Как найти скорость тока формула

Содержание

  • 1 Электрический ток

    • 1.1 *Зависимость силы тока от скорости зарядов
  • 2 Источник тока

    • 2.1 См. также
  • 3 Закон Ома для замкнутой цепи

    • 3.1 *Вывод закона Ома
  • 4 КПД источника тока
  • 5 Литература

Электрический ток

  • Электрическим током называется направленное (упорядоченное) движение заряженных частиц.

Электрический ток в проводниках представляет собой:

в металлах — направленное движение электронов (проводники первого рода);

в электролитах — направленное движение положительных и отрицательных ионов (проводники второго рода);

в плазме — направленное движение электронов и ионов обоих знаков (проводники третьего рода).

За направление электрического тока условились считать направление движения положительно заряженных частиц.

Движение заряженных частиц внутри проводника нельзя наблюдать, но судить о наличии электрического тока можно по его действиям:

  1. тепловому — проводник с током нагревается;
  2. магнитному — вокруг проводника с током возникает магнитное поле;
  3. световому — проводник с током может светиться;
  4. химическому — в проводнике с током изменяется химический состав (такие проводники называются проводниками второго класса).

Для продолжительного существования электрического тока в замкнутой цепи необходимо выполнение следующих условий:

  1. наличие свободных заряженных частиц (носителей тока);
  2. наличие электрического поля, силы которого, действуя на заряженные частицы, заставляют их двигаться упорядоченно;
  3. наличие источника тока, внутри которого сторонние силы перемещают свободные заряды против электростатических (кулоновских) сил.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

  • Сила тока — скалярная физическая величина, равная отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку:

(~I= dfrac{Delta q}{Delta t}.)

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

  • Плотность тока j — это векторная физическая величина, модуль которой равен отношению силы тока I в проводнике к площади S поперечного сечения проводника:

$$~j = frac {I}{S}.$$

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

*Зависимость силы тока от скорости зарядов

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится n∙S∙Δl частиц, где n — концентрация частиц. Их общий заряд (~Delta q = q_0 cdot n cdot S cdot Delta l).

Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов (~leftlangle upsilon rightrangle), то за промежуток времени (~Delta t = dfrac{Delta l}{leftlangle upsilon rightrangle}) все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

(~I = dfrac{Delta q}{Delta t} = dfrac{q_0 cdot n cdot leftlangle upsilon rightrangle cdot S cdot Delta l}{Delta l} = q_0 cdot n cdot leftlangle upsilon rightrangle cdot S . qquad (1))

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов (~leftlangle upsilon rightrangle) при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Как следует из формулы (1), плотность тока (~vec j = q_0 cdot n cdot leftlangle vec upsilon rightrangle).

  • Направление вектора плотности тока (~vec j) совпадает с направлением вектора скорости упорядоченного движения (~leftlangle vec upsilon rightrangle) положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Источник тока

Для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ1 – φ2. Пусть в начальный момент времени φ1 > φ2, тогда перенос положительного заряда q от клеммы источника «+» к клемме «–» приведет к уменьшению разности потенциалов между ними . Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд от клеммы «–» к клемме «+». Если в направлении от «+» к «–» положительные заряды движутся под действием сил кулоновских сил Fk, то в направлении от «–» к «+» перемещение зарядов происходит против направления действия кулоновских сил, т.е. под действием другой силы Fст, которая называется сторонней силой.

  • Сторонние силы — это любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил.

Сторонние силы возникают в источнике тока.

  • Источник тока — это устройство, способное поддерживать разность потенциалов между концами электрической цепи и обеспечивать упорядоченное движение электрических зарядов во внешней цепи.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил. Перечислим наиболее распространенные источники тока:

  1. гальванические элементы (батарейки) (рис. 3, а) и аккумуляторы — сторонние силы используют энергию химических реакций;
  2. генераторы (динамо-машины) — сторонние силы используют механическую энергию падающей воды, ветра, пара и т.п.;
  3. фотоэлементы (солнечные батареи) (рис. 3, б) — сторонние силы используют энергию электромагнитных излучений (света).
  • а

  • б

Рис. 3

Источник электрического тока имеет два полюса (две клеммы), к которым присоединяются концы проводов.

Проводник, соединяющий клеммы источника снаружи, называют внешним участком цепи. Сопротивление этого источника обозначают R и называют внешним сопротивлением.

Внутри самого источника заряды движутся по внутреннему участку цепи. Сопротивление источника обозначают r и называют внутренним сопротивлением.

Сумма внешнего и внутреннего соспротивлений (R + r) называют полным сопротивлением цепи.

На электрических схемах источник тока обозначается так, как показано на рис. 4. Положительный полюс (клемма) источника условно изображается более длинной чертой, чем отрицательный.

Любой источник тока характеризуют электродвижущей силой — ЭДС.

  • ЭДС (Электродвижущей силой) ε источника тока называют физическую скалярную величину, численно равную работе сторонних сил Ast по перемещению единичного положительного заряда внутри источника тока:

(~varepsilon = dfrac{A_{st}}{q} .)

Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

  • Термин «электродвигающая сила» был введен Ампером в 1822 г. Аббревиатуру ЭДС принято читать без расшифровки.

См. также

Все о химических источниках тока

Закон Ома для замкнутой цепи

Рассмотрим простейшую полную электрическую цепь, содержащую источник ЭДС ε с внутренним сопротивлением r подключенный к ним резистор сопротивлением R (рис. 5).

Тогда

(~I = dfrac{varepsilon}{R + r} . qquad (2))

  • Данная формула представляет собой закон Ома для полной цепи:
    Сила тока в полной цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.

