Как найти собственную матрицу перехода

Матрица перехода

3 июля 2022

Матрица перехода — это просто квадратная матрица, в столбцах которой записаны координаты новых базисных векторов. У такой матрицы много важных свойств, которые сформулированы и доказаны в первой части урока — теоретической. Этой теории хватит для любого экзамена или коллоквиума.

Вторая часть урока — практическая. В ней разобраны все типовые задачи, которые встречаются на контрольных, зачётах и экзаменах.

Содержание

  1. Определение матрицы перехода
  2. Свойства матрицы перехода
  3. Теорема о замене координат
  4. Задача 1. Базисы трёхмерного пространства
  5. Задача 2. Базисы в поле вычетов
  6. Задача 3. Пространство многочленов
  7. Задача 4. Матрица перехода при симметрии
  8. Задача 5. Матрица поворота

Если вы учитесь в серьёзном университете (МГУ, Бауманка и т.д.), то обязательно изучите первые три пункта. А если вам нужны только задачи, сразу переходите к пункта 4—6.

1. Определение матрицы перехода

Пусть дано $n$-мерное линейное пространство $L$. Пусть также $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ и $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — два базиса в $L$.

Определение. Матрица перехода ${{T}_{eto f}}$ от базиса $e=left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ к базису $f=left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — это квадратная матрица порядка $n$, где по столбцам записаны координаты нового базиса $f$ в старом базисе $e$:

[{{T}_{eto f}}=left[ begin{array}{c|c|c|c}{{t}_{1,1}} & {{t}_{2,1}} & cdots & {{t}_{n,1}} \{{t}_{1,2}} & {{t}_{2,2}} & cdots & {{t}_{n,1}} \cdots & cdots & cdots & cdots \{{t}_{1,n}} & {{t}_{2,n}} & cdots & {{t}_{n,n}} \end{array} right]]

Обратите внимание на нумерацию элементов ${{t}_{i,j}}$: первый индекс обозначает номер столбца, т.е. номер нового базисного вектора, а второй отвечает за координаты этого вектора в старом базисе. Так, во втором столбце записаны координаты вектора ${{f}_{2}}$:

[{{f}_{2}}={{left[ {{t}_{2,1}},{{t}_{2,2}},ldots ,{{t}_{2,n}} right]}^{T}}]

Или, что то же самое, разложение вектора ${{f}_{2}}$ по базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$:

[{{f}_{2}}={{t}_{2,1}}{{e}_{1}}+{{t}_{2,2}}{{e}_{2}}+ldots +{{t}_{2,n}}{{e}_{n}}]

Да, такая нумерация не является обязательной. Но она очень распространена именно в записи матриц перехода: первый индекс отвечает за номер базисного вектора, второй — за номер координаты этого вектора.

Пример 1. В некотором базисе $e=left{ {{e}_{1}},{{e}_{2}},{{e}_{3}} right}$ векторного пространства ${{mathbb{R}}^{3}}$ даны три вектора:

[{{f}_{1}}={{left( 1,0,1 right)}^{T}},quad {{f}_{2}}={{left( 2,1,0 right)}^{T}},quad {{f}_{3}}={{left( 0,3,1 right)}^{T}}]

[begin{align}{{f}_{1}} &={{left( 1,0,1 right)}^{T}}, \ {{f}_{2}} &={{left( 2,1,0 right)}^{T}}, \ {{f}_{3}} &={{left( 0,3,1 right)}^{T}} \ end{align}]

Убедитесь, что система векторов $f=left{ {{f}_{1}},{{f}_{2}},{{f}_{3}} right}$ образует базис в ${{mathbb{R}}^{3}}$, найдите матрицу перехода ${{T}_{eto f}}$.

Решение. Система векторов будет базисом, если эти векторы линейно независимы, а их количество совпадает с размерностью пространства. Поскольку у нас три вектора и $dim{{mathbb{R}}^{3}}=3$, осталось проверить линейную независимость. Составим матрицу из столбцов с координатами векторов ${{f}_{1}}$, ${{f}_{2}}$ и ${{f}_{3}}$:

[left[ begin{matrix}1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]]

Вообще-то это и есть матрица перехода ${{T}_{eto f}}$, но сначала надо установить линейную независимость. Поэтому выполним элементарные преобразования строк:

[left[ begin{matrix} 1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]begin{matrix} \ \ -1cdot left[ 1 right] \ end{matrix}sim left[ begin{array}{crc} 1 & 2 & 0 \ 0 & 1 & 3 \ 0 & -2 & 1 \ end{array} right]begin{matrix} -2cdot left[ 2 right] \ \ +2cdot left[ 2 right] \ end{matrix}sim left[ begin{array}{ccr} 1 & 0 & -6 \ 0 & 1 & 3 \ 0 & 0 & 7 \ end{array} right]]

[begin{align} & left[ begin{matrix} 1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]begin{matrix} \ \ -1cdot left[ 1 right] \ end{matrix} \ & left[ begin{array}{crc} 1 & 2 & 0 \ 0 & 1 & 3 \ 0 & -2 & 1 \ end{array} right]begin{matrix} -2cdot left[ 2 right] \ \ +2cdot left[ 2 right] \ end{matrix} \ & left[ begin{array}{ccr} 1 & 0 & -6 \ 0 & 1 & 3 \ 0 & 0 & 7 \ end{array} right] \ end{align}]

Получили верхнетреугольную матрицу без нулей на главной диагонали. Ранг такой матрицы равен 3, поэтому система $left{ {{f}_{1}},{{f}_{2}},{{f}_{3}} right}$ линейно независима и образует базис. Матрица перехода от базиса $e$ к базису $f$ уже известна:

[{{T}_{eto f}}=left[ begin{matrix} 1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]]

1.1. Зачем нужна матрица перехода

Матрица перехода нужна для того, чтобы компактно и наглядно выражать новый базис через старый. В самом деле, разложим векторы $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ нового базиса по старому базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$:

[begin{align}{{f}_{1}} &={{x}_{1,1}}{{e}_{1}}+{{x}_{2,1}}{{e}_{2}}+ldots +{{x}_{n,1}}{{e}_{n}} \ {{f}_{2}} &={{x}_{1,2}}{{e}_{1}}+{{x}_{2,2}}{{e}_{2}}+ldots +{{x}_{n,2}}{{e}_{n}} \ & cdots \ {{f}_{n}} &={{x}_{1,n}}{{e}_{1}}+{{x}_{2,n}}{{e}_{2}}+ldots +{{x}_{n,n}}{{e}_{n}} \ end{align}]

Получили систему из $n$ уравнений, которые в матричном виде можно представить так:

[left[ begin{matrix} {{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{x}_{1,1}} & cdots & {{x}_{1,n}} \ cdots & cdots & cdots \ {{x}_{n,1}} & cdots & {{x}_{n,n}} \ end{matrix} right]]

[left[ {{f}_{1}} cdots {{f}_{n}} right]=left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{x}_{1,1}} & cdots & {{x}_{1,n}} \ cdots & cdots & cdots \ {{x}_{n,1}} & cdots & {{x}_{n,n}} \ end{matrix} right]]

Обратите внимание: ${{f}_{1}},ldots ,{{f}_{n}}$ и ${{e}_{1}},ldots ,{{e}_{n}}$ — это именно векторы, а не числа. Такие наборы принято записывать строками — в отличие от вектор-столбцов, элементами которых как раз выступают обычные числа.

Последний множитель — это и есть матрица перехода ${{T}_{eto f}}$, поэтому всё произведение можно записать более компактно:

[left[ begin{matrix} {{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot {{T}_{eto f}}]

2. Свойства матрицы перехода

Мы разберём три простых свойства, а далее отдельным разделом будет ещё одно — уже более серьёзное.

2.1. Переход от базиса к этому же базису

Свойство 1. При переходе от базиса $e$ к этому же базису $e$ матрица перехода ${{T}_{eto e}}=E$.

Для доказательства достаточно рассмотреть формулы

[begin{align}{{f}_{1}} &={{x}_{1,1}}{{e}_{1}}+{{x}_{2,1}}{{e}_{2}}+ldots +{{x}_{n,1}}{{e}_{n}} \ {{f}_{2}} &={{x}_{1,2}}{{e}_{1}}+{{x}_{2,2}}{{e}_{2}}+ldots +{{x}_{n,2}}{{e}_{n}} \ &cdots \ {{f}_{n}} &={{x}_{1,n}}{{e}_{1}}+{{x}_{2,n}}{{e}_{2}}+ldots +{{x}_{n,n}}{{e}_{n}} \ end{align}]

А затем положить ${{f}_{1}}={{e}_{1}}$, ${{f}_{2}}={{e}_{2}}$, …, ${{f}_{n}}={{e}_{n}}$. Тогда:

[begin{align} {{f}_{1}} &={{e}_{1}}=1cdot {{e}_{1}}+0cdot {{e}_{2}}+ldots +0cdot {{e}_{n}} \ {{f}_{2}} &={{e}_{2}}=0cdot {{e}_{1}}+1cdot {{e}_{2}}+ldots +0cdot {{e}_{n}} \ &cdots \ {{f}_{n}} &={{e}_{n}}=0cdot {{e}_{1}}+0cdot {{e}_{2}}+ldots +1cdot {{e}_{n}} \ end{align}]

Указанное выражение однозначно, поскольку $e$ — базис. Следовательно, матрица перехода равна

[{{T}_{eto f}}=left[ begin{array}{c|c|c|c} 1 & 0 & cdots& 0 \ 0 & 1 & cdots& 0 \ cdots& cdots& cdots& cdots \ 0 & 0 & cdots& 1 \ end{array} right]=E]

Итак, ${{T}_{eto f}}=E$, что и требовалось доказать.

2.2. Обратный переход

Свойство 2. Если ${{T}_{eto f}}$ — матрица перехода от базиса $e$ к базису $f$, то ${{T}_{fto e}}={{left( {{T}_{eto f}} right)}^{-1}}$ матрица обратного перехода, от базиса $f$ к базису $e$.

В самом деле, базисы $e$ и $f$ связаны с матрицей перехода по формуле

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}]

Поскольку матрица ${{T}_{eto f}}$ невырожденная, существует обратная к ней матрица ${{left( {{T}_{eto f}} right)}^{-1}}$. Домножим на эту матрицу обе части формулы, связывающей базисы $e$ и $f$:

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{left( {{T}_{eto f}} right)}^{-1}}=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}cdot {{left( {{T}_{eto f}} right)}^{-1}}]

[begin{align}left[ {{f}_{1}},ldots ,{{f}_{n}} right] &cdot {{left( {{T}_{eto f}} right)}^{-1}}= \ &=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}cdot {{left( {{T}_{eto f}} right)}^{-1}} \ end{align}]

Упрощаем эту формулу и получаем

[left[ {{e}_{1}},ldots ,{{e}_{n}} right]=left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{left( {{T}_{eto f}} right)}^{-1}}]

Итак, мы получили формулу перехода от базиса $f$ к базису $e$. Следовательно, ${{left( {{T}_{eto f}} right)}^{-1}}$ — матрица такого перехода, что и требовалось доказать.

2.3. Переход через транзитный базис

Пусть ${{T}_{eto f}}$ — матрица перехода от базиса $e$ к базису $f$ линейного пространства $L$, а ${{T}_{fto g}}$ — матрица перехода от базиса $f$ к базису $g$ того же линейного пространства $L$.

Тогда матрица перехода ${{T}_{eto g}}$ от базиса $e$ к базису $g$ находится по формуле

[{{T}_{eto g}}={{T}_{eto f}}cdot {{T}_{fto g}}]

Для доказательства достаточно записать формулы для выражения базисов $f$ и $g$, а затем подставить одну формулу в другую. По условию теоремы, базис $f$ выражается через базис $e$ по формуле

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}]

Кроме того, базис $g$ выражается через базис $f$ по формуле

[left[ {{g}_{1}},ldots ,{{g}_{n}} right]=left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{T}_{fto g}}]

Подставим первое выражение во второе и получим

[begin{align}left[ {{g}_{1}},ldots ,{{g}_{n}} right] &=left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{T}_{fto g}}= \ &=left( left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}} right)cdot {{T}_{fto g}}= \ & =left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot left( {{T}_{eto f}}cdot {{T}_{fto g}} right) end{align}]

[begin{align}& left[ {{g}_{1}},ldots ,{{g}_{n}} right]= \ =& left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{T}_{fto g}}= \ =& left( left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}} right)cdot {{T}_{fto g}}= \ =& left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot left( {{T}_{eto f}}cdot {{T}_{fto g}} right) end{align}]

Мы получили прямое выражение базиса $g$ через базис $e$, причём матрица перехода равна

[{{T}_{eto g}}={{T}_{eto f}}cdot {{T}_{fto g}}]

Это именно та формула, которую и требовалось доказать.

2.4. Невырожденные матрицы

И ещё одно важное свойство:

Свойство 4. Пусть дана произвольная квадратная невырожденная матрица

[T=left[ begin{matrix}{{a}_{1,1}} & {{a}_{1,2}} & cdots & {{a}_{1,n}} \ {{a}_{2,1}} & {{a}_{2,2}} & cdots & {{a}_{2,n}} \ cdots & cdots & cdots & cdots \ {{a}_{n,1}} & {{a}_{n,2}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

Пусть $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ — произвольный базис линейного пространства $L$. Тогда система векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$, полученных по формуле

[begin{align}{{f}_{1}}&={{a}_{1,1}}{{e}_{1}}+{{a}_{2,1}}{{e}_{2}}+ldots +{{a}_{n,1}}{{e}_{n}} \ {{f}_{2}}&={{a}_{1,2}}{{e}_{1}}+{{a}_{2,2}}{{e}_{2}}+ldots +{{a}_{n,2}}{{e}_{n}} \ & cdots \ {{f}_{n}}&={{a}_{1,n}}{{e}_{1}}+{{a}_{2,n}}{{e}_{2}}+ldots +{{a}_{n,n}}{{e}_{n}} \ end{align}]

тоже будет базисом $L$.

Иначе говоря, всякая квадратная невырожденная матрица $T$ является матрицей перехода от данного базиса $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ к некоторому новому базису $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ линейного пространства $L$.

Обратите внимание: поскольку изначально мы не знаем, что $T$ — матрица перехода, её элементы пронумерованы стандартным образом: первый индекс отвечает за строку, а второй — за столбец. Однако это нисколько не помешает нам доказать теорему.

Для доказательства того, что $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — базис линейного пространства $L$, нужно доказать два утверждения:

  • 1.Система векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — линейно независима.
  • 2.Ранг этой системы векторов совпадает с размерностью пространства $L$.

Поскольку количество векторов в системе $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ совпадает с количеством базисных векторов $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$, т.е. равно $n=dim L$, достаточно лишь проверить линейную независимость.

