Как найти слау онлайн

Решение систем линейных уравнений

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби (13/31).

Выводить десятичную дробь

,


  • 2x-2y+z=-3
    x+3y-2z=1
    3x-y-z=2

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

  • Оставляйте лишние ячейки пустыми для ввода неквадратных матриц.
  • Элементы матриц — десятичные (конечные и периодические) дроби: 1/3, 3,14, -1,3(56) или 1,2e-4; либо арифметические выражения: 2/3+3*(10-4), (1+x)/y^2, 2^0,5 (=2), 2^(1/3), 2^n, sin(phi), cos(3,142rad), a_1 или (root of x^5-x-1 near 1,2).

    • decimal (finite and periodic) fractions:

      1/3, 3,14, -1,3(56) или 1,2e-4

    • 2/3+3*(10-4), (1+x)/y^2, 2^0,5 (=2), 2^(1/3), 2^n, sin(phi), cos(3,142rad), a_1 или (root of x^5-x-1 near 1,2)

    • matrix literals:

      {{1,3},{4,5}}

    • operators:

      +, -, *, /, , !, ^, ^{*}, ,, ;, , =, , , > и <

    • functions:

      sqrt, cbrt, exp, log, abs, conjugate, min, max, gcd, rank, adjugate, inverse, determinant, transpose, pseudoinverse, cos, sin, tan, cot, cosh, sinh, tanh, coth, arccos, arcsin, arctan, arccot, arcosh, arsinh, artanh и arcoth

    • units:

      rad, deg

    • special symbols:

      • pi, e, i — mathematical constants
      • k, n — integers
      • I or E — identity matrix
      • X, Y — matrix symbols
  • Используйте ↵ Ввод, Пробел, , Backspace и Delete для перемещения по ячейкам, Ctrl⌘ Cmd+C/Ctrl⌘ Cmd+V — для копирования матриц.
  • Перетаскивайте матрицы из результата (drag-and-drop), или даже из текстового редактора.
  • За теорией о матрицах и операциях над ними обращайтесь к страничке на Википедии.


Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли),
определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.

Правила ввода чисел

Числа можно вводить целые и дробные.

Дробные числа можно вводить в 3-х различных видах:

  • в виде десятичных дробей,
  • в виде обыкновенных дробей,
  • в виде периодических десятичных дробей.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: ( -2{,}34 )

Ввод: -1,15
Результат: ( -1{,}15 )

Ввод дробного числа в виде обыкновенной дроби.

В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -frac{2}{3} $$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5frac{8}{3} $$
Помните, что на ноль делить нельзя!

Ввод дробного числа в виде периодической десятичной дроби.
В периодических десятичных дробях период заключается в скобки.
Ввод: 0,(72)
Результат: $$ frac{8}{11} $$

Ввод: -2,3(4)
Результат: $$ -2frac{31}{90} $$

Наши игры, головоломки, эмуляторы:

Немного теории.

Системы линейных алгебраических уравнений

Основные определения

Система (m) линейных алгебраических уравнений с (n) неизвестными (сокращенно СЛАУ) представляет собой систему вида

( left{ begin{array}{l}
a_{11}x_1 + a_{12}x_2 + cdots + a_{1n}x_n = b_1 \
a_{21}x_1 + a_{22}x_2 + cdots + a_{2n}x_n = b_2 \
cdots \
a_{m1}x_1 + a_{m2}x_2 + cdots + a_{mn}x_n = b_m
end{array} right. tag{1} )

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от (n) переменных
( x_1 , ldots x_n )
, а линейными потому, что эти многочлены имеют первую степень.

Числа (a_{ij} in mathbb{R} ) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения (i) и номером
неизвестного (j). Действительные числа ( b_1 , ldots b_m ) называют свободными членами уравнений.

СЛАУ называют однородной, если ( b_1 = b_2 = ldots = b_m = 0 ). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных ( x_1^circ, ldots , x_n^circ ),
при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ
всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной.
При (m=n), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты (a_{ij}) СЛАУ при одном неизвестном (x_j) как элементы столбца, а (x_j) как коэффициент, на который умножается
столбец, из (1) получаем новую форму записи СЛАУ:
( begin{pmatrix}
a_{11} \
a_{21} \
vdots \
a_{m1}
end{pmatrix} x_1 + begin{pmatrix}
a_{12} \
a_{22} \
vdots \
a_{m2}
end{pmatrix} x_2 + ldots + begin{pmatrix}
a_{1n} \
a_{2n} \
vdots \
a_{mn}
end{pmatrix} x_n = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )

или, обозначая столбцы соответственно ( a_1 , ldots , a_n , b ),
( x_1 a_1 + x_2 a_2 + ldots + x_n a_n = b tag{2} )

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца (b) в виде линейной комбинации столбцов ( a_1, ldots, a_n ).
Соотношение (2) называют векторной записью СЛАУ.