Заметим, что максимально возможный ток в цепи с данным источником тока возникает в том случае, если сопротивление внешней цепи стремится к нулю.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием, а максимальную для данного источника силу тока называют током короткого замыкания:

(~I_{kz} = dfrac{varepsilon}{r} .)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 — 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), Ikz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

*Вывод закона Ома

Рассмотрим простейшую полную электрическую цепь, содержащую источник ЭДС ε с внутренним сопротивлением r подключенный к ним резистор сопротивлением R (см. рис. 5).

Из определений силы тока и ЭДС источника тока следует, что совершаемая источником работа

(A_{st} =varepsilon cdot Delta q=varepsilon cdot Icdot Delta t.)

При прохождении тока проводники нагреваются, при этом выделяется энергия как во внешней цепи Q1, так и во внутренней цепи Q2. Тогда количество теплоты Q, выделившаяся во всей полной цепи, равна сумме этих энергий. По закону Джоуля-Ленца

(Q=Q_{1} +Q_{2} =I^{2} cdot Rcdot Delta t+I^{2} cdot rcdot Delta t=I^{2} cdot left(R+rright)cdot Delta t.)

Из закона сохранения энергии получаем, что в такой цепи работа сторонних сил за промежуток времени Δt равна выделившемуся в цепи количеству теплоты:

(begin{array}{c} {A_{st} =Q,; ; ; varepsilon cdot Icdot Delta t=I^{2} cdot left(R+rright)cdot Delta t,} \ {varepsilon =Icdot left(R+rright),; ; ; I=dfrac{varepsilon }{R+r} .} end{array})

КПД источника тока

Для замкнутой цепи, мощность Pp, выделяемая на внешнем участке цепи, называется полезной мощностью. Она равна

(~P_p = I^2 cdot R) .

С учетом закона Ома для участка цепи (~I = dfrac{U}{R}) полезную мощность можно найти, если известны любые две величины из трех: I, U, R.

(~P_p = U cdot I) , (~P_p = I^2 cdot R) , (~P_p = dfrac{U^2}{R}) .

Для замкнутой цепи, мощность Pt, выделяемая на внутреннем сопротивлении источника, называется теряемой мощностью. Она равна

(~P_t = I^2 cdot r) .

Полная мощность P источника тока равна

(~P = P_p + P_t = I^2 cdot R + I^2 cdot r = I^2 cdot left( R + r right). )

КПД источника тока

(~eta = dfrac{P_p}{P}= dfrac{I^2 cdot R}{I^2 cdot left( R + r right)} = dfrac{R}{R + r}).

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 252-253, 259-260, 262-264, 267-269.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 118-123, 132-141.

Постоянный электрический ток

  • Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

  • Направление электрического тока

  • Действия электрического тока

  • Сила и плотность тока

  • Скорость направленного движения зарядов

  • Стационарное электрическое поле

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли rm NaCl. Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы rm Na^+ и отрицательные ионы rm Cl^-. Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы rm Na^+ начнут направленное движение к отрицательному электроду, а ионы rm Cl^- — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

к оглавлению ▴

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

к оглавлению ▴

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе rm CuSO_4 положительные ионы rm Cu^{2+} двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

к оглавлению ▴

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда q, прошедшего через поперечное сечение проводника за время t, к этому самому времени:

I=frac{displaystyle q}{displaystyle t vphantom{1^a}}. (1)

Измеряется сила тока в амперах (A). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за 1 с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

j=frac{displaystyle I}{displaystyle S vphantom{1^a}}, (2)

где I — сила тока, S — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

j=frac{displaystyle q}{displaystyle St vphantom{1^a}}.

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

к оглавлению ▴

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к 300000 км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к 300000 км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока I через скорость v направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения S (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим e (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна n.

Рис. 2. К выводу формулы I = envS

Какой заряд q пройдёт через поперечное сечение AB нашего проводника за время t?

С одной стороны, разумеется,

q = It. (3)

С другой стороны, сечение AB пересекут все те свободные заряды, которые спустя время t окажутся внутри цилиндра ABCD с высотой vt. Их число равно:

N = nV_{ABCD} = nSvt.

Следовательно, их общий заряд будет равен:

q = eN = enSvt. (4)

Приравнивая правые части формул (3) и (4) и сокращая на t, получим:

I = envS. (5)

Соответственно, плотность тока оказывается равна:

j = env.

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока 1 A.

Заряд электрона известен: e = 1,6 cdot 10^{-19} Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

n=frac{displaystyle N}{displaystyle V vphantom{1^a}}=frac{displaystyle nu N_A}{displaystyle V vphantom{1^a}}=frac{displaystyle m N_A}{displaystyle mu V vphantom{1^a}}=frac{displaystyle rho N_A}{displaystyle mu vphantom{1^a}} = frac{displaystyle 8900 cdot 6,02 cdot 10^{23}}{displaystyle 0,0635 vphantom{1^a}}approx 8,5 cdot 10^{28} м vphantom{1}^{-3}

Положим S = 1 мм vphantom{1}^{2}. Из формулы (5) получим:

v=frac{displaystyle 1}{displaystyle enS vphantom{1^a}}=frac{displaystyle 1}{displaystyle 1,6 cdot 10^{-19} cdot 8,5 cdot 10^{28} cdot 10^{-6} vphantom{1^a}}approx 7,4 cdot 10^{-5} м/с.

Это порядка одной десятой миллиметра в секунду.

к оглавлению ▴

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула U = El, где U — напряжение на концах проводника, E — напряжённость стационарного поля в проводнике, l — длина проводника.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Постоянный электрический ток» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Нам известно, что телу можно сообщить заряд. Если не прикасаться после этого к телу, то полученный заряд будет оставаться на этом теле, то есть, перемещаться не будет.

Но если заставить заряд двигаться, можно наблюдать интересные явления. Потому, что именно движущиеся заряды создают:

  1. выполнение работы электрическими двигателями;
  2. выделение тепла в электрических нагревательных приборах;
  3. свечение ламп накаливания.

