Как найти собственные частоты колебаний

From Wikipedia, the free encyclopedia

Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving force.

The motion pattern of a system oscillating at its natural frequency is called the normal mode (if all parts of the system move sinusoidally with that same frequency).

If the oscillating system is driven by an external force at the frequency at which the amplitude of its motion is greatest (close to a natural frequency of the system), this frequency is called resonant frequency.

Overview[edit]

Free vibrations of an elastic body are called natural vibrations and occur at a frequency called the natural frequency. Natural vibrations are different from forced vibrations which happen at the frequency of an applied force (forced frequency). If the forced frequency is equal to the natural frequency, the vibrations’ amplitude increases manyfold. This phenomenon is known as resonance.[1]

In analysis of systems, it is convenient to use the angular frequency ω = 2πf rather than the frequency f, or the complex frequency domain parameter s = σ + ωi.

In a mass–spring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as:

{displaystyle omega _{0}={sqrt {frac {k}{m}}}}

In an electrical network, ω is a natural angular frequency of a response function f(t) if the Laplace transform F(s) of f(t) includes the term Kest, where s = σ + ωi for a real σ, and K ≠ 0 is a constant.[2] Natural frequencies depend on network topology and element values but not their input.[3] It can be shown that the set of natural frequencies in a network can be obtained by calculating the poles of all impedance and admittance functions of the network.[4] A pole of the network transfer function is associated with a natural angular frequencies of the corresponding response variable; however there may exist some natural angular frequency that does not correspond to a pole of the network function. These happen at some special initial states.[5]

In LC and RLC circuits, its natural angular frequency can be calculated as:[6]

{displaystyle omega _{0}={frac {1}{sqrt {LC}}}}

See also[edit]

  • Fundamental frequency

Footnotes[edit]

  1. ^ Bhatt, p. 122.
  2. ^ Desoer 1969, pp. 583–584, 600.
  3. ^ Desoer 1969, p. 633.
  4. ^ Desoer 1969, p. 635.
  5. ^ Desoer 1969, p. 643.
  6. ^ Basic Physics 2009, p. 366.

References[edit]

  • Bhatt, P. Maximum Marks Maximum Knowledge in Physics. Allied Publishers. ISBN 9788184244441. Retrieved 10 January 2014.
  • College Physics. 2012. Retrieved 10 January 2014.
  • Basic Physics. Prentice-Hall Of India Pvt. Limited. 2009. ISBN 9788120337084. Retrieved 10 January 2014.
  • Desoer, Charles (1969). Basic circuit theory. McGraw-Hill. ISBN 0070165750.
Автор статьи

Богдан Новах

Эксперт по предмету «Архитектура и строительство»

Задать вопрос автору статьи

Собственные колебания

Собственные или свободные колебания – это колебания, происходящие в системе при отсутствии переменных внешних воздействий. Такие колебания возникают по причине начального отклонения одного из параметров от состояния равновесия.

В целом колебания представляют собой повторяющийся во времени процесс изменения состояния системы около точки равновесия (при колебании маятника все углы его отклонения от вертикали повторяются с определенной периодичностью.

В реальных макроскопических системах собственные колебания затухают по причине потерь энергии. Любой колебательный процесс связан с переходом энергии из одной формы в другую.

Следует заметить, что колебания различной физической природы имеют ряд общих закономерностей и тесно связаны с волнами. В этой связи исследованием таких закономерностей занимается теория колебаний и волн. Принципиальное отличие колебаний от волн заключается в том, что распространение последних сопровождается переносом, а не переходом энергии.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

По характеру взаимодействия с окружающей средой колебания разделяют на:

  • вынужденные;
  • автоколебания;
  • параметрические;
  • собственные.

В настоящей статье речь пойдет о собственных колебаниях, т.е. о колебаниях системы под действием внутренних сил после выведения системы из равновесия.

При небольших отклонениях от состояния равновесия движение любой системы будет удовлетворять принципу суперпозиции. Согласно данному принципу сумма произвольных движений составляет допустимое движение системы. Подобные движения описываются линейными (дифференциальными) уравнениями.

В случае, если в системе нет потерь энергии (она консервативна), а ее параметры не изменяются во времени, то любое собственное колебание может быть представлено, как совокупность нормальных колебаний, изменяющихся во времени по закону синуса с определенными частотами собственных колебаний.

Если положение системы в любой момент времени описывается единственным параметром, то такая система имеет одну степень свободы. Идеальным примером такой системы является маятник, колеблющийся в плоскости. И действительно, положение маятника в любой момент может определяться лишь углом его отклонения от вертикали.