Рассмотрим линейную комбинацию векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ и предположим, что она равна нулю:

[{{lambda }_{1}}{{f}_{1}}+{{lambda }_{2}}{{f}_{2}}+ldots +{{lambda }_{n}}{{f}_{n}}=0]

В матричном виде это выглядит так:

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot left[ begin{align}& {{lambda }_{1}} \ & cdots\ & {{lambda }_{n}} \ end{align} right]=0]

По условию теоремы векторы $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ раскладываются по базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ с коэффициентами, записанными в столбцах матрицы $T$. В матричном виде это выглядит так:

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot T]

Подставляем полученное выражение для $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ в предыдущее матричное уравнение и получаем

[left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot Tcdot left[ begin{align}& {{lambda }_{1}} \ & cdots \ & {{lambda }_{n}} \ end{align} right]=0]

Поскольку $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ — базис линейного пространства $L$, такое равенство возможно лишь при условии

[Tcdot left[ begin{matrix} {{lambda }_{1}} \ cdots \ {{lambda }_{n}} \ end{matrix} right]=left[ begin{matrix} 0 \ cdots \ 0 \ end{matrix} right]]

Это матричное уравнение можно рассматривать как систему из $n$ однородных уравнений относительно переменных ${{lambda }_{1}},ldots ,{{lambda }_{n}}$. И поскольку по условию теоремы матрица $T$ невырожденная, это СЛАУ имеет лишь одно решение — тривиальное:

[{{lambda }_{1}}={{lambda }_{2}}=ldots ={{lambda }_{n}}=0]

Получаем, что система векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ линейно независима, а количество векторов совпадает с размерностью линейного пространства $L$. Следовательно, эта система — базис, что и требовалось доказать.

3. Замена координат в новом базисе

До сих пор мы рассуждали лишь о том, как координаты новых базисных векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ выражаются через координаты старых базисных векторов $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$. Но что будет с координатами одного и того же вектора линейного пространства $L$ при переходе от одного базиса к другому?

Ответ даёт следующая теорема.

3.1. Формулировка теоремы

Теорема. Пусть $e=left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ и $f=left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — базисы линейного пространства $L$ над полем $K$. Пусть ${{T}_{eto f}}$ — матрица перехода от базиса $e$ к $f$:

[{{T}_{eto f}}=left[ begin{matrix}{{a}_{1,1}} & cdots& {{a}_{1,n}} \ cdots& cdots& cdots \ {{a}_{n,1}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

Тогда координаты произвольного вектора $hin L$ пересчитываются по формуле

[{{left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]}_{e}}={{T}_{eto f}}cdot {{left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]}_{f}}]

Ещё раз: если произвольный вектор $hin L$ в новом базисе $f$ имеет координаты

[{{left[ h right]}_{f}}=left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

то в старом базисе $e$ этот же вектор $hin L$ имеет координаты

[{{left[ h right]}_{e}}=left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]={{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Т.е. для векторов всё наоборот: не новые координаты выражаются через старые, а старые — через новые. Впрочем, никто не мешает найти матрицу $T_{eto f}^{-1}$ и записать

[left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]=T_{eto f}^{-1}cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]]

Но такая запись предполагает дополнительное действие — нахождение обратной матрицы.

3.2. Доказательство

Сначала «соберём» матрицу ${{T}_{eto f}}$. Для этого разложим векторы $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ по базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$:

[left{ begin{align}{{f}_{1}} &={{a}_{1,1}}{{e}_{1}}+{{a}_{2,1}}{{e}_{2}}+ldots +{{a}_{n,1}}{{e}_{n}} \ {{f}_{2}} &={{a}_{1,2}}{{e}_{1}}+{{a}_{2,2}}{{e}_{2}}+ldots +{{a}_{n,2}}{{e}_{n}} \ & cdots \ {{f}_{n}} &={{a}_{1,n}}{{e}_{1}} +{{a}_{2,n}}{{e}_{2}}+ldots +{{a}_{n,n}}{{e}_{n}} \ end{align} right.]

В матричной форме эту систему линейных уравнений можно записать так:

[left[ begin{matrix} {{f}_{1}} \ {{f}_{2}} \ cdots \ {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{a}_{1,1}} & {{a}_{2,1}} & cdots & {{a}_{n,1}} \ {{a}_{1,2}} & {{a}_{2,2}} & cdots & {{a}_{n,2}} \ cdots & cdots & cdots & cdots \ {{a}_{1,n}} & {{a}_{2,n}} & cdots & {{a}_{n,n}} \ end{matrix} right]cdot left[ begin{matrix} {{e}_{1}} \ {{e}_{2}} \ cdots \ {{e}_{n}} \ end{matrix} right]]

Транспонируем обе стороны равенства, учитывая, что произведение справа транспонируется по правилу ${{left( Acdot B right)}^{T}}={{B}^{T}}cdot {{A}^{T}}$:

[left[ begin{matrix}{{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{a}_{1,1}} & {{a}_{1,2}} & cdots & {{a}_{1,n}} \ {{a}_{2,1}} & {{a}_{2,2}} & cdots & {{a}_{2,n}} \ cdots & cdots & cdots & cdots \ {{a}_{n,1}} & {{a}_{n,2}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

[left[ {{f}_{1}} cdots {{f}_{n}} right]=left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{a}_{1,1}} & cdots & {{a}_{1,n}} \ cdots & cdots & cdots \ {{a}_{n,1}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

Квадратная матрица справа — это и есть матрица перехода ${{T}_{eto f}}$. Поэтому матричное уравнение можно переписать так:

[left[ begin{matrix}{{f}_{1}} & cdots& {{f}_{n}} \ end{matrix} right]=left[ begin{matrix}{{e}_{1}} & cdots& {{e}_{n}} \ end{matrix} right]cdot {{T}_{eto f}}]

Теперь возьмём произвольный вектор $hin L$ и разложим его по базисам $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ и $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$:

[begin{align}h &={{x}_{1}}{{e}_{1}}+{{x}_{2}}{{e}_{2}}+ldots +{{x}_{n}}{{e}_{n}}= \ &={{y}_{1}}{{f}_{1}}+{{y}_{2}}{{f}_{2}}+ldots +{{y}_{n}}{{f}_{n}} end{align}]

Вновь перейдём к матричной форме. Сначала учтём, что координаты векторов принято записывать в виде вектор-столбцов:

[{{left[ h right]}_{e}}=left[ begin{matrix} {{x}_{1}} \ {{x}_{2}} \ cdots \ {{x}_{n}} \ end{matrix} right]quad {{left[ h right]}_{f}}=left[ begin{matrix} {{y}_{1}} \ {{y}_{2}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Тогда левую и правую часть уравнения можно представить как произведение строк с базисными векторами и указанных вектор-столбцов с координатами:

[left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ begin{matrix} {{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

[left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ {{f}_{1}} cdots {{f}_{n}} right]cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Но выше мы выражали строку векторов $left[ {{f}_{1}},ldots ,{{f}_{n}} right]$ через строку $left[ {{e}_{1}},ldots ,{{e}_{n}} right]$ и матрицу перехода ${{T}_{eto f}}$. Подставим это выражение в наше матричное уравнение:

[left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot {{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

[left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ {{e}_{1}} cdots {{e}_{n}} right]cdot {{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Уберём слева и справа первый множитель — строку $left[ {{e}_{1}},ldots ,{{e}_{n}} right]$. Получим уравнение, связывающее координаты вектора в разных базисах:

[left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]={{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Это именно та формула, которую и требовалось доказать.

Задача 1. Базисы трёхмерного пространства

Задача. Убедитесь, что системы векторов

[{{a}_{1}}={{left( 1,2,1 right)}^{T}},quad {{a}_{2}}={{left( 2,3,2 right)}^{T}},quad {{a}_{3}}={{left( 1,-1,2 right)}^{T}}]

[begin{align}{{a}_{1}} &={{left( 1,2,1 right)}^{T}}, \ {{a}_{2}} &={{left( 2,3,2 right)}^{T}}, \ {{a}_{3}} &={{left( 1,-1,2 right)}^{T}} \ end{align}]

и

[{{b}_{1}}={{left( 1,3,1 right)}^{T}},quad {{b}_{2}}={{left( 1,-1,3 right)}^{T}},quad {{b}_{3}}={{left( 2,2,1 right)}^{T}}]

[begin{align}{{b}_{1}} &={{left( 1,3,1 right)}^{T}}, \ {{b}_{2}} &={{left( 1,-1,3 right)}^{T}}, \ {{b}_{3}} &={{left( 2,2,1 right)}^{T}} \ end{align}]

являются базисами в векторном пространстве ${{mathbb{R}}^{3}}$. Найдите матрицу перехода ${{T}_{ato b}}$. Найдите координаты в базисе $a$ вектора $x$, который в базисе $b$ имеет координаты ${{left( 0,3,2 right)}^{T}}$.

Решение

Чтобы доказать, что система векторов образует базис, достаточно составить матрицу $A$ из координат этих векторов, а затем вычислить её определитель $det A$. И если $det Ane 0$, то векторы линейно независимы. А поскольку их количество совпадает с размерностью линейного пространства, такие векторы образуют базис.

Рассмотрим систему векторов $a=left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$. Составим из них матрицу, расположив координаты по столбцам. Получим матрицу перехода ${{T}_{eto a}}$ от некого исходного базиса $e$ (в котором как раз и даны координаты векторов ${{a}_{i}}$ и ${{b}_{i}}$ в условии задачи) к базису $a$:

[{{T}_{eto a}}=left[ begin{array}{ccr} 1 & 2 & 1 \ 2 & 3 & -1 \ 1 & 2 & 2 \ end{array} right]]

Определитель этой матрицы отличен от нуля:

[det {{T}_{eto a}}=-1ne 0]

Следовательно, $left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ — базис пространства ${{mathbb{R}}^{3}}$.

Теперь составим матрицу из векторов $b=left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$. Получим матрицу перехода ${{T}_{eto b}}$:

[{{T}_{eto b}}=left[ begin{array}{crc} 1 & 1 & 2 \ 3 & -1 & 2 \ 1 & 3 & 1 \ end{array} right]]

Определитель этой матрицы вновь отличен от нуля:

[det {{T}_{eto b}}=12ne 0]

Следовательно, $left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$ — тоже базис пространства ${{mathbb{R}}^{3}}$.

Осталось найти матрицу перехода ${{T}_{ato b}}$. Заметим, что эту матрицу можно выразить так:

[begin{align}{{T}_{ato b}} &={{T}_{ato e}}cdot {{T}_{eto b}}= \ &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}end{align}]

Мы внедрили «транзитный» базис $e$ и вместо прямого перехода $ato b$ рассмотрели цепочку $ato eto b$. Это стандартный и очень распространённый приём, но из-за этого появился новый элемент $T_{eto a}^{-1}$ — матрица, обратная к ${{T}_{eto a}}$. Найдём $T_{eto a}^{-1}$ методом присоединённой матрицы:

[left[ {{T}_{eto a}}|E right]sim ldots sim left[ E|T_{eto a}^{-1} right]]

Напомню, что элементарные преобразования в присоединённых матрицах выполняются только над строками. Если вы забыли, как всё это работает, см. урок «Обратная матрица». В нашем случае получим:

[left[ begin{array}{ccr|ccc}1 & 2 & 1 & 1 & 0 & 0 \ 2 & 3 & -1 & 0 & 1 & 0 \ 1 & 2 & 2 & 0 & 0 & 1 \end{array} right]begin{matrix} , \ -2cdot left[ 1 right] \ -1cdot left[ 1 right] \ end{matrix}]

Мы «зачистили» первый столбец. Теперь «зачистим» последний:

[left[ begin{array}{crr|rcc} 1 & 2 & 1 & 1 & 0 & 0 \ 0 & -1 & -3 & -2 & 1 & 0 \ 0 & 0 & 1 & -1 & 0 & 1 \ end{array} right]begin{matrix} -1cdot left[ 3 right] \ +3cdot left[ 3 right] \ , \ end{matrix}]

Остался лишь средний. Разберёмся и с ним:

[left[ begin{array}{crc|rcr} 1 & 2 & 0 & 2 & 0 & -1 \ 0 & -1 & 0 & -5 & 1 & 3 \ 0 & 0 & 1 & -1 & 0 & 1 \ end{array} right]begin{matrix} +2cdot left[ 2 right] \ |cdot left( -1 right) \ , \ end{matrix}]

Получили единичную матрицу слева от вертикальной черты. Значит, справа стоит искомая матрица $T_{eto a}^{-1}$:

[left[ begin{array}{ccc|rrr} 1 & 0 & 0 & -8 & 2 & 5 \ 0 & 1 & 0 & 5 & -1 & -3 \ 0 & 0 & 1 & -1 & 0 & 1 \ end{array} right]]

Теперь у нас есть всё, чтобы найти матрицу перехода ${{T}_{ato b}}$:

[{{T}_{ato b}}={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}=left[ begin{array}{rrr} -8 & 2 & 5 \ 5 & -1 & -3 \ -1 & 0 & 1 \ end{array} right]cdot left[ begin{array}{crc} 1 & 1 & 2 \ 3 & -1 & 2 \ 1 & 3 & 1 \ end{array} right]]

[begin{align}{{T}_{ato b}} &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}= \ &=left[ begin{array}{rrr} -8 & 2 & 5 \ 5 & -1 & -3 \ -1 & 0 & 1 \ end{array} right]cdot left[ begin{array}{crc} 1 & 1 & 2 \ 3 & -1 & 2 \ 1 & 3 & 1 \ end{array} right] end{align}]

После несложных вычислений получаем матрицу перехода от базиса $a$ к базису $b$:

[{{T}_{ato b}}=left[ begin{array}{rrr} 3 & 5 & -7 \ -1 & -3 & 5 \ 0 & 2 & -1 \ end{array} right]]

Осталось найти координаты вектора $x$, который в базисе $b$ имеет координаты ${{left( 0,3,2 right)}^{T}}$. Вспомним формулу, выражающую координаты в старом базисе через координаты в новом базисе:

[{{left[ x right]}_{a}}={{T}_{ato b}}cdot {{left[ x right]}_{b}}]

Подставляем в эту формулу матрицу ${{T}_{ato b}}$ и вектор-столбец ${{left[ x right]}_{b}}={{left[ 0,3,2 right]}^{T}}$:

[{{left[ x right]}_{a}}=left[ begin{array}{rrr} 3 & 5 & -7 \ -1 & -3 & 5 \ 0 & 2 & -1 \ end{array} right]cdot left[ begin{matrix} 0 \ 3 \ 2 \ end{matrix} right]=left[ begin{matrix} 1 \ 1 \ 4 \ end{matrix} right]]

Итак, вектор $x$ в базисе $a$ имеет координаты ${{left( 1,1,4 right)}^{T}}$. Задача решена.

Альтернативное решение

Можно найти матрицу ${{T}_{ato b}}$ заметно быстрее, если использовать алгоритм решения матричных уравнений. Заметим, что нам требуется найти произведение

[{{T}_{ato b}}={{A}^{-1}}cdot B]

С другой стороны, для нахождения такого произведения достаточно составить присоединённую матрицу вида $left[ A|B right]$ и цепочкой элементарных преобразований свести её к виду

[left[ A|B right]sim ldots sim left[ E|{{A}^{-1}}cdot B right]]

Другими словами, справа от вертикальной черты мы получим искомую матрицу перехода ${{T}_{ato b}}$!

На практике это выглядит так. Записываем присоединённую матрицу $left[ A|B right]$:

[left[ begin{array}{ccr|crc} 1 & 2 & 1 & 1 & 1 & 2 \ 2 & 3 & -1 & 3 & -1 & 2 \ 1 & 2 & 2 & 1 & 2 & 1 \ end{array} right]]

И после элементарных преобразований получим

[left[ begin{array}{ccc|rrr} 1 & 0 & 0 & 3 & 5 & -7 \ 0 & 1 & 0 & -1 & -3 & 5 \ 0 & 0 & 1 & 0 & 2 & -1 \ end{array} right]]

Для экономии места я пропустил промежуточные шаги. Попробуйте сделать их самостоятельно — это очень полезная практика.

