Как найти смещение точки в момент времени

Гармонические колебания

Простейшим видом колебаний являются гармонические колебания — колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 13.2) гармо-ническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

(x = A cos Bigr( frac{2 pi}{T}t + varphi_0 Bigl)) или (x = A sin Bigr( frac{2 pi}{T}t + varphi’_0 Bigl))

где х — смешение — величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А — амплитуда колебаний — максимальное смещение тела из положения равновесия; Т — период колебаний — время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; (varphi_0) — начальная фаза; (varphi = frac{2 pi}{T}t + varphi’_0) — фаза колебании в момент времени t. Фаза колебаний — это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени t0= 0 колеблющаяся точка максимально смещена от положения равновесия, то (varphi_0 = 0), а смещение точки от положения равновесия изменяется по закону

(x = A cos frac{2 pi}{T}t.)

Если колеблющаяся точка при t0 = 0 находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

(x = A sin frac{2 pi}{T}t.)

Величину V, обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

(nu = frac{1}{T} )(в СИ единицей частоты является герц, 1Гц = 1с-1).

Если за время t тело совершает N полных колебаний, то

(T = frac{t}{N} ; nu = frac{N}{t}.)

Величину (omega = 2 pi nu = frac{2 pi}{T}) , показывающую, сколько колебаний совершает тело за 2 (pi) с, называют циклической (круговой) частотой.

Кинематический закон гармонического движения можно записать в виде:

(x = A cos(2pi nu t + varphi_0), x = A cos(omega t + varphi_0).)

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 13.3, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая (varphi_0=0), т.е. (~x=Acos omega t.)

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

(upsilon_x = x’ A sin omega t = omega A cos Bigr( omega t + frac{pi}{2} Bigl) ,)

где (~omega A = |upsilon_x|_m)— амплитуда проекции скорости на ось х.

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по  гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на (frac{pi}{2}) (рис. 13.3, б).

Для выяснения зависимости ускорения ax(t) найдем производную по времени от проекции скорости:

(~ a_x = upsilon_x’ = -omega^2 A cos omega t = omega^2 cos(omega t + pi),)

где (~omega^2 A = |a_x|_m) — амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 13,3, в).

Аналогично можно построить графики зависимостей (~x(t), upsilon_x (t)) и (~a_x(t),) если (~x = A sin omega t) при (varphi_0=0.)

Учитывая, что (A cos omega t = x), формулу для ускорения можно записать

(~a_x = — omega^2 x,)

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения — это вторая производная от смещения аx=х’ ‘ , то полученное соотношение можно записать в виде:

(~a_x + omega^2 x = 0) или (~x» + omega^2 x = 0.)

Последнее равенство называют уравнением гармонических колебаний.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний — уравнением гармонического осциллятора.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 368-370.

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями.
Например, в случае механических гармонических колебаний:.
В этих формулах ω – частота колебания, xm – амплитуда колебания, φ0 и φ0’ – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ0’ = φ0 +π/2 полностью совпадают.
Амплитуда колебаний и смещение точки Амплитуда колебаний и смещение точки
Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0  смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ0’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=хm, следовательно, удобнее пользоваться функцией cos и φ0=0.
Выражение, стоящее под знаком cos или sin, наз. фазой колебания: .
Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.
Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).
Скорость и ускорение при гармонических колебаниях.
Согласно определению скорости, скорость – это производная от координаты по времени Амплитуда колебаний и смещение точки
Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на π/2.
Величина  — максимальная скорость колебательного движения (амплитуда колебаний скорости).
Следовательно, для скорости при гармоническом колебании имеем: Амплитуда колебаний и смещение точки,  а для случая нулевой начальной фазы  (см. график). Амплитуда колебаний и смещение точки
Согласно определению ускорения, ускорение – это производная от скорости по времени:
Амплитуда колебаний и смещение точки — вторая производная от координаты по времени. Тогда: Амплитуда колебаний и смещение точки.
Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на π/2 и колебания смещения на π (говорят, что колебания происходят в противофазе).
Величина 
— максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: Амплитуда колебаний и смещение точки, а для случая нулевой начальной фазы: Амплитуда колебаний и смещение точки (см. график).
Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).
Сравним выражения для смещения и ускорения при гармонических колебаниях:
   и    Амплитуда колебаний и смещение точки.
Можно записать:  —
т.е. вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению. Такое уравнение наз. уравнением гармонического колебания. Эта зависимость выполняется для любого гармонического колебания, независимо от его природы. Поскольку мы нигде не использовали параметров конкретной колебательной системы, то от них может зависеть только циклическая частота.
Часто бывает удобно записывать уравнения для колебаний в виде: ,
где – период колебания. Тогда, если время выражать в долях периода подсчеты будут упрощаться. Например, если надо найти смещение через 1/8 периода, получим: . Аналогично для скорости и ускорения.

Источник: https://www.eduspb.com/node/1780

Амплитуда колебаний — определение, характеристика и формулы

Амплитуда колебаний и смещение точкиАмплитуда колебаний и смещение точки

Амплитуда колебаний – это максимальное значение отклонения от нулевой точки. В физике данный процесс анализируется в разных разделах. 

Он изучается при механических, звуковых и электромагнитных колебаниях. В перечисленных случаях амплитуда измеряется по-разному и по своим законам.

Амплитуда колебаний

Амплитудой колебания называют максимальную отдаленную точку нахождения тела от положения равновесия. В физике она обозначается буквой А и измеряется в метрах. 

За амплитудой можно наблюдать на простом примере пружинного маятника.

Амплитуда колебаний и смещение точки 

  • В идеальном случае, когда игнорируется сопротивление воздушного пространства и трение пружинного устройства, устройство будет колебаться бесконечно. Описание движения выполняется с помощью функций cos и sin:
  • x(t) = A * cos(ωt + φ0) или x(t) = A * sin(ωt + φ0),
  • где 
  • величина А – это амплитуда свободных движений груза на пружине;
  • (ωt + φ0) – это фаза свободных колебаний, где ω — это циклическая частота, а φ0 – это начальная фаза, когда t = 0. 

Амплитуда колебаний и смещение точки

В физике указанную формулу называют уравнением гармонических колебаний. Данное уравнение полностью раскрывает процесс, где маятник движется с определенной амплитудой, периодом и частотой. 