Обратим внимание на то, что слева в каждом уравнении системы (1) стоит сумма попарных произведений — так же, как и в произведении двух матриц.
Если взять за основу произведение матриц, то СЛАУ (1) можно записать так :
( begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} begin{pmatrix}
x_1 \
x_2 \
vdots \
x_n
end{pmatrix} = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )

или (Ax=b), где (A) — матрица размера (m times n); (x) — столбец неизвестных; (b) — столбец свободных членов:
( A = begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} ,; )

( X = begin{pmatrix}
x_1 \
x_2 \
vdots\
x_n
end{pmatrix} ,; )

( B = begin{pmatrix}
b_1 \
b_2 \
vdots \
b_m
end{pmatrix} )

Поскольку (A ;,; X) и (B) являются матрицами, то запись СЛАУ (1) в виде (AX=B) называют матричной. Если (B=0), то СЛАУ
является однородной и в матричной записи имеет вид (AX=0).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида (AX=B)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

«Триединство» форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет
для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
( A = begin{pmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn}
end{pmatrix} )

называют матрицей (коэффициентов) СЛАУ (1), а матрицу
( (A|B) = left( begin{array}{cccc|c}
a_{11} & a_{12} & cdots & a_{1n} & b_1 \
a_{21} & a_{22} & cdots & a_{2n} & b_2 \
vdots & vdots & ddots & vdots & vdots \
a_{m1} & a_{m2} & cdots & a_{mn} & b_m
end{array} right) )

расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно
(если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ (AX=B) необходимо и достаточно, чтобы ранг её матрицы (A) был равен рангу
её расширенной матрицы ( (A|B) ).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по
формулам Крамера :

$$ x_i = frac{Delta_i}{|A|} ;,quad i=overline{1,n} tag{3} $$

где (Delta_i) — определитель матрицы, получающейся из матрицы (A) заменой (i)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы
нахождения решений.

Однородные системы

Следующая теорема описывает важнейшее свойство множества решений однородной системы (m) линейных алгебраических уравнений с (n) неизвестными.

Теорема. Если столбцы ( X^{(1)}, X^{(2)}, ldots , X^{(s)} ) — решения однородной СЛАУ (AX=0), то любая их линейная комбинация
также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения ( X^{(1)}, ldots , X^{(s)} ) системы (AX=0), чтобы любое другое решение этой системы
представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из (k=n-r) линейно независимых столбцов, являющихся решениями однородной СЛАУ (AX=0), где
(n) — количество неизвестных в системе, а (r) — ранг её матрицы (A), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице
(A) однородной СЛАУ (AX=0) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих
этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или
независимыми.

Теорема. Пусть дана однородная СЛАУ (AX=0) с (n) неизвестными и ( text{rang}A = r ). Тогда существует набор из (k=n-r)
решений ( X^{(1)}, ldots , X^{(k)} ) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений
называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^{(1)} + ldots + c_kX^{(k)} $$
где постоянные ( c_i ;, quad i=overline{1,k} ), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ (AX=B). Заменив столбец (B) свободных членов нулевым, получим однородную СЛАУ (AX=0), соответствующую
неоднородной СЛАУ (AX=B). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец (X^circ) — некоторое решение СЛАУ (AX=B). Произвольный столбец (X) является решением этой СЛАУ тогда и
только тогда, когда он имеет представление (X = X^circ + Y ), где (Y) — решение соответствующей однородной СЛАУ (AY=0).

Следствие. Пусть (X’) и (X») — решения неоднородной системы (AX=B). Тогда их разность ( Y = X’ — X» ) является
решением соответствующей однородной системы (AY=0).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно
её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых,
найти частное решение (X^circ) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть (X^circ) — частное решение СЛАУ (AX=B) и известна фундаментальная система
решений ( X^{(1)}, ldots , X^{(k)} ) соответствующей однородной системы (AX=0). Тогда любое решение СЛАУ (AX=B) можно представить в виде
$$ X = X^circ + c_1 X^{(1)} + c_2 X^{(2)} + ldots + c_k X^{(k)} $$
где ( c_i in mathbb{R} ;, quad i=overline{1,k} ).

Эту формулу называют общим решением СЛАУ.