Если же вы хотите разобраться, как это работает (и почему вдруг справа возникает матрица вида ${{A}^{-1}}cdot B$), см. урок «Матричные уравнения». А мы идём дальше.

Задача 2. Базисы в поле вычетов

Найдите матрицу перехода от базиса

[{{a}_{1}}={{left( 1,1,1 right)}^{T}},quad {{a}_{2}}={{left( 2,1,1 right)}^{T}},quad {{a}_{3}}={{left( 3,2,1 right)}^{T}}]

[begin{align}{{a}_{1}} &={{left( 1,1,1 right)}^{T}}, \ {{a}_{2}} &={{left( 2,1,1 right)}^{T}}, \ {{a}_{3}} &={{left( 3,2,1 right)}^{T}} \ end{align}]

к базису

[{{b}_{1}}={{left( 0,4,3 right)}^{T}},quad {{b}_{2}}={{left( 3,3,2 right)}^{T}},quad {{b}_{3}}={{left( 2,2,1 right)}^{T}}]

[begin{align}{{b}_{1}} &={{left( 0,4,3 right)}^{T}}, \ {{b}_{2}} &={{left( 3,3,2 right)}^{T}}, \ {{b}_{3}} &={{left( 2,2,1 right)}^{T}} \ end{align}]

арифметического линейного пространства $mathbb{Z}_{5}^{3}$.

Решение

Эта задача проще предыдущей, поскольку поле вычетов ${{mathbb{Z}}_{5}}$ является конечным и состоит всего из пяти элементов — представителей смежных классов:

[{{mathbb{Z}}_{5}}=left{ 0,1,2,3,4 right}]

Как и в предыдущей задаче, рассмотрим систему векторов $a=left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ и составим из них матрицу ${{T}_{eto a}}$:

[{{T}_{eto a}}=left[ begin{matrix} 1 & 2 & 3 \ 1 & 1 & 2 \ 1 & 1 & 1 \ end{matrix} right]]

Определитель $det {{T}_{eto a}}=1ne 0$, поэтому $left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ — базис.

Аналогично, рассмотрим систему $b=left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$ и составим матрицу ${{T}_{eto b}}$:

[{{T}_{eto b}}=left[ begin{matrix} 0 & 3 & 2 \ 4 & 3 & 2 \ 3 & 2 & 1 \ end{matrix} right]]

Определитель $det {{T}_{eto b}}=4ne 0$, поэтому $left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$ — базис.

Выразим искомую матрицу ${{T}_{ato b}}$ через «транзитный» базис $e$:

[begin{align}{{T}_{ato b}} &={{T}_{ato e}}cdot {{T}_{eto b}}= \ &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}} end{align}]

Найдём $T_{eto a}^{-1}$ через присоединённую матрицу:

[left[ begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \ 1 & 1 & 2 & 0 & 1 & 0 \ 1 & 1 & 1 & 0 & 0 & 1 \ end{array} right]]

После цепочки элементарных преобразований над строками (попробуйте выполнить их самостоятельно!) получим

[left[ begin{array}{ccc|ccc} 1 & 0 & 0 & 4 & 1 & 1 \ 0 & 1 & 0 & 1 & 3 & 1 \ 0 & 0 & 1 & 0 & 1 & 4 \ end{array} right]]

Итак, мы нашли матрицу $T_{eto a}^{-1}$:

[T_{eto a}^{-1}=left[ begin{matrix} 4 & 1 & 1 \ 1 & 3 & 1 \ 0 & 1 & 4 \ end{matrix} right]]

Осталось вычислить искомую матрицу перехода ${{T}_{ato b}}$:

[{{T}_{ato b}}={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}=left[ begin{matrix} 4 & 1 & 1 \ 1 & 3 & 1 \ 0 & 1 & 4 \ end{matrix} right]cdot left[ begin{matrix} 0 & 3 & 2 \ 4 & 3 & 2 \ 3 & 2 & 1 \ end{matrix} right]=left[ begin{matrix} 2 & 2 & 1 \ 0 & 4 & 4 \ 1 & 1 & 1 \ end{matrix} right]]

[begin{align}{{T}_{ato b}} &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}= \ &=left[ begin{matrix} 4 & 1 & 1 \ 1 & 3 & 1 \ 0 & 1 & 4 \ end{matrix} right]cdot left[ begin{matrix} 0 & 3 & 2 \ 4 & 3 & 2 \ 3 & 2 & 1 \ end{matrix} right]= \ &=left[ begin{matrix} 2 & 2 & 1 \ 0 & 4 & 4 \ 1 & 1 & 1 \ end{matrix} right] end{align}]

По аналогии с предыдущей задачей, матрицу ${{T}_{ato b}}$ можно найти и через элементарные преобразования присоединённой матрицы $left[ A|B right]$. Результат будет точно такой же, но мы сэкономим пару строк вычислений и несколько минут времени.

Задача 3. Пространство многочленов

Убедитесь, что системы многочленов

[begin{align}e &=left{ 1,t-1,{{left( t-1 right)}^{2}} right} \ f &=left( 1,t+1,{{left( t+1 right)}^{2}} right) \ end{align}]

являются базисами в пространстве ${{P}_{3}}$ многочленов степени не выше 2. Найдите матрицу перехода ${{T}_{eto f}}$. Разложите по степеням $left( t-1 right)$ многочлен ${{left( t+1 right)}^{2}}+left( t+1 right)+1$.

Решение

Стандартным базисом в пространстве многочленов является система многочленов $p=left{ {{p}_{1}},{{p}_{2}},{{p}_{3}} right}$, где

[{{p}_{1}}=1quad {{p}_{2}}=tquad {{p}_{3}}={{t}^{2}}]

Выразим через базис $p$ многочлены из системы $e$:

[begin{align} & {{e}_{1}}=1={{p}_{1}} \ & {{e}_{2}}=t-1={{p}_{2}}-{{p}_{1}} \ & {{e}_{3}}={{left( t-1 right)}^{2}}={{t}^{2}}-2t+1={{p}_{3}}-2{{p}_{2}}+{{p}_{1}} end{align}]

[begin{align}{{e}_{1}} &=1={{p}_{1}} \ {{e}_{2}} &=t-1={{p}_{2}}-{{p}_{1}} \ {{e}_{3}} &={{left( t-1 right)}^{2}}= \ &={{t}^{2}}-2t+1= \ &={{p}_{3}}-2{{p}_{2}}+{{p}_{1}} end{align}]

Следовательно, матрица перехода ${{T}_{pto e}}$ выглядит так:

[{{T}_{pto e}}=left[ begin{array}{crr} 1 & -1 & 1 \ 0 & 1 & -2 \ 0 & 0 & 1 \ end{array} right]]

Аналогично, выразим через базис $p$ многочлены из системы $f$:

[begin{align} & {{f}_{1}}=1={{p}_{1}} \ & {{f}_{2}}=t+1={{p}_{2}}+{{p}_{1}} \ & {{f}_{3}}={{left( t+1 right)}^{2}}={{t}^{2}}+2t+1={{p}_{3}}+2{{p}_{2}}+{{p}_{1}} end{align}]

[begin{align}{{f}_{1}} &=1={{p}_{1}} \ {{f}_{2}} &=t+1={{p}_{2}}+{{p}_{1}} \ {{f}_{3}} &={{left( t+1 right)}^{2}}= \ &={{t}^{2}}+2t+1= \ &={{p}_{3}}+2{{p}_{2}}+{{p}_{1}} end{align}]

Получим матрицу перехода ${{T}_{pto f}}$:

[{{T}_{pto f}}=left[ begin{matrix} 1 & 1 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \ end{matrix} right]]

Обе матрицы оказались верхнетреугольными, их определители отличны от нуля:

[begin{align} det {{T}_{pto e}} &=1cdot 1cdot 1=1 \ det {{T}_{pto f}} &=1cdot 1cdot 1=1 \ end{align}]

Следовательно системы многочленов $e$ и $f$ действительно являются базисами пространства ${{P}_{3}}$.

Теперь найдём матрицу перехода ${{T}_{eto f}}$. Для этого нам даже не потребуется искать обратную матрицу. Достаточно заметить, что векторы ${{f}_{1}}$ и ${{f}_{2}}$ легко раскладываются по базису $e$:

[begin{align}{{f}_{1}} &=1={{e}_{1}} \ {{f}_{2}} &=t+1=left( t-1 right)+2={{e}_{2}}+2{{e}_{1}} \ end{align}]

С вектором ${{f}_{3}}$ вычислений будет чуть больше:

[begin{align}{{f}_{3}} &={{left( t+1 right)}^{2}}= \ &={{left( t-1 right)}^{2}}+4t= \ &={{left( t-1 right)}^{2}}+4left( t-1 right)+4= \ &={{e}_{3}}+4{{e}_{2}}+4{{e}_{1}} end{align}]

Итого матрица перехода ${{T}_{eto f}}$ примет вид

[{{T}_{eto f}}=left[ begin{matrix} 1 & 2 & 4 \ 0 & 1 & 4 \ 0 & 0 & 1 \ end{matrix} right]]

Теперь разложим многочлен ${{left( t+1 right)}^{2}}+left( t+1 right)+1$ по базису $e$. Сначала перепишем этот многочлен так:

[begin{align}hleft( t right) &=1+left( t+1 right)+{{left( t+1 right)}^{2}}= \ &={{f}_{1}}+{{f}_{2}}+{{f}_{3}} end{align}]

Следовательно, в базисе $f$ многочлен $hleft( t right)$ имеет координаты ${{left( 1,1,1 right)}^{T}}$. Но тогда по теореме о замене координат этот же многочлен в базисе $e$ имеет координаты

[{{left[ h right]}_{e}}={{T}_{eto f}}cdot {{left[ h right]}_{f}}=left[ begin{matrix} 1 & 2 & 4 \ 0 & 1 & 4 \ 0 & 0 & 1 \ end{matrix} right]cdot left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{matrix} 7 \ 5 \ 1 \ end{matrix} right]]

[begin{align}{{left[ h right]}_{e}} &={{T}_{eto f}}cdot {{left[ h right]}_{f}}= \ &=left[ begin{matrix} 1 & 2 & 4 \ 0 & 1 & 4 \ 0 & 0 & 1 \ end{matrix} right]cdot left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{matrix} 7 \ 5 \ 1 \ end{matrix} right] end{align}]

Другими словами, многочлен $hleft( t right)$ имеет вид

[hleft( t right)={{left( t-1 right)}^{2}}+5left( t-1 right)+7]

Это и есть искомое разложение многочлена ${{left( t+1 right)}^{2}}+left( t+1 right)+1$ по степеням $left( t-1 right)$.

Альтернативное решение

Искомое разложение можно получить и без привлечения матриц перехода. Достаточно применить схему Горнера или выделить нужные степени напрямую:

[begin{align}hleft( t right) &={{left( t+1 right)}^{2}}+left( t+1 right)+1= \ &={{left( t-1 right)}^{2}}+4t+t+1+1= \ &={{left( t-1 right)}^{2}}+5left( t-1 right)+5+2= \ &={{left( t-1 right)}^{2}}+5left( t-1 right)+7 end{align}]

Как видим, результат получился тем же самым, а времени потрачено меньше. Однако уже в пространстве ${{P}_{4}}$ многочленов степени не выше 4 сложность решения через матрицы и через выделение степеней будет сопоставимой. А дальше матрицы начнут выигрывать.

Смысл линейной алгебры — дать универсальные алгоритмы, которые работают с объектами любой природы, если эти объекты подчиняются аксиомам линейного пространства.

Задача 4. Матрица перехода при симметрии

Базис $b$получается из базиса

[{{a}_{1}}={{left( 2,1,3 right)}^{T}},quad {{a}_{2}}={{left( 1,1,-1 right)}^{T}},quad {{a}_{3}}={{left( 2,-1,-1 right)}^{T}}]

[begin{align}{{a}_{1}} &={{left( 2,1,3 right)}^{T}}, \ {{a}_{2}} &={{left( 1,1,-1 right)}^{T}}, \ {{a}_{3}} &={{left( 2,-1,-1 right)}^{T}} \ end{align}]

пространства ${{V}_{3}}$ симметрией относительно плоскости $2x+y+3z=0$. Найти матрицу перехода ${{T}_{ato b}}$.

Решение

Из курса аналитической геометрии мы знаем, что если плоскость задана уравнением

[ax+by+cz+d=0]

то вектор-нормаль $n$ имеет координаты

[n=left( a,b,c right)]

Тогда для плоскости $2x+y+3z=0$ нормаль имеет координаты $n=left( 2,1,3 right)$, что в точности совпадает с вектором ${{a}_{1}}$. Следовательно, при симметрии относительно плоскости этот вектор просто перейдёт в противоположный: ${{b}_{1}}=-{{a}_{1}}$.

Далее заметим, что векторы ${{a}_{2}}$ и ${{a}_{3}}$ лежат в плоскости симметрии, поскольку при подстановке их координат уравнение плоскости обращается в верное числовое равенство:

[begin{align}{{a}_{2}}={{left( 1,1,-1 right)}^{T}} &Rightarrow 2cdot 1+1+3cdot left( -1 right)=0 \ {{a}_{3}}={{left( 2,-1,-1 right)}^{T}} &Rightarrow 2cdot 2-1+3cdot left( -1 right)=0 \ end{align}]

[begin{align}{{a}_{2}}=&{{left( 1,1,-1 right)}^{T}}Rightarrow \ & Rightarrow 2cdot 1+1+3cdot left( -1 right)=0 \ {{a}_{3}}=&{{left( 2,-1,-1 right)}^{T}}Rightarrow \ & Rightarrow 2cdot 2-1+3cdot left( -1 right)=0 \ end{align}]

Следовательно, при симметрии эти векторы переходят сами в себя: ${{b}_{2}}={{a}_{2}}$, ${{b}_{3}}={{a}_{3}}$. Матрица перехода имеет вид

[{{T}_{ato b}}=left[ begin{array}{rcc} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ end{array} right]]

Важное замечание. симметрия предполагает использование проекций и углов, что в конечном счёте сводится к скалярному произведению. Однако мы пока не знаем, что такое скалярное произведение в линейном пространстве.

Полноценное определение скалярного произведения будет намного позже — см. урок «Евклидово пространство». А пока будем считать, что скалярное произведение векторов $a$ и $b$ определено стандартным образом:

[left( a,b right)=left| a right|cdot left| b right|cdot cos alpha ]

Геометрическая интерпретация

Симметрию на плоскости и в пространстве удобно представлять графически. Пусть $alpha $ — плоскость, относительно которой выполняется симметрия. Тогда векторы $left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ будут выглядеть так:

Матрица перехода при симметрии

Из приведённого рисунка сразу видно, что при симметрии вектор ${{a}_{1}}$ перейдёт в противоположный, а векторы ${{a}_{2}}$ и ${{a}_{3}}$ останутся на месте.

Задача 5. Матрица поворота

Базис $e=left{ i,j,k right}$ пространства ${{V}_{3}}$ поворачивается на 180° вокруг прямой $l$, заданной системой

[left{ begin{align}x-y &=0 \ z &=0 \ end{align} right.]