Период колебаний

  1. Результаты лабораторных опытов показывают, что циклический период движения груза на пружине напрямую зависит от массы маятника и жесткости пружины, но не зависит от амплитуды движения.
  2. В физике период обозначают буквой Т и описывают формулами:

Амплитуда колебаний и смещение точки

Исходя из формул, период колебаний – это механические движения, повторяющиеся через определенный промежуток времени. Простыми словами периодом называют одно полное движение груза.

Частота колебаний

Под частотой колебаний следует понимать количество повторений движения маятника или прохождения волны. В разных разделах физики частота обозначается буквами ν, f или F. 

  • Данная величина описывается выражением:
  • v = n/t – количество колебаний за промежуток времени,
  • где 
  • n – это единица колебаний;
  • t – отрезок времени.

В Международной системе измерений частоту измеряют в Гц (Герцах). Она относится к точным измеряемым составляющим колебательного процесса. 

Например, наукой установлена частота вращения Солнца вокруг центра Вселенной. Она равна -1035 Гц при одинаковой скорости.

Циклическая частота

В физике циклическая и круговая частота имеют одинаковое значение. Данная величина еще называется угловой частотой. 

Амплитуда колебаний и смещение точки

  1. Обозначают ее буквой омега. Она равна числу собственных колебательных движений тела за 2π секунд времени:
  2. ω = 2π/T = 2πν.

Данная величина нашла свое применение в радиотехнике и, исходя из математического расчета, имеет скалярную характеристику. Ее измерения проводят в радианах на секунду. С ее помощью значительно упрощаются расчеты процессов в радиотехнике. 

  • Например, резонансное значение угловой частоты колебательного контура рассчитывают по формуле:
  • WLC = 1/LC.
  • Тогда как обычная циклическая резонансная частота выражается:
  • VLC = 1/2π*√ LC.

В электрике под угловой частотой следует понимать число полных трансформаций ЭДС или число оборотов радиуса – вектора. Здесь ее обозначают буквой f.

Для определения на графике составляющих колебательного механического процесса или, например, колебания температуры, нужно разобраться в терминах этого процесса. 

К ним относят:

  • расстояние испытываемого объекта от исходной точки – называют смещением и обозначают х;
  • наибольшее отклонение – амплитуда смещения А;
  • фаза колебания – определяет состояние колебательной системы в любой момент времени;
  • начальная фаза колебательного процесса – когда t = 0, то φ = φ0.

Амплитуда колебаний и смещение точки

Из графика видно, что значение синуса и косинуса может меняться от -1 до +1. Значит, смещение х может быть равно –А и +А. Движение от –А до +А называют полным колебанием.

Построенный график четко показывает период и частоту колебаний. Стоить отметить, что фаза не воздействует на форму кривой, а только влияет на ее положение в заданный промежуток времени.

Источник: https://nauka.club/fizika/amplituda-kolebaniy.html

Гармонические колебания

Определение 1

Техника и окружающий мир являются примерами того, что существуют такие процессы, которые повторяются через определенные промежутки времени, то есть периодически. Их называют колебательными.

Такие движения относят к явлениям с разной физической природой с подчинением общим закономерностям. Запись колебания тока в электрической цепи и математического маятника производится одним и тем же уравнением. Различная природа колебательных движений позволяет рассматривать их с единой точки зрения, исходя из общности закономерностей.

Определение 2

Механические колебания – это периодические или непериодические изменения физической величины, описывающей механическое движение (скорость, перемещение и так далее).

Когда в заданной среде атомы располагаются очень близко или молекулы испытывают силовое воздействие, наблюдается возбуждение механических колебаний. Это говорит о том, что процесс будет иметь конечную скорость, зависящую от свойств среды, которая распространяется от точки к точке. Так возникают механические волны. Явный пример – звуковые волны в воздухе.

Волновые процессы и колебания разной природы имеют много общего, а их распространение может быть описано аналогичными математическими уравнениями. Это подтверждает единство материального мира.

Гармонические колебания. Определение

В механике предусмотрено движение поступательно, вращательно и с наличием колебаний.

Определение 3

Механические колебания – это движения тел, которые повторяются точно или приблизительно за определенные одинаковые временные промежутки.

Функция x=f(t) объясняет закон движения тела с наличием колебаний. При графическом изображении дается представление о протекании колебательного процесса во времени. Рисунок 2.1.1 наглядно показывает принцип простых колебательных систем груза на пружине или математического маятника.

Амплитуда колебаний и смещение точки

Рисунок 2.1.1. Механические колебательные системы.

Механические колебания подразделяют на свободные и вынужденные.

Определение 4

Действия внутренних сил системы после выведения из равновесия порождают свободные колебания. Примером могут служить колебания груза на пружине или маятника. Если их действие происходит под воздействием внешних сил, тогда их называют вынужденными.

Простейшим видом колебаний являются гармонические колебания, которые описываются уравнением x=xmcos (ωt+φ0), где x– смещение тела от положения равновесия, xm – амплитуда колебаний, ω– циклическая или круговая частота, t – время.

Величина, располагаемая под знаком косинуса, получила название фазы гармонического процесса: φ=ωt+φ0. Если t=0, φ=φ0, тогда φ0 рассматривается в качестве начальной фазы.

Период колебаний Т – это минимальный промежуток времени, через который происходят повторения движения тела. Величина, обратная периоду колебаний, называют частотой колебаний f=1T.

Частота гармонических колебаний показывает их количество, совершаемое за единицу времени, измеряемая в герцах (Г). Связь с циклической частотой ω и периодом T выражается с помощью формулы:

ω=2πf=2πT.

Рисунок 2.1.2 показывает гармонические колебания тел с разными положениями тел. Данный эксперимент наблюдается в специальных условиях при наличии периодических вспышек освещения, называемого стробоскопическим. Для изображения векторов скорости тела в разные моменты времени используют стрелки.

Амплитуда колебаний и смещение точки

Рисунок 2.1.2. Стробоскопическое изображение гармонических колебаний. Начальная фаза φ0=0. Интервал времени между последовательными положениями тела τ = T12.

На графике 2.1.3. показаны изменения, происходящие во время гармонического процесса, при изменении амплитуды колебаний xm, или периода Т (частоты f), или начальной фазы φ0.

