Как найти случайную высоту

Нормальным называют распределение вероятностей непрерывной случайной величины

, плотность которого имеет вид:

где

 –
математическое ожидание,

 –
среднее квадратическое отклонение

.

Вероятность того, что

 примет
значение, принадлежащее интервалу

:

где  

 – функция Лапласа:

Вероятность того, что абсолютная
величина отклонения меньше положительного числа

:

В частности, при

 справедливо
равенство:

Асимметрия, эксцесс,
мода и медиана нормального распределения соответственно равны:

,  где

Правило трех сигм

Преобразуем формулу:

Положив

. В итоге получим

если

, и, следовательно,

, то

то есть вероятность того, что
отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонение, равна 0,9973.

Другими словами, вероятность того,
что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна
0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие
события исходя из принципа невозможности маловероятных
событий можно считать практически невозможными. В этом и состоит
сущность правила трех сигм: если случайная величина распределена нормально, то
абсолютная величина ее отклонения от математического ожидания не превосходит
утроенного среднего квадратического отклонения.

На практике правило трех сигм
применяют так: если распределение изучаемой случайной величины неизвестно, но
условие, указанное в приведенном правиле, выполняется, то есть основание
предполагать, что изучаемая величина распределена нормально; в противном случае
она не распределена нормально.

Смежные темы решебника:

  • Таблица значений функции Лапласа
  • Непрерывная случайная величина
  • Показательный закон распределения случайной величины
  • Равномерный закон распределения случайной величины

Пример 2

Ошибка
высотометра распределена нормально с математическим ожиданием 20 мм и средним
квадратичным отклонением 10 мм.

а) Найти
вероятность того, что отклонение ошибки от среднего ее значения не превзойдет 5
мм по абсолютной величине.

б) Какова
вероятность, что из 4 измерений два попадут в указанный интервал, а 2 – не
превысят 15 мм?

в)
Сформулируйте правило трех сигм для данной случайной величины и изобразите
схематично функции плотности вероятностей и распределения.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

а) Вероятность того, что случайная величина, распределенная по
нормальному закону, отклонится от среднего не более чем на величину

:

В нашем
случае получаем:

б) Найдем
вероятность того, что отклонение ошибки от среднего значения не превзойдет 15
мм:

Пусть событие

 – ошибки 2
измерений не превзойдут 5 мм и ошибки 2 измерений не превзойдут 0,8664 мм

 – ошибка не
превзошла 5 мм;

 – ошибка не
превзошла 15 мм

в)
Для заданной нормальной величины получаем следующее правило трех сигм:

Ошибка высотометра будет лежать в интервале:

Функция плотности вероятностей:

График плотности распределения нормально распределенной случайной величины

Функция распределения:

График функции
распределения нормально распределенной случайной величины

Задача 1

Среднее
количество осадков за июнь 19 см. Среднеквадратическое отклонение количества
осадков 5 см. Предполагая, что количество осадков нормально-распределенная
случайная величина найти вероятность того, что будет не менее 13 см осадков.
Какой уровень превзойдет количество осадков с вероятностью 0,95?


Задача 2

Найти
закон распределения среднего арифметического девяти измерений нормальной
случайной величины с параметрами m=1.0 σ=3.0. Чему равна вероятность того, что
модуль разности между средним арифметическим и математическим ожиданием
превысит 0,5?

Указание:
воспользоваться таблицами нормального распределения (функции Лапласа).


Задача 3

Отклонение
напряжения в сети переменного тока описывается нормальным законом
распределения. Дисперсия составляет 20 В. Какова вероятность при изменении
выйти за пределы требуемых 10% (22 В).

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 4

Автомат
штампует детали. Контролируется длина детали Х, которая распределена нормально
с математическим ожиданием (проектная длинна), равная 50 мм. Фактическая длина
изготовленных деталей не менее 32 и не более 68 мм. Найти вероятность того, что
длина наудачу взятой детали: а) больше 55 мм; б) меньше 40 мм.


Задача 5

Случайная
величина X распределена нормально с математическим ожиданием a=10и средним
квадратическим отклонением  σ=5. Найти
интервал, симметричный относительно математического ожидания, в котором с
вероятностью 0,9973 попадает величина Х в результате испытания.


Задача 6

Заданы
математическое ожидание ax=19 и среднее квадратическое отклонение σ=4
нормально распределенной случайной величины X. Найти: 1) вероятность
того, что X примет значение, принадлежащее интервалу (α=15;
β=19); 2) вероятность того, что абсолютная величина отклонения значения
величины от математического ожидания окажется меньше δ=18.


Задача 7

Диаметр
выпускаемой детали – случайная величина, распределенная по нормальному закону с
математическим ожиданием и дисперсией, равными соответственно 10 см и 0,16 см2.
Найти вероятность того, что две взятые наудачу детали имеют отклонение от
математического ожидания по абсолютной величине не более 0,16 см.