Полезные проявления движения зарядов

Рис. 1. Что происходит благодаря движению зарядов

Скорость теплового движения свободных электронов

Нам известно, что общий заряд тела состоит из большого количества элементарных зарядов.

К примеру, в твердых телах положительные заряды – это ядра атомов, или ионы. А отрицательные – это электроны.

А в жидкостях или газах – положительные и отрицательные заряды – это ионы.

Примечание: Ион – атом, у которого присутствует избыток электронов, либо наоборот, электронов меньше, чем в нейтральном атоме.

Рассмотрим твердый проводник, в нем присутствуют свободные заряды. Это такие электроны, которые оторвались от своего атома и свободно путешествуют по всему объему проводника.

Свободные и связанные электроны в проводнике

Рис. 2. Отличия свободных и связанных электронов в проводнике

Примечание: Проводник – это тело, в котором много свободных электронов.

Как известно из молекулярно-кинетической теории (МКТ), мельчайшие частицы вещества находятся в непрерывном движении. Это движение возникает под действием температуры, поэтому, его часто называют тепловым. Такое движение беспорядочное, то есть — хаотическое.

Хаотичное тепловое движение зарядов

Рис. 3. Под действием температуры свободные заряды беспорядочно движутся

Рассчитаем, с какой скоростью электроны в проводнике беспорядочно перемещаются под действием температуры.

Для этого воспользуемся формулой среднеквадратичной скорости частиц из молекулярной физики:

[large v = sqrt{frac{3kT}{m}}]

Подставим в формулу такие числовые значения:

(large T = 300 left( Kright)) – комнатная температура +27 градусов Цельсия;

(large k = 1,38 cdot 10^{-23} left( frac{text{Дж}}{K}right) ) – постоянная Больцмана;

(large m = 9,1 cdot 10^{-31} left(text{кг}right) ) – масса электрона;

После расчетов получим скорость, примерно равную

[large v approx 117 left(frac{text{км}}{text{сек}}right) ]

Как видите, это очень большая скорость, более 100 километров в секунду.

Скорость теплового движения свободных электронов

Рис. 4. Скорость свободных электронов в меди

Примечание: Физики свободные электроны в проводнике рассматривают, как частицы идеального газа. Его так и называют – электронный газ.

Однако, еще раз подчеркну, что тепловое движение – хаотическое. С помощью такого движения электрический ток не создать. Потому, что ток – это направленное движение зарядов.

Что такое электрический ток

Электрический ток – это направленное движение электрических зарядов.

В металлических проводниках движутся отрицательные заряды — электроны.

А в других проводниках, например, в жидких электролитах, направленно могут двигаться положительные и отрицательные ионы.

Внутри полупроводников заряд переносят электроны и дырки.

Примечание: Дырка – это псевдочастица, вакантное место для электрона. Она имеет положительный заряд, ее можно рассматривать, как пузырек, находящийся в электронном газе.

Какие заряды создают ток

Рис. 5. В различных средах электрический ток создают такие заряды

Мы видим, что электрический ток может создаваться движением, как положительных частиц, так и отрицательных.

При этом, положительные частицы будут притягиваться к отрицательному полюсу источника тока и двигаться по цепи к нему.

А отрицательные частицы будут притягиваться и двигаться к положительному полюсу источника тока.

Примечание: Чтобы определить направление движения заряженных частиц, можно воспользоваться аналогией с течением воды: Заряды, как вода, движутся оттуда, где их много, туда, где их мало. На заре изучения электричества считали, что во время протекания тока в телах протекает некая электрическая жидкость. Поэтому для электрического тока применяется аналогия с течением воды. Позже выяснилось, что никакой электрической жидкости в телах нет.

Если заряды движутся направленно, значит, и ток будет иметь направление.

Куда направлен ток

Как выбрать направление электрического тока? На движение каких частиц – положительных, или отрицательных, ориентироваться? Оказывается, направление тока — это условный выбор.

Физики договорились, что направление электрического тока совпадает с направлением движения положительных зарядов. Значит, ток направлен от «+» к «-» выводу источника тока.

Пусть, известно направление вектора напряженности (large vec{E} ) электрического поля. Чтобы определить направление тока, нужно считать, что в этом поле движутся положительно заряженные частицы.

Положительные заряды будут двигаться по направлению вектора (large vec{E} ), а отрицательные – навстречу вектору.

Направление электрического тока

Рис. 6. Куда направлен ток

Примечание: В металлах электроны движутся от минуса к плюсу, а ток направлен от плюса к минусу

Направления движения положительных и отрицательных зарядов

Рис. 7. Направление движения зарядов и вектора напряженности электрического поля

Примечание: Наличие направленного движения зарядов можно определить косвенно. Протекая по проводнику, ток воздействует на этот проводник. Известны тепловое, химическое, или магнитное действие тока.

Чем больше ток, то есть, чем он сильнее, тем более заметно его действие.

Что такое поперечное сечение проводника

Электрический ток – это направленно движущиеся по проводнику свободные заряды. Его можно определить, когда известно количество заряженных частиц, прошедших через проводник.

Проводник может быть достаточно длинным. Поэтому неудобно учитывать заряды, находящиеся во всей длине проводника.

Чтобы было проще посчитать количество зарядов, на проводнике выбирают точку в любом удобном месте.

Через эту точку мысленно проводят плоскость, располагая ее перпендикулярно по отношению к проводнику. Так как эта плоскость в проводнике ограничивает собой площадь S, ее часто называют площадью поперечного сечения проводника.

Для вычисления силы тока, ведут подсчет зарядов, прошедших через это сечение.

Как рассчитать площадь сечения

Проводник будем считать круглой трубкой, по аналогии с трубой, по которой течет жидкость. Пользуясь этой аналогией, так же, примем, что внутри такой трубки будут двигаться заряды, они обозначены кружками на рисунке.