«Как определить собственную частоту колебаний» 👇

В природе существует большое количество весьма интересных систем, имеющих две степени свободы. Например, молекулы и элементарные частицы (наиболее примечательны нейтральные К-мезоны). Более простым и понятным примером является двойной маятник (один маятник подвешивается к опоре, второй – к гире первого маятника; два маятника, объединенные пружиной).

Чтобы описать состояние системы с двумя степенями свободы необходимо уже две переменные. Например, в случае со сферическим маятником роль таких переменных будут выполнять положения маятника в двух взаимно перпендикулярных плоскостях. В случае объединенных маятников эти переменные соответствуют положению каждого из маятников.

В общем виде движение системы, имеющей две степени свободы, может иметь весьма сложный вид, не напоминающий простое гармоническое движение.

Для двух степеней свободы, а также при линейных уравнениях движения общий вид движения представляет собой суперпозицию двух простейших гармонических зависимостей, происходящих в один момент. Эти два элементарных движения называют нормальными (собственными) колебаниями или гармониками.

Колебательные системы с сосредоточенными параметрами, состоящими из N связанных осцилляторов (например, цепочка из связанных между собой пружинками шариков), число гармоник будет равно N. В системах с распределенными параметрами (мембрана или резонатор) таких колебаний существует бесчисленное множество. Например, для закрепленной струны длиной L гармоники будут отличаться количеством полуволн, которые возможно уложить по всей длине струны. Если скорость распространения волн струны равна v, то спектр собственных частот определяется по формуле:

Формула 1. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Формула 1. Автор24 — интернет-биржа студенческих работ

Наличие дисперсии волн искажает данное простое распределение частот, спектр которых определяется уже из дисперсионных уравнений.

Что касается реальных систем, то в них собственные колебания затухают из-за потерь энергии, поэтому их следует считать лишь приближенно гармоническими в интервале времени, меньшем $1/δ$. Затухающие колебания могут быть представлены в виде нескольких гармонических колебаний, непрерывно заполняющих определенный интервал частот, тем меньшим, чем меньше $δ$. В таком случае следует говорить о расширении спектральной линии, характеризуемой добротностью $Q$ и равной отношению запасенной энергии $W$ к потерям $P$. Отсюда следует, что отношение сгущение спектра из-за потерь энергии может повлечь за собой превращение дискретного спектра в сплошной при приближении ширины линий к интервалу между ними.

Колебания в нелинейных системах

Собственные колебания нелинейных систем не поддаются простой классификации. Нелинейность систем с дискретным спектром частот собственных колебаний приводят к переходу энергии по спектральным компонентам. При этом возникает явление конкуренции гармоник – выживание одних и подавление других.

Подобный процесс может стабилизировать дисперсия. Она может привести к появлению устойчивых пространственно-временных образований (например, солитоны).

Большое значение при возбуждении колебаний может иметь явление резонанса, которое заключается в резком увеличении амплитуды колебаний (отклика). Данное явление наблюдается при приближении частоты внешних воздействий на систему к некоторой резонансной частоте, которая характеризует настоящую систему.

Если система линейна и ее параметры находятся вне зависимости от времени, то резонансные частоты совпадают с частотой собственных ее колебаний. Отклик системы в данном случае будет усиливаться с увеличением добротности колебательной системы $Q$.

Раскачка будет происходить до тех пор, пока энергия, поступающая извне (например, полученная при отклонении маятника от положения равновесия) будет превышать потери за время осцилляции. Что касается линейных колебаний, то энергия, вносимая извне будет пропорциональна амплитуде, а потери будут расти пропорционально ее квадрату. Отсюда следует, что баланс энергии достижим во всех случаях.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

  1. Собственные колебания
  2. Колебания в нелинейных системах

Для лучшего понимания вопроса рассмотрим, что собой представляют собственные колебания и колебания в нелинейных системах.

Собственные колебания

Определение

Колебания – это процесс изменения состояния системы, относительно точки равновесия, повторяющийся во времени с определенной периодичностью. Колебательный процесс происходит из-за перехода энергии из одной формы в другую.

Колебания очень схожи по природе с волнами, они подчиняются общим закономерностям, единственное их отличие в том, что в процессе распространения волн энергия не переходит из одной формы в другую, а всего лишь переносится. Исследованием закономерностей физической природы волн и колебаний занимается теория колебаний и волн. На практике в реальных условиях без воздействия внешних факторов любые колебания со временем затухают, это связано с потерей энергии.