Задача 8

Ошибка
прогноза температуры воздуха есть случайная величина с m=0,σ=2℃. Найти вероятность
того, что в течение недели ошибка прогноза трижды превысит по абсолютной
величине 4℃.


Задача 9

Непрерывная
случайная величина X распределена по нормальному 
закону: X∈N(a,σ).

а) Написать
плотность распределения вероятностей и функцию распределения.

б) Найти
вероятность того, что в результате испытания случайная величина примет значение
из интервала (α,β).

в) Определить
приближенно минимальное и максимальное значения случайной величины X.

г) Найти
интервал, симметричный относительно математического ожидания a, в котором с
вероятностью 0,98 будут заключены значения X.

a=5; σ=1.3; 
α=4; β=6


Задача 10

Производится измерение вала без
систематических ошибок. Случайные ошибки измерения X
подчинены нормальному закону с σx=10.  Найти вероятность того, что измерение будет
произведено с ошибкой, превышающей по абсолютной величине 15 мм.


Задача 11

Высота
стебля озимой пшеницы — случайная величина, распределенная по нормальному закону
с параметрами a = 75 см, σ = 1 см. Найти вероятность того, что высота стебля:
а) окажется от 72 до 80 см; б) отклонится от среднего не более чем на 0,5 см.


Задача 12

Деталь,
изготовленная автоматом, считается годной, если отклонение контролируемого
размера от номинала не превышает 10 мм. Точность изготовления деталей
характеризуется средним квадратическим отклонением, при данной технологии
равным 5 мм.

а)
Считая, что отклонение размера детали от номинала есть нормально распределенная
случайная величина, найти долю годных деталей, изготовляемых автоматом.

б) Какой
должна быть точность изготовления, чтобы процент годных деталей повысился до
98?

в)
Написать выражение для функции плотности вероятности и распределения случайной
величины.


Задача 13

Диаметр
детали, изготовленной цехом, является случайной величиной, распределенной по
нормальному закону. Дисперсия ее равна 0,0001 см, а математическое ожидание –
2,5 см. Найдите границы, симметричные относительно математического ожидания, в
которых с вероятностью 0,9973 заключен диаметр наудачу взятой детали. Какова
вероятность того, что в серии из 1000 испытаний размер диаметра двух деталей
выйдет за найденные границы?

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 14

Предприятие
производит детали, размер которых распределен по нормальному закону с
математическим ожиданием 20 см и стандартным отклонением 2 см. Деталь будет
забракована, если ее размер отклонится от среднего (математического ожидания)
более, чем на 2 стандартных отклонения. Наугад выбрали две детали. Какова вероятность
того, что хотя бы одна из них будет забракована?


Задача 15

Диаметры
деталей распределены по нормальному закону. Среднее значение диаметра равно d=14 мм
, среднее квадратическое
отклонение σ=2 мм
. Найти вероятность того,
что диаметр наудачу взятой детали будет больше α=15 мм и не меньше β=19 мм; вероятность того, что диаметр детали
отклонится от стандартной длины не более, чем на Δ=1,5 мм.


Задача 16

В
электропечи установлена термопара, показывающая температуру с некоторой
ошибкой, распределенной по нормальному закону с нулевым математическим
ожиданием и средним квадратическим отклонением σ=10℃. В момент когда термопара
покажет температуру не ниже 600℃, печь автоматически отключается. Найти
вероятность того, что печь отключается при температуре не превышающей 540℃ (то
есть ошибка будет не меньше 30℃).


Задача 17

Длина
детали представляет собой нормальную случайную величину с математическим
ожиданием 40 мм и среднеквадратическим отклонением 3 мм. Найти:

а)
Вероятность того, что длина взятой наугад детали будет больше 34 мм и меньше 43
мм;

б)
Вероятность того, что длина взятой наугад детали отклонится от ее
математического ожидания не более, чем на 1,5 мм.


Задача 18

Случайное
отклонение размера детали от номинала распределены нормально. Математическое
ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно
0,25 мм, стандартами считаются детали, размер которых заключен между 199,5 мм и
200,5 мм. Из-за нарушения технологии точность изготовления деталей уменьшилась
и характеризуется средним квадратическим отклонением 0,4 мм. На сколько
повысился процент бракованных деталей?


Задача 19

Случайная
величина X~N(1,22). Найти P{2

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 20

Заряд пороха для охотничьего ружья
должен составлять 2,3 г. Заряд отвешивается на весах, имеющих ошибку
взвешивания, распределенную по нормальному закону со средним квадратическим
отклонением, равным 0,2 г. Определить вероятность повреждения ружья, если максимально
допустимый вес заряда составляет 2,8 г.