Площадь сечения проводника

Рис. 8. Что такое поперечное сечение

Выделим на трубе какую-либо точку. Мысленно отрежем кусок трубы, проводя разрез перпендикулярно. Стенки трубки в месте отреза являются границей круга.

Площадь полученного круга можно вычислить по такой геометрической формуле:

[large boxed{ S_{0} = pi cdot frac{D^{2}}{4} = pi cdot R^{2} }]

(large S_{0} left( text{м}^{2} right)) – площадь круга;

(large pi approx 3,14) – число Пи;

(large D left(text{м}right)) – диаметр круга;

(large R left(text{м}right)) – радиус круга;

Проводник может иметь не только цилиндрическую форму. Промышленность изготавливает металлические проводники, имеющие квадратное, прямоугольное, треугольное или какое-либо другое сечение. Понятно, что площади таких сечений нужно рассчитывать, пользуясь другими геометрическими формулами.

Сила тока по определению

Силу тока (ток) обозначают большой латинской буквой (large I).

Постоянный ток можно рассматривать, как равномерное направленное движение заряженных частиц. Равномерное – значит, с одной и той же скоростью.

Если же ток изменяется, то будет изменяться и скорость движения зарядов.

Сила тока – это:

  1. физическая величина;
  2. отношение заряда, прошедшего через поперечное сечение проводника к длительности промежутка времени, в течение которого заряд проходил.

Ток равен заряду, прошедшему через поперечное сечение проводника за одну секунду.

Для постоянного тока используем формулу:

[large boxed{ I = frac{Delta q}{Delta t} }]

(large I left(Aright)) – ток (сила тока) в Амперах;

(large Delta q left( text{Кл}right) ) – заряд в Кулонах, прошедший через поперечное сечение проводника;

(large Delta t left( cright) ) – промежуток (кусочек) времени, в течение которого заряд прошел;

[large boxed{ 1 A = frac{1 text{Кл}}{1 c} }]

Если электрический ток не изменяется ни по величине, ни по направлению, то его называют постоянным.

Если хотя бы одна из характеристик изменяется, ток называют переменным. Он будет различным в разные моменты времени. Если задано уравнение, описывающее, как изменяется заряд, то для вычисления такого тока удобно пользоваться производной.

Исключаем путаницу с понятием силы

В физике исторически сложилось использование таких терминов, как

  • сила тока,
  • электродвижущая сила,
  • лошадиная сила.

Эти единицы измерения имеют в своем названии слово «сила». Из механики известно, что сила – величина векторная, измеряется в Ньютонах. Однако, пусть это не вводит вас в заблуждение.

Ни одна из описанных величин не измеряется в Ньютонах. Перечисленные величины имеют другие единицы измерения:

  • силу тока измеряют в Амперах,
  • электродвижущую силу – в Вольтах,
  • а лошадиная сила – это единица измерения мощности, ее можно перевести в Ватты в системе СИ.

Чтобы исключить путаницу, вместо термина «сила тока», можно употреблять слово «ток». Сравните выражения: «Силу тока измеряют в Амперах» и «ток измеряют в Амперах».

Как видно, вполне можно обойтись словом «ток», вместо «силы тока». Смысл от этого не изменится.

Что такое 1 Ампер в системе СИ

Сила тока в 1 Ампер была определена в системе СИ с помощью силы взаимного действия двух проводников с током.

Рассмотрим два тонких проводника (рис. 9). Каждый проводник имеет бесконечную длину. Расположим их в вакууме параллельно на расстоянии 1 метр один от другого.

Как определить 1 ампер в СИ

Рис. 9. Эталон силы тока 1 ампер в системе СИ

Выделим на каждом проводнике кусочек длиной 1 метр.

Если проводники взаимодействуют с силой (large 2 cdot 10^{-7} ) Ньютона, приходящейся на каждый метр их длины, то по каждому из них течет постоянный ток 1 Ампер.

Ампер – это основная единица в системе СИ. А заряд Кулон – величина, определяемая с помощью Ампера.

1 Кулон – это заряд, проходящий за 1 секунду через поперечное сечение проводника с током 1 Ампер.

Один Ампер – много это, или мало

1 Ампер это 1 Кулон деленный на 1 секунду. Для большинства бытовых электроприборов это достаточно большая сила тока.

Например, через энергосберегающие лампы протекают токи 0,04 — 0,08 Ампера.

Большой плоский телевизор от электроосветительной сети потребляет ток 0,2 Ампера.

Лампа накаливания –примерно 0,5 Ампера.

Как видно, большинство электроприборов потребляют токи менее одного Ампера.

Поэтому, для тока часто применяют дольные единицы измерения:

миллиамперы, микроамперы, и наноамперы:

1мА (миллиампер)= 10⁻³ А

1мкА (микроампер) = 10⁻⁶ А

1нА (наноампер) = 10⁻9 А

Ток зарядки аккумулятора мобильного телефона может достигать 2 Ампер.

А через электрический обогреватель, или электрочайник, протекает ток силой до 10 Ампер.

Примечание: Ток силой всего 0,05 А может привести к летальному исходу. Будьте осторожны с электричеством!

В то же время, используют и токи, превышающие сотни Ампер. Например, на промышленных электростанциях.

Для таких токов применяют кратные единицы: килоампер, мегаампер.

1КА (килоампер)= 10³ А

1МА (мегаампер) = 10⁶ А

Связь между силой тока и скоростью движения зарядов

Рассмотрим металлический проводник. Мысленно выделим в нем два сечения площадью (large S ) на некотором расстоянии (large Delta x) одно от другого. Сечения располагаются поперечно проводнику.

В металлах электрический ток создается электронами. Обозначим (large e_{0}) заряд каждого электрона.

Концентрация зарядов в проводнике

Рис. 10. Свободные заряды в объеме проводника

Заряды в проводнике, под действием электрического поля напряженностью (large vec{E} ) будут двигаться сонаправленно, от сечения к сечению.

