобы уравнение (4.18) можно было решить, должно быть известно ускорение Плоское движение тела любой точки Плоское движение тела фигуры, которую выбирают за полюс поступательного движения.

Кроме того, должно быть известно:

Рассмотрим определение ускорений точек Плоское движение тела и Плоское движение тела треугольника Плоское движение тела (рис.4.31, а). Известными являются ускорение точки Плоское движение тела, направление ускорения точки Плоское движение тела и угловая скорость треугольника Плоское движение тела, то есть случай 1.

Для ускорения точки Плоское движение тела, если за полюс выбрать точку Плоское движение тела, будет справедливым векторное уравнение (4.18).

Решим уравнение (4.18) графически. Для этого (рис.4.31, б) из произвольной точки Плоское движение тела (полюса плана ускорений) построим вектор Плоское движение тела, который в масштабе будет изображать ускорение Плоское движение тела. С конца построенного вектора (точки Плоское движение тела ) построим вектор Плоское движение тела, который в том же масштабе будет изображать ускорение Плоское движение тела.

Величину ускорения Плоское движение тела определим из формулы:

Плоское движение тела

а направлен этот вектор вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела.

Плоское движение тела

К нормальному ускорению добавим, согласно уравнению (4.18), тангенциальное ускорение Плоское движение тела. Поскольку величина этого ускорения неизвестна, то через точку Плоское движение тела (конец вектора Плоское движение тела) проведем линию Плоское движение тела перпендикулярно Плоское движение тела, вдоль которой и будет направлен вектор Плоское движение тела.

Направление абсолютного ускорения Плоское движение тела точки Плоское движение тела известно из условия задачи. Поскольку все абсолютные ускорения точек на плане откладываются от полюса Плоское движение тела, то через полюс проведем прямую, параллельную направлению ускорения точки Плоское движение тела. Точка пересечения Плоское движение тела  линий Плоское движение тела и Плоское движение тела будет решением уравнения (4.18), а вектор Плоское движение тела будет в выбранном масштабе изображать ускорение Плоское движение тела точки Плоское движение тела.

Для определения ускорения точки Плоское движение тела воспользуемся тем, что известными уже являются ускорения двух точек фигуры Плоское движение тела и Плоское движение тела (случай 2).

Запишем векторные уравнения для ускорения точки Плоское движение тела относительно полюсов Плоское движение тела и Плоское движение тела:

Плоское движение тела

где Плоское движение тела и Плоское движение тела — относительные нормальные ускорения точки Плоское движение тела в ее относительном вращательном движении соответственно вокруг точек Плоское движение тела и Плоское движение тела;

Плоское движение тела и Плоское движение тела — относительные тангенциальные ускорения точки Плоское движение тела в ее относительном вращательном движении вокруг точек Плоское движение тела и Плоское движение тела, соответственно.

Первым решаем уравнение (4.19). Поскольку ускорение Плоское движение тела точки Плоское движение тела на плане (рис.4.31, б) уже построено, то с его конца (точки Плоское движение тела ) строим вектор Плоское движение тела, который направлен от точки Плоское движение тела к точке Плоское движение тела и по модулю в масштабе равен Плоское движение тела:

Плоское движение тела

Через конец вектора Плоское движение тела проводим прямую, перпендикулярную Плоское движение тела, вдоль которой будет направлено ускорение Плоское движение тела и на которой будет лежать точка конца вектора Плоское движение тела.

Следующим построим уравнение (4.20). Поскольку ускорение Плоское движение тела точки Плоское движение тела на плане уже построено, то с его конца, точки Плоское движение тела, строим вектор Плоское движение тела, который направлен от Плоское движение тела к Плоское движение тела и по модулю в масштабе равен Плоское движение тела:

Плоское движение тела

Через конец вектора Плоское движение тела проводим прямую, перпендикулярную Плоское движение тела, вдоль которой будет направлено ускорение Плоское движение тела и на которой будет лежать точка конца вектора Плоское движение тела.

Таким образом, конец вектора Плоское движение тела будет лежать на пересечении линий, вдоль которых будут направлены тангенциальные ускорения Плоское движение тела и Плоское движение тела. Вектор Плоское движение тела на плане ускорений будет в масштабе изображать абсолютное ускорение точки Плоское движение тела.