Задача 21

Заряд
охотничьего пороха отвешивается на весах, имеющих среднеквадратическую ошибку
взвешивания 150 мг. Номинальный вес порохового заряда 2,3 г. Определить
вероятность повреждения ружья, если максимально допустимый вес порохового
заряда 2,5 г.


Задача 21

Найти
вероятность попадания снарядов в интервал (α1=10.7; α2=11.2).
Если случайная величина X распределена по
нормальному закону с параметрами m=11; 
σ=0.2.


Задача 22

Плотность
вероятности распределения случайной величины имеет вид

Найти
вероятность того, что из 3 независимых случайных величин, распределенных по
данному закону, 3 окажутся на интервале (-∞;5).


Задача 23

Непрерывная
случайная величина имеет нормальное распределение. Её математическое ожидание
равно 12, среднее квадратичное отклонение равно 2. Найти вероятность того, что
в результате испытания случайная величина примет значение в интервале (8,14)


Задача 24

Вероятность
попадания нормально распределенной случайной величины с математическим
ожиданием m=4 в интервал (3;5) равна 0,6. Найти дисперсию данной случайной
величины.


Задача 25

В
нормально распределенной совокупности 17% значений случайной величины X
 меньше 13% и 47% значений случайной величины X
больше 19%. Найти параметры этой совокупности.


Задача 26

Студенты
мужского пола образовательного учреждения были обследованы на предмет
физических характеристик и обнаружили, что средний рост составляет 182 см, со
стандартным отклонением 6 см. Предполагая нормальное распределение для роста,
найдите вероятность того, что конкретный студент-мужчина имеет рост более 185
см.

Как может быть найдена высота при известных длине и ширине

При решении задач по стереометрии часто требуется найти значения одних параметров через известные значения других. Особенно часто в подобных заданиях встречается такая фигура, как прямоугольный параллелепипед. Характеристиками этой распространенной фигуры являются длина, ширина и высота. В общем случае, эти три параметра взаимонезависимы. Однако, если известна какая-либо дополнительная информация, например, объем, то достаточно данных о двух измерениях.

Как может быть найдена высота при известных длине и ширине

Вам понадобится

  • — калькулятор.

Инструкция

Чтобы найти высоту прямоугольного параллелепипеда, если известна длина, ширина и его объем, разделите значение объема на длину и ширину.

В = О / Д / Ш, где:

Д – длина параллелепипеда,
Ш – ширина параллелепипеда,
О – объем параллелепипеда.

Например, если объем параллелепипеда равен 200 см³, его длина – 10 см, а ширина – 5 см, то его высота будет: 200 / 10 / 5 = 4 (см).

Перед началом вычислений переведите длину, ширину и объем параллелепипеда в одну систему измерений. При этом, объем параллелепипеда должен выражаться в соответствующих длине и ширине «кубических» единицах измерения. Высота, в результате вычислений, получится в тех же единицах, что длина и ширина. Так, если длина и ширина задана в метрах, то объем параллелепипеда необходимо перевести в метры кубические (высота будет измеряться в метрах). Особенно актуален подобный перевод при измерении объемов строительных материалов (например, досок), где данные измерений могут быть представлены как в метрах, так и в сантиметрах.

Пример.
В кузов автомобиля было загружено 200 досок толщиной 50 мм, шириной 20 см и длиной 5 метров. Длина кузова автомобиля составляет 10 метров, ширина – 250 сантиметров.
Вопрос.
Какой высоты будет загруженный в кузов автомобиля штабель досок?
Решение.
Переведите сначала все измерения в одну единицу:
50мм=0,05м,
20см=0,2м
250см=2,5м
Затем посчитайте объем досок:
0,05*0,2*5*200=10 (м³)
Теперь разделите объем досок на длину и ширину кузова автомобиля:
10 / 10 / 2,5 = 0,4 (м).
Ответ: Высота досок составит 0,4 метра.

Иногда под длиной, шириной и высотой предмета подразумеваются его габаритные размеры. Так, например, если известны длина и ширина (диаметр) бочки, а также ее объем, то для расчета высоты разделите объем бочки на площадь ее основания. Для круглой, ровной бочки (цилиндра) это площадь основания будет равной:
π * Д * Ш / 4.

Источники:

  • объем по ширине длине толщине

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

I would like to find out the Expected height of a binary tree where the insertions are based on a random function. I.e. for each node I visit, there is a $frac{1}{2}$ probability of choosing right or left. I know that the following property holds for height $h$, but it’s difficult to add the probability:$$h_{tree}= 1+max(h_{left}, h_{right})$$I think that this version/random tree differs from the random (search) tree mentioned in CLRS chapter 12.4, where you pick a random element from a sorted list ${1,dots, n}$ and insert based on whether the visited node is greater or less than the inserted element. Because, here we choose each path on each visited node to be random.