Амплитуда колебаний и смещение точки

Рисунок 2.1.3. Во всех трех случаях для синих кривых φ0=0: a – красная кривая отличается от синей только большей амплитудой (x’m>xm); b – красная кривая отличается от синей только значением периода (T’=T2); с – красная кривая отличается от синей только значением начальной фазы  φ0’=-π2 рад.

Гармонический закон

Если колебания совершаются вдоль прямой Ох, тогда направление вектора скорости аналогично. Определение скорости движения тела υ=υx определяют из выражения υ=∆x∆t; ∆t→0.

Отношение ∆x∆t при ∆t→0 математика трактует как вычисление производной функции x(t) за определенное время t. Обозначение принимает вид dx (t)dt, x'(t) или x˙.

Гармонический закон движения записывается в качестве x=xmcos (ωt+φ0). После вычисления производной формула приобретает вид:

υ=x˙(t)=-ωxmsin (ωt+φ0)=ωxmcos ωt+φ0+π2.

Слагаемое +π2 считают изменением начальной фазы. Достижение максимального значения скорости по модулю υ=ωxmпроизводится при прохождении тела через положение равновесия, то есть x=0. Аналогично определяют ускорение a=ax. Тогда a=∆υ∆t, ∆t→0. Отсюда следует, что a равняется производной функции υ(t) за время t или второй производной функции x(t). Подставив выражения, получим

a=υ˙(t)=x¨(t)=-ω2xmcos (ωt+φ0)=-ω2x(t).

Наличие отрицательного знака указывает на то, что ускорение a(t) имеет противоположный смещению x(t) знак. Исходя из второго закона Ньютона, сила, которая заставляет совершать колебательные движения, направляется в сторону положения равновесия x=0.

На рисунке 2.1.4 изображены графики, где имеются зависимости скорости, ускорения, совершающие гармонические колебания.

Амплитуда колебаний и смещение точки

Рисунок 2.1.4. Графики координаты x (t), скорости υ (t) и ускорения a (t) тела, совершающего гармонические колебания.

Амплитуда колебаний и смещение точки

Рисунок 2.1.5. Модель гармонических колебаний.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/mehanicheskie-kolebanija/garmonicheskie-kolebanija/

Механические колебания

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний 
u — это величина, обратная периоду: 
u =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

  • Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:
  • (1)
  • Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

  1. (2)
  2. (3)
  3. Измеряется циклическая частота в рад/с (радиан в секунду).
  4. В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):
  5. .

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

.

График гармонических колебаний в этом случае представлен на рис. 2.

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

.

График колебаний представлен на рис. 3.

Уравнение гармонических колебаний

  • Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:
  • . (4)
  • Теперь дифференцируем полученное равенство (4):
  • . (5)
  • Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :
  • . (6)
  • Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:
  • . (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением.

Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Пружинный маятник

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

. (8)

Если (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

  1. Тогда соотношение (8) принимает вид:
  2. или
  3. .
  4. Мы получили уравнение гармонических колебаний вида (6), в котором
  5. .
  6. Циклическая частота колебаний пружинного маятника, таким образом, равна:
  7. . (9)
  8. Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:
  9. . (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

Математический маятник

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

  • Запишем для маятника второй закон Ньютона:
  • ,
  • и спроектируем его на ось :
  • .

Если маятник занимает положение как на рисунке (т. е. ), то:

.

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

  1. .
  2. Итак, при любом положении маятника имеем:
  3. . (11)

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11):

  • ,
  • или
  • .
  • Это — уравнение гармонических колебаний вида (6), в котором
  • .
  • Следовательно, циклическая частота колебаний математического маятника равна:
  • . (12)
  • Отсюда период колебаний математического маятника:
  • . (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

Рис. 6. Затухающие колебания

  1. Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).
  2. Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:
  3. .

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний.

Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими.

Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний.

Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе.

При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

Источник: https://ege-study.ru/ru/ege/materialy/fizika/mexanicheskie-kolebaniya/

§12. Гармоническое колебательное движение и волны

Решебник Волькенштейн В.С. (1985) — Задача 12. 16

Уравнение колебаний материальной точки массой m = 10 г имеет вид x = 5sin(π/5·t+π/4) см. Найти максимальную силу Fmax, действующую на точку, и полную энергию W колеблющейся точки.

Решебник Волькенштейн В.С. (1985) — Задача 12. 15

Уравнение колебания материальной точки массой m = 16 г имеет вид х = 0,1sin(π/8 · t+π/4). Построить график зависимости от времени t (в пределах одного периода) силы F, действующей на точку. Найти максимальную силу Fmax.

Решебник Волькенштейн В.С. (1985) — Задача 12. 14

Начальная фаза гармонического колебания φ = 0 . При смещении точки от положения равновесия х1 = 2,4 см скорость точки v1 = 3 см/с, а при смещении x2 = 2,8 см ее скорость v2 = 2 см/с. Найти амплитуду А и период Т этого колебания.

Решебник Волькенштейн В.С. (1985) — Задача 12. 13

Написать уравнение гармонического колебательного движения, если максимальное ускорение точки amах = 49,3 см/с2, период колебаний T = 2 с и смещение точки от положения равновесия в начальный момент времени х0 = 25 мм.

Решебник Волькенштейн В.С. (1985) — Задача 12. 12

Точка совершает гармоническое колебание. Период колебаний Т = 2 с, амплитуда А = 50 мм, начальная фаза φ = 0.Найти скорость v точки в момент времени, когда смешение точки от положения равновесия х = 25 мм.

Решебник Волькенштейн В.С. (1985) — Задача 12. 11

Уравнение движения точки дано в виде x = sinπ/6·t. Найти моменты времени t, в которые достигаются максимальная скорость и максимальное ускорение.

Решебник Волькенштейн В.С. (1985) — Задача 12. 10

Уравнение движения точки дано в виде х = 2sin(π/2·t+π/4).Найти период колебаний T, максимальную скорость vmах и максимальное ускорение amаx точки.

Решебник Волькенштейн В.С. (1985) — Задача 12. 9

Амплитуда гармонического колебания A = 5 см, период T = 4 с. Найти максимальную скорость vmax колеблющейся точки и ее максимальное ускорение amах.

Решебник Волькенштейн В.С. (1985) — Задача 12. 8

Через какое время от начала движения точка, совершающая колебательное движение по уравнению х = 7sinπ/2·t, проходит путь от положения равновесия до максимального смещения?