Затем полученный базис $f$ поворачивается на 90° в отрицательном направлении вокруг нового положения вектора $j$. В результате получается базис $g=left{ {{i}_{2}},{{j}_{2}},{{k}_{2}} right}$.

Найдите матрицу перехода ${{T}_{eto g}}$. Найдите в базисе $e$ координаты вектора $h$, который в новом базисе $g$ имеет координаты $left( 1,1,1 right)$.

Решение

Вращение базиса и матрица поворота — это очень важная тема, по которой есть отдельный урок — «Матрица поворота». Но сейчас вращение совсем простое, поэтому обойдёмся без специальных матриц.

Вновь обратимся к геометрической интерпретации. Рассмотрим исходный базис $e=left{ i,j,k right}$ трёхмерного пространства:

Матрица перехода при повороте

Также на этом рисунке изображена прямая $l$, которая задаётся требованиями $z=0$ и $x=y$. Эта лежит в плоскости $Oxy$ и является биссектрисой первой координатной четверти.

Очевидно, что при повороте пространства на 180° относительно прямой $l$ базисные векторы $i$ и $j$ просто поменяются местами, а вектор $k$ перейдёт в противоположный:

Промежуточный базис

Другими словами, ${{i}_{1}}=j$, ${{j}_{1}}=i$, ${{k}_{1}}=-k$, поэтому матрица перехода от базиса $e=left{ i,j,k right}$ к базису $f=left{ {{i}_{1}},{{j}_{1}},{{k}_{1}} right}$ примет вид

[{{T}_{eto f}}=left[ begin{array}{ccr} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \ end{array} right]]

Далее поворот осуществляется вокруг нового положения вектора $j$, т.е. вокруг вектора ${{j}_{1}}$. Вновь обратимся к чертежу. В этот раз нам уже не нужны координатные оси — нас интересуют лишь векторы ${{i}_{1}}$, ${{j}_{1}}$ и ${{k}_{1}}$, а также ось вращения:

Положиельное и отрицательное направление вращения

Обратите внимание: в задаче сказано, что базис вращается на 90° в отрицательном направлении. Если мы смотрим на плоскость, образованную векторами ${{i}_{1}}$ и ${{k}_{1}}$, с вершины вектора ${{j}_{1}}$ (как на картинке), то отрицательное направление — это по часовой стрелке (отмечено зелёным), а положительное —против часовой стрелки (отмечено красным).

Все эти тонкости (положительное и отрицательное направление, правые и левые тройки векторов) детально описаны в уроке про матрицы поворота. Сейчас не будем подробно разбираться в них, а просто нарисуем результат:

Окончательное положение базисных векторов

Итак, ${{i}_{2}}={{k}_{1}}$, ${{j}_{2}}={{j}_{1}}$ и ${{k}_{2}}=-{{i}_{1}}$, поэтому матрица перехода от базиса $f=left{ {{i}_{1}},{{j}_{1}},{{k}_{1}} right}$ к базису $g=left{ {{i}_{2}},{{j}_{2}},{{k}_{2}} right}$ имеет вид

[{{T}_{fto g}}=left[ begin{array}{ccr} 0 & 0 & -1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ end{array} right]]

Теперь мы можем найти матрицу ${{T}_{eto g}}$ через транзитный базис $f$:

[{{T}_{eto g}}={{T}_{eto f}}cdot {{T}_{fto g}}=left[ begin{array}{ccr} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \ end{array} right]cdot left[ begin{array}{ccr} 0 & 0 & -1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ end{array} right]=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right]]

[begin{align}{{T}_{eto g}} &={{T}_{eto f}}cdot {{T}_{fto g}}= \ &=left[ begin{array}{ccr} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \ end{array} right]cdot left[ begin{array}{ccr} 0 & 0 & -1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ end{array} right]= \ &=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right] end{align}]

Кроме того, нам известны координаты вектора $h$ в базисе $g$:

[h={{left( 1,1,1 right)}^{T}}]

Тогда в базисе $e$ координаты этого же вектора равны

[{{left[ h right]}_{e}}={{T}_{eto g}}cdot {{left[ h right]}_{g}}=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right].left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{array}{r} 1 \ -1 \ -1 \ end{array} right]]

[begin{align}{{left[ h right]}_{e}} &={{T}_{eto g}}cdot {{left[ h right]}_{g}}= \ &=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right].left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{array}{r} 1 \ -1 \ -1 \ end{array} right] end{align}]

Итак, мы нашли матрицу перехода ${{T}_{eto g}}$ и координаты вектора $h$ в исходном базисе. Задача решена.

Смотрите также:

  1. Критерий Сильвестра для квадратичных функций
  2. Работа с формулами в задаче B12
  3. Тест к уроку «Площади многоугольников на координатной сетке» (легкий)
  4. Показательные функции в задаче B15
  5. Задача B5: площадь кольца
  6. Случай четырехугольной пирамиды

Матрица перехода

Пусть Матрица переходаи Матрица перехода— два различных базиса линейного пространства Матрица перехода.

Матрица Матрица перехода, столбцы которой равны координатам векторов Матрица переходав базисе Матрица переходаназывается матрицей перехода от базиса Матрица переходак базису Матрица переходаТогда Матрица перехода

Определитель матрицы перехода отличен от нуля: Матрица перехода

Матрица перехода

Пример с решением

Пример 183.

Определим матрицу перехода от базиса Матрица переходаМатрица переходак базису Матрица перехода

Запишем координаты векторов в виде строк матрицы и приведем полученную матрицу к ступенчатому виду.

Справа от матрицы указываются векторы и регистрируются проводимые преобразования матрицы. Матрица перехода

Нулевым строкам ступенчатого вида матрицы соответствуют равенства Матрица переходаОтсюда Матрица переходаи Матрица перехода

Получено разложение векторов Матрица переходаи Матрица переходапо базису Матрица перехода. Записав коэффициенты этого разложения в виде столбцов матрицы, получим матрицу перехода Матрица перехода. Тогда Матрица перехода

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Мы ограничимся далее изложением простейших фактов для однородных цепей Маркова, в которых условная вероятность появления события Матрица переходав Матрица перехода-м испытании при условии, что в Матрица перехода-м испытании осуществилось событие Матрица переходане зависит от номера испытания. Мы назовем эту вероятность вероятностью перехода и обозначим буквой Матрица перехода; в этом обозначении первый индекс всегда будет обозначать результат предшествующего испытания, а второй индекс указывает, в какое состояние перейдет система в последующий момент времени.

Полная вероятностная картина возможных изменений, осуществляющихся при переходе от одного испытания непосредственно к следующему, задается матрицей

Матрица перехода

составленной из вероятностей перехода, которую мы будем называть матрицей перехода.

Отметим, каким условиям должны удовлетворять элементы этой матрицы. Прежде всего, они, как вероятности, должны быть неотрицательными числами, т.е. при всех Матрица переходаи Матрица перехода

Матрица перехода

Далее из того, что при переходе из состояний Матрица переходав Матрица перехода-м испытании

система обязательно переходит в одно и только в одно из состояний Матрица переходав Матрица перехода-м испытании, вытекает равенство

Матрица перехода

Таким образом, сумма элементов в каждой строке матрицы перехода равна единице.

Возможно вам будут полезны данные страницы:

Наша первая задача в теории цепей Маркова состоит в определении вероятности перехода из состояния Матрица переходав Матрица перехода-м испытании в состояние Матрица переходачерез Матрица переходаиспытаний. Обозначим эту вероятность знаком Матрица перехода

Рассмотрим какое-нибудь промежуточное испытание с номером Матрица перехода. В этом испытании осуществится какое-то одно из возможных событий Матрица перехода. Вероятность такого перехода, согласно с только что введенными обозначениями, равна Матрица перехода. Вероятность же перехода из состояния Матрица переходав состояние Матрица переходаравна Матрица перехода. По формуле полной вероятности

Матрица перехода

Обозначим через Матрица переходаматрицу перехода через п испытаний

Матрица перехода

Согласно (1) между матрицами Матрица переходас различными индексами существует соотношение

Матрица перехода

В частности, при Матрица переходанаходим, что

Матрица перехода

при Матрица перехода

Матрица перехода

и вообще при любом Матрица перехода

Матрица перехода

Отметим частный случай формулы (1): при Матрица перехода

Преобразование координат. Матрица перехода.

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пусть $L_n -$ произвольное мерное пространство, $B=(e_1, . e_n) -$ фиксированный базис в нем. Тогда всякому вектору $xin L_n$ взаимно однозначно соответствует столбец его координат в этом базисе.

$$x=x_1e_1+. +x_ne_nLeftrightarrow X=beginx_1\ vdots\x_nend$$

При этом линейные комбинации над векторами в координатной форме выглядят следующим образом:

$y=lambda xLeftrightarrow Y=lambda X.$

Пусть $B=(e_1, e_2, . e_n)$ и $B’=(e_1′, e_2′, . e_n’) -$ два различных базиса в $L_n.$ Каждый из векторов базиса $B’$ разложим по базису $B:$

Матрицей перехода $T_$ от базиса $B$ к базису $B’$ называется матрица

$T_=begint_&. &t_\. &. &. \t_&. &t_end$ $k$-й столбец которой есть столбец $E’_k$ координат вектора $e’_k$ в базисе $B.$ Если $x -$ произвольный вектор из $L_n,$ $X$ и $X’ -$ столбцы его координат в базисах $B$ и $B’$ соответственно то имеет место равенство $$X’=(T_)^X$$ (формула преобразования координат при преобразовании базиса).

Примеры.

4.15. В постранстве $V_3$ заданы векторы $e_1’=i+j, $ $e_2’=i-j, $ $e_3’=-i+2j-k.$ Доказать, что система $B’=(e_1′, e_2′, e_3′)$ базис в $R_3 $ и написать матрицу перехода $T_$ где $B=(e_1=i, e_2=j, e_3=k).$ Найти координаты вектора $x=i-2j+2k$ в базисе $B’.$

Решение.

Для того, чтобы показать, что система векторов $B’=(e_1′, e_2′, e_3′)$ базис в $R_3, $ достаточно показать, что эти вектора не компланарны.

Из условия мы имеем $e_1’=i+j=(1, 1, 0),$ $e_2’=i-j=(1, -1, 0),$ $e_3’=-i+2j-k=(-1, 2, -1).$ Вектора $e_1′, e_2′, e_3’$ не компланарны, если $begin1&1&0\1&-1&0\-1&2&-1endneq 0.$ Проверим это:

Далее запишем матрицу перехода $T_$

Подставляя этот результат в формулу $X’=(T_)^X,$ получаем:

4.17. Пусть $B=(i, j, k)$ и $B’=(i’, j’, k’) -$ прямоугольные базисы в $R_3.$ Написать матрицу перехода $T_,$ и выписать столбец координат вектора $x=i-2j+k$ в базисе $B’.$

Базис $B’$ получен перестановкой $i’=j,$ $j’=k,$ $k’=i.$

Решение.

Из условия мы имеем $e_1=i, e_2-j, e_3=k;$ $e_1’=j=(0, 1, 0),$ $e_2’=k=(0, 0, 1),$ $e_3’=i=(1, 0, 0).$

Подставляя этот результат в формулу $X’=(T_)^X,$ получаем:

Домашнее задание.

Пусть $B=(i, j, k)$ и $B’=(i’, j’, k’) -$ прямоугольные базисы в $R_3.$ Написать матрицу перехода $T_,$ и выписать столбец координат вектора $x=i-2j+k$ в базисе $B’.$

4.16. Базис $B’$ получен изменением на противоположное направление всех трех базисных ортов $B.$

4.18. Базис $B’$ получен поворотом базиса $B$ на угол $varphi$ вокруг орта $i.$

Геометрия данных 5. Преобразование базиса

Под преобразованием базиса системы координат понимается замена одного набора базовых вершин (реперов) на другой. По сравнению с обычной системой координат на векторах изменение системы координат на точечном базисе имеет особенности, связанные с тем, что базисы могут принадлежать разным пространствам.

Основные матрицы

Под матрицами преобразования (матрицами перехода) обычно понимают такие матрицы, при умножении на которые координат элемента (вершины) в старом базисе, получаются ее координаты в новом. На основании данных матриц преобразуются также метрические тензоры из одного базиса в другой.

Матрицы преобразования базисов содержат сравнительные характеристики двух базисов. Среди данных матриц выделятся инвариантные матрицы — их значения не зависят от выбора базиса. Например, матрица дистанций между вершинами является инвариантной.

Прямые матрицы перехода

Набор исходных базовых вершин обозначим как (старый базис), новый набор как (новый базис). Для преобразования координат должна быть задана матрица перехода — описание координат вершин нового базиса в старом. Такими координатами могут быть как ди-координаты вершин, так и би-координаты. Матрицу перехода в ди-координатах обозначим как . Строка матрицы — это координаты вершины нового базиса в старом , соответственно столбец — это ди-координаты вершины старого базиса относительно нового.

Матрица перехода должна быть квадратной, следовательно одних координат вершин недостаточно — их количество меньше, чем количество компонент координат (из-за наличия скалярной компоненты в координатах). Поэтому необходимо добавить в данную матрицу ди-координаты вектора нормали [0; 1, 1,… 1]. После чего матрица перехода в ди-координатах становится похожей по форме на мажорный грамиан. Назовем матрицу дистанционным тензором преобразования координат (ДТП):

Дистанционный тензор преобразования является инвариантом — его значения не зависят от базиса. При обратном переходе (от к ) значения даной матрицы просто транспонируются (строки и столбцы меняются местами).

Поскольку ДТП — это ди-координаты, то умножая их на лапласиан (ЛМТ), можно получить би-координаты . Структура би-координат матрицы перехода:

Первая строка данной матрицы — это би-координаты нормали: .
В отличие от ДТП значения би-координат матрицы перехода зависят от того, для какого базиса они получены — для старого или нового. Выбор базиса определяет матрицу ЛМТ. Для определенности би-координаты перехода в базисе обозначим как , а в базисе как . Тогда имеют место следующие тождества. Для исходного базиса:

Здесь и — лапласиан и грамиан исходного базиса. Соответственно и — метрические тензоры нового базиса.

При переходе от одного базиса к другому требуется определить метрические тензоры нового базиса, если заданы матрицы преобразования.

Обратные матрицы перехода

Матрицы перехода и обратимы при условии отличного от нуля детерминанта матрицы перехода:

Нулевой детерминант матрицы преобразования означает ортогональность базисов. В ортогональном базисе невозможно выразить метрику проекций. Будем считать базисы неортогональными. Тогда обратные матрицы перехода выражаются через прямые следующим образом:

Матрица — представляет собой би-координаты вершин старого базиса относительно вершин нового . То есть обращение би-координат дает взаимные би-координаты.

Матрица — это лапласовский тензор преобразования базиса (ЛТП). Ее структура аналогична структуре лапласиана (ЛМТ):

Здесь главный минор — это симметричный лапласиан. В окаймлении барицентрические координаты обратных проекций ортоцентров двух базисов (симплексов). Ортоцентр исходного базиса выражена в барицентрических координатах нового — , а ортоцентр нового в координатах исходного — .
Что понимается под «обратными проекциями», будет пояснено далее.

В углу лапласовского тензора находится скаляр . Его значение отражает скалярное произведение двух базисов — нового и старого. Чтобы раскрыть его смысл, рассмотрим две ситуации — 1) базисы принадлежат одному и тому же пространству и 2) базисы принадлежат разным пространствам.