При этом, они будут проходить путь (large Delta x) между двумя сечениями.

Если ток постоянный, то скорость движения зарядов изменяться не будет.

В таком случае, расстояние (large Delta x) и скорость (large v) движения электронов будут связаны формулой равномерного движения.

[large Delta x = v cdot Delta t]

(large Delta x left( text{м}right) ) – расстояние между двумя поперечными сечениями;

(large v left( frac{text{м}}{c}right) ) – скорость, с которой сонаправленно движутся заряды в проводнике; Эта скорость значительно меньше скорости теплового движения.

(large Delta t left( c right) ) – интервал времени, за который пройдено расстояние (large Delta x) между двумя поперечными сечениями;

Выразим из этой формулы время движения:

[large Delta t = frac {Delta x}{v} ]

Это выражение нам понадобится далее.

Сечения (large S )  и расстояние между ними (large Delta x) образуют в проводнике цилиндрический объем:

[large V = S cdot Delta x]

(large V left( text{м}^{3}right) ) – объем цилиндра;

В этом объеме содержится определенное количество электронов. Обозначим это количество: (large N ) штук.

Количество штук (large N ), расположенное в объеме (large V), называют концентрацией:

[large n = frac{N}{V} ]

(large n left( frac{text{штук}}{text{м}^{3}}right) ) – концентрация зарядов в объеме;

Найдем общий заряд всех заряженных частиц, расположенных в объеме (large V) между двумя поперечными сечениями:

[large Delta q = e_{0} cdot N]

Умножим правую часть уравнения на единицу, которую представим в виде дроби (displaystyle frac{V}{V}), в которой (large V) – это рассматриваемый объем. Тогда полный заряд можно записать в таком виде:

[large Delta q = e_{0} cdot N cdot 1 = e_{0} cdot N cdot frac{V}{V}]

Числитель V дроби и количество N частиц поменяем местами.

[large Delta q = e_{0} cdot V cdot frac{N}{V}]

Подставим в эту формулу выражение для объема:

[large Delta q = e_{0} cdot S cdot Delta x cdot frac{N}{V}]

Дробь в правой части заменим символом «n» концентрации:

[large Delta q = e_{0} cdot S cdot Delta x cdot n]

Средняя скорость совместного направленного движения зарядов (large v).

Применим определение силы тока:

[large I = frac {Delta q}{Delta t} ]

Подставим в это выражение формулу для общего заряда, прошедшего через сечение проводника:

[large I = frac {Delta q}{Delta t} =  frac {e_{0} cdot S cdot Delta x cdot n}{Delta t} ]

Выражение для удобства можно переписать так:

[large I = e_{0} cdot S cdot Delta x cdot ncdot frac {1}{Delta t} ]

Мы заранее выразили время (large Delta t ):

[large Delta t = frac {Delta x}{v} ]

Найдем для него обратную величину:

[large frac {1}{Delta t} = frac {v}{Delta x} ]

Подставим ее в формулу для тока:

[large I = e_{0} cdot S cdot Delta x cdot n cdot frac {v}{Delta x}]

Расстояние (Delta x) находится в числителе и в знаменателе, оно сократится. Окончательно получим выражение для связи между силой тока и скоростью движения зарядов:

[large boxed{I = e_{0} cdot S cdot n cdot {v}}]

Теперь можно утверждать, что

  • чем больше зарядов помещаются в объеме,
  • чем быстрее они сонаправленно двигаются
  • и, чем толще проводник (чем больше площадь поперечного сечения),

тем больше ток.

Расчет скорости направленного движения электронов

Для этого можно использовать полученную формулу:

[large I = e_{0} cdot S cdot n cdot {v}]

Из нее можно выразить скорость:

[large boxed{frac{I}{e_{0} cdot S cdot n} = v}]

Чтобы найти скорость, с которой электроны движутся в проводнике, нужно: ток (I) разделить на заряд (е) электрона, концентрацию (n) электронов и площади сечения проводника (S).

Большинство соединительных проводников изготавливают из меди, или алюминия. Выберем медный проводник, имеющий цилиндрическую форму.

Площадь поперечного сечения выберем равной 1 миллиметру в квадрате:

[large S = 10^{-6} left( text{м}^{2}right) ]

Число атомов в объеме – концентрация, связано с плотностью вещества (ссылка). Для меди концентрацию атомов вычислить несложно. Она

[large n = 8,5 cdot 10^{28} left( frac{text{штук}}{text{м}^{3}}right) ]

равна концентрации электронов.

Примечание: Каждый атом меди отдает один из своих валентных электронов и, он превращается в свободный электрон. Поэтому, количество свободных электронов, находящихся в выбранном объеме меди будет равно количеству атомов в этом объеме.

Заряд электрона известен:

[large e_{0} = 1,6 cdot 10^{-19} left(text{Кл}right) ]

Предположим, в проводнике протекает ток силой 1 Ампер.

Тогда, скорость движения электронов:

[large v = frac{1}{1,6 cdot 10^{-19} cdot 10^{-6} cdot 8,5 cdot 10^{28}} ]

[large v = 7 cdot 10^{-5} left( frac{text{м}}{c}right) ]

Это меньше, чем 0,1 мм в секунду.

Скорость направленного движения электронов

Рис. 11. Электроны в меди направленно двигаются медленно

Скорость распространения электрического поля и скорость движения зарядов — в чем различия

Нужно различать скорость, с которой распространяется электрическое поле, при подключении к проводнику источника тока и скорость движения заряженных частиц в проводнике.

Скорость, с которой распространяется электрическое поле напряженностью (large vec{E}) – равна скорости света:

[large c = 3 cdot 10^{8} left( frac{text{м}}{c} right)]

А скорость направленного движения зарядов значительно меньше — менее 0,1 мм в секунду.