Векторы Плоское движение телаПлоское движение тела и Плоское движение тела, выходящие из полюса плана ускорений, определяют абсолютные ускорения точек Плоское движение телаПлоское движение тела и Плоское движение тела. Отрезки же, соединяющие концы векторов абсолютных ускорений Плоское движение тела и Плоское движение тела определяют относительные ускорения одних точек при их вращении вокруг других Плоское движение тела

Кроме абсолютных и относительных ускорений точек фигуры Плоское движение тела, определяется величина ее углового ускорения Плоское движение тела:

Плоское движение тела или Плоское движение тела или Плоское движение тела

Для определения же направления углового ускорения Плоское движение тела надо перенести в точку Плоское движение тела вектор тангенциального ускорения Плоское движение тела и направление этого вектора укажет направление углового ускорения. В данном случае, угловое ускорение Плоское движение тела направлено по ходу часовой стрелки.

Треугольник Плоское движение тела, который образовался на плане ускорений будет подобно треугольнику Плоское движение тела.

Таким образом, для плана ускорений справедливо

правило подобия: фигура, которую образуют концы векторов абсолютных ускорений точек тела на плане ускорений подобная фигуре, которую одноименные точки образуют на теле.

Примеры решения задач на тему: План ускорений

Задача №1

Найти ускорение точки Плоское движение тела ползуна 3 и угловое ускорение Плоское движение тела шатуна 2 механизма, изображенном на рис.4.24. Выходные данные: Плоское движение телаПлоское движение тела,  кривошип 1 вращается равномерно Плоское движение тела

Решение. План скоростей для этого механизма был построен в задаче № 1 занятия № 7 (рис.4.25,б) и была определена угловая скорость шатуна 2 Плоское движение тела 

1.Построим схему механизма (рис. 4.32, а).

2. Сначала найдем ускорение точки Плоское движение тела механизме, поскольку она принадлежит кривошипу 1, который вращается вокруг точки Плоское движение тела с известной угловой скоростью.

Учитывая, что угловая скорость кривошипа постоянная Плоское движение тела то Плоское движение тела и полное ускорение Плоское движение тела будет равняться нормальному ускорению Плоское движение тела точки Плоское движение тела в ее вращательном движении вокруг Плоское движение тела:

Плоское движение тела

По модулю:

Плоское движение тела

Направлено ускорение Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела по линии Плоское движение тела.

3. Для определения ускорения точки Плоское движение тела запишем формулу распределения ускорений при плоском движении, приняв за полюс точку Плоское движение тела, ускорение которой уже известно:

Плоское движение тела

где Плоское движение тела — абсолютное ускорение точки Плоское движение тела, которое направлено по направлению движения ползуна 3 в горизонтальных направляющих;

Плоское движение тела — ускорение точки Плоское движение тела, известное по величине и по направлению;

Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено по шатуну Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — тангенциальное ускорение точки Плоское движение тела при ее вращении вокруг точки Плоское движение тела, направлено перпендикулярно шатуну Плоское движение тела и по модулю равно:

Плоское движение тела

Поскольку направление ускорения точки Плоское движение тела известно, то уравнение (1) достаточно для определения Плоское движение тела.

4. Решим уравнение (1) графически путем построения плана ускорений.

Из произвольной точки Плоское движение тела полюса плана ускорений (рис.4.32,б) отложим вектор Плоское движение тела, который будет изображать ускорение Плоское движение тела, и который направлен параллельно линии Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела. От конца этого вектора отложим вектор Плоское движение тела, что будет изображать Плоское движение тела, и который направлен параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела. Через конец вектора Плоское движение тела, точку Плоское движение тела, проведем линию Плоское движение тела, перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела и на этой линии будет лежать точка Плоское движение тела — конец вектора абсолютного ускорения точки Плоское движение тела механизма.

Плоское движение тела

Поскольку ускорение Плоское движение тела направлено по оси Плоское движение тела движения ползуна 3, то с полюса Плоское движение тела проводим горизонтальную прямую. Точка пересечения Плоское движение тела этой прямой с линией Плоское движение тела, проведенная перпендикулярно Плоское движение тела, будет концом вектора ускорения точки Плоское движение тела, а вектор Плоское движение тела будет изображать на плане ускорений Плоское движение тела.

4. Из построенного плана ускорений определим абсолютные величины ускорений Плоское движение тела и Плоское движение тела. Для этого с полюса Плоское движение тела опустим перпендикуляр Плоское движение тела на продолжение линии Плоское движение тела. Угол Плоское движение тела равен углу Плоское движение тела и составляет Плоское движение тела.