Скалярное произведение базисов одного пространства

В общем пространстве скалярное произведение базисов выражается через нормы ортоцентров ( и ) и расстояния между ортоцентрами ():

Данная формула подобна выражению для скалярного произведения пар с общей вершиной (3.8). Поэтому можно считать соотношение (5.5) определением скалярного произведения ортоцентров.

На рисунке показана геометрическая интерпретация скалярного произведения ортоцентров (окружностей). Слева — определение через скалярное произведение смежных пар и . Если окружности пересекаются, то у них есть общий элемент — элемент смежности пар.

Скалярное произведение элементов можно определить через их взаимные степени (показано на рисунке справа). Геометрическое определение степени точки дано во 2-й части. Согласно (2.9) степень точки относительно элемента выражается через дистанцию от точки до элемента и норму элемента :

Можно обобщить данное определение, если вместо точки использовать другой элемент. Тогда взаимной степенью двух элементов и является следующая скалярная величина :

Данная формула известна как произведение Дарбу. На правом рисунке показано построение точек, значение дистанции между которыми равно взаимной степени элементов:

По своим свойствам взаимная степень элементов обобщает свойства степени точки, то есть определяет их взаимное расположение. Если элементы находятся вне друг друга, то их взаимная степень положительна, если пересекаются — отрицательна. Под пересечением здесь понимается ситуация, при которой точки касания (или ) находятся внутри элемента (или соответственно) (на рисунке взаимная степень элементов положительна).

Тогда скалярное произведение (5.5) — это взаимная полустепень элементов (и наоборот). Напомним (2.10), что под полустепенью понимается степень, деленная на (-2):

Если центры элементов совпадают (), то их скалярное произведение будет равно их средней норме:

Скалярное произведение базисов разных пространств

Если базисы принадлежат разным пространствам, то геометрическая интерпретация их скалярного произведения усложняется. Приведем вначале алгебраические тождества. Они аналогичны подобным для составляющих лапласовского тензора, приведенных в первой части.

Скалярное произведение базисов может выражено через отношение детерминантов дистанционной матрицы перехода и ее главного минора (см. 5.1.1):

Связь взаимной нормы базисов и барицентрических координат обратных проекций их ортоцентров:

— для вершин базиса .

— для вершин базиса .

Разберемся, что такое обратная проекция точки. Допустим, что у нас есть точка , принадлежащая базису . Тогда ее обратной проекцией на базис будет такая точка , что перпендикуляр, опущенный из нее на базис , пересекается с ним в исходной точке .

На рисунке обратной проекцией точки на пространство является точка , а обратной проекцией точки на пространство — точка . Точки и — это ортоцентры базисов и соответственно.

Понятие обратной проекции применимо также к нормам элементов. Норма при обратной проекции становится больше исходной (в отличие от прямой проекции). На рисунке дистанция — это норма ортоцентра базиса . Обратной проекцией на базис будет дистанция:
.
Соответственно обратной проекцией нормы базиса на базис будет дистанция
.
Обозначая дистанцию между обратными проекциями центров как , получаем следующее выражение для скалярного произведения базисов разных пространств:

Видим, что по форме оно совпадает со взаимной нормой базисов одного пространства (5.5), но вместо дистанций используются их обратные проекции на взаимный базис. Если базисы принадлежат одному пространству, то угол между пространствами становится нулевым, и формула (5.9) переходит в (5.5).

Все приведенные формулы применимы также и к пространству графа. В графе нет описанных сфер (базиса), но есть связность. Тогда скалярное произведение базисов графа должно отражать их взаимную связность.

Расчет нового базиса

Здесь также рассмотрим две ситуации: 1) новый и старый базис принадлежат одному и тому же пространству и 2) принадлежат разным пространствам. Первый случай как правило относится к обычному геометрическому пространству (при смене базиса тут редко меняется его пространство), второй — к пространству графа.

Определить принадлежность элемента (вершины) пространству базиса можно по его норме в данном пространстве. Если равна нулю, то элемент принадлежит пространству.

Единое пространство базисов

Для получения грамиана нового базиса необходимо умножить ди-координаты элементов нового базиса на би-координаты . Полученная матрица будет матрицей скалярных произведений в новом базисе (см. 4.4.2 в предыдущей части). Таким образом если пространства базисов совпадают, то матрица норм вершин нового базиса относительно старого — это и есть грамиан нового базиса:

Мы пометили данный грамиан штрихом, чтобы помнить об условии общего пространства базисов. Лапласиан нового базиса (ЛМТ) можно получить обращением грамиана (ДМТ):

Координаты элемента в новом базисе могут быть выражены через координаты в старом и матрицы перехода. Ди-координаты :

Би-координаты элемента в новом базисе :

Все приведенные выражения аналогичны формулам изменения координат и в обычных (векторных) системах координат. В пределах общего пространства использование точечного базиса аналогично использованию векторного.

На КДПВ показан основной базис из 3-х вершин (A, B, C) и новый базис , образованный вершинами (P, Q, R). Значения ДМТ основного базиса есть в первой статье:
begin
Gm_ & * & A & B & C \
hline
* & 0 & 1 & 1 & 1 \
A & 1 & 0 & -4.5 & -8 \
B & 1 & -4.5 & 0 & -12.5 \
C & 1 & -8 & -12.5 & 0 \
end
Звездочкой обозначена скалярная компонента. Значение лапласиана (ЛМТ) можно получить обращением грамиана (ДМТ).

Дистанционную матрицу перехода считаем заданной. Ее вид:
begin
Dm_ & * & A & B & C \
hline
* & 0 & 1 & 1 & 1 \
P & 1 & -1.0 & -2.5 & -13.0 \
Q & 1 & -6.5 & -2.0 & -6.5 \
R & 1 & -12.5 & -2.0 & -20.5 \
end

Значения би-координат матрицы перехода получаем по формуле (5.2.1):
begin
Ba_p^a & * & A & B & C \
hline
* & 1 & 0 & 0 & 0 \
P & -1.5 & 0.91(6) & 0.(3) & -0.25 \
Q & 2.0 & -0.5 & 1.0 & 0.50 \
R & -5.0 & -0.(6) & 1.(6) & 0.0 \
end
Скалярной компонентой (значения первого столбца) би-координат являются орбитали. Сумма барицентрических компонент равна 1.

Лапласовский тензор преобразования (5.3.1):
begin
Lt^ & * & P & Q & R \
hline
* & 2.15 & 0.30 & 1.15 & -0.45 \
A & 0.058(3) & 0.11(6) & -0.0(6) & -0.05 \
B & 0.9(6) & -0.0(6) & -0.0(3) & 0.10 \
C & -0.025 & -0.05 & 0.10 & -0.05 \
end
Вектор — это барицентрические координаты ортоцентра старого базиса (симплекса ABC) относительно вершин нового (PQR). Соответственно, вектор — наоборот, барицентрические координаты ортоцентра симплекса PQR относительно вершин старого базиса.

Базисы в разных пространствах

Если базисы находятся в разных пространствах, то формула (5.10.1) будет давать неверные значения полудистанций между вершинами нового базиса. В предыдущей части было показано, что в общем случае для нахождения правильных дистанций между вершинами необходимо к матрице норм прибавить фундаментальную матрицу (4.5):

Следовательно, при преобразовании базиса к базису из другого пространства необходимо наряду с матрицами перехода задать фундаментальную матрицу нового базиса (относительно исходного).

Для задания фундаментальной матрицы полезно вспомнить ее геометрический смысл (см. 4.6.1). Элемент фундаментальной матрицы — это скалярное произведение нормалей, направленных к вершинам из их проекций на пространство базиса. В частном (но практически важном) случае общего надпространства элемент фундаментальной матрицы вычисляется как произведение расстояний от заданных элементов до пространства базиса.

Скалярное произведение обратных проекций

В пространстве графа значения фундаментальной матрицы можно получить через матрицу смежности между старым и новым базисом . Элементами данной матрицы является вес связей между вершинами двух базисов. Если матрица известна и обратима, то можно получить обратную матрицу смежности:

Полученная матрица (как и матрица смежности) является инвариантом — ее значения не зависят от выбора базиса. Значения элементов матрицы отражают скалярное произведение обратных проекций между вершинами двух базисов. На рисунке представлена поясняющая схема.

Здесь точка A принадлежит базису , а точка P — базису . Штрихами помечены обратные проекции точек на смежный базис. Тогда значение элемента матрицы — это скалярное произведение векторов и :

Можно выразить данное соотношение через расстояния от вершин до гиперплоскости пересечения пространств (на рисунке — точка O) и угол между пространствами :

Из формулы (5.13.2′) видно, что если базисы ортогональны , то элементы скалярного произведения обращаются в бесконечность.

Итоговые формулы преобразования базисов

Удобно привести размерность матрицы скалярных произведений проекций к размерности остальных матриц перехода, окаймив ее нулями. Тогда фундаментальная матрица базиса определяется как

Объединяя все вместе, получаем конечное выражение для грамиана нового базиса :

Симметричным образом выражается исходный базис при заданных матрицах преобразования:

Здесь и — би-координаты матриц перехода (5.2.1) и (5.2.2). — общая дистанционная матрица преобразования:

Данная матрица является инвариантом, состоит из двух частей — дистанционного тензора преобразования и добавки, связанной с некомпланарностью пространств базисов, — матрицы скалярных произведений проекций .

Лапласовский тензор базисов получается обращением ДМТ (5.15). Задача определения связи базисов решена.

Подводим итоги. Тяжелая формульная часть серии в целом завершена. Приведены основные понятия и тождества. Точечные базисы — это полезный и мощный инструмент для различных прикладных задач. В заключительной статье рассмотрим базис простейшей структуры — в виде звезды.

Пусть
в пространстве Rn
заданы два базиса е12,

n
и f1,
f2,
f3…,
fn,
тогда каждый вектор из базиса f
можно разложить по базису e,
т.е.

Из
координатных столбцов векторов fj
в базисе e

можно составить квадратную матрицу
порядка n.

,
которая называется, матрицей перехода
от базиса e
к базису f.

Она
является невырожденной, т.е. А0.
Значит, выражение
можно записать в матричном виде.
Умножая это равенство наТ-1
справа, получаем

fT-1=e
или e
=
fT-1,
т.е. Т-1
– матрица перехода от базиса f
к базису e.

Пример
5.

Найти координаты вектора
в базисеесли он задан в базисе.

.

Решение.
При
переходе от базиса e
к базису f
координаты одного и того же вектора
связаны формулами:

,

,

где
T
матрица перехода, которая находится
из равенства f
= eT.

Здесь
.
Найдем определитель матрицы:

(формула
разложения определителя по третьей
строке).

Найдем
алгебраические дополнения к элементам
матрицы T
и обратную матрицу по формуле
:

.

Таким
образом, обратная матрица будет
и, следовательно,

.

Окончательно
имеем в базисе f:

.

Зависимость
между матрицами одного и того же оператора
в разных базисах выражается теоремой.

Теорема.
Матрицы
А
и
А*
линейного оператора А(х)
в
базисах
е12,

n
и
f1,
f2,
f3…,
fn
связаны соотношением

A*
= Т
-1A∙Т,

где
Т
— матрица перехода от старого базиса
к новому.

Пример
6.

В базисе e1,
e2
оператор А
имеет матрицу
.
Найти матрицу этого же оператора в новом
базисеf1,
f2
, где
.

Решение:
составим матрицу перехода (координаты
векторов нового базиса являются столбцами
матрицы перехода) т.е.
и найдем обратную матрицу Т-1.
Т=5,
.


матрица оператора А
в новом базисе.

Пример
7.
Найти
матрицу линейного преобразования
в базисеесли она задана в базисе

,

.

Решение.
При переходе
от базиса e
к базису f
матрица линейного преобразования, в
соответствии с определением, будет
иметь вид

,

где
T
матрица перехода, которая находится
из равенства f
= eT.

Здесь

.

Найдем
определитель матрицы:

(прибавили к
элементам второго и третьего столбца
соответствующие элементы первого
столбца и записали формулу разложения
определителя по первой строке).

Найдем
алгебраические дополнения к элементам
матрицы T
и обратную матрицу по формуле
:

.

Таким
образом, обратная матрица будет
и, следовательно,

.

Лекция
14. Собственные значения и собственные
векторы линейного оператора.

ЗАДАЧА.

Найти
собственные значения и собственные
векторы линейного преобразования,
заданного в некотором базисе матрицей

Определение
1.

Ненулевой
вектор X,
удовлетворяющий условию

AX=X
, (1)

называется
собственным вектором преобразования
A
. Число
в равенстве (1) называется собственным
значением.

Из
определения следует, что
собственный вектор под действи­
ем
линейного оператора
А
переходит
в вектор, коллинеарный
самому
себе, т.е. просто умножается на некоторое
число.

В то же время
несобственные векторы преобразуются
более сложным образом.
В связи с этим понятие собственного
вектора является очень
полезным и удобным при изучении многих
вопросов мат­ричной
алгебры и ее приложений.

Равенство
(1) записано в матричной форме: АХ
=
Х,

где
X

матрица-столбец
из координат вектора х,
или
в разверну­том
виде

(1)

Перепишем
систему так, чтобы в правых частях были
нули:

(2)

Или
в матричном виде
Е)
= 0
.

Полученная
однородная система всегда имеет нулевое
реше­ние
х
=
0
= (0,0,…,0). Для существования ненулевого
решения необходимо
и достаточно, чтобы определитель системы
(2) был равен 0.

(3)

Определитель
|А
– ХЕ
|
является
многочленом n
степени от­носительно
X.
Этот
многочлен называется характеристическим
многочленом
оператора А
или
матрицы А,
а
уравнение (3) —
характеристическим
уравнением оператора А
или
матрицы А.

Для
отыскания собственных векторов
необходимо:

1)
составить характеристическое уравнение
(3) и найти его корни 1,
2,
3
т.е. собственные значения;

2)
составить систему (2), положив
равным одному из найденных собственных
значений, например:
=
1,
и найти ненулевое решение
этой системы;

3)
записать вектор
который является собственным вектором
данного преобразования, соответствующим
собственному значению1
;

4)
проделать шаги 2), 3) для
=
2
и

=
3.

Следует
иметь в виду, что собственные векторы
определяются с точностью до произвольного
множителя, т.е. если вектор X
— собственный, то и вектор
— собственный.

Собственные
векторы, соответствующие различным
собственным значениям, линейно независимы.

Если
линейное преобразование имеет S
одинаковых собственных чисел 0
, то говорят, что 0
имеет кратность S.
Тогда ему соответствует не более S
линейно независимых собственных
векторов.

Пример
1.
Найти
собственные значения и собственные
векторы линейного преобразования,
заданного в некотором базисе матрицей

.

РЕШЕНИЕ.

  1. Запишем
    характеристическое уравнение данного
    линейного преобразования и найдем его
    корни:

Чтобы
решить это уравнение, необходимо раскрыть
определитель. Для этого рекомендуется
разложить определитель по элементам
некоторой строки (столбца), предварительно
получив в этой строке (столбце) два нуля,
используя свойства определителей. В
нашем случае сначала к первой строке
прибавим вторую, получим

Теперь
ко второму столбцу прибавим первый,
умноженный на (-1):

Раскладывая
этот определитель по элементам первой
строки, получаем:

или

Корнями
этого уравнения являются три числа,
1
= -2, 2
= 3, 3
= 6.