Сравнение скорости хаотичного и направленного движения

Рис. 12. Заряды одновременно участвуют в двух движениях

Примечание: В качестве скорости направленного движения свободных зарядов, выбирают среднее значение скорости, с которой перемещаются заряды во время протекания тока. Ее, так же, называют скоростью дрейфа.

В то же время, при комнатной температуре скорость беспорядочного теплового движения электронов немногим более 100 километров в секунду.

То есть, заряды быстро движутся хаотично, но при этом, они согласованно и достаточно медленно передвигаются в определенном направлении.

Такое движение можно сравнить с движением потока муравьев на лесной тропе. Каждый муравей в потоке движется хаотично. Но при этом, весь поток движется согласованно в выбранную сторону.

Заряды одновременно участвуют в двух видах движения

Рис. 13. Движение муравьев и движение зарядов во время протекания электрического тока можно сравнить

Пользуясь аналогией из окружающей природы, движение заряженных частиц во время протекания электрического тока можно сравнить с движением муравьев.

Каждая частица движется хаотически под действием температуры и одновременно с этим, все частицы смещаются в одном направлении в общем потоке под действием электрического поля.

Условия существования постоянного тока

Напомню, что ток называют постоянным, если его сила не изменяется со временем.

Для обозначения постоянного тока математики используют такую сокращенную запись:

[large boxed{ I = const }]

Чтобы ток мог существовать, нужно, чтобы выполнялись несколько условий.

Условия существования электрического тока

Рис. 14. Чтобы ток существовал, нужно, чтобы выполнялись такие условия

Нужно, чтобы между телами, заряженными противоположно, непрерывно существовало электрическое поле. Так же, в цепи должны присутствовать свободные носители заряда. А сама электрическая цепь должна быть замкнутой.

Рассмотрим эти условия подробнее.

Создаем кратковременный ток и выясняем условия его существования

Можно создать электрический ток с помощью двух заряженных противоположно тел.

Ток – это движение зарядов. Поэтому, нужно обеспечить возможность зарядам двигаться. То есть, нужно создать между телами дорожку, по которой заряды начнут перемещаться из одного места пространства в другое.

Продемонстрировать возникновение тока на небольшой промежуток времени можно с помощью двух электрометров, заряженных противоположно.

Попробуем для начала соединить два заряженных тела куском диэлектрика (рис. 15).

Заряды в диэлектрике не могут перемещаться

Рис. 15. Если диэлектриком соединить два заряженных тела, электрический ток не возникает

Как видно, после соединения заряд каждого из электрометров не изменился.

Это значит, что ток не возник. Дело в том, что в диэлектрике все электроны связаны со своими атомами и свободных электронов нет.

Именно свободные заряды будут передвигаться и их согласованное направленное движение мы назовем электрическим током.

Поэтому, одним из условий существования тока будет наличие свободных зарядов. То есть, наличие проводника, содержащего такие заряды.

Условие 1. Чтобы ток существовал, требуется наличие свободных зарядов.

Однако, только лишь наличия проводника недостаточно. Действительно, в проводнике присутствуют свободные заряды. Но для того, чтобы эти заряды начали совместное движение в определенную сторону, нужно, чтобы на них подействовала сила, которая будет их передвигать в этом направлении.

Сила будет действовать на заряженную частицу, если ее поместить в электрическом поле.

Электрическое поле существует в пространстве вокруг заряженных тел.

Если соединить проводником два тела, имеющие противоположные заряды, то на свободные частицы в проводнике будет действовать электрическое поле. Это поле подхватит заставит двигаться электроны в определенном направлении.

Поэтому, еще одно условие для возникновения тока – это электрическое поле.

В проводнике заряды могут перемещаться

Рис. 16. После соединения проводником, заряженные противоположными зарядами электрометры разрядились

Условие 2. Чтобы ток существовал, требуется наличие электрического поля.

Ток и скорость упорядоченного движения электронов направлены противоположно

Рис. 17. Электроны двигаются против направления электрического поля

Ток течет в направлении движения положительных зарядов.

Соединив два заряженных металлических тела проводником, мы получим ток лишь на короткий промежуток времени. Это время будет составлять доли секунды.

Кроме того, в начальный момент времени сила тока будет самой большой. А далее будет убывать по мере того, как тела будут разряжаться и их потенциалы (ссылка) будут выравниваться.

Мы же хотим, чтобы ток протекал постоянно, или, по крайней мере, достаточно длительный промежуток времени, выбранный по нашему усмотрению. И чтобы во время протекания тока его сила не изменялась.

Как этого добиться? Мы вплотную приблизились к третьему условию существования постоянного электрического тока.

Как создать длительный ток и что для этого необходимо

Положительный заряд – это недостаток электронов, а отрицательный – это их избыток. В момент соединения тел проводником, отрицательные электроны устремились к положительно заряженному телу.

А в конце ток прекратился потому, что заряды тел скомпенсировались и тела превратились в электрически нейтральные. Нам известно, что нейтральные тела электрическое поле не создают.

Значит, ток существует до тех пор, пока существует электрическое поле. Поэтому, нужно каким-либо образом поддерживать электрическое поле. А для этого нужно, чтобы одно из тел обладало избыточным отрицательным зарядом. То есть, нужно поддерживать на одном из тел отрицательный, а на другом – положительный заряд. Пока заряды тел будут поддерживаться, ток будет существовать.

Чтобы на теле с положительным зарядом поддерживать этот заряд, нужно убирать с этого тела прибежавшие туда электроны и отправлять их обратно на отрицательно заряженное тело.

Такая схема по своему устройству напоминает фонтан, в котором насос поддерживает разность давлений. В нагнетающей воду трубе давление больше, чем в трубе, через которую вода поступает обратно в насос.