Решебник Волькенштейн В.С. (1985) — Задача 12. 7

Начальная фаза гармонического колебания φ = 0. Через какую долю периода скорость точки будет равна половине ее максимальной скорости?

Источник: https://zzapomni.com/paragrafy/ss12-garmonicheskoe-kolebatelnoe-dvizhenie-i-volny?page=5

смещение положения равновесия точки

смещение положения равновесия точки

Задача 40713

Написать уравнение синусоидального гармонического колебания, если амплитуда скорости 63 см/с, период колебаний 1 с, смещение точки от положения равновесия в начальный момент времени равно нулю. Найти амплитуду ускорения, частоту колебаний.

Задача 40738

Написать уравнение гармонического колебания, совершаемого по закону косинуса, если амплитуда ускорения 50 см/с2, частота колебаний 50 Гц, смещение точки от положения равновесия в начальный момент времени 25 мм. Найти амплитуду скорости.

Задача 40739

Написать уравнение гармонического колебания, совершаемого по закону косинуса, если амплитуда ускорения 50 м/с2, частота колебаний 50 Гц, смещение точки от положения равновесия в начальный момент времени 0,25 мм. Найти амплитуду скорости.

Задача 26216

Написать уравнение гармонических колебаний с амплитудой 50мм, периодом 4с и начальной фазой П/4. Найти смещение точки от положения равновесия при t = 0 и t = 1,5 с.

Задача 26560

Уравнение незатухающих колебаний дано в виде: У = 4 ·10–2cos6πt, м. Найти смещение от положения равновесия точки, находящейся на расстоянии 75 см от источника колебаний через 0,01 с после начала колебаний. Скорость распространения колебаний 340 м/с.

Задача 11103

Напишите уравнение гармонического колебания, если амплитуда скорости vm = 63 см/с, период колебаний Т = 1 с, смещение точки от положения равновесия в начальный момент времени равно нулю. Найдите амплитуду ускорения и частоту колебаний. Постройте график зависимости смещения от времени.

Задача 12666

На каком ближайшем расстоянии от источника колебаний с периодом 45 мс через время, равное половине периода после включения источника смещение точки от положения равновесия равно половине амплитуды? Скорость распространения колебаний равна 158 м/с. Считать, что в момент включения источника все точки находятся в положении равновесия.

Задача 14576

Уравнение незатухающих колебаний х = 4sin(600πt) см. Найти смещение x от положения равновесия точки, находящейся на расстоянии l = 75 см от источника колебаний, для момента времени t = 0,01с после начала колебаний. Скорость распространения колебаний v = 300 м/с.

Задача 14932

Плоская монохроматическая волна распространяется вдоль оси Y. Амплитуда волны А = 0,05 м. Считая, что в начальный момент времени смещение точки Р, находящейся в источнике, максимально, определить смещение от положения равновесия точки М, находящейся на расстоянии у = λ/2 от источника колебаний в момент времени t = T/6.

Задача 15330

Смещение от положения равновесия точки, находящейся на расстоянии 4 см от источника колебаний, в момент времени Т/6 равно половине амплитуды. Найти длину бегущей волны.

Задача 17372

Начальная фаза гармонического колебания ψ = 0. При смещении точки от положения равновесия х1 = 2,4 см скорость точки v1 = 3 см/с, а при смещении х2 = 2,8 см ее скорость v2 = 2 см/с. Найти амплитуду А и период Т этого колебания.

Задача 19324

На каком расстоянии от источника колебаний, совершаемых по закону синуса, в момент времени t = T/2 смещение точки от положения равновесия равно половине амплитуды? Скорость распространения колебаний 340 м/с. Период колебаний 10–3 с.

Задача 19326

Источник плоских волн совершает колебания по закону x = A cos ωt. Через четверть периода после начала колебаний смещение от положения равновесия точки, находящейся на расстоянии 4 см от источника, равно половине амплитуды. Найти длину бегущей волны.

Задача 19327

Источник плоских волн совершает колебания по закону x = A cos ωt. Какова амплитуда колебаний, если смещение от положения равновесия точки, отстоящей от источника на расстоянии λ/12 для момента времени T/4, равно 0,025 м?

Задача 20380

Определить начальную фазу колебаний, которые происходят по закону косинуса, если максимальная скорость равна 16 см/с, период колебаний 1,4 с, а смещение точки от положения равновесия в начальный момент времени составляет 2,84 см.

Источник: http://reshenie-zadach.com.ua/fizika/1/smeshhenie_polozheniya_ravnovesiya_tochki.php

Амплитуда результирующего колебания равна сумме амплитуд слагаемых колебаний

  • Синфазные колебания усиливают друг друга!
  • Интересно, что энергия суммарного колебательного движения, пропорциональная квадрату амплитуды, не равна сумме энергий каждого колебания по отдельности, ибо
  • 2 Пусть j01 — j02 = (2k -1)p, где k = 0, 1, 2,… В этом случае говорят, что колебания происходят в противофазе. Векторная диаграмма выглядит следующим образом

  • Если А1 > А2, то результирующее колебание происходит синфазно с первым колебанием. Но амплитуда результирующего колебания уменьшилась:

В этом случае говорят, что колебания ослабляют друг друга. Очевидно, что при А1 = А2 результирующая амплитуда вообще будет равной нулю. Это означает, что тело не будет двигаться вообще. Колебания погасили друг друга.

3 Во всех остальных случаях, когда колебания не будут синфазными или противофазными, мы будем видеть колебания с амплитудой, большей , но меньшей, чем .

Полученные результаты имеют бесчисленное множество применений. Забегая вперед, скажем, что если, например, в определенном месте пространства происходят звуковые колебания под действием двух источников, то результирующая громкость звука может оказаться меньше, чем громкость, создаваемая каждым источником в отдельности.

Если звуки, создаваемые каждым источником в отдельности, имеют одинаковую интенсивность, то при подходящих условиях эти звуки гасят друг друга, и можно сказать, что «звук + звук = молчание».