  1. В
    системе (2) положим
    =
    1
    = -2, тогда она примет вид:

Здесь
первые два уравнения тождественны,
поэтому одно из них можно отбросить

Применяя
метод Гаусса, найдем общее решение этой
системы:

  1. Следовательно,
    первым собственным вектором,
    соответствующим
    = -2, является X1
    = (p1
    , p1
    , 0) = p1
    (1,1,0), p1

    0.

Меняя
p1
,будем получать различные векторы,
лежащие на одной прямой. Все они
собственные.

  1. Аналогично
    поступаем с собственными значениями
    2
    = 3, 3
    =
    6, т.е. находим соответствующие им
    собственные векторы

X2
= p2(1
, -1 , 1); p2

0, (2
= 3);

X3
= p3(1
, -1 , -2); p3

0, (3
= 6).

Собственные
вектора X1,
X2,
X3
определены с точностью до произвольных
чисел p1
, p2
, p3
.

Пример
2.

Найти собственные значения и собственные
векторы линейного преобразования,
заданного в некотором базисе матрицей

.

РЕШЕНИЕ

  1. Характеристическое
    уравнение данного преобразования имеет
    вид

.

Корни
этого уравнения 1
=
2
= -1,
3
= 5 являются собственными значениями.

  1. Чтобы
    найти собственный вектор, соответствующий
    1
    =
    2
    = -1, полагаем в системе (2)
    =
    -1. Получим

Все
три уравнения тождественны, поэтому
два из них могут быть отброшены. Оставшееся
уравнение

содержит три неизвестные. Полагая
=p1
,
=p2
, находим

= -p1
– p2
.

  1. Вектор
    X1
    = (-p1
    – p2
    , p1
    , p2
    ), где p1
    и p2
    — любые числа, одновременно не равные
    нулю, является собственным вектором
    линейного преобразования, соответствующим
    1
    =
    2
    = -1.

  2. Аналогично
    находим, что вектор X2
    = p3(1,
    1, 1) является собственным вектором
    данного преобразования, соответствующим
    3=5.

Пример
3.

Найти собственные значения и собственные
векторы линейного преобразования,
заданного в некотором базисе матрицей


.

РЕШЕНИЕ.

  1. Характеристическое
    уравнение данного преобразования

.

Корни
этого уравнения 1
= 2
= 3
= 1 являются собственными значениями.

  1. Полагаем
    в системе (2)

    = 1:


.

Все
три уравнения тождественны, поэтому,
отбросив два из них, имеем

.

Полагая
,
находим
.

  1. Вектор
    X
    = (5q
    – 2p;
    p;
    q),
    где p,
    q
    — любые числа, одновременно не равные
    нулю, является собственным вектором
    данного линейного преобразования.

Пример4. Найти собственные
значения и собственные векторы
преобразования,
заданного в некотором базисе матрицей.

Решение.
Найдем
собственные числа этой матрицы, для
чего составим и решим характеристическое
уравнение:

Приравняв к нулю это выражение, находим:

Находим
собственные векторы, соответствующие
найденным собственным значениям, для
чего при каждом
составляем и решаем систему:

а)
при
,
получаем

что
равносильно системе (здесь
)

,

полагая
в которой, например,
,находим,таким образом, собственный вектор,
соответствующий собственному значению
3 есть

б)
при
,
получаем

что
равносильно уравнению (здесь
):,

полагая
в котором сначала,
,
а затем
получаем еще два линейно независимых
собственных вектора:

.

Лекция
15. Привидение квадратной матрицы к
диагональному виду.

Наиболее
простой вид принимает матрица А
линейного
опера­тора
А,
имеющего
n
линейно
независимых собственных векто­ров
el,e2,…,en
с
собственными значениями, соответственно
рав­ными
1,
2,
3,
n.
Векторы е1,
е2,
… ,
en
примем
за базисные.
Тогда
A(ei)
=
iei
(i
= 1,2,…,
n)
или

A(еi)
=
a1ie1
+ a
2ie2
+
… + a
iiei
+
+
anien
=
iei,

откуда
aij
= 0,
если i

j,
и
аij
=
i,
если i
=
j.
Таким
образом,
матрица
оператора А
в базисе, состоящем из его собственных
векторов,
является диагональной и
имеет вид:

.

Верно
и обратное: если
матрица А
линейного оператора А
в не­котором базисе является
диагональной,
то все векторы
этого бази­са — собственные векторы

оператора А.

Можно
доказать, что если линейный
оператор имеет n
попарно различных
собственных значений, то отвечающие им
собственные векторы линейно независимы,
и матрица этого оператора в соот­ветствующем
базисе имеет диагональный вид.

Пример
1.

Привести
матрицу А
=

линейного опера­тора
А
к
диагональному виду.

Решение.
Найдём собственные значения и
собственные векторы линейного оператора
А,
заданного матрицей
.

Составляем
характеристическое уравнение


или
2

2
35
= 0 ,
откуда
собственные значения линейного оператора
А
1
= -5,
2
= 7.

Находим
собственный вектор х(1)
= (х
1,
х
2),
соответствующий собственному
значению 1
=
-5.
Для
этого решаем матричное уравнение

или

,

откуда
находим х2
=
-1,5х
1.
Положив
х1
= с
,
получим,
что векто­ры
х(1)
= (с; -1,5с)

при любом с

0
являются собственными
векторами
линейного оператора А
с
собственным значением
1
=
-5
.


Аналогично
можно убедиться в том, что векторы х(2)
=

при
любом с1

0
являются собственными векторами
линейного
оператора
А
с
собственным значением 2
= 7

.

Так
как координаты
векторов х(1
)
и
x(2)
не пропорциональны, то векторы х(1)
и х(2)
линейно
независимы. Поэтому в базисе, состоящем
из любых
пар собственных векторов x(1)
= (с; -1,5с)

и х(2)
=


(т.е.
при любых с0,
c1

0,
например, при с
= 2,
c1
= 6 из век­торов
x(1)
= (2; — 3) и х{2)
= (4;
6) и т.д.) матрица А
будет
иметь диагональный
вид:

или
.

Это
легко проверить, взяв, например, в
качестве нового базиса линейно
независимые собственные векторы х(1)
= (2; — 3) и x(2)
=
(4; 6). Действительно, матрица С
перехода от старого бази­са
к новому в этом случае будет иметь
вид C
= (
x(1),
x(2))
=

.
Тогда
матрица А
в
новом
базисе х(1),
x(2)
примет вид:
.

Или
после вычислений
,
т.е.
получим ту же диагональную матрицу,
элементы которой по главной диагонали
равны собственным значениям матрицы
А.

Пример2.Пусть линейный оператор,
действующий в евклидовом пространстве
,
имеет в ортонормированном базисе матрицу.
Построить в этом векторов пространстве
базис из собственных оператораи найти матрицу операторав этом базисе.

.

Решение.
1)
Найдем
собственные числа оператора
,
для чего составим и решим характеристическое
уравнение:

Приравняв
к нулю, находим:

2)
Находим собственные векторы, соответствующие
найденным собственным значениям, для
чего при каждом
составляем и решаем систему:

а)
при
,
получаем

что
равносильно системе (здесь
)

,

полагая
в которой, например,
,
находим
,
таким образом, собственный вектор,
соответствующий собственному значению
9 есть

б) при
,получаем,

что
равносильно уравнению (здесь
)

,

полагая
в котором сначала,
,
а затем
получаем еще два линейно независимых
собственных вектора:

.

3)
Находим матрицу перехода к базису из
собственных векторов и обратную к ней
(столбцами матрицы перехода являются
координатные столбцы векторов

(см. раздел
1)):

.

4)
Теперь по формуле (5.1) находим

матрицу
линейного оператора в базисе из
собственных векторов

Таким образом,
матрица линейного оператора в базисе
из собственных векторов диагональная!

Лекция
16.


Квадратичные формы.

При
решении различных прикладных задач
часто приходится исследовать квадратичные
формы.

Определение
1.

Квадратичной
формой

L(х12,…,хn)
от n
пере­менных
называется сумма, каждый член которой
является либо квадратом
одной из переменных, либо произведением
двух разных переменных,
взятых с некоторым коэффициентом:

L(х1,
х2,…,хn)
=
.

Определение
2.
Предполагаем,
что коэффициенты квадратичной формы
aij
— действительные
числа, причем aij
=
aji.
Матрица А
=
(аij)
(i,
j
=
1, 2, …, n),
составленная
из этих коэффициентов, называется
матрицей
квадратичной формы
.

Определение
3.
Матрица,
у которой все элементы аij
= а
ji
,
называется симметрической.

В
матричной записи квадратичная форма
имеет вид:
L
=
ХТАХ,

где
X


матрица-столбец переменных.

или .

Пример
1.

Дана
квадратичная форма L(x1,
х
2,
х3)
= 4х12

12х1х2
— 10х1х3
+ х22

3x32.
Записать
ее в матричном виде.

Решение.
Найдем матрицу квадратичной формы. Ее
диа­гональные
элементы равны коэффициентам при
квадратах пере­менных,
т.е. 4, 1, —3, а другие элементы — половинам
соответст­вующих
коэффициентов квадратичной формы.
Поэтому

Выясним,
как изменяется квадратичная форма при
невырож­денном линейном преобразовании
переменных.

Пусть
матрицы-столбцы переменных X
=
12,…,хn)Т
и

Y
= (
y1,y2,
… ,
yn)Т
связаны
линейным соотношением X
=
CY,
где
С
= (
cij)

(i,j
= 1,2,…,n)
есть некоторая невырожденная матрица
n-го
порядка.

Тогда
квадратичная форма

L
=
ХТАХ
= (
CY)ТA(CY)
= (
YТCТ)A(CY)
=
YТ(CТ
AC)Y.

Итак,
при
невырожденном линейном преобразовании
X
=
CY
матрица
квадратичной формы принимает вид:
.

Пример
2.
Дана
квадратичная форма L(х1,
х
2)
= 2x12
+
4x1x2
— 3x22.
Найти квадратичную форму L(y1,
y2),
полученную из
данной линейным преобразованием х1
= 2y1
– 3y2,
x2
= y1
+
y2.

Решение.
Матрица
данной квадратичной формы
,
а матрица линейного преобразования С
=.

Следовательно,
матрицу искомой квадратичной формы
находим по формуле:

,

Значит
квадратичная форма имеет вид L(y1,
y2)
=
13y12

34у1у2
+ 3у22.

Определение
4.
Квадратичная
форма L
=
называется
канонической
(или
имеет канонический
вид), если
все ее коэффициенты аij
=
0 при i

j:
L
=
a11x12
+
a22x22
+ … +
annxn2
=

ее матрица является диагональной.

Справедлива
следующая теорема.

Теорема.
Любая
квадратичная форма с помощью невырожден­
ного
линейного преобразования переменных
может быть приведена к
каноническому
виду.

Для
всякой квадратичной формы существует
такой базис, в котором она имеет
канонический (и даже нормальный) вид.

Познакомимся
с методами приведения квадратичной
формы к каноническому виду: метод
Лагранжа выделения полных квадратов и
методом собственных векторов.

Пример
3.

Найти ортогональное преобразование,
приводящее квадратичную форму
,
заданную в евклидовом пространстве,
к каноническому виду. Написать этот
канонический вид.

Решение:
матрица квадратичной формы имеет вид
.
Найдем собственные числа этой матрицы:.
Соответственно ортонормированные
собственные векторы:

Следовательно,
в базисе из этих векторов, заданная
квадратичная форма имеет вид
,

где
соответствующие преобразования координат
имеют вид:

Канонический
вид квадратичной формы не является
одно­значно
определенным, так как одна и та же
квадратичная форма может
быть приведена к каноническому виду
многими способа­ми. Однако полученные
различными способами канонические
формы
обладают рядом общих свойств. Одно из
этих свойств сформулируем в виде теоремы.

Теорема
(закон инерции квадратичных форм).

Число
слагаемых с
положительными (отрицательными)
коэффициентами квадратич­ной
формы не зависит от способа приведения
формы к этому виду.

Следует
отметить, что ранг
матрицы квадратичной формы, на­зываемый
рангом квадратичной формы, равен
числу отличных от нуля
коэффициентов канонической формы и не
меняется при линей­ных
преобразованиях.

Лекция
17. Итоговое тестирование.

Лекция
18. Резерв.

Лекция
0. Входная контрольная работа за курс
средней школы.

Содержание:

  1. Линейные преобразования. Собственные векторы и собственные числа линейного оператора
  2. Собственные векторы и собственные числа линейного оператора: определение, свойства
  3. Нахождение собственных чисел и собственных векторов
  4. Базис пространства из собственных векторов линейного оператора
  5. Линейная модель обмена (модель международной торговли)

Линейные преобразования. Собственные векторы и собственные числа линейного оператора

Линейные преобразования (линейные операторы). Матрица линейного преобразования Линейные преобразования

Пусть задано Линейные преобразования-мерный пространство Линейные преобразования. Если каждому вектору Линейные преобразования поставлено в соответствие единственный вектор

Линейные преобразования

этого же пространства, говорится, что в векторном пространстве Линейные преобразования задано преобразование Линейные преобразования, или оператор Линейные преобразования.

Вектор Линейные преобразования — результат линейного преобразования — называют образом вектора Линейные преобразования, а выходной вектор Линейные преобразования — прообразом вектора Линейные преобразования.

Преобразование Линейные преобразования называется линейным преобразованием, или линейным оператором, если для произвольных векторов Линейные преобразования и произвольного действительного скаляра Линейные преобразования выполняются условия:

Линейные преобразования

То есть линейный оператор преобразует пространство Линейные преобразования в то самое пространство. Это записывается следующим образом:

Линейные преобразования

Примерами простейших линейных преобразований являются:
тождественное преобразование: Линейные преобразования, когда каждый Линейные преобразования-мерный вектор пространства превращается в самого себя, то есть остается без изменения;

нулевой оператор Линейные преобразования, когда каждый Линейные преобразования-мерный вектор пространства превращается в ноль-вектор этого же пространства, то есть Линейные преобразования

Линейное преобразование Линейные преобразования, с помощью которого осуществляется восстановление вектора Линейные преобразования по его образу Линейные преобразования, называется обратным к Линейные преобразования линейным преобразованием. В отличие от матрицы оператор записывают Линейные преобразованиякаллиграфическимЛинейные преобразования шрифтом.

Рассмотрим задачу об отыскании координат образа вектора Линейные преобразования.

Пусть в пространстве Линейные преобразования выбрано базис Линейные преобразования (не обязательно ортонормированный) и Линейные преобразования есть координатами вектора Линейные преобразования в этом базисе. Обозначим через Линейные преобразования координаты вектора Линейные преобразования в выбранном базисе. по условию Линейные преобразования, тогда согласно линейностью оператора Линейные преобразования получим :

Линейные преобразования

Но образы Линейные преобразования тоже являются векторами с Линейные преобразования, поэтому иx можно разложить по тому же базисом. Пусть

Линейные преобразования

где Линейные преобразования коэффициенты разложения вектора Линейные преобразования по базису Линейные преобразования 

С учетом (5.5) соотношение (5.4) принимает вид:

Линейные преобразования

Группируя члены правой части относительно векторов базиса, имеем:

Линейные преобразования

С другой стороны, если Линейные преобразования являются координатами вектора Линейные преобразования в базисе Линейные преобразования то его можно представить следующим образом:

Линейные преобразования

Сопоставляем (5.8) из (5.7) и получаем координаты вектора Линейные преобразования:

Линейные преобразования

Следовательно, при линейном преобразовании:

Линейные преобразования

координаты образа вектора являются линейными комбинациями координат прообраза, коэффициенты при которых составляют матрицу Линейные преобразования-го порядка (обозначим ее через Линейные преобразования):

Линейные преобразования

Матрица Линейные преобразования, которая в произведении (слева) с вектором с Линейные преобразования определяет координаты его образа при линейном преобразовании Линейные преобразования, Называется матрицей линейного преобразования Линейные преобразования в базисе Линейные преобразования и пишут:

Линейные преобразования

Каждый — Линейные преобразования-й — столбец матрицы Линейные преобразования составляют коэффициенты разложения вектора Линейные преобразования по базису Линейные преобразования каждая — Линейные преобразования-я — строка определяет коэффициенты разложения координат вектора Линейные преобразования по координатам вектора Линейные преобразования.