Циркуляция потока воды создается насосом

Рис. 18. Поток воды циркулирует благодаря насосу, поддерживающему разность давлений

Именно благодаря этой разности, из одной трубы вода выплескивается вверх, а собранная в чашу вода попадает обратно в насос. При этом, по контуру циркулирует одно и то же количество воды, то есть, водяной контур замкнут. А ток воды в этом контуре поддерживается специальным устройством – насосом. Он совершает работу против силы тяжести.

Насос совершает работу против силы тяжести

Рис. 19. Водяной насос в фонтане совершает работу против силы тяжести

Сторонние силы — что это такое

Подобно своеобразному насосу устроен источник тока. Внутри источника действуют сторонние силы. Они возвращают электроны на «-» контакт.

На заряды в электрическом поле будет действовать сила. Она называется силой Кулона и имеет электрическую природу. Электроны будут притягиваться к телу, имеющему положительный заряд.

Сила Кулона будет мешать возвращать электроны на отрицательное тело. Подобно силе тяжести, которая мешает воде в фонтане двигаться вверх.

Чтобы вернуть электроны на отрицательно («-») заряженное тело, нужно совершить работу против силы Кулона. Значит, должна присутствовать какая-то внешняя сила, возвращающая электроны на отрицательно («-») заряженное тело. Эта сила имеет неэлектрическую природу, она называется сторонней силой.

Сторонние силы источника совершают работу против электрических сил

Рис. 20. Источник тока совершает работу против электрической силы Кулона

Теперь можно ответить на вопрос: Что такое источник тока?

Источник тока — это устройство, внутри которого сторонние силы перемещают заряды против сил Кулона. Сила Кулона – это сила, с которой электростатическое поле действует на заряд.

Во время существования электрического тока сами электроны не расходуются. Они, как вода в фонтане, циркулируют по замкнутой траектории.

Условие 3. Чтобы ток существовал длительно, электрическое поле нужно долговременно поддерживать.

Чтобы ток существовал постоянно, нужно, чтобы между заряженными противоположно телами электрическое поле существовало непрерывно.

Примечание: В качестве заряженных противоположно тел можно рассматривать контакты источника тока.

Для этого электроны нужно пропустить по замкнутому контуру, т. е. непрерывной электрической цепи. Поэтому, еще одно условие существования постоянного тока – это замкнутая электрическая цепь. Как только замыкается цепь, в направленное движение приходят все заряженные частицы, находящиеся в этой цепи.

Условие 4. Чтобы ток существовал, требуется, чтобы электрическая цепь была замкнутой.

Ток циркулирует в замкнутой цепи

Рис. 21. Электрический ток источник может создать только в замкнутой цепи

В такой цепи заряды циркулируют по замкнутой траектории. То есть, заряд, вышедший из источника и совершивший полный оборот, попадет обратно в источник тока. Там он будет подхвачен сторонними силами и через противоположный вывод источника тока попадает обратно в цепь. Затем, будет двигаться далее и, совершит следующий круг. Поэтому, во время протекания электрического тока сами заряды не расходуются.

Во время протекания электрического тока заряды не расходуются. То есть, по замкнутой цепи двигаются одни и те же заряды. Совершив круг, они попадают в источник и, выходя из противоположного его вывода направляются обратно в цепь.

Нам известно, если на заряд действует сила и, под действием этой силы заряд перемещается, то эта сила совершает работу.

Это значит, что сторонние силы в источнике совершают работу. Подробнее о работе сторонних сил (ссылка).

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Количественной характеристикой электрического тока является сила тока.

В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда q, прошедшего через поперечное сечение проводника за время t, к этому самому времени:

Измеряется сила тока в амперах (A). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока. Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода.

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за 1 с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

где I — сила тока, S — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к 300000 км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

  1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к 300000 км/с.

  2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока I через скорость v направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения S (рис. 1). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим e (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна n.

Рис 1. К выводу формулы I=envS

Рис 1. К выводу формулы I=envS

Какой заряд q пройдёт через поперечное сечение AB нашего проводника за время t? С одной стороны, разумеется,

С другой стороны, сечение AB пересекут все те свободные заряды, которые спустя время t окажутся внутри цилиндра ABCD с высотой vt. Их число равно:

Следовательно, их общий заряд будет равен:

Приравнивая правые части формул (3) и (4) и сокращая на t, получим:

Соответственно, плотность тока оказывается равна:

Электрический ток. Сила тока

 1. Электрический ток

На­чи­ная с этого урока, мы на­чи­на­ем по­вто­ре­ние по­лу­чен­ных нами зна­ний в вось­мом клас­се об элек­три­че­ском токе, а также углу­бим эти зна­ния.

Опре­де­ле­ние. Элек­три­че­ский ток – на­прав­лен­ное упо­ря­до­чен­ное дви­же­ние за­ря­жен­ных ча­стиц.

Упо­мя­ну­тые ча­сти­цы могут быть со­вер­шен­но раз­ны­ми: элек­тро­на­ми, иона­ми (как по­ло­жи­тель­ны­ми, так и от­ри­ца­тель­ны­ми). Даже обыч­ное мак­ро­те­ло (на­при­мер, шарик), ко­то­ро­му при­дан неко­то­рый заряд и неко­то­рая ско­рость, своим дви­же­ни­ем про­из­во­дит ток. Важно также по­ни­мать, что то самое упо­ря­до­чен­ное дви­же­ние не обя­за­но рас­про­стра­нять­ся на все ча­сти­цы. Каж­дая ча­сти­ца может дви­гать­ся ха­о­ти­че­ски, од­на­ко в целом вся масса этих ча­стиц сме­ща­ет­ся в опре­де­лен­ном на­прав­ле­нии, и имен­но это сме­ще­ние обу­слав­ли­ва­ет на­ли­чие тока (рис. 1):

Мо­дель дви­же­ния за­ря­жен­ных ча­стиц (на­ли­чие ха­о­ти­че­ских ско­ро­стей каж­дой от­дель­ной ча­сти­цы и общая ско­рость сме­ще­ния всех ча­стиц од­но­вре­мен­но (ско­рость, опре­де­ля­ю­щая ток))

Рис. 1. Мо­дель дви­же­ния за­ря­жен­ных ча­стиц (на­ли­чие ха­о­ти­че­ских ско­ро­стей каж­дой от­дель­ной ча­сти­цы и общая ско­рость сме­ще­ния всех ча­стиц од­но­вре­мен­но (ско­рость, опре­де­ля­ю­щая ток))

Для про­сто­ты мы будем изу­чать так на­зы­ва­е­мый по­сто­ян­ный ток, то есть тот ток, при ко­то­ром за­ря­жен­ные ча­сти­цы не ме­ня­ют ни мо­ду­ля ско­ро­сти, ни ее на­прав­ле­ния.