Из векторного четырехугольника Плоское движение тела (рис. 4.32, б) вытекает:

Плоское движение тела

Спроектируем векторное уравнение (2) на прямую Плоское движение тела:

Плоское движение тела

Учитывая, что Плоское движение тела изображает на плане ускорений Плоское движение тела, Плоское движение тела,  уравнение (3) можно переписать следующим образом:

Плоское движение тела

Откуда:

Плоское движение тела

Теперь спроектируем уравнение (2) на прямую Плоское движение тела:

Плоское движение тела

Учитывая, что Плоское движение тела на плане ускорений изображает Плоское движение тела, получим:

Плоское движение тела

Откуда:

Плоское движение тела

Поскольку Плоское движение тела, то:

Плоское движение тела

Из полученного результата следует, что в данный момент времени шатун механизма вращается равномерно Плоское движение тела и план ускорений будет иметь вид как на рис.4.33.

Плоское движение тела

Ответ: Плоское движение тела

Если построение плана ускорений выполнять с соблюдением масштаба, то ускорения характерных точек можно определить непосредственно измерением соответствующих отрезков на плане ускорений.

Задача №2

Найти абсолютное ускорение точек Плоское движение тела и Плоское движение тела на угловые ускорения шатуна 2 и коромысла 3 шарнирного механизма, схема которого изображена на рис.4.26, если: Плоское движение тела Плоское движение тела Плоское движение тела.  Кривошип 1 механизма вращается с постоянной угловой скоростью Плоское движение тела

Решение. План скоростей механизма для положения, что рассматривается, был построен в задаче № 2 занятие № 7 (рис.4.27, б) и определены мгновенные угловые скорости шатуна 2 и коромысла 3: Плоское движение тела

Решим задачу путем построения в масштабе плана ускорений.

1. Сначала в произвольном масштабе строим схему механизма (рис.4.34, а).

2.Определим ускорение точки Плоское движение тела кривошипа.

Поскольку кривошип 1 вращается вокруг неподвижной точки Плоское движение тела с постоянной угловой скоростью Плоское движение тела (то есть Плоское движение тела и соответственно Плоское движение тела), то ускорение Плоское движение тела точки Плоское движение тела:

Плоское движение тела

По модулю Плоское движение тела равно:

Плоское движение тела

Направлено ускорение Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела.

3.Запишем векторные уравнения для определения ускорения точки Плоское движение тела.

Точка Плоское движение тела принадлежит одновременно шатуну 2 и коромыслу 3 (случай 3). У шатуна 2 известно уже определенное ускорение точки Плоское движение тела, а в коромысла 3 ускорение точки Плоское движение тела (точка Плоское движение тела неподвижная, то есть Плоское движение тела). Таким образом, можно записать формулы распределения ускорений для точки Плоское движение тела, взяв за полюс точку Плоское движение тела для шатуна 2 в первом уравнении и точку Плоское движение тела для коромысла 3 во втором уравнении:

Плоское движение тела

где Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — относительное нормальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — относительное тангенциальное ускорение точки Плоское движение тела в ее относительном вращательном движении вокруг точки Плоское движение тела, направлено перпендикулярно Плоское движение тела и по модулю равно:

Плоское движение тела

4.Решим графически систему векторных уравнений (1,2).

Сначала построим уравнение (1). Для этого из произвольной точки Плоское движение тела полюса плана ускорений (рис.4.34,б) отложим вектор Плоское движение тела, который будет изображать ускорение Плоское движение тела. Направлен вектор Плоское движение тела параллельно линии Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела. Длину этого вектора выберем Плоское движение тела. Тогда масштабный коэффициент плана ускорений будет равняться:

Плоское движение тела

От конца вектора Плоское движение тела отложим вектор Плоское движение тела, который будет изображать Плоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора равна:

Плоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела и на этой линии будет лежать точка Плоское движение тела — конец вектора абсолютного ускорения точки Плоское движение тела механизма.

Следующим построим уравнение (2).

Поскольку Плоское движение тела, то точка Плоское движение тела будет лежать в полюсе Плоское движение тела плана ускорений.

От точки Плоское движение тела отложим вектор Плоское движение тела, который будет изображать Плоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора соответственно равна:

Плоское движение тела

Плоское движение телаПлоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела.

Решением системы (1,2) будет точка Плоское движение тела, в которой пересекаются линии, проведенные перпендикулярно Плоское движение тела и Плоское движение тела, вдоль которых направлены соответственно тангенциальные ускорения Плоское движение тела и Плоское движение тела.

Вектор абсолютного ускорения Плоское движение тела точки Плоское движение тела на плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина ускорения точки Плоское движение тела равна:

Плоское движение тела

Величины тангенциальных ускорений Плоское движение тела и Плоское движение тела найдем путем измерения соответствующих отрезков на плане ускорений:

Плоское движение тела

Поскольку Плоское движение тела и Плоское движение тела, то мгновенные угловые ускорения Плоское движение тела шатуна 2 и Плоское движение тела коромысла 3 соответственно равны:

Плоское движение тела

где Плоское движение тела — длина коромысла 3, которая была определена в задаче №2 занятия №7. 