Онлайн калькулятор. Решение систем линейных уравнений методом Гаусса

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Гаусса, вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Гаусса, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений методом Гаусса

Количество неизвестных величин в системе:

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Системы уравнений по-шагам

Примеры систем уравнений

  • Система двух уравнений с двумя неизвестными
  • 2x - y = 5
    3x - y = 7
  • x - y = 1
    y - 2x = 1
  • Система трёх уравнений с тремя переменными
  • x1 - 2x2 + 3*x3 = 14
    2x1 + 3x2 - 4x3 = 0
  • Метод Гаусса
  • x - y - 1 = 0
    x + y + 2 = 0
  • Метод Крамера
  • 2*x - 3*y = 5
    5*x + y = 4
  • Прямой метод
  • 2*x - y = 3
    2*x + y = 9
  • Система нелинейных уравнений
  • x^2 - 1 = 1 + y/2
    1 - y^2 = 2 + x
  • Система четырёх уравнений
  • x1 + 2x2 + 3x3 - 2x4 = 1
    2x1 - x2 - 2x3 - 3x4 = 2
    3x1 + 2x2 - x3 + 2x4 = -5
    2x1 - 3x2 + 2x3 + x4 = 11
  • Система линейных уравнений с четырьмя неизвестными
  • 2x + 4y + 6z + 8v = 100
    3x + 5y + 7z + 9v = 116
    3x - 5y + 7z - 9v = -40
    -2x + 4y - 6z + 8v = 36
  • Система трёх нелинейных уравнений, содержащая квадрат и дробь
  • 2/x = 11
    3x + 5y + 7z + 9v = 116
    x - 3*z^2 = 0
    2/7*x + y - z = -3
  • Система двух уравнений, содержащая куб (3-ю степень)
  • x = y^3
    x - 3*z^2 = 0
    x*y = -5
  • Система уравнений c квадратным корнем
  • x + y - sqrt(x*y) = 5
    2*x*y = 3
  • Система тригонометрических уравнений
  • x + y = 5*pi/2
    sin(x) + cos(2y) = -1
  • Система показательных и логарифмических уравнений
  • y - log(x)/log(3) = 1
    x^y = 3^12

Что умеет калькулятор?

  • Решает системы уравнений различными методами:
    • Метод Крамера
    • Метод Гаусса
    • Численный метод
    • Графический метод
  • Подробное решение тремя способами:
    • Методами Крамера и Гаусса
    • Прямой способ подстановки переменных

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
— умножение
3/x
— деление
x^2
— возведение в квадрат
x^3
— возведение в куб
x^5
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
— число Пи
e
— основание натурального логарифма
i
— комплексное число
oo
— символ бесконечности

Вообще говоря, на сайте уже есть один калькулятор, решающий СЛАУ методом Гаусса — Решение системы линейных алгебраических уравнений методом Гаусса. Он даже расписывает решение пошагово.

Однако, у него есть некоторые недостатки, которые будет решать новый калькулятор из этой статьи:

Во-первых, предыдущий калькулятор выдает решение в формате с плавающей запятой, тогда как во многих задачниках ответ обычно дается в виде дроби.

Во-вторых, предыдущий калькулятор только определяет факт наличия бесконечного множества решений (неопределенная система), но не выдает решение в общем виде.

В-третьих, предыдущий калькулятор работает только в случае когда число уравнений совпадает с числом неизвестных, и таким образом, не может решать недоопределенных (число неизвестных больше числа уравнений) и переопределенных систем (число неизвестных меньше числа уравнений).

Что касается, второго и третьего пунктов, то универсальность метода Гаусса состоит в том, что на самом деле он годится для систем линейных уравнений с любым числом уравнений и неизвестных, просто это не было использовано.

Описание самого метода Гаусса можно посмотреть по ссылке выше, а под калькулятором подробнее рассмотрены разные случаи (виды систем).

Сам калькулятор, помимо нахождения единственного решения, может находить и общее решение в случае неопределенной системы уравнений.
Матрица уравнений из случая 2 ниже (совместная неопределенная система линейных уравнений) использована в нем в качестве входных данных по умолчанию:

PLANETCALC, Решение системы линейных уравнений методом Гаусса для любого числа уравнений и неизвестных

Решение системы линейных уравнений методом Гаусса для любого числа уравнений и неизвестных

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

1. Совместная определенная система линейных уравнений (имеющая одно решение)

Пример: пусть дана система линейных уравнений
begin{cases}3x+2y+z=2; \x-y+2z=-1;\2x+2y+z=3;end{cases}

После приведения матрицы к трапециевидной форме методом Гаусса получим:
begin{array}{|ccc|c|}  3 &  2 &  1 &  2 \  0 &  -5 &  5 &  -5 \  0 &  0 & -5 & -5 \ end{array}

Откуда обратным ходом находим единственное решение:
x=-1; y=2; z=1
Система совместна и определена.