Обратите внимание, что Линейные преобразования — нераздельный символ (обозначение вектораобраза), а Линейные преобразования — произведение матрицы с вектором (прообразом).

Каждому линейном оператору Линейные преобразования-мерного пространства отвечает матрица Линейные преобразования-го порядка в данном базисе. И наоборот, каждой матрицы Линейные преобразования-го порядка отвечает линейный оператор Линейные преобразования-мерного пространства с определенным базисом.

Например, с помощью оператора линейных преобразований можно описать поворот произвольного вектора с пространства Линейные преобразования вокруг начала координат на угол Линейные преобразования против часовой стрелки. Формулы поворота осей координат (формулы перехода от исходных координат Линейные преобразования и Линейные преобразования к новым Линейные преобразования и Линейные преобразования, и наоборот ) определяют алгебраическую форму изображения линейного оператора поворота осей:

Линейные преобразования

где Линейные преобразования оператор перехода от исходных (новых) координат к новым (исходных);

Линейные преобразования векторы, началом которых является точка Линейные преобразования, а концами —
точки Линейные преобразования и Линейные преобразования, соответственно.

По соотношению (5.12) матрица линейного преобразования} Линейные преобразования, Описывающий поворот произвольного вектора из пространства Линейные преобразования вокруг начала координат на угол Линейные преобразования против часовой стрелки, имеет вид:

Линейные преобразования

а матрица обратного линейного преобразования Линейные преобразования, то есть такого, что описывает поворот произвольного вектора из пространства Линейные преобразования вокруг начала координат на угол Линейные преобразования по часовой стрелке, имеет вид:

Линейные преобразования

Теорема 5.1 (о связи между матрицами оператора в различных базисах).

Матрицы Линейные преобразования и Линейные преобразования линейного оператора Линейные преобразования в разных базисах Линейные преобразования и Линейные преобразования связаны между собой соотношением:

Линейные преобразования

где Линейные преобразования матрица перехода от исходного к новому базису.

Доказательство. Пусть линейный оператор Линейные преобразования превращает вектор Линейные преобразования пространства Линейные преобразования в вектор Линейные преобразования того самого пространства. Тогда в матричной форме связь между вектором Линейные преобразования и его образом Линейные преобразования в исходном базисе можно записать как Линейные преобразования, а в новом — как Линейные преобразования . Поскольку Линейные преобразования является матрицей перехода от исходного базиса к новому, то в соответствии с (4.18) имеем:

Линейные преобразования

Умножим равенство (5.14) слева на матрицу Линейные преобразования и получим Линейные преобразования. Отсюда по определению линейного оператора имеем: Линейные преобразования. С учетом (5.15):

Линейные преобразования

Сравнив соотношение Линейные преобразования и Линейные преобразования, получаем Линейные преобразования

Две квадратные матрицы Линейные преобразования и Линейные преобразования называются подобными, если существует такая невырожденная матрица Линейные преобразования, матрицы Линейные преобразования и Линейные преобразования связанные соотношениями:

Линейные преобразования

Соответствующие линейные операторы называются преобразованиями сходства.

Подобные матрицы описывают то же линейное преобразование, но в разных базисах, а матрица Линейные преобразования является матрицей перехода от одного базиса к другому.

Подобные матрицы имеют те же ранги, суммы элементов главной диагонали и определители.

В базисе Линейные преобразования и Линейные преобразования задана матрица линейного оператора Линейные преобразования:

Линейные преобразования

Определим матрицу Линейные преобразования, которая отвечает том же оператору в базисе векторов Линейные преобразования и Линейные преобразования есть матрица Линейные преобразования подобна матрице Линейные преобразования.

Предоставим расписание векторов нового базиса по векторам исходного базиса: Линейные преобразования. Соответственно, матрица перехода от исходного к новому базису имеет вид:

Линейные преобразования

Ее определитель Линейные преобразования, то есть матрица Линейные преобразования невырожденная и имеет обратную: 

Линейные преобразования

По теореме 5.1 определяем матрицу оператора Линейные преобразования в новом базисе:

Линейные преобразования

Обратите внимание, что в новом базисе матрица оператора Линейные преобразования оказалась диагональной.

Собственные векторы и собственные числа линейного оператора: определение, свойства

Рассмотрим Линейные преобразования-мерных линейный пространство Линейные преобразования с определенным базисом и матрицу Линейные преобразования, некоторого линейного оператора Линейные преобразования пространства.

Ненулевой вектор Линейные преобразования называют собственным, или характеристическим вектором линейного оператора Линейные преобразования (или матрицы Линейные преобразования), если существует такое действительное число Линейные преобразования, имеет место равенство:

Линейные преобразования

Скаляр Линейные преобразования называется собственным, или характеристическим, числом матрицы Линейные преобразования, или ее собственным значением, соответствует собственному вектору Линейные преобразования:

Согласно определениями собственного числа и собственного вектора имеем:

1) Если Линейные преобразования, то каждый ненулевой вектор из Линейные преобразования является собственным вектором матрицы Линейные преобразования, при этом Линейные преобразования, ведь по свойству единичной матрицы имеем Линейные преобразования;
2) любой ненулевой Линейные преобразования-мерный вектор является собственным вектором нулевой матрицы Линейные преобразования, при этом Линейные преобразования, так как Линейные преобразования.

Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы Линейные преобразования

Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы

Линейные преобразования

Линейные преобразования

Линейные преобразования

Запишем матричное уравнение (5.17) в развернутом виде:Линейные преобразования

Таким образом, задача сводится к решению однородной системы Линейные преобразования линейных уравнений с Линейные преобразования неизвестными. Нас интересуют (по определению собственного вектора) только ненулевые векторы, то есть нетривиальные решения системы, поэтому определитель системы (5.18) должен быть равен нулю:

Линейные преобразования

Раскрытие определителя в соотношении (5.19) дает многочлен степени Линейные преобразования относительно Линейные преобразования, который называется характеристическим многочленом матрицы Линейные преобразования, а соотношение (5.19), которое можно представить в виде Линейные преобразования, определяет уравнение для нахождения собственных чисел, которое называют характеристическим уравнением матрицы Линейные преобразования.

По основной теореме алгебры уравнения Линейные преобразования любой матрицы Линейные преобразования имеет Линейные преобразования корней, если каждый из них считать столько раз, какова его кратность. Характеристическое уравнение матрицы может иметь только действительные, но и комплексные корни, то есть числа вида Линейные преобразования где Линейные преобразования действительные числа, Линейные преобразования мнимая единица.

Множество всех собственных чисел матрицы называют спектром матрицы. Если в спектре матрицы то же собственное число повторяется Линейные преобразования раз, то говорят, что кратность этого собственного числа равна Линейные преобразования.

Теорема 5.2 (о единственности собственного чucлa, что соответствует собственному вектору). Если Линейные преобразования — собственный вектор матрицы Линейные преобразования, то существует единственный скаляр Линейные преобразования, который удовлетворяет условие Линейные преобразования.

Доказательство. Предположим, что кроме собственного числа Линейные преобразования существует еще один
скаляр Линейные преобразования, такой, что Линейные преобразования. Тогда должно выполняться равенство Линейные преобразования. Поскольку по определению собственный вектор является ненулевым, то есть Линейные преобразования, получим Линейные преобразования.

Согласно теореме 5.2 говорят, что собственный вектор Линейные преобразования из матрицы Линейные преобразования принадлежит собственному числу Линейные преобразования

Теорема 5.3 (о множестве собственных векторов, принадлежащих собственному числу). Если матрица имеет собственный вектор, принадлежащий собственному числу Линейные преобразования, то таких векторов бесконечно много.

Доказательство базируется на определении собственного вектора и свойствах ассоциативности и коммутативности операции умножения матрицы на скаляр.

Действительно, пусть Линейные преобразования собственный вектор матрицы Линейные преобразования, тогда Линейные преобразования. Привлечем к рассмотрению вектор Линейные преобразования, коллинеарный вектору Линейные преобразования, то есть Линейные преобразования,  где Линейные преобразования, и покажем, что в также является собственным вектором матрицы Линейные преобразования:

Линейные преобразования

Поскольку равенство (5.19) выполняется для произвольного Линейные преобразования, то существует множество собственных векторов, принадлежащих данному собственному числу.

Теорема 5.4 (критерий существования собственного вектора Линейные преобразования, соответствующего собственному числу Линейные преобразования). Вектор Линейные преобразования тогда и только тогда является собственным вектором матрицы Линейные преобразования, соответствующим собственному числу Линейные преобразования, когда его координаты Линейные преобразования образуют ненулевое решение однородной квадратной системы линейных алгебраических уравнений Линейные преобразования

Линейные преобразования или Линейные преобразования

Доказательство сводится к тождественных преобразований матричных уравнений.

Необходимость уже доказано переходом от соотношения Линейные преобразования, к однородной системе линейных уравнений Линейные преобразования, представленной в развернутом виде (5 18).

Достаточность. На основании свойств действий над матрицами с учетом условия Линейные преобразования, осуществит переход от однородной системы уравнений в матричной форме с соотношением Линейные преобразования:

Линейные преобразования

Теорема 5.5 (пpo линейную независимость собственных векторов). Собственные векторы, принадлежащие различным собственным числам, является линейно независимыми.

Доказательство проведем методом от противного. Пусть Линейные преобразования два произвольные собственные векторы, принадлежащие соответственно собственным числам Линейные преобразования и Линейные преобразования Линейные преобразования. Необходимо показать, что линейная комбинация этих собственных векторов Линейные преобразования ноль-вектор только тогда, когда Линейные преобразования, то есть

Линейные преобразования

Предположим обратное. Пусть (5.23) выполняется при условии, что одно из чисел Линейные преобразования не является нулем, например, Линейные преобразования

Умножим левую и правую части (5.23) на собственное число Линейные преобразования. Тогда

Линейные преобразования

Левую и правую части равенства (5.23) умножим на матрицу Линейные преобразования слева, и, учитывая свойства операций над матрицами, получим:

Линейные преобразования

Сравним (5.25) и (5.24). Получаем:

Линейные преобразования

По условию теоремы Линейные преобразования. По определению вектор Линейные преобразования является ненулевым, поэтому равенство (5.26) возможно только при Линейные преобразования, то есть предположение о линейной зависимости векторов Линейные преобразования и Линейные преобразования ошибочно.

Если есть более двух собственных векторов, принадлежащих попарно различным собственным числам, доведение аналогичное (с использованием метода математической индукции).

Заметим, что собственные векторы, принадлежащих различным собственным числам, можно использовать как базисные векторы пространства Линейные преобразования.

Теорема 5.6 (пpo сумму и произведение собственных чисел). Если Линейные преобразования собственные числа матрицы Линейные преобразования, то:
1) сумма собственных чисел равна сумме элементов главной диагонали матрицы Линейные преобразования:

Линейные преобразования

2) произведение собственных чисел равна определителю матрицы Линейные преобразования:

Линейные преобразования

Доказательство основывается на формулах Виета, которые описывают соотношение между корнями и коэффициентами многочлена Линейные преобразования-гo степени в случае, когда его старший коэффициент равен единице.

Рассмотрим простейший случай Линейные преобразования. Запишем характеристическое уравнение в развернутом виде:

Линейные преобразования

С (5.29) по теореме Виета (для квадратного уравнения) имеем:

Линейные преобразования

Сумму всех диагональных элементов матрицы называют следом (от нем. spur — след) этой матрицы и обозначают Линейные преобразования.

Для квадратной матрицы произвольного порядка Линейные преобразования теорему 5.6 в символьном виде можно записать так:

Линейные преобразования

при этом собственное число Линейные преобразования берем столько раз, какова его кратность как корня характеристического уравнения (5.29).

Нахождение собственных чисел и собственных векторов

Рассмотрим алгоритм нахождения собственных чисел матрицы Линейные преобразования и собственных векторов, которые им принадлежат.
Согласно соотношениями (5.18) и (5.19) имеем такой порядок отыскания собственных чисел и собственных векторов матрицы.
1. Составляем по исходной матрицей Линейные преобразования характеристическое уравнение (5.18) и решаем его, то есть находим спектр собственных чисел.
2. Подставляем поочередно каждое собственное число в систему (5.18) и находим все ее нетривиальные решения, что и дает множество собственных векторов, принадлежащих соответствующему собственному числу.

Замечания. Множество всех собственных векторов, принадлежащих определенному собственному числу, можно представить как линейную комбинацию фундаментальных решений однородной системы уравнений согласно (4.19), гл. 4.

Найдем собственные числа и собственные векторы матрицы

Линейные преобразования

Характерным уравнением этой матрицы является квадратное уравнение:

Линейные преобразования

Решив его, получим собственные числа Линейные преобразования и Линейные преобразования

Теперь описываем множества Линейные преобразования и Линейные преобразования всех собственных векторов, принадлежащих найденным собственным числам.

Для этого в матрицу Линейные преобразования вместо Линейные преобразования подставим поочередно значения собственных чисел, запишем соответствующую систему однородных линейных уравнений (5.18) и решим ее:

Линейные преобразования

Предоставляя параметру Линейные преобразования произвольных значений, для данного собственного числа Линейные преобразования получим совокупность коллинеарных между собой собственных векторов.

Теорема 5.7 (про собственные числа и собственные векторы симметричной матрицы).

Симметричная матрица Линейные преобразования имеет только действительные собственные числа. Собственные векторы, принадлежащие разным собственным числам, ортогональны и линейно независимы.

Теорема приводим без доказательства.
Проиллюстрируем прав выводов данной теоремы на примере.

Пусть имеем симметричную матрицу
Линейные преобразования

Найдем собственные числа и собственные векторы этой матрицы и докажем ортогональность собственных векторов, соответствующих различным собственным числам.

1. Составим характеристическое уравнение матрицы

Линейные преобразования

2. Найдем корни полученного кубического уравнения относительно Линейные преобразования. С элементарной алгебры известно, если многочлен со старшим коэффициентом, равным единице, имеет целые корни, то их следует искать среди делителей свободного члена. Перебирая делители числа 36, убеждаемся, что Линейные преобразования является корнем уравнения (5.30).

Нахождение других двух корней сводится к решению квадратного уравнения:

Линейные преобразования

3. Опишем множества Линейные преобразования и Линейные преобразования собственных векторов, принадлежащих найденным собственным числам.