Возможны также условия, когда два пучка света, падающие на экран, дают не большую, а меньшую освещенность, чем каждый пучок в отдельности; возможен даже случай, когда «свет + свет = темнота». Но об этом позже…

§ 2 Сложение взаимно перпендикулярных колебаний

Рассмотрим сначала случай, когда материальная точка одновременно участвует в двух взаимно перпендикулярных колебаниях, имеющих одну частоту. Проблема заключается в определении траектории точки, которую мы будем в этом случае наблюдать.

Пусть одно колебание происходит по оси ОХ, другое – по OY .

Понятно, что точка описывает плоскую траекторию и уравнения и можно рассматривать как уравнение этой траектории в параметрической форме. Нетрудно видеть, что это — уравнение эллипса, вписанного в прямоугольник со сторонами . Ориентация главных осей эллипса зависит от сдвига фаз . На рисунке показаны частные случаи таких эллипсов:

  1. Нетрудно показать, то при сдвиге фаз эллипс вырождается в прямую на рисунке б:
  2. Мы будем видеть колебательное движение точки вдоль прямой, проходящей через начало координат, с амплитудой .
  3. При получаем траекторию на рисунке в:
  4. Траекторией будет эллипс, у которого главные оси совпадают с осями координат так, как показано на рисунке г , если
  5. Покажем это
  6. Разделив обе части каждого уравнения на А и В соответственно, получаем
  7. Возведем каждое уравнение в квадрат и сложим почленно:

Сдвиг по фазе определит в этом случае направление движения точки. Оно будет происходить по часовой стрелке, если , и против часовой стрелки, если .

  • Если амплитуды колебаний по осям ОХ и OY будут равны А = В, то эллипс преобразуется в окружность радиуса А = В:
  • Важно заметить, что любое равномерное движение по окружности радиуса А с угловой скоростью может быть разложено на два взаимно перпендикулярных гармонических колебания с частотой .
  • Движение по эллипсу тоже может быть разложено на два взаимно перпендикулярных колебания.

Более сложной получается траектория точки, совершающей колебания во взаимно перпендикулярных направлениях, если частоты колебаний не равны. В частности, если частоты относятся как целые числа, траектория оказывается замкнутой линией. Такая траектория называются фигурой Лиссажу. Ниже приведены примеры фигур Лиссажу для некоторых значений и .

  1. §3 Сложение колебаний с близкими частотами, происходящими вдоль одной прямой
  2. Рассмотрим случай сложения двух колебаний одного направления и одинаковой амплитуды, частоты которых и очень мало отличаются друг от друга (

Источник: https://megaobuchalka.ru/5/47822.html

Основные формулы

Гармонические колебания происходят по закону:

X = A cos(ωT + φ0),

Где X – смещение частицы от положения равновесия, А – амплитуда колебаний, ω – круговая частота, φ0 – начальная фаза, T – время.

Период колебаний T = .

Скорость колеблющейся частицы:

υ = = – A ω sin (ωT + φ0),

Ускорение A = = – Aω2 cos (ωT + φ0).

Кинетическая энергия частицы, совершающей колебательное движение: EK = = sin2(ωT + φ0).

Потенциальная энергия:

EN = cos2(ωT + φ0).

Периоды колебаний маятников

– пружинного T = ,

Где M – масса груза, K – коэффициент жесткости пружины,

– математического T = ,

Где L – длина подвеса, G – ускорение свободного падения,

– физического T = ,

Где I – момент инерции маятника относительно оси, проходящей через точку подвеса, M – масса маятника, L – расстояние от точки подвеса до центра масс.

Приведенная длина физического маятника находится из условия: LNp = ,

Обозначения те же, что для физического маятника.

При сложении двух гармонических колебаний одной частоты и одного направления получается гармоническое колебание той же частоты с амплитудой:

A = A12 + A22 + 2A1 A2 cos(φ2 – φ1)

И начальной фазой: φ = arctg .

Где А1, A2 – амплитуды, φ1, φ2 – начальные фазы складываемых колебаний.

Траектория результирующего движения при сложении взаимноперпендикулярных колебаний одной частоты:

+ cos (φ2 – φ1) = sin2 (φ2 – φ1).

Затухающие колебания происходят по закону:

X = A0 E— βT Cos(ωT + φ0),

Где β – коэффициент затухания, смысл остальных параметров тот же, что для гармонических колебаний, А0 – начальная амплитуда. В момент времени T амплитуда колебаний:

A = A0 E — βT.

Логарифмическим декрементом затухания называют:

λ = ln = βT,

Где Т – период колебания: T = .

Добротностью колебательной системы называют:

D = .

Уравнение плоской бегущей волны имеет вид:

Y = Y0 cos ω(T ± ),

Где У – смещение колеблющейся величины от положения равновесия, У0 – амплитуда, ω – круговая частота, T – время, Х – координата, вдоль которой распространяется волна, υ – скорость распространения волны.

Знак «+» соответствует волне, распространяющейся против оси X, знак «–» соответствует волне, распространяющейся по оси Х.

Длиной волны называют ее пространственный период:

λ = υT,

Где υ–скорость распространения волны, T–период распространяющихся колебаний.

Уравнение волны можно записать:

Y = Y0 cos 2π ( + ).

Стоячая волна описывается уравнением:

Y = (2Y0 cos ) cos ω T.

В скобки заключена амплитуда стоячей волны. Точки с максимальной амплитудой называются пучностями,

XП = N,

Точки с нулевой амплитудой – узлами,

XУ = (N + ) .

Примеры решения задач

Задача 20

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при T=0 и при T = 1,5 с; в) начертить график этого движения.

Решение

Уравнение колебания записывается в виде X = A cos(wT + j0).

По условию известен период колебаний. Через него можно выразить круговую частоту w = . Остальные параметры известны:

А) X = 0,05 cos(T + ).

Б) Смещение X при T = 0.

X1 = 0,05 cos= 0,05 = 0,0355 м.

При T = 1,5 c

X2 = 0,05 cos( 1,5 + )= 0,05 cos p = – 0,05 м.

В) график функции X=0,05cos (T + ) выглядит следующим образом:

Определим положение нескольких точек. Известны Х1(0) и Х2(1,5), а также период колебаний. Значит, через DT = 4 c значение Х повторяется, а через DT = 2 c меняет знак. Между максимумом и минимумом посередине – 0 .

Задача 21

Точка совершает гармоническое колебание. Период колебаний 2 с, амплитуда 50 мм, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 25 мм.