Колебания, по характеру взаимодействия с внешней средой, разделают на:

  • автоколебания;
  • собственные;
  • вынужденные;
  • параметрические.

Рассмотрим подробнее собственные колебания.

Определение

Собственные колебания (или свободные) – это колебания, происходящие внутри системы при отсутствии внешних на нее воздействий

Причиной возникновения таких колебаний является отклонение от равновесия одного или нескольких параметров системы. Такие колебания возникают под воздействием внутренних сил после выведения системы из равновесия.

Рассмотрим принцип суперпозиции, который гласит о том, что допустимое движение системы равно сумме ее произвольных движений. При незначительных отклонениях характеристик системы от положения равновесия, ее движение будет соответствовать принципу суперпозиции. Подобные движения описываются дифференциальными уравнениями линейного характера. Если рассмотреть консервативную систему, т.е. такую, в которой отсутствуют потери энергии и ее параметры постоянны во времени, то любое свободное колебание такой системы представляет собой сумму простых колебаний, меняющихся во времени с определенными частотами свободных колебаний по закону синуса.

banner

Не нашли то, что искали?

Попробуйте обратиться за помощью к преподавателям

Системы бывают с одной или несколькими степенями свободы. Если состояние системы в любой конкретный момент времени описывается одним параметром, то такая система имеет одну степень свободы, если двумя – то две, тремя – три, и так далее. Как пример системы с одной степенью свободы, можно рассмотреть маятник, который совершает колебательные движения в плоскости. В этом случае любое конкретное его положение характеризуется углом его отклонения от оси вертикали. Для описания колебательной системы с двумя степенями свободы нужны два переменных параметра. Примером таких колебаний является маятник, колеблющийся в сфере. В этом случае переменными параметрами будут являться углы положения маятника относительно двух перпендикулярных плоскостей. Но зачастую движения системы с двумя степенями свободы имеют сложный негармоничный характер. Они описываются линейными уравнениями суперпозиций двух простых переменных параметров, которые происходят одновременно. Так вот, каждое из этих двух простых элементарных колебаний называют собственной или свободной, так называемой гармоникой.

Для колебательных систем, состоящих из определенного количества осцилляторов (к примеру вереница шариков, соединенных между собой маленькими пружинками), число гармоник будет равняться их числу. Для более сложных систем, таких как мембрана, например, гармоники будут различные по длине волн и их будет бесконечное множество. При заданной скорости распространения таких волн, спектр собственных частот определяется простой линейной формулой. При наличии волн с разной скоростью распространения такой линейный закон уже не действует, здесь в силу вступают различные дисперсионные уравнения.

Если рассмотреть реальные существующие системы, в которых собственные колебания затухают со временем, то их считают лишь относительно гармоничными в небольшом конкретном отрезке времени. Свободные колебания, затухающие во времени, могут состоять из нескольких гармоник в определенном диапазоне частот. В таком случае имеет место так называемая добротность, то есть расширение спектральной линии, которое равно отношению запасенной энергии к потерям системы. Соответственно, сгущение спектра за счет потерь влечет за собой трансформацию его дискретной формы в сплошную в том случае, если ширина линий приближается к ширине между ними.

banner

Сложно разобраться самому?

Попробуйте обратиться за помощью к преподавателям

Колебания в нелинейных системах

Свободные или собственные колебания в нелинейных системах сложно поделить на какие-либо классы. В нелинейных системах спектр частоты свободных колебаний дискретен, что приводит к движению энергии по различным компонентам спектра. В таких колебательных системах наблюдается явление конкуренции гармоник, т.е. выживание одних за счет подавления других. Лишь дисперсия может уравновесить подобный процесс, приводя к образованию устойчивых в пространстве и времени форм колебаний.

В колебательных системах частым явлением, имеющим большое значение, является процесс резонанса. Его суть заключается в резком возрастании амплитуды колебаний. Это происходит из-за приближения частоты внешнего воздействия к частоте колебания внутреннего собственного параметра системы.

Если линейная система и ее параметры находятся вне времени, то частота резонанса совпадает с частотой ее собственных колебаний. Амплитуда колебаний системы будет усиливаться с ростом параметра ее добротности. В таком случае раскачка амплитуды будет происходить до того момента, пока поступающая энергия будет больше потерь при осцилляции.

Если говорить о линейных колебаниях, то поступающая внешняя энергия пропорциональна амплитуде, а потери пропорциональны амплитуде в квадрате. Таким образом можно сказать, что баланс энергии достигается во всех известных случаях.

Будем
рассматривать колебательные движения
механических систем относительно
положения устойчивого равновесия,
которые описываются системой линейных
дифференциальных уравнений ( 6.1 ). Решение
будем искать в виде

(
6.5 )

где
— амплитудаj
ой обобщенной координаты,


частота

и
— начальная фаза колебаний.

Подставляя
решения ( 6.5 ) в систему дифференциальных
уравнений и сокращая их на общий множитель
,
получим систему линейных однородных
алгебраических уравнений относительно
неизвестных амплитуд

(
6.6 )

Система
линейных однородных уравнений ( 6.6 )
может иметь отличное от нуля решение
только в том случае, если ее определитель,
составленный из коэффициентов при
неизвестных амплитудах, будет равен
нулю, т.е.

(
6.7 )

Раскрывая
данный определитель, получаем
алгебраическое уравнение порядка s
относительно квадрата неизвестной
частоты колебаний
.
Это уравнение называетсяхарактеристическим
или частотным
.

Для
колебательной механической системы
все корни
характеристического уравнения будут
положительными. Этим свойством можно
воспользоваться для проверки полученных
значений коэффициентови.
Если хотя бы один из корней характеристического
уравнения будет отрицательным, это
значит, что коэффициенты определены
неправильно.

Совокупность
полученных значений
определяет набор частот, на которых
возможно существование колебаний в
консервативной механической системе.
Такие частоты называютсясобственными
или главными

частотами. Если среди корней
характеристического уравнения будут
кратные, то решение уравнения будет
иметь иной вид1.

Для
механической системы с двумя степенями
свободы характеристическое уравнение
имеет следующий вид

Учитывая,
что коэффициенты характеристического
уравнения не зависят от порядка индексов,
полученное уравнение можно переписать
в более простом виде:

(
6.8 )

Решением
его будет являться пара значений
и, определяющих две собственные частоты
исследуемой механической системы.
Принято считать первой собственной
частотой меньшую.

Подставляя
в уравнения ( 6.6 ) значения собственных
частот, получаем систему из s
уравнений относительно амплитуд
колебаний, из которых независимыми
будут только s
— 1
.
Следовательно, решая эти уравнения,
нельзя найти значения амплитуд, можно
лишь выразить s
— 1
амплитуду
через какую-либо одну, например
.
применяя для этого известные формулы
алгебры, получаем

( 6.9 )

где


алгебраическое дополнение элементаопределителя системы уравнений ( 6.6 ).
Из соотношений ( 6.9 ) видно, что при
колебании с каждой из собственных частототношения амплитуд отдельных обобщенных
координат остаются постоянными. Они
определяется свойствами только самой
механической системы и не зависит от
начальных условий. Эти отношения
называютсяформами
колебаний.

Для
системы с двумя степенями свободы формы
колебаний определяют отношение амплитуд
изменения обобщенных координат в каждом
из главных колебаний ( колебаний с одной
из собственных частот )

Выражение
( 6.9 ) можно переписать в другом виде

Если ввести
обозначение

получим

Каждому
корню
частотного уравнения можно поставить
в соответствие систему частных решений
дифференциального уравнения, которые
будут описывать движение механической
системы с одной из собственных частот
— главное колебание с частотой

.
. . .

Общее
решение рассматриваемой системы является
суммой всех ее частных решений и имеет
следующий вид

(
6.10 )

Решения
( 6.10 ) содержат 2s
постоянных интегрирования
и,
которые определяются из начальных
условий.

Если
обобщенные координаты являются
нормальными, то отдельно для каждой из
них решение можно найти из соответствующего
уравнения, причем изменения различных
координат не зависят друг от друга и
каждое главное колебание будет связано
только с одной обобщенной координатой.

Пример.
Рассмотрим малые колебания двойного
физического маятника, состоящего из
двух однородных стержней 1 и 2 одинаковой
длины L
и массы m,
соединенных в точке А
шарниром ( рис. 6.1 ). Трением и сопротивлением
воздуха пренебрегаем.

  1. Выберем
    обобщенные координаты. В данном случае
    за них удобно принять углы
    и, которые стержни образуют с вертикалью.
    На рис. 6.1 показано положение системы
    при положительных обобщенных координатах
    .

Рис.
6.1

2.
Составим выражение для кинетической
энергии системы как функцию обобщенных
скоростей и координат. При выполнении
данного раздела курсовой работы можно
воспользоваться полученными ранее
выражениями.

  1. Составим
    выражение для потенциальной энергии
    системы как функцию обобщенных координат.

Пользуясь полученным
выражением, из условия равенства нулю
обобщенных сил можно найти все положения
равновесия системы, если они не были
найдены ранее.

Из
этих условий следует, что в данной
механической системе возможны четыре
положения равновесия

При
этом, как нетрудно убедиться, только
для первого положения равновесия
потенциальная энергия имеет изолированный
минимум и только это положение равновесия
будет устойчивым.

4.
Определим обобщенные коэффициенты
инерции
и жесткости.
Для определения обобщенных коэффициентов
инерции, приведем кинетическую энергию
системы к квадратичной форме ее обобщенных
скоростей. Для этого разложим выражение
в ряд Тейлора и оставим члены только
второго порядка малости:

Откуда

Приведем
потенциальную энергию системы в
окрестности первого положения равновесия
к квадратичной форме. Для этого разложим
потенциальную энергию в ряд Тейлора по
ив точке.
Тогда, учитывая, что

получим
с точностью до членов второго порядка
малости

или

Полученная
квадратичная форма будет положительно
определенной, так как выполняются
условия критерия Сильвестра

5.
Пользуясь полученными значениями
обобщенных коэффициентов инерции и
жесткости, запишем дифференциальные
уравнения малых колебаний системы в
развернутом виде ( 6.2 )

6.
Составим характеристическое уравнение:

Или
в развернутом виде

7. Найдем корни
характеристического уравнения

Два
полученных значения определяют две
собственные частоты колебаний исследуемой
механической системы

Таким
образом, движение рассматриваемой
системы при собственных колебаниях в
общем случае будет происходить по
следующему закону:

где

коэффициенты формы, соответствующие
каждой из собственных частот:

8.
Определим коэффициенты форм колебаний

С
учетом полученных значений коэффициентов
форм перепишем общее решение

9.
Найдем значения постоянных интегрирования
для следующих начальных условий:

Для
этого подставим начальные значения
координат, скоростей и времени в
уравнения движения и уравнения,
определяющие зависимости скоростей от
времени

Решая
полученную систему уравнений, получаем

С
учетом полученных значений постоянных
интегрирования запишем окончательный
вид уравнений колебаний

ЛИТЕРАТУРА

  1. Бать М.И., Джанелидзе
    Г.Ю., Кельсон А.С. Теоретическая механика
    в примерах и задачах. Т. II. Динамика.-
    М.: Наука.- 1991.- 640 с.

  2. Бутенин
    Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической
    механики. Т. I
    и II.- М.: Наука.- 1985.

  3. Бухгольц
    Н.Н. Основной курс теоретической
    механики. Ч. I
    и II. М.: Наука. — 1966.

  4. Кильчевский
    Н.А. Курс теоретической механики. Т.
    II. М.:
    1977.

  5. Меркин Д.В. Введение
    в теорию устойчивости движения. — М.:
    Наука, 1976. — 320 с.

  6. Мещерский Н.В.
    Сборник задач по теоретической механике.
    М.: Наука, 1986. — 448 с.

  7. Сборник заданий
    для курсовых работ по теоретической
    механике./ Под ред. А.А. Яблонского.- М.:
    Высш. шк.- 1985.-367 с.

  8. СТП СГАУ 6.1.4. — 97.
    Общие требования к оформлению учебных
    текстовых документов: методические
    указания.

  9. Яблонский А.А.
    Курс теоретической механики, Ч. II.
    Динамика .- М.: Высш. шк.- 1971.- 488 с.

1Гантмахер Ф.Р. Лекции по аналитической
механике. -М., Наука. 1966.

84

План урока:

Колебательное движение

Период и частота колебаний

Свободные колебания

Амплитуда колебаний

Колебательные системы

Гармонические колебания

Величины, характеризующие колебательное движение

Затухающие колебания

Вынужденные колебания

Колебательное движение

В самом широком смысле, колебательное движение – это любое движение, повторяющееся с течением времени. Например, птица, машущая крыльями вверх-вниз, совершает ими колебательные движения. Ребенок, качающийся на качелях, тоже совершает колебательные движения. Игла швейной машины при шитье – тоже.

Но как же так, ведь в названных примерах тела движутся абсолютно по-разному? Крылья птицы и игла швейной машины движутся вертикально вверх-вниз (прямолинейно), ребенок на качелях движется горизонтально и по дуге (криволинейно). Это все неважно. Главный признак колебательного движения – его повторяемость через определенный промежуток времени, то есть через период колебаний.

Период и частота колебаний

Период колебаний (T) – это время, за которое тело совершает полный цикл движения, т.е. совершает одно колебание.

В случае с движением крыльев птицы, если считать, что один взмах начинается с верхней точки, полным колебанием будет считаться, когда крылья пройдут от верхней точки через середину до нижней и вернутся от нижней точки через середину до верхней (рисунок 1).

1 odnosostavnye predlozheniya
Рисунок 1 – Взмах крыльев птицы как пример полного колебания   

Период колебаний обозначается латинской буквой T. По определению период – это время, значит, единица измерения периода будет такой же, как и единица измерения времени. В СИ это секунда.

[T] = 1 с

Как же можно вычислить период колебаний?

Самый простой способ – это посчитать количество колебаний и секундомером измерить время, за которое эти колебания были совершены. Например, ребенок на качелях совершает N = 10 колебаний за t = 30 секунд. Нетрудно подсчитать, что время совершения одного полного колебания будет 30/10 = 3 с. Если обобщить, получится формула для нахождения периода колебаний:

2 odnosostavnye predlozheniya

где t – время, за которое совершено N колебаний.

Рассмотрим еще одну важную характеристику.

Частота колебаний (ν) – это количество колебаний, совершаемое телом за единицу времени.

Частота колебаний обозначается греческой буквой (читается как «ню»).

Если сравнить определение частоты колебаний с определением периода, можно заметить, что это обратные величины. То есть:

3 odnosostavnye predlozheniya

Гц – единица измерения, которую назвали в честь немецкого физика Генриха Герца. При решении задач одинаково часто употребляется и герц, и с-1. Можно употреблять и то, и другое – в зависимости от того, что удобнее при решении конкретной задачи.

Следует так же отметить, что иногда физики пользуются циклической частотой колебаний:

4 odnosostavnye predlozheniya

Свободные колебания

Положение равновесия при колебательном движении

Сравним две ситуации:

1. Родитель толкает качели, на которых сидит ребенок, а потом просто наблюдает, как качели качаются сами по себе.

2. Родитель толкает качели с ребенком, а потом при каждом цикле движения подталкивает качели, поддерживая качания.

Физики говорят, что в первом случае система (качели и ребенок) совершает свободные колебания, то есть колебания под действием только внутренних сил. После выведения системы из равновесия (то есть толчка родителя) к ней больше не прикладывают внешних сил. Во втором случае говорят, что система совершает вынужденные колебания – то есть колебания, под действием периодического внешнего воздействия.

Поговорим о свободных колебаниях. Для простоты рассмотрим систему, состоящую из маленького тяжелого шарика на длинной крепкой нити. Такая система называется нитяным маятником (рисунок 2).

5 odnosostavnye predlozheniya
 Рис.2 – Нитяной маятник 

Без воздействия внешних сил шарик будет находиться в положении 1. Такое состояние называется положением равновесия. Далее к шарику прикладывают силу, направленную влево и он начинает совершать колебания. Траектория шарика будет: 1-2-1-3-1 (см. рисунок 1).

Как при этом будет меняться скорость тела? Для того, чтобы рассмотреть подробно, нужно помнить определения потенциальной и кинетической энергии*, а также в чем заключается закон сохранения энергии (систему считаем замкнутой – потерь энергии не происходит, а, значит, закон сохранения энергии выполняется – энергия колебательной системы остается постоянной):

  • при движении из точки 1 в 2 шарик постепенно замедляется (уменьшается его кинетическая энергия, а потенциальная увеличивается);
  • в точке 2 он на мгновенье останавливается (кинетическая энергия равна нулю, потенциальная максимальна);
  • далее он начинает движение с ускорением, но уже в обратном направлении (кинетическая энергия увеличивается, потенциальная уменьшается) — при движении из 2 в 1 тело будет ускоряться;
  • когда шарик дойдет до точки 1 его кинетическая энергия будет максимальна, а потенциальная минимальна.

При движении от точки 1 в 3 будет происходить то же самое, что и при движении из 1 в 2 – предлагаем описать процесс изменения величин (скорости и энергии) самостоятельно.

Если обобщить все сказанное, можно сделать вывод: при колебаниях в положении равновесия кинетическая энергия тела максимальна, а потенциальная минимальна (или равна нулю, в зависимости от выбранной точки отсчета). В крайних положениях потенциальная энергия максимальна, а кинетическая равна нулю. То есть положение равновесия маятника – это такое положение, в котором его потенциальная энергия минимальна (или равна нулю, в зависимости от точки отсчета). При удалении маятника от положения равновесия кинетическая энергия будет уменьшаться, а потенциальная увеличиваться.

*Потенциальная энергия тела зависит от его положения в пространстве; кроме того, это относительная величина – она зависит от того, какая точка отсчета выбрана.

Кинетическая энергия зависит от модуля скорости тела.

Амплитуда колебаний

Помимо частоты и периода важной характеристикой колебаний является амплитуда.

Амплитуда колебаний – это модуль максимального смещения тела от положения равновесия. Другими словами, это расстояние между положением равновесия и крайней точкой траектории маятника. Рассмотрим рисунок 3. На нем изображен уже знакомый вам нитяной маятник. В идеальном случае амплитуду колебаний маятника нужно считать как длину дуги от положения равновесия до крайней точки. Но если мы считаем, что колебания малые – то есть длина нити маятника (l) гораздо больше смещения (S), можно считать, что длина дуги совпадает с длиной отрезка между проекциями положения равновесия и крайней точки на ось ОХ.

6 odnosostavnye predlozheniya
Рис.3 – Амплитуда колебаний нитяного маятника

Обычно амплитуда обозначается большой латинской буквой A.

Колебательные системы

Для того, чтобы рассмотреть колебательные движения подробнее, рассмотрим несколько колебательных систем, на примере которых будет рассматривать все закономерности.

1. Маятник

В общем случае маятник – это система, способная совершать колебания под действием каких-либо сил, например, сил трения, упругости, тяжести.

2. Пружинный маятник

Пружинный маятник – это система, состоящая из упругой пружины, один конец которой закреплен, а на другой прикреплен груз.

Такой маятник может быть вертикальным (рисунок 4а), тогда колебания будут совершаться под действием сил тяжести и упругости; и горизонтальным (рисунок 4б), тогда на груз будут действовать сил упругости и трения.

7 odnosostavnye predlozheniya
Рис.4 – Пружинный маятник

Для пружинного маятника справедливы формулы:

8 odnosostavnye predlozheniya

где T –период колебаний пружинного маятника; π ~ 3.14;  mмасса груза;kкоэффициент жесткости пружины; — частота колебаний пружинного маятника.

*Ранее говорилось, что существует такая характеристика, как циклическая частота. Формула для ее нахождения будет выглядеть так:

9 odnosostavnye predlozheniya

3. Нитяной маятник

Этот вид маятника уже рассматривался ранее (см. рисунок 3), он состоит из длинной нити и тяжелого грузика, подвешенного на ней.

Для нитяного маятника справедливы формулы:

10 odnosostavnye predlozheniya

где T – период колебаний нитяного маятника; π ~ 3.14; l –длина нити; g – ускорение свободного падения (~9,8 м/с2), v — частота колебаний.

Интересно отметить, что период нитяного маятника и, следовательно, его частота не зависят от массы грузика, прикрепленного к нити.

*Следует отметить, что все приведенные формулы справедливы только для малых колебаний.

** Циклическая частота нитяного маятника:

11 odnosostavnye predlozheniya

Гармонические колебания

При решении задач часто используется не нитяной маятник, а его упрощенная модель – математический маятник. Это идеальная колебательная система, в которой нить считается очень длинной по сравнению с амплитудой колебаний и размерами грузика; сам груз достаточно тяжелым, чтобы пренебречь массой нити. Кроме того, считается, что не происходит потерь энергии.

Рассмотрим подробно, какие силы действуют на такую систему. В первую очередь, на грузик действует сила тяжести mg, направленная вниз (см. рисунок 5). Так же на него действует сила натяжения со стороны нити F, она направлена вдоль нити. Обозначим  угол, на который смещается тело от положения равновесия.

12 odnosostavnye predlozheniya

Рис.5 – Силы, действующие на математический маятник

Запишем 2-й закон Ньютона:

13 odnosostavnye predlozheniya

14 odnosostavnye predlozheniya
Рисунок 6 – Силы, действующие на математический маятник при смещении на угол φ

В случае малых углов sinφ можно считать равным φ. Из геометрического определения синуса:

15 odnosostavnye predlozheniya

Тогда в крайней точке 2-й закон Ньютона в проекции на ось OX перепишется следующим образом:

16 odnosostavnye predlozheniya

То есть ускорение, с которым движется маятник прямо пропорционально его смещению от положения равновесия. Минус в данном выражении означает, что ускорении направлено в противоположную сторону от смещения.

Интересно заметить, что ускорение грузика, подвешенного к ниточке (а значит и самого маятника), не зависит от его массы. Период колебаний математического маятника тоже не зависит от массы грузика:

17 odnosostavnye predlozheniya

В случаях, когда колебания происходят под действием силы, пропорциональной смещению тела от положения равновесия, говорят, что тело совершает гармонические колебания.*

График зависимости смещения от времени при гармоническом колебательном движении представляет собой синусоиду или косинусоиду (см. рисунок 7).

Для лучшего понимания, почему график выглядит именно так, можно посмотреть урок в курсе алгебры «Тригонометрические функции»:

18 odnosostavnye predlozheniya
 Рис. 7 – График зависимости смещения (x) от времени (t) при гармонических колебаниях   

На графическом представлении колебаний (рисунок 7) удобно находить период и амплитуду гармонических колебаний.

*Могло сложиться впечатление, что гармонические колебания может совершать только математический маятник. Это не так. Любое тело может совершать колебания, близкие к гармоническим (нужно учитывать не идеальность систем). Например, можно говорить о гармонических колебаниях пружины, если она достаточно жесткая, чтобы она деформировалась упруго, а колебания совершаются с небольшой амплитудой.

Величины, характеризующие колебательное движение

Ранее рассматривались такие характеристики колебаний, как период, частота и амплитуда. Помимо этих величин, колебания характеризуются фазой колебаний.

Фаза колебаний

На рисунке 7 изображен график зависимости смещения от времени при гармонических колебаниях. Такой график называется синусоидой (косинусоидой). В общем случае уравнение зависимости координаты Х от времени t будет выглядеть так:

19 odnosostavnye predlozheniya

Разность фаз

Понятие «разность фаз» применяется, когда мы хотим сравнить движение двух маятников. Пусть маятник 1 и маятник 2 двигаются по законам соответственно:

20 odnosostavnye predlozheniya

Найдем разность фаз колебаний этих двух маятников.

Если взять конкретный момент времени , фаза гармонических колебаний каждого из маятников в этот момент времени будет:

21 odnosostavnye predlozheniya

22 odnosostavnye predlozheniya — это начальные фазы колебания первого и второго маятников соответственно. Эти величины являются начальными условиями, и они не изменяются во время движения, следовательно, при одинаковой частоте колебаний маятников разность фаз остается постоянной.

Затухающие колебания

Во всех рассмотренных ранее случаях считалось, что на колеблющуюся систему не действуют силы извне. На самом деле, идеальных систем не существует, поэтому любой маятник во время движения будет преодолевать внешние силы сопротивления и терять энергию. Например, пружинный маятник (рисунок 8) будет преодолевать силу трению о поверхность.

23 odnosostavnye predlozheniya
Рисунок 8 – Пружинный маятник на шероховатой поверхности  

Колебания, энергия которых уменьшается с течением времени, называются затухающими.

Амплитуда затухающих колебаний уменьшается со временем. График таких колебаний изображен на рисунке 9.

24 odnosostavnye predlozheniya
Рисунок 9 – График зависимости координаты от времени при затухающих колебаниях  

Вынужденные колебания

Собственная частота колебаний. Частота вынуждающей силы. Установившиеся вынужденные колебания

В реальных (неидеальных) системах колебания всегда нужно поддерживать внешним воздействием.

Под действием периодической внешней изменяющейся силы возникают вынужденные колебания.

Почему же обязательно сила должны быть периодически изменяющейся? Ответ на этот вопрос легко найти, представив себе качели. Если на них действовать с постоянной по модулю и направлению силой, они никогда не начнут качаться. А толчками (то есть периодической изменяющейся силой) раскачать их не составит труда.

Внешняя сила, заставляющая систему совершать колебания, называется вынуждающей силой.

Так как эта сила периодическая, необходимо ввести частоту вынуждающей силы. А чтобы не запутаться, частоту свободных колебаний называют собственной частотой системы. Как показывают эксперименты, даже если изначально собственная частота системы и частота вынуждающей силы отличались, через некоторое время система начинает колебаться с частотой вынуждающей силы. В таких случаях говорят об установившихся вынужденных колебаниях.

Если частота вынуждающей силы равна собственной частоте системы, возникает резонанс – резкое увеличение амплитуды колебаний.

Понравилась статья? Поделить с друзьями:
  • Как найти диапазон чисел в паскале
  • Составить предложение воробей обедал где в лесу хорошо как весной щебечут птицы саду
  • Как найти алхимиков в ведьмак 3
  • Как найти диагональ ромба формула 8 класс
  • Обс кодировщик перегружен как исправить