Для этого в матрицу Линейные преобразования вместо Линейные преобразования подставляем поочередно значения собственных чисел, записываем соответствующую систему однородных линейных уравнений (5.17) и решаем ее методом Жордана-Гаусса:

Линейные преобразования

Аналогично находим собственные векторы Линейные преобразования и Линейные преобразования

Линейные преобразования

Система векторов Линейные преобразования и Линейные преобразования является линейно независимой, поскольку 

Линейные преобразования

Убеждаемся, что векторы Линейные преобразования и Линейные преобразования — попарно ортогональны.
Для этого определим их скалярные произведения:

Линейные преобразования

Поскольку скалярные произведения векторов равны нулю, то векторы попарно ортогональны.
Если в выражениях (5.31-5.33) положить Линейные преобразования, то получим систему векторов:

Линейные преобразования

которая использовалась как базис пространства Линейные преобразования в примере после теоремы Линейные преобразования Линейные преобразования и Линейные преобразования. В таком базисе, то есть базисе из собственных векторов, матрица оператора Линейные преобразования оказалась диагональной, ее ненулевыми элементами являются собственные числа матрицы Линейные преобразования.

Теорема 5.8 (о преобразовании матрицы к диагональному виду). Матрица линейного оператора Линейные преобразования в базисе Линейные преобразования имеет диагональный вид тогда и только тогда, когда все векторы базиса являются собственными векторами матрицы Линейные преобразования.
Теорему наводим  без доказательств

Заметим, что при нахождении собственных чисел для заданной матрицы самой задачей является решение алгебраического уравнения Линейные преобразования-й степени, что во многих случаях сделать невозможно без использования приближенных методов. Изучение приближенных методов выходит за пределы программы. Поэтому предлагаем воспользоваться известными программами MatLab, MathCad, Maple и др.

Следующий пример был решен в пакете MatLab, в котором конечный результат вычислений предоставляется без промежуточных выкладок.
Найдем собственные числа и соответствующие им собственные векторы матрицы

Линейные преобразования

Характерным уравнением для нахождения собственных чисел является уравнение

Линейные преобразования

корнями которого будут числа Линейные преобразования а соответствующие им собственные векторы имеют вид: 

Линейные преобразования

Собственные числа и собственные векторы матриц имеют широкий спектр использования, в частности, в аналитической геометрии (Раздел 2), в задачах различных отраслей естественных наук и эконометрики.

Базис пространства из собственных векторов линейного оператора

По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Возникает вопрос, при каких условиях существует базис линейного пространства Линейные преобразования, построенный из собственных векторов матрицы.
Лема. Если Линейные преобразования является собственным числом матрицы Линейные преобразования, то множество собственных векторов матрицы Линейные преобразования содержит Линейные преобразования линейно независимых векторов, где Линейные преобразования — ранг матрицы Линейные преобразования.

Доказательство. Согласно теореме 5.4 множество собственных векторов совпадает с множеством всех решений однородной системы линейных уравнений: 

Линейные преобразования

где Линейные преобразования — собственный вектор матрицы Линейные преобразования, что соответствует собственному числу Линейные преобразования. По теореме 4.4 такая система имеет фундаментальную систему решений, количество векторов которой равна Линейные преобразования, то есть содержит Линейные преобразования— линейно независимых векторов.

Теорема 5.9 (о существовании базиса из собственных векторов матрицы). Пусть числа Линейные преобразования образуют множество всех различных собственных чисел матрицы Линейные преобразования. Если сумма рангов матриц Линейные преобразования равна Линейные преобразования, то в пространстве Линейные преобразования существует базис из собственных векторов матрицы Линейные преобразования.

Доказательство. Согласно лемме каждое множество собственных векторов, соответствующих уравнению Линейные преобразования, содержит независимые векторы в количестве Линейные преобразования. По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Тогда для матрицы Линейные преобразования общее количество линейно независимых собственных векторов составляет:

Линейные преобразования

Поскольку собственные векторы матрицы Линейные преобразования в совокупности составляют систему Линейные преобразования линейно независимых векторов, то они образуют базис пространства Линейные преобразования.

Теорема 5.10 (о существовании базиса из собственных векторов симметричной матрицы). Если матрица Линейные преобразования линейного оператора симметрична, то в пространстве Линейные преобразования существует базис, образованный из собственных векторов матрицы Линейные преобразования.

Теорему принимаем без доказательств.
Построим ортонормированный базис пространства Линейные преобразования, состоящий из собственных векторов матрицы

Линейные преобразования

линейного преобразования Линейные преобразования, и найдем матрицу Линейные преобразования заданного преобразования в этом базисе.

Согласно теореме 5.9 такой базис существует, поскольку матрица Линейные преобразования является симметричной матрицей. Составим характеристическое уравнение матрицы Линейные преобразования:

Линейные преобразования

и решим его: Линейные преобразования (собственное значение кратности Линейные преобразования) и Линейные преобразования

Для каждого из двух различных собственных чисел матрицы определим фундаментальную систему решений однородной системы уравнений: Линейные преобразования. При Линейные преобразования в результате элементарных преобразований основной матрицы системы получаем:

Линейные преобразования

По последним шагом элементарных преобразований матрицы записываем общее решение системы:

Линейные преобразования

Определяем фундаментальную систему решений однородной системы уравнений Линейные преобразования

Линейные преобразования

Собственные векторы Линейные преобразования и Линейные преобразования являются ортогональными, поскольку их скалярное произведение равно нулю: Линейные преобразования

При Линейные преобразования в результате элементарных преобразований основной матрицы системы получаем:

Линейные преобразования

По последнем шагом элементарных преобразований матрицы записываем общее решение системы:

Линейные преобразования

Возлагаем Линейные преобразования и получаем фундаментальный решение однородной системы уравнений Линейные преобразования

Линейные преобразования

Поскольку Линейные преобразования и Линейные преобразования, то все три вектора попарно ортогональны. Объединив полученные фундаментальные системы решений, иметь систему собственных векторов матрицы  Линейные преобразования. Они образуют ортогональный базис пространства Линейные преобразования. После нормирования векторы приобретают вид:

Линейные преобразования

Это и есть ортогональный базис пространства Линейные преобразования, состоящий из собственных векторов матрицы Линейные преобразования.

По соотношению (5.13) определим матрицу Линейные преобразования, что соответствует оператору Линейные преобразования в базисе из собственных векторов. Согласно теореме 5.8 эта матрица будет иметь диагональный вид, а элементами ее главной диагонали будут собственные числа этой матрицы. Заключим с собственными векторами Линейные преобразования, Линейные преобразования и Линейные преобразования матрицу Линейные преобразования перехода к новому базису и найдем обратную к ней матрицу Линейные преобразования:

Линейные преобразования

По матричным уравнением (5.13) находим матрицу Линейные преобразования, что соответствует оператору Линейные преобразования в базисе из собственных векторов:

Линейные преобразования

Следовательно, мы получили диагональную матрицу третьего порядка, элементами главной диагонали которой есть собственные числа матрицы Линейные преобразования.

Далее приведен пример применения собственных векторов и собственных чисел в одной из многих задач экономики.

Линейная модель обмена (модель международной торговли)

Практически все страны кроме внутреннего товарообмена осуществляют внешний товарообмен, то есть занимаются внешней торговлей. Торговля считается сбалансированной, или бездефицитной, если для каждой страны прибыль от торговли не меньше объем средств, которые она вкладывает в товарооборот (внутренний и внешний).

Постановка задачи. Несколько стран осуществляют взаимный товарообмен. Известную долю бюджетных средств, тратит каждая страна на закупку товаров у другой страны, учитывая и внутренний товарооборот. Определить, каким должно быть соотношение бюджетов партнеров для того, чтобы обеспечить бездефицитность торговли.  

Построение математической модели. Введем обозначения количественных характеристик, описывающих торговлю между странами, и определим связь между этими характеристиками. Пусть Линейные преобразования — страны, участвующие в международной торговле. Доли средств, которые тратит страна Линейные преобразования на закупку товаров в стране Линейные преобразования, учитывая и внутренний товарооборот Линейные преобразования, обозначим через Линейные преобразования. Понятно, что

Линейные преобразования

Матрицу Линейные преобразования, элементами которой являются числа Линейные преобразования, называют структурной матрицей торговли:

Линейные преобразования

Эта матрица описывает взаимодействие стран в процессе международной торговли. Соотношение (5.34) означает, что сумма элементов каждого столбца матрицы равна
1. Если объем средств, которые тратит каждая страна на торговлю, обозначить через Линейные преобразования, соответственно, то прибыль Линейные преобразования страны Линейные преобразования от внутренней и внешней торговли составит

Линейные преобразования

Чтобы торговля каждой страны была сбалансированной, по определению должно выполняться условие Линейные преобразования, и Линейные преобразования, то есть прибыль от торговли не должна быть меньше расходов. Однако соблюдение этого требования в виде неравенства невозможно для всех стран в совокупности. Действительно, добавим левые и правые части указанных неровностей, изменяя Линейные преобразования от единицы до Линейные преобразования:

Линейные преобразования

Группируя в левой части слагаемые, содержащие каждое из Линейные преобразования, получим:

Линейные преобразования

Учитывая соотношение (5.20), получим:

Линейные преобразования

Отсюда следует, что сбалансированная торговля возможна только в случае знака равенства. Это, полагаем, понятно не только на основании аналитических выкладок, но и с экономической точки зрения (и даже просто с точки зрения здравого смысла): все страны в совокупности не могут получить прибыль. Более того, для одной из стран не может выполняться знак строгого неравенства Линейные преобразования.

Итак, условием сбалансированной торговли является равенства Линейные преобразования, и Линейные преобразования, из которых получим:

Линейные преобразования

Введем в рассмотрение вектор (бюджетных) средств Линейные преобразования и подадим систему (5.39) в матричной форме:

Линейные преобразования

С (5.40) следует, что при условии сбалансированности торговли между странами вектор средств Линейные преобразования должен быть собственным вектором структурной матрицы торговли Линейные преобразования, который принадлежит собственному числу Линейные преобразования. Таким образом, решение задачи сводится к нахождению этого собственного вектора Линейные преобразования, компоненты которого устанавливают соотношение между бюджетами стран, участвующих в товарообмене.

Рассмотрим товарообмен между тремя странами. Пусть структурная матрица торговли стран Линейные преобразования, имеет вид:

Линейные преобразования

Найдем вектор средств, компонентами которого являются доли от общего объема торговли, должна вкладывать каждая из стран во внешней товарооборот для того, чтобы торговля была сбалансированной.

Искомый вектор средств является собственным вектором структурной матрицы, принадлежащий собственному значению Линейные преобразования. Его компоненты образуют ненулевое решение однородной СЛАУ:

Линейные преобразования

Поскольку система является однородной, то расширенная матрица эквивалентна основной матрицы системы. Осуществим элементарные преобразования основной матрицы этой системы уравнений:

Линейные преобразования

Находим общее решение системы, в котором Линейные преобразования — базисные переменные, Линейные преобразования — свободная переменная: 

Линейные преобразования

Отсюда следует, что для сбалансированности торговли необходимо, чтобы средства, которые вкладывает в внешний товарооборот каждая страна, соотносились как Линейные преобразования

Лекции:

  • Разложение в ряд Фурье четных и нечетных функций
  • Функции многих переменных
  • Наибольшее и наименьшее значение функции
  • Уравнение плоскости
  • Экстремум функции трёх переменных
  • Как найти вероятность: пример решения
  • Свойства определенного интеграла
  • Комбинаторика
  • Однородные дифференциальные уравнения
  • Простейшие задачи аналитической геометрии

Задание 1. Линейный оператор преобразует векторы , , в векторы , , . Найти матрицу линейного оператора.

Решение. Матрицы

, и

Связаны между собой соотношением , откуда .

Так как , то , а искомая матрица линейного оператора .

Ответ: .

Задание 2. Пусть линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если матрица является матрицей перехода от базиса к базису .

Решение. Матрицы и линейного оператора , заданного в разных базисах, связаны между собой соотношением . Так как , то

.

Ответ: .

Задание 3. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .

Решение. Связь между матрицами и линейного оператора в разных базисах определяется формулой , где – матрица перехода от базиса к базису .

Составим матрицу : , тогда и, следовательно,

.

Ответ: .

Задание 4. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .

Решение. Матрицы и связаны между собой соотношением , где – матрица перехода от базиса к базису .

Составим матрицу : , тогда и, следовательно,

Ответ: .

Задание 5. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей .

Решение. Для нахождения собственных значений линейного оператора составим характеристическое уравнение , т. е. . Раскрывая определитель, получим , т. е. , .

По определению называется собственным вектором линейного оператора , соответствующим собственному значению , если .

Найдём собственные векторы и , соответствующие собственным значениям и .

При получим: , что равносильно такой однородной системе уравнений:

Если – базисная переменная, а – свободная, то .

При : , что равносильно однородной системе уравнений

Пусть – базисная переменная, – свободная. Примем , тогда , а следовательно, .

Так как собственные векторы соответствуют различным собственным значениям, то они должны быть линейно независимы. Проверим линейную независимость полученных собственных векторов и .

Составим матрицу . Так как , то собственные векторы и линейно независимы.

Ответ: собственные числа , ; собственные векторы , .

Задание 6. Привести матрицу линейного оператора к диагональному виду.

Решение. Матрица линейного оператора будет диагональной в базисе из собственных векторов, если такой базис существует. Найдём собственные значения и собственные векторы линейного оператора.

Запишем характеристическое уравнение: , т. е. или , откуда получаем , .

Найдём собственные векторы И .

При получим: , что соответствует следующей однородной системе уравнений:

Пусть – базисная переменная, – свободная. Полагая , получим .

При : . Соответствующая однородная система уравнений имеет вид:

Откуда . Пусть – базисная переменная, – свободная, примем тогда , а, следовательно, .

Собственные векторы и отвечают различным собственным значениям, поэтому они линейно независимы, т. е. могут составить базис. Матрица линейного оператора в базисе из собственных векторов и имеет диагональный вид: .

Можно проверить полученный результат. Так как , где матрица в случае перехода к базису из собственных векторов и имеет вид , следовательно,

,

Тогда

.

Ответ: .

Задание 7. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей . Построить, если это возможно, базис из собственных векторов и найти матрицу этого линейного оператора в базисе из собственных векторов.

Решение. Запишем характеристическое уравнение:

,

Т. е. ,

, откуда получаем , , .

Найдём собственные векторы линейного оператора.

При : , тогда соответствующая однородная система уравнений примет вид:

или

Что равносильно такой системе:

Пусть и – базисные переменные, – свободная. Полагая , получим .

При : , или, переходя к однородной системе уравнений, получим

Пусть и – базисные переменные, – свободная. Если , то .

При получим: , и однородная система уравнений примет вид:

Пусть и – базисные переменные, – свободная. Тогда если , то . Найденные собственные векторы соответствуют различным собственным значениям, поэтому они линейно независимы, значит, существует базис из собственных векторов. Матрица перехода к такому базису , тогда

.

Матрица линейного оператора в базисе из собственных векторов имеет вид: .

Можно сделать проверку полученных результатов:

.

Ответ: , , ; , , ; матрица линейного оператора в базисе из собственных векторов .

< Предыдущая   Следующая >

Понравилась статья? Поделить с друзьями:
  • Как найти утечку в отопительной системе
  • Как исправить ошибки интерьера
  • Как найти максимальный элемент главной диагонали матрицы
  • Как найти как нарисовать дракона
  • Как найти второй минимум в последовательности