Решение

1 способ. Записываем уравнение колебания точки:

X = 0,05 cos p T, т. к. w = = p.

Находим скорость в момент времени T:

υ = = – 0,05 cos p T.

Находим момент времени, когда смещение равно 0,025 м:

0,025 = 0,05 cos p t1,

Отсюда cos pT1 = , pT1 = . Подставляем это значение в выражение для скорости:

υ = – 0,05 p sin = – 0,05 p = 0,136 м/c.

2 способ. Полная энергия колебательного движения:

E = ,

Где А – амплитуда, w – круговая частота, M – масса частицы.

В каждый момент времени она складывается из потенциальной и кинетической энергии точки

EK = , EП = , но K = MW2, значит, EП = .

Запишем закон сохранения энергии:

= + ,

Отсюда получаем: A2w2 = υ 2 + w2X2,

υ = w = p = 0,136 м/c.

Задача 22

Амплитуда гармонических колебаний материальной точки А = 2 см, полная энергия Е = 3∙10-7 Дж. При каком смещении от положения равновесия на колеблющуюся точку действует сила F = 2,25∙10-5 Н?

Решение

Полная энергия точки, совершающей гармонические колебания, равна: E = . (13)

Модуль упругой силы выражается через смещение точек от положения равновесия X следующим образом:

F = K X (14)

В формулу (13) входят масса M и круговая частота w, а в (14) – коэффициент жесткости K. Но круговая частота связана с M и K:

W2 = ,

Отсюда K = MW2 и F = MW2X. Выразив MW2 из соотношения (13) получим: MW2 = , F = X.

Откуда и получаем выражение для смещения X: X = .

Подстановка числовых значений дает:

X = = 1,5∙10-2 м = 1,5 см.

Задача 23

Точка участвует в двух колебаниях с одинаковыми периодами и начальными фазами. Амплитуды колебаний А1 = 3 см и А2 = 4 см. Найти амплитуду результирующего колебания, если: 1) колебания происходят в одном направлении; 2) колебания взаимно перпендикулярны.

Решение

1) Если колебания происходят в одном направлении, то амплитуда результирующего колебания определится как:

A = ,

Где А1 и А2 – амплитуды складываемых колебаний, j1 и j2–начальные фазы. По условию начальные фазы одинаковы, значит j2 – j1 = 0, а cos 0 = 1.

Следовательно:

A = == А1+А­2 = 7 см.

2) Если колебания взаимно перпендикулярны, то уравнение результирующего движения будет:

Cos(j 2 – j 1) = sin2(j 2 – j 1).

Так как по условию j2 – j1 = 0, cos 0 = 1, sin 0 = 0, то уравнение запишется в виде: =0,

Или =0,

Или .

Полученное соотношение между X и У Можно изобразить на графике. Из графика видно, что результирующим будет колебание точки на прямой MN. Амплитуда этого колебания определится как: A = = 5 см.

Задача 24

Период затухающих колебаний Т=4 с, логарифмический декремент затухания l = 1,6 , начальная фаза равна нулю. Смещение точки при T = равно 4,5 см. 1) Написать уравнение этого колебания; 2) Построить график этого движения для двух периодов.

Решение

1) Уравнение затухающих колебаний с нулевой начальной фазой имеет вид:

X = A0E — bT cos2p.

Для подстановки числовых значений не хватает величин начальной амплитуды А0 и коэффициента затухания b.

Коэффициент затухания можно определить из соотношения для логарифмического декремента затухания:

L = bТ.

Таким образом b = = = 0,4 с-1.

Начальную амплитуду можно определить, подставив второе условие:

4,5 см = A0 cos 2p = A0 Cos = A0 .

Отсюда находим:

A0 = 4,5∙ (см) = 7,75 см.

Окончательно уравнение движения:

X = 0,0775 CosT.

2) Для построения графика сначала рисуем огибающую X = 0,0775 , а затем колебательную часть.

Задача 25

Чему равен логарифмический декремент затухания математического маятника, если за T = 1 мин амплитуда колебаний уменьшилась в два раза? Длина маятника L = 1 м.

Решение

Логарифмический декремент затухания можно найти из соотношения: l= bТ,

Где b – коэффициент затухания, Т – период колебаний. Собственная круговая частота математического маятника:

W0 = = 3,13 с-1.

Коэффициент затухания колебаний можно определить из условия: A0 = A0 E-bT,

BT = ln2 = 0,693 ,

B = = 0,0116 c-1.

Поскольку b << w0, то в формуле w = можно пренебречь b по сравнению с w0 и период колебаний определить по формуле: T = = 2 c.

Подставляем b и Т в выражение для логарифмического декремента затухания и получаем:

L = bT = 0,0116 с-1 ∙ 2 с = 0,0232.

Задача 26

Уравнение незатухающих колебаний дано в виде x = 4 sin600 pT см.

Найти смещение от положения равновесия точки, находящейся на расстоянии L = 75 см от источника колебаний, через T = 0,01 с после начала колебаний. Скорость распространения колебаний υ = 300 м/с.

Решение

Запишем уравнение волны, распространяющейся от данного источника: X = 0,04 sin 600 p(T ).

Находим фазу волны в данный момент времени в данном месте:

T = 0,01 – = 0,0075 ,

600p ∙ 0,0075 = 4,5p,

Sin 4,5p = sin = 1.

Следовательно, смещение точки X = 0,04 м, т. е. на расстоянии L =75 см от источника в момент времени T = 0,01 c смещение точки максимально.

Гармоническое колебание это простейшее периодическое колебание, при котором смещение х меняется со временем по закону синуса (или косинуса).

Гармоническое колебание

Что такое гармоническое колебание

Это периодически повторяющееся движение, при котором тело отклоняется от некоторого среднего положения то в одну, то в другую сторону, называется колебательным движением; этот вид движения весьма распространен в природе.

Оно свойственно частицам вещества: атомам и молекулам, с колебательным движением частиц среды связаны звуковые явления, оно лежит в основе многих электрических явлении, например переменного тока, электрических колебаний, электромагнитных волн и т. п.

Изучение колебательного движения начнем с наиболее простого случая — механических колебаний. При этом обратим главное внимание на колебательное движение таких тел, которые имеют только одно положение устойчивого равновесия.

Если такое тело выведено из положения равновесия внешней силой, то оно под действием внутренних сил возвращается в него постепенно путем многократных колебаний около этого положения.