Для определения направления углового ускорения Плоское движение тела перенесем мысленно в точку Плоское движение тела относительное тангенциальное ускорение Плоское движение тела. Направление Плоское движение тела указывает на то, что Плоское движение тела будет направлено по ходу часовой стрелки.

Аналогично, для определения направления Плоское движение тела в точку Плоское движение тела перенесем Плоское движение тела. Угловое ускорение Плоское движение тела будет направлено против хода часовой стрелки.

5.Для определения ускорения точки Плоское движение тела воспользуемся теоремой подобия. Для этого сначала построим прямую Плоское движение тела на плане ускорений (рис.4.34, б). Поскольку фигура Плоское движение тела на схеме механизма и фигура Плоское движение телана плане ускорений должны быть подобными, то можно составить пропорцию:

Плоское движение тела

В левой части пропорции (3) отношение отрезков на схеме механизма, а в правой — на плане ускорений.

Из уравнения (3) получим расстояние от точки Плоское движение тела к точке Плоское движение тела на плане ускорений:

Плоское движение тела

Поскольку на схеме механизма отрезок Плоское движение тела перпендикулярен Плоское движение тела, то и на плане ускорений отрезок Плоское движение тела надо провести перпендикулярно Плоское движение тела, причем в ту сторону, чтобы расположение точек Плоское движение тела, Плоское движение тела и Плоское движение тела на плане ускорений было против хода часовой стрелки, как и точки Плоское движение тела, Плоское движение тела и Плоское движение тела на схеме механизма.

Вектор абсолютного ускорения Плоское движение тела точки Плоское движение тела на плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина ускорения точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

Задача №3

В состав рычажного механизма (рис.4.35) входят два кривошипа 1 и 4, и два шатуна 2 и 3. Кривошип 1 в настоящий момент времени вращается равномерно с угловой скоростью Плоское движение тела, а кривошип 4 – замедленно с угловой скоростью Плоское движение тела и угловым ускорением Плоское движение тела

Найти угловые ускорения шатунов 2 и 3 и абсолютные ускорения точек Плоское движение тела и Плоское движение тела, если: Плоское движение тела Плоское движение тела. В данном положении механизма кривошип 1 расположен вертикально, а кривошип 4 — горизонтально.

Решение. План скоростей механизма для положения, что рассматривается, был построен в задаче №3 занятия №7 (рис.4.30, б) и определены мгновенные угловые скорости шатуна 2 и шатуна 3: Плоское движение тела

1. В произвольном масштабе построим схему механизма (рис. 4.36, а).

2.Сначала определим абсолютные ускорения точек Плоское движение тела и Плоское движение тела, принадлежащие соответственно кривошипам 1 и 4, угловые скорости которых известны.

Поскольку кривошип 1 вращается вокруг неподвижной точки Плоское движение тела с постоянной угловой скоростью Плоское движение тела то есть Плоское движение тела, то:

Плоское движение тела

Направлено ускорение Плоское движение тела вдоль кривошипа Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела.

Кривошип 4 вращается вокруг неподвижной точки Плоское движение тела с угловой скоростью Плоское движение тела и угловым ускорением Плоское движение тела. Поскольку кривошип 4 вращается замедленно, то угловое ускорение направлено противоположно угловой скорости (рис.4.35.)

Абсолютное ускорение точки Плоское движение тела кривошипа 4 представляет собой векторную сумму нормальной и тангенциальной составляющих: 

Плоское движение тела

Нормальная составляющая ускорения точки Плоское движение тела направлена вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равна:

Плоское движение тела

а тангенциальная — перпендикулярно Плоское движение тела в сторону углового ускорения Плоское движение тела и по модулю равна:

Плоское движение тела

3. Запишем векторные уравнения для определения ускорения точки Плоское движение тела.

Точка Плоское движение тела принадлежит одновременно шатуну 2 и шатуну 3. У шатуна 2 известно ускорение точки Плоское движение тела, а у шатуна 3 — точки Плоское движение тела. Таким образом, можно записать формулы распределения ускорений для точки Плоское движение тела, взяв за полюс точку Плоское движение тела для шатуна 2 в первом уравнении и точку Плоское движение тела шатуна 3 во втором:

Плоское движение тела

В уравнении (2):

Плоское движение тела — направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — направлено перпендикулярно Плоское движение тела, величина и направление этого ускорения неизвестны.