2. Совместная неопределенная система линейных уравнений (имеющая бесконечное множество решений)

Пример: пусть дана система линейных уравнений:
begin{cases}x_1+2x_2-3x_3+5x_4=1; \x_1+3x_2-13x_3+22x_4=-1;\3x_1+5x_2+x_3-2x_4=5;\2x_1+3x_2+4x_3-7x_4=4;end{cases}

После приведения матрицы к трапециевидной форме методом Гаусса получим:
begin{array}{|cccc|c|}  1 &  2 &  -3 &  5 & 1 \  0 &  1 & -10 &  17 & -2 \  0 &  0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ end{array}

В результате приходим к системе:
begin{cases}x_1+2x_2-3x_3+5x_4=1; \x_2-10x_3+17x_4=-2;\0=0;\0=0;end{cases}

Последние два уравнения верны при любых значениях переменных:
0 cdot x_1+0 cdot x_2+0 cdot x_3+0 cdot x_4=0
поэтому их можно отбросить.

Чтобы найти решения оставшихся двух уравнений, x1 и x2 можно выразить через x3 и x4.
begin{cases}x_2=10x_3-17x_4-2; \x_1=-17x_3+29x_4+5;end{cases}
При этом сами x3 и x4 могут принимать любые значения

Полученная эквивалентная система совместна, но неопределена. Формулы:
begin{cases}x_1=-17x_3+29x_4+5; \x_2=10x_3-17x_4-2; \x_3 in R; \x_4 in R; end{cases};
при произвольных x3 и x4 описывают бесконечное множество решений заданной системы.

3. Несовместная система линейных уравнений (не имеющая решений)

Пример: пусть дана система линейных уравнений:
begin{cases}x_1-2x_2+3x_3-4x_4=2; \3x_1+3x_2-5x_3+x_4=-3;\-2x_1+x_2+2x_3-3x_4=5;\3x_1+3x_3-10x_4=8;end{cases}

После приведения матрицы к трапециевидной форме методом Гаусса получим:
begin{array}{|cccc|c|}  1 &  -2 &  3 &  -4 & 2 \  0 &  9 & -14 &  13 & -9 \  0 &  0 & 30 & -60 & 54 \ 0 & 0 & 0 & 0 & 60 \ end{array}

Полученная эквивалентная система несовместна, так как последнее уравнение:
0 cdot x_1+0 cdot x_2+0 cdot x_3+0 cdot x_4=60
не может быть удовлетворено никакими значениями неизвестных.
Эта система несовместна, т. е. не имеет решения.

4. Переопределенная система линейных уравнений (число неизвестных меньше числа уравнений)

Пример: пусть дана система линейных уравнений
begin{cases}x_1+2x_2+3x_3=6; \2x_1-3x_2+x_3=0;\3x_1-2x_2+4x_3=5;\x_1-x_2+3x_3=3;end{cases}

После приведения матрицы к трапециевидной форме методом Гаусса получим
begin{array}{|ccc|c|}  1 &  2 &  3 &  6 \  0 &  -7 & -5 &  -12 \  0 &  0 & -5 & -5 \ 0 & 0 & 0 & 0 \ end{array}

Как видим, в данном случае «лишнее» уравнение можно просто отбросить. Также в результате преобразований можно получить одинаковые строки, «лишние» из которых тоже можно отбросить — после чего задача сводится к случаям 1 или 2.

5. Недоопределенная система линейных уравнений (число неизвестных больше числа уравнений)

Пример: пусть дана система линейных уравнений:
begin{cases}x_1-x_2+3x_3-4x_4=0; \2x_1+3x_2+6x_3-8x_4=0;end{cases}

После приведения матрицы к трапециевидной форме методом Гаусса получим:
begin{array}{|cccc|c|}  1 &  -1 &  3 &  -4 & 0 \  0 &  5 & 0 &  0 & 0 \ end{array}

Полученная эквивалентная система имеет вид:
begin{cases}x_1-x_2+3x_3-4x_4=0; \5x_2=0;end{cases}

Как видно, в ней отсутствуют уравнения, дающие однозначные значения для x3 и x4, что равносильно появлению уравнений вида:
0 cdot x_1+0 cdot x_2+0 cdot x_3+0 cdot x_4=60
которые можно отбросить.

Таким образом этот случай сводится к случаю 2 с бесконечным множеством решений, которые описываются следующими формулами:
begin{cases}x_1=-3x_3+4x_4; \x_2=0; \x_3 in R; \x_4 in R; end{cases}

Понравилась статья? Поделить с друзьями:
  • Как найти песню которая играет в ютубе
  • Сириус звезда в созвездии орион как найти
  • Как найти орхидею по фото
  • Как найти приставочный способ образования
  • Как найти отпускную цену производства