Такое колебательное движение могут совершать, например ножки камертона, натянутая струна, любое свободно подвешенное тело (качели, маятник) и т. п.

При колебательном движении положение тела в каждый данный момент времени определяется расстоянием его от среднего положения, которое называется смещением, а также направлением движения.

Весьма распространенным видом колебательного движения является простое, или гармоническое, колебание.

Оно происходит под действием силы, прямо пропорциональной смещению и направленной к положению равновесия.

Характерным признаком гармонического колебания является изменение смещения во времени по закону синуса или косинуса.

Пример гармонического колебания

Пример гармонического колебанияВ качестве примера рассмотрим свободное колебание горизонтального пружинного маятника (рис. 2, а).

Маятник состоит из тела С, подвешенного к стойке АВ, с помощью тяги АС и упорного стержня ВС, которые могут свободно поворачиваться вокруг оси стойки.

Такая подвеска полностью уравновешивает силу тяжести тела С при любом его положении. 

С обеих сторон к телу С прикреплены пружины F, закрепленные в неподвижной раме Е. При отклонении тела С от среднего положения одна из пружин растягивается. Сила F, с которой пружина действует на тело, прямо пропорциональна его смещению s и направлена в сторону, обратную смещению:

F = — ks,

где — коэффициент пропорциональности, зависящий от свойств пружины, а знак минус указывает, что действие силы обратно направлению смещения.

Если отклонить тело С из среднего положения и затем представить действию упругих сил пружин, то оно будет совершать колебательное движение: возвратившись под действием силы пружин к среднему положению, тело по инерции пройдет его и отклонится в противоположную сторону; достигнув максимального отклонения, тело под действием силы пружин снова возвратится в исходное сложение, по инерции пройдет его в обратном направлении и т. д.

Как характеризуются колебательные движения

Колебательное движение, в том числе и гармоническое колебание, характеризуются:

  1. Наибольшим смещением или амплитудой колебания
  2. Периодом колебания или временем, в течение которого совершается одно полное колебание.

Период колебания Т измеряется в секундах. Вместо периода колебание можно характеризовать частотой v. Частота колебаний— это величина, обратная периоду v = 1/Т.

Иначе, частота — это число колебаний, которое тело совершает в течение сек. Размерность частоты 1/сек или сек-1Практически частота измеряется в единицах, называемых герц (гц).

Герц — это частота, при которой за сек происходит одно полное колебание. В герцах измеряют частоту колебаний любой природы.

Изучение колебаний

Изучение колебанийГармоническое колебание удобно изучать, например, с помощью модели. На горизонтальном диске А, который вращается с постоянной скоростью, укреплен на стержне маленький шарик N.

Шарик совершает равномерное движение по окружности. Рассмотрим движение, которое совершает точка п, являющаяся проекцией шарика на любой из диаметров окружности.

В качестве проекции шарика на диаметр окружности можно рассматривать его тень, отбрасываемую на экран Э, установленный рядом с диском перпендикулярно направлению световых лучей. При вращении диска тень шарика на экране будет совершать колебательное движение.

Составим уравнение для этого движения, которое связывает между собой смещение s, амплитуду а и период Т (или частоту v) колебания и таким образом позволяет определить величину и знак смещения в любой заданный момент времени.

Рассмотрим положение точек и п в какой-либо момент времени (рис. 3). Соединим точку с центром окружности. Радиус ON совершает вращательное движение с угловой скоростью:

ω = 2π/Т ,

где Т — есть период обращения. За начало отсчета времени = 0 примем момент, когда точка находится на горизонтальном диаметре, а точка п соответственно — в центре окружности. Тогда угол φ, пройденный радиусом ON за время t, будет:

φ = ωt = 2πt/Т

Из треугольника ONn (угол при вершине которого равен углу φ как угол имеющий параллельные стороны) следует, что On = ON sin φ, где On — смещение точки п в момент времени t, ON—радиус окружности или амплитуда а колебания. Подставляя эти значения, получим:

s = sin φ = sin ωt.

Смещение изменяется от времени по закону синуса, следовательно, точка п совершает гармоническое колебание. Уравнению можно придать также и несколько иной вид:

s = a sin(2πt/Т) = a sin 2πvt

Величина, находящаяся под знаком синуса, т. е.

φ = ωt = 2πvt = 2πt/Т

называется фазой колебания и измеряется в градусах или радианах. Величину ω = 2πv = 2πt/Т входящую в выражение для фазы колебания, называют круговой частотой гармонического колебания.

Что такое фаза колебания

Фаза колебания есть величина, характеризующая состояние колебательного процесса в каждый заданный момент времени.

Зная фазу колебания и его амплитуду, можно для любого момента времени определить величину и знак смещения, т. е. определить положение колеблющегося тела.

Имея в виду, что определенным частям периода соответствуют определенные величины фазы колебания, можно, зная эти величины и найдя соответствующие им синусы углов, определить величину смещения в долях амплитуды а.

Можно построить график, соответствующий уравнению гармонического колебания. График показывает изменение смещения тела (откладывается по оси ординат) от времени t, которое отложено по оси абсцисс.

По форме график является синусоидой (рис. 4) и может быть построен, пользуясь данными таблицы.

График колебания

График колебанияГрафик колебания можно получить также и путем непосредственной записи движения тела на равномерно движущейся бумажной ленте.

Например, к телу С нашего горизонтального маятника можно прикрепить воронку с мелким песком, а под ним расположить лист смазанной клеем белой бумаги, который равномерно передвигается в направлении, перпендикулярном направлению колебаний (см. рис2, а). 

Тогда песочная струйка запишет на бумаге кривую (см. рис. 2, б), ординаты которой соответствуют смещениям маятника в различные последующие моменты времени.

Полученная таким образом кривая совпадает по характеру с графиком (рис4). В обоих случаях кривые изображают колебание, развернутое по времени: каждая точка кривой является концом ординаты, изображающей смещение тела в последующие, равномерно расположенные по горизонтальной оси моменты времени.

В первом случае это получается в результате движения ленты, во втором — это обеспечивается в самом процессе построения графика.

Амплитуда гармонических колебаний

Энергия Е тела, совершающего гармоническое колебание, состоит из кинетической и потенциальной, которые в процессе колебания периодически переходят одна в другую.