В уравнении (3):

Плоское движение тела — направлено вдоль Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела и по модулю равно:

Плоское движение тела

Плоское движение тела — направлено перпендикулярно Плоское движение тела, величина и направление этого ускорения неизвестны.

4. Решим графически систему векторных уравнений (2,3).

Сначала построим уравнение (2). Для этого из произвольной точки Плоское движение тела полюса плана ускорений (рис.4.36,б) отложим вектор Плоское движение тела, который будет изображать ускорение Плоское движение тела. Направлен вектор Плоское движение тела параллельно линии Плоское движение тела от Плоское движение тела точки к точке Плоское движение тела. Длину этого вектора выберем Плоское движение тела. Тогда масштабный коэффициент плана ускорений будет равняться:

Плоское движение тела

От конца вектора Плоское движение тела отложим вектор Плоское движение тела, который будет изображать Плоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора равна:

Плоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела и на этой линии будет лежать точка Плоское движение тела — конец вектора абсолютного ускорения точки Плоское движение тела механизма.

Следующим построим уравнение (3).

Для построения вектора Плоское движение тела от полюса Плоское движение тела согласно уравнению (1) отложим вектор Плоское движение тела, а с его конца Плоское движение тела. Эти векторы в масштабе Плоское движение тела будут изображать ускорения Плоское движение тела и Плоское движение тела и будут направлены им параллельно (рис. 4.36, а).

Длины векторов Плоское движение тела и Плоское движение тела соответственно равны:

Плоское движение тела

Абсолютное ускорение Плоское движение тела точки Плоское движение тела на плане ускорений будет изображаться вектором Плоское движение тела.

Плоское движение тела

От точки Плоское движение тела отложим вектор Плоское движение тела, который будет изображатьПлоское движение тела. Направлен вектор Плоское движение тела параллельно Плоское движение тела от точки Плоское движение тела к точке Плоское движение тела, а длина этого вектора равна:

Плоское движение тела

Через конец вектора Плоское движение тела проведем линию перпендикулярную Плоское движение тела, вдоль которой будет направлено тангенциальное ускорение Плоское движение тела.

Решением системы (2,3) будет точка Плоское движение тела, в которой пересекаются линии, проведенные перпендикулярно Плоское движение тела и Плоское движение тела, вдоль которых направлены соответственно тангенциальные ускорения Плоское движение тела и Плоское движение тела.

Вектор абсолютного ускорения Плоское движение тела точки Плоское движение тела на плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина ускорения точки Плоское движение тела равна:

Плоское движение тела

Величины тангенциальных ускорений Плоское движение тела и Плоское движение тела найдем путем измерения соответствующих отрезков на плане ускорений:

Плоское движение тела

Поскольку Плоское движение тела и Плоское движение тела, то мгновенные угловые ускорение Плоское движение тела шатуна 2 и Плоское движение тела шатуна 3 соответственно равны:

Плоское движение тела

Направления угловых ускорений Плоское движение тела и Плоское движение тела определяем путем перенесения мысленно в точку Плоское движение тела относительных тангенциальных ускорений Плоское движение тела и Плоское движение тела (аналогично задаче №2). Угловое ускорение Плоское движение тела направлено по ходу часовой стрелки, а Плоское движение тела — против хода часовой стрелки.

5. Для определения ускорения точки Плоское движение тела воспользуемся теоремой подобия. Поскольку точка Плоское движение тела на схеме механизма лежит посередине шатуна Плоское движение тела, то и на плане ускорений она должна лежать посередине отрезка Плоское движение тела. Вектор ускорения Плоское движение тела точки Плоское движение тела плане ускорений в масштабе будет изображаться вектором Плоское движение тела, а величина абсолютного ускорения точки Плоское движение тела равна:

Плоское движение тела

Ответ: Плоское движение тела Плоское движение тела

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика механической системы
  25. Динамика плоского движения твердого тела
  26. Динамика относительного движения материальной точки
  27. Динамика твердого тела
  28. Кинематика простейших движений твердого тела
  29. Общее уравнение динамики
  30. Работа и мощность силы
  31. Обратная задача динамики
  32. Поступательное и вращательное движение твердого тела
  33. Плоскопараллельное (плоское) движение твёрдого тела
  34. Сферическое движение твёрдого тела
  35. Движение свободного твердого тела
  36. Сложное движение твердого тела
  37. Сложное движение точки
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Понравилась статья? Поделить с друзьями:
  • Как можно найти собственника здания
  • Скайрим как найти древнюю нордскую кирку
  • Добродел как найти жалобу по номеру
  • Как найти объем молекул химия
  • Как найти свою вторую половину книги