Note: the binary tree has all its elements at the leafs and internal nodes are only used for routing (see Figure 1.)

//pseudocode
insert(i, tree):
    if at leaf v:
        split(); //Create a parent u and set its children to be the leaf v and element i.
    else:
        int left = random()
        int right = random()
        if (left > right):
            insert(i, left-subtree):
        else:
            insert(i, right-subtree)

Figure 1:
example of binary tree

§ 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

3.6. Двумерные случайные величины.

Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими —
в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические валики, то диаметр валика
и его высота , образуют систему двух случайных величин

Двумерной случайной величиной называют систему из двух случайных величин ,
для которой определена вероятность совместного выполнения неравенств и ,
где x и y — любые действительные числа.

Функция двух переменных

(34)

определенная для любых x и y, называется функцией распределения системы двух случайных величин

Будем рассматривать и как декартовы координаты точки на плоскости. Точка
может занимать то или иное положение на плоскости . Тогда функция распределения даст вероятность того, что случайная точка
попадает в область , изображенную на рис. 13.

Двумерная случайная величина называется дискретной, если и — дискретные величины.

Пусть возможные значения и образуют, например, конечные последовательности x1, x2, …, xn и y1, y2, …, ys.
Возможные значения двумерной случайной величины имеют вид (xi, yj), где i=1, 2, …, n; j=1, 2, …, s. Обозначим через pij вероятность того, что

Функция распределения F(х, у) имеет вид

где двойная сумма распространена на те i и j, для которых xi<x и yj<y.

Двумерную случайную величину так же, как и одномерную, можно задавать таблицей.
Первая строка таблицы содержит возможные значения случайной величины , а первый столбец — возможные значения .
В остальных клетках таблицы указаны соответствующие вероятности, причем их сумма всегда равна единице. В качестве примера рассмотрим двумерную случайную величину, заданную следующей таблицей:

-1 0 1
0,1 p11=0,05 p12=0,20 p13=0,30
0,2 p21=0,10 p22=0,20 p23=0,15

Сумма всех вероятностей

Две дискретные случайные величины и называются независимыми, если для всех пар i, j выполняется соотношение

Пример 1.
Две игральные кости бросают по одному разу. Обозначим через число очков, выпавшее на первой кости, а через — на второй;
тогда — Двумерная дискретная величина. Покажем, что величины и независимы.
(Решение)

Двумерная величина называется непрерывной, если существует такая непрерывная неотрицательная
функция , двух переменных, что вероятность того, что точка содержится в некоторой области плоскости ,
равна двойному интегралу от функции по области :

(35)

Функция называется плотностью распределения вероятностей системы двух
величин и . Отсюда, в частности, следует, что если область имеет вид, изображенный на рис. 13,
то функцию распределения системы случайных величин можно записать следующим образом:

(36)

Непрерывные случайные величины и называются независимыми, если
, где и — соответственно плотности распределения вероятностей случайных величин и . В этом случае

где F1(x) и F2(y) — соответственно функции распределения величин и [см. формулу (22)].

Зная функцию распределения F(х,у) двумерной случайной величины , легко найти как функцию распределения,
так и плотность распределения каждой из случайных величин и , в отдельности.

Действительно, пусть F1(x) — функция распределения случайной величины .
Тогда . Так как в этом случае может принимать любое значение, то ясно, что

Следовательно, по формуле (36) имеем

Дифференцируя последнее равенство по x, согласно правилу дифференцирования интеграла по переменной верхней границе получим

(37)

Аналогичным образом получаем

и, следовательно,

(38)

Таким образом, чтобы получить плотность распределения одной из составляющих двумерной случайной величины,
надо проинтегрировать в границах от до плотность распределения
системы по переменной, соответствующей другой случайной величине.

Пример 2.
Двумерная случайная величина имеет плотность распределения

Найти:

1) вероятность р попадания случайной точки в квадрат изображенный на рис. 14;

2) функцию распределения F(х,у);

3) плотности распределения каждой величины и в отдельности.
(Решение)

По определению двумерная случайная величина распределена нормально, если плотность распределения системы величин и имеет вид

где , , а R — некоторая постоянная (см. § 9, п. 2).
Можно показать [используя формулы (37) и (38)], что каждая из величин и распределена нормально:

На доказательстве этого факта мы не будем останавливаться. В частности, если и независимы, то
. Отсюда следует, что R=0, и, cледовательно,

Нетрудно убедиться в том, что справедливо и обратное утверждение: если R=0, то и — независимые случайные величины.

Дальше…

Понравилась статья? Поделить с друзьями:
  • Как исправить забродивший компот
  • Как найти выключенный андроид с другого андроида
  • Как найти диджу скайрим
  • Как найти игроков на фейсит
  • Как найти среднюю скорость sql