В момент наибольшего смещения скорость тела на мгновение делается равной нулю и вся энергия тела является потенциальной:

Е=ЕП.

По мере движения тела к положению равновесия скорость его увеличивается и потенциальная энергия постепенно переходит в кинетическую.

При прохождении телом положения равновесия скорость его максимальна и вся энергия переходит в кинетическую: 

Е=ЕК.

Определим эту энергию. рассмотренной модели гармонического колебания (см. рис. 2) наибольшая скорость υm точки п при прохождении среднего положения равняется скорости υ движения точки по окружности, так как в этот момент скорости этих точек параллельны и одинаковы по величине.

Эта скорость υm = 2πа/Т, где а — амплитуда колебания или радиус окружности, а Т — период колебания. Поэтому для энергии Е тела с массой т, совершающего гармоническое колебание, можно написать следующее выражение:

Е =Ек = (mυ2m)/2

Подставляя значение скорости υmполучаем:

Е = (mυ2m)/2 = m/2((2πa/T)2) = 2π2ma2v2

Энергия тела, совершающего гармоническое колебание, прямо пропорциональна массе тела, квадрату амплитуды и квадрату частоты.

Пример амплитуды гармонических колебаний

Рассмотрим колебание тела, которое началось на промежуток времени t0 раньше момента начала отсчета времени (обычно время t0 выражают в долях периода Т колебания).

В этом случае к началу отсчета времени тело уже имеет смещение s0, как это показано на графике рис. 5, а. Смещению s0 соответствует фаза колебания φ0, которая называется начальной фазой, и по общему правилу может быть представлена так:

φ0 = ωt0 = (2πt0)/T = 2πvt0

График колебаний для начальной фазыСоставим уравнение для данного колебанияУгол φ‘, определяющий положение радиуса точки в момент времени t, будет φ‘=φ + φ0где φ0—угол, соответствующий начальной фазе колебания (величина постоянная), а φ — угол, образуемый при движении точки и прямо пропорциональный промежутку времени tφt.

Тогда, рассуждая аналогично предыдущему случаю (см. рис 3), можно написать:

s = sin (ωt + φ0) = sin (2π/T) ((t+ t0)) = a sin 2πv (t+ t0).

График колебания, описываемый этим уравнением, изображен на рис. 5, а.

Рассуждая аналогично, можно убедиться, что если колебание началось на промежуток времени t0 позже начала отсчета времени, то его уравнение будет иметь вид:

s = sin (ωt — φ0) = sin (2π/T) ((t — t0)) = a sin 2πv (t — t0).

Его график изображен на рис. 5, б.

Если два колебания одинаковой частоты начинаются одновременно, то говорят, что они имеют одинаковую фазу или что они находятся в фазе.

Если сопоставляются два колебания одинаковой частоты, начавшиеся не одновременно, то говорят, что они имеют разность фаз или сдвиг фазы φ1-2, соответствующий разнице во времени t1-2 между началами колебания (рис. 5, в).

При этом одно из них называют опережающим (или наоборот, запаздывающим) по фазе относительно другого.

Про два колебания, разность фаз у которых составляет π или 180°, говорят, что они находятся в противофазе.

Связь между гармоническим колебанием и равномерным движением по окружности

Связь между гармоническим колебанием и равномерным движением по окружностиПредставим себе произвольную точку D, равномерно вращающуюся по окружности радиуса А против часовой стрелки с постоянной угловой скоростью ω рад/с (рис. ). Уравнение движения точки D примет вид

φ φ0 + ωt,

где φ — угол поворота подвижного радиуса 0D относительно неподвижного OK, а φ0— начальное значение угла φ в момент времени t = 0.

В то время как точка вращается по окружности от К к и снова к K, проекция точки на диаметр MN — точка D’ — движется вдоль отрезка МN от одного из его концов к другому и обратно, совершая колебательное движение.

Обозначим расстояние 0D’ через х. Тогда уравнение движения точки D’можно записать в виде

х sin φ = sin (ωt + φ0).

Если в момент времени t = 0 начальное значение угла φ0 = 0, то уравнение движения точки D’ примет вид

х = sin φ = sin ωt.

Функция sin ωt является простейшей периодической функцией от времени, значит точка D’ совершает периодические колебания.

Если на оси ординат откладывать значения смещения х, а на оси абсцисс время t, то можно получить график гармонического колебания, который представляет собой синусоиду.

Поскольку sin φ меняется в пределах от +1 до —1, то смещение х точки D’ от центра колебаний 0 находится в пределах:

—A≤x≤A.

Максимальная величина этого смещения |х|макс A называется амплитудой колебания.

Затухающие и незатухающие колебания

Колебания, происходящие с неизменной амплитудой, называются незатухающими. Колебания, происходящие с уменьшающейся амплитудой, называются затухающими.

Чтобы поддерживать незатухающие колебания, необходимо создать такой механизм, который за одно полное колебание точки сообщит ей дополнительно столько энергии, сколько потеряно точкой за это же время на преодоление трения, сопротивления и т. п.

Аргумент ωt стоящий под знаком синуса, называется фазой колебания. Величина со, характеризующая угловую скорость вращения точки D, называется циклической частотой гармонического колебания точки D’.

Время, в течение которого тело совершает одно полное колебание (время между двумя последовательными прохождениями точки через положение равновесия в одном и том же направлении), называется периодом полного колебания Т.

Время движения колеблющегося тела от положения равновесия до максимального отклонения и обратно до положения равновесия называется периодом простого колебания. Период простого колебания равен половине периода полного колебания.

Циклическая частота со связана с периодом Т и обычной частотой v (v — число колебаний за единицу времени) такими соотношениями

ω = 2π/Т

но 

v = 1/Т,

тогда

ω = 2πv.

Частота v измеряется в герцах. 1 Гц равен 1 колебанию в секунду. Фазу колебания φ можно записать в виде

φ = ωt = (2π/T)t.

Фаза показывает, какая часть периода прошла от момента начала колебания.

Статья на тему Гармоническое колебание

Понравилась статья? Поделить с друзьями:
  • Как составить договор купли продажи с предоплатой
  • Соли оксиды основания кислоты как найти
  • Как найти сетевой экран в компьютере
  • Как найти незерит на какой высоте
  • Мировой суд как найти дело по фамилии