Ток имеет три ос­нов­ных дей­ствия (свой­ства):

Ток имеет три ос­нов­ных дей­ствия (свой­ства) 

 2. Сила тока

Глав­ной фи­зи­че­ской ве­ли­чи­ной, ха­рак­те­ри­зу­ю­щей ток, яв­ля­ет­ся сила тока.

Опре­де­ле­ние. Сила тока – фи­зи­че­ская ве­ли­чи­на, рав­ная от­но­ше­нию за­ря­да, про­шед­ше­го через по­пе­реч­ное се­че­ние про­вод­ни­ка, к про­ме­жут­ку вре­ме­ни, за ко­то­рый этот заряд про­шел. Обо­зна­че­ние: . Еди­ни­ца из­ме­ре­ния: А – ампер (в честь фран­цуз­ско­го фи­зи­ка  Ан­дре-Ма­ри Ам­пе­ра, рис. 2)

Сила тока

Иначе го­во­ря, сила тока опре­де­ля­ет ско­рость про­хож­де­ния за­ря­дов сквозь про­вод­ник.

Ан­дре-Ма­ри Ампер

Рис. 2. Ан­дре-Ма­ри Ампер

При­бо­ром для из­ме­ре­ния силы тока яв­ля­ет­ся ам­пер­метр (рис. 3). Это элек­три­че­ский при­бор, ко­то­рый необ­хо­ди­мо под­клю­чить в цепь по­сле­до­ва­тель­но тому участ­ку, силу тока на ко­то­ром необ­хо­ди­мо из­ме­рить. 

Внеш­ний вид ам­пер­мет­ра

Рис. 3. Внеш­ний вид ам­пер­мет­ра

Обо­зна­че­ние ам­пер­мет­ра на элек­три­че­ской схеме

Рис. 4. Обо­зна­че­ние ам­пер­мет­ра на элек­три­че­ской схеме

 3. Скорость электронов в проводнике

Рас­смот­рим слу­чай про­те­ка­ния по­сто­ян­но­го тока в ци­лин­дри­че­ском про­вод­ни­ке (рис. 5) и вы­ве­дем фор­му­лу опре­де­ля­ю­щую ско­рость упо­ря­до­чен­но­го дви­же­ния элек­тро­нов (а имен­но они дви­жут­ся в ме­тал­лах).

Схема про­те­ка­ния тока в про­вод­ни­ке

Рис. 5. Схема про­те­ка­ния тока в про­вод­ни­ке

За­пи­шем опре­де­ле­ние силы тока:

За время  по­пе­реч­ное се­че­ние успе­ли пе­ре­сечь все те элек­тро­ны, на­хо­дя­щи­е­ся в про­стран­стве про­вод­ни­ка, огра­ни­чен­ном дли­ной  (рас­сто­я­ние, ко­то­рое про­шли элек­тро­ны за время ). По­это­му  можно по­счи­тать как:

Здесь:  – заряд од­но­го элек­тро­на;  – кон­цен­тра­ция элек­тро­нов в про­вод­ни­ке.

Под­ста­вив это ра­вен­ство в опре­де­ле­ние силы тока:

и учтя, что

По­лу­ча­ем фор­му­лу:

То есть сила тока и ско­рость дви­же­ния элек­тро­нов – прямо про­пор­ци­о­наль­ные ве­ли­чи­ны.

Для опре­де­ле­ния кон­цен­тра­ции элек­тро­нов необ­хо­ди­мо при­ме­нить фор­му­лы из курса мо­ле­ку­ляр­ной фи­зи­ки. Если сде­лать пред­по­ло­же­ние, что на каж­дый атом ве­ще­ства про­вод­ни­ка при­хо­дит­ся один элек­трон, то тогда спра­вед­ли­во:

Зная, что

Под­ста­вив

и

По­лу­чим:

То есть при нашем до­пу­ще­нии кон­цен­тра­ция сво­бод­ных элек­тро­нов за­ви­сит толь­ко от ма­те­ри­а­ла про­вод­ни­ка (плот­но­сти и мо­ляр­ной массы).

Для оцен­ки по­ряд­ка ис­ко­мой ско­ро­сти на­прав­лен­но­го дви­же­ния элек­тро­нов рас­смот­рим ток в 1 А, те­ку­щий по мед­но­му про­вод­ни­ку се­че­ни­ем 1 . Со­глас­но фор­му­лам:

То есть, как можно убе­дить­ся, ско­рость дви­же­ния элек­тро­нов чрез­вы­чай­но мала. Быст­ро­та же сра­ба­ты­ва­ния всех элек­три­че­ских при­бо­ров, в част­но­сти, ламп, обу­слов­ле­на тем, что дви­гать­ся на­чи­на­ют все элек­тро­ны по всему объ­ё­му про­вод­ни­ка прак­ти­че­ски од­но­вре­мен­но.

Понравилась статья? Поделить с друзьями:
  • Как найти скин по своему нику
  • Как найти макбук эйр
  • Цитаты как найти жену
  • Как составить электронное заявление в суд
  • Как найти фото экономика