Как найти собственные числа матрицы пример

Нахождение собственных чисел и собственных
векторов матриц

        Теорема
19.1   Собственными
числами матрицы
являются
корни уравнения

и только они.

        Доказательство.    
Пусть столбец
 —
собственный вектор матрицы
с
собственным числом
.
Тогда, по определению,
.
Это равенство можно переписать в виде
.
Так как для единичной матрицы
выполнено
,
то
.
По свойству матричного умножения
и
предыдущее равенство принимает вид

(19.4)

Допустим, что определитель матрицы
отличен
от нуля,
.
Тогда у этой матрицы существует обратная
.
Из равенства (19.4)
получим, что
,
что противоречит определению собственного
вектора. Значит, предположение, что
,
неверно, то есть все собственные числа
должны являться корнями уравнения
.

Пусть
 —
корень уравнения
.
Тогда базисный минор матрицы
не
может совпадать с определителем матрицы
и поэтому
,
 —
порядок матрицы
.
Уравнение (19.4)
является матричной записью однородной
системы линейных уравнений с неизвестными
,
являющимися элементами матрицы-столбца
.
По  теореме
15.3
число решений в фундаментальной
системе решений равно
,
что больше нуля. Таким образом,
система (19.4)
имеет хотя бы одно ненулевое решение,
то есть числу
соответствует
хотя бы один собственный вектор матрицы
.
    

Определитель
является
многочленом степени
от
переменного
,
так как при вычислении определителя
никаких арифметических действий кроме
сложения, вычитания и умножения выполнять
не приходится.

        Определение
19.5   Матрица
называется
характеристической матрицей матрицы
,
многочлен
называется
характеристическим многочленом матрицы
,
уравнение
называется
характеристическим уравнением матрицы
.
        

        Пример 19.10
  Найдите собственные числа и
собственные векторы матрицы

Решение. Составляем характеристическую
матрицу
:

Находим характеристический многочлен

Решим характеристическое уравнение

Подбором находим, что один корень
уравнения равен
.
Есть теорема, которая говорит, что если
число
является
корнем многочлена
,
то многочлен
делится
на разность
,
то есть
,
где
 —
многочлен. В соответствии с этой теоремой
многочлен
должен
делиться на
.
Выделим в характеристическом многочлене
этот множитель
:

Находим корни трехчлена
.
Они равны
и
3. Таким образом,

 —
корень кратности 2 17.7 b,
 —
простой корень. Итак, собственные числа
матрицы
равны
,
.
Найдем соответствующие им собственные
векторы.

Пусть
,
тогда для собственного вектора
получаем
матричное уравнение

что соответствует системе уравнений

Решаем ее методом Гаусса (раздел «Алгоритм
нахождения решений произвольной системы
линейных уравнений (метод Гаусса)»
).
Выписываем расширенную матрицу системы

Первую строку, умноженную на числа
и
прибавляем
соответственно ко второй и третьей
строкам

Меняем местами вторую и третью строки

Возвращаемся к системе уравнений

Базисный минор матрицы
находится
в первых двух столбцах и первых двух
строках, ранг равен 2. Поэтому фундаментальня
система содержит только одно решение.
Переменные
и
оставляем
в левой части, а переменное
переносим
в правую часть

Полагаем
,
находим
,
.
Итак, собственному числу
соответствует
собственный вектор
.

Пусть
,
тогда для собственного вектора
получаем
матричное уравнение

что соответствует системе уравнений

Решаем ее методом Гаусса. Выписываем
расширенную матрицу

Первую строку умножаем на числа 2 и 3 и
прибавляем соответственно ко второй и
третьей строкам

Вторую строку умножаем на
и
прибавляем к третьей

Возвращаемся к системе уравнений

Базисный минор матрицы
находится
в первых двух столбцах и первых двух
строках, ранг равен 2. Поэтому фундаментальная
система содержит только одно решение.
Переменные
и
оставляем
в левой части, а переменное
переносим
в правую часть

Полагаем
,
находим
,
.
Итак, собственному числу
соответствует
собственный вектор
.
Чтобы избавиться от дроби, умножим
собственный вектор на 2, получим
собственный вектор с тем же самым
собственным числом. В итоге собственному
числу
соответствует
собственный вектор
.

Ответ: Собственные числа:
,
,
соответствующие собственные векторы:
,
.
        

Соседние файлы в папке Анал_Геом

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Собственные векторы и собственные значения (числа) матрицы

Координаты собственного вектора X соответствующего собственному значению lambda находятся из однородной системы уравнений

    [left{ begin{matrix}    left( a_{11}-lambda  right)x_{1}+a_{12}x_{2}+ldots +a_{1n}x_{n}=0  \    a_{21}x_{1}+left( a_{22}-lambda  right)x_{2}+ldots +a_{2}x_{n}=0  \    ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots  \    a_{n1}x_{1}+a_{n2}x_{2}+ldots +left( a_{nn}-lambda  right)x_{n}=0  \ end{matrix} right.]

Примеры нахождения собственных векторов и значений матрицы

Понравился сайт? Расскажи друзьям!

Собственные числа и вектора матриц. Методы их нахождения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пусть число $lambda$ и вектор $xin L, xneq 0$ таковы, что $$Ax=lambda x.qquadqquadqquadqquadqquad(1)$$ Тогда число $lambda$ называется собственным числом линейного оператора $A,$ а вектор $x$ собственным вектором этого оператора, соответствующим собственному числу $lambda.$

В конечномерном пространстве $L_n$ векторное равенство (1) эквивалентно матричному равенству $$(A-lambda E)X=0,,,,, Xneq 0.qquadqquadquadquad (2)$$ 

Отсюда следует, что число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда детерминант $det(A-lambda E)=0,$ т. е. $lambda$ есть корень многочлена $p(lambda)=det(A-lambda E),$ называемого характеристическим многочленом оператора $A.$ Столбец координат $X$ любого собственного вектора соответствующего собственному числу $lambda$ есть нетривиальное решение однородной системы (2).

Примеры.

Найти собственные числа и собственные векторы линейных операторов, заданных своими матрицами.

4.134. $A=begin{pmatrix}2&-1&2\5&-3&3\-1&0&-2end{pmatrix}.$

Решение.

Найдем собственные вектора заданного линейного оператора. Число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда $det(A-lambda E)=0.$ Запишем характеристическое уравнение: 

$$A-lambda E=begin{pmatrix}2&-1&2\5&-3&3\-1&0&-2end{pmatrix}-lambdabegin{pmatrix}1&0&0\0&1&0\0&0&1end{pmatrix}=$$ $$=begin{pmatrix}2-lambda&-1&2\5&-3-lambda&3\-1&0&-2-lambdaend{pmatrix}.$$

$$det(A-lambda E)=begin{vmatrix}2-lambda&-1&2\5&-3-lambda&3\-1&0&-2-lambdaend{vmatrix}=$$ $$=(2-lambda)(-3-lambda)(-2-lambda)+3+2(-3-lambda)+5(-2-lambda)=$$ $$=-lambda^3-3lambda^2+4lambda+12+3-6-2lambda-10-5lambda=-lambda^3-3lambda^2-3lambda-1=0.$$

Решим найденное уравнение, чтобы найти собственные числа.

$$lambda^3+3lambda^2+3lambda+1=(lambda^3+1)+3lambda(lambda+1)=$$ $$=(lambda+1)(lambda^2-lambda+1)+3lambda(lambda+1)=(lambda+1)(lambda^2-lambda+1+3lambda)=$$ $$=(lambda+1)(lambda^2+2lambda+1)=(lambda+1)^3=0Rightarrow lambda=-1.$$

Собственный вектор для собственного числа $lambda=-1$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A+E)X=0, Xneq 0$$

$$(A+E)X=begin{pmatrix}2+1&-1&2\5&-3+1&3\-1&0&-2+1end{pmatrix}begin{pmatrix}x_1\x_2\x_3end{pmatrix}=$$ $$=begin{pmatrix}3x_1-x_2+2x_3\5x_1-2x_2+3x_3\-x_1-x_3end{pmatrix}=0.$$

Решим однородную систему уравнений:

$$left{begin{array}{lcl}3x_1-x_2+2x_3=0\ 5x_1-2x_2+3x_3=0\-x_1-x_3=0end{array}right.$$ 

Вычислим ранг матрицы коэффициентов $A=begin{pmatrix}3&-1&2\5&-2&3\-1&0&-1end{pmatrix}$ методом окаймляющих миноров:    

Фиксируем минор отличный от нуля второго порядка $M_2=begin{vmatrix}3&-1\5&-2end{vmatrix}=-6+5=-1neq 0.$

Рассмотрим окаймляющий минор третьего порядка:  $begin{vmatrix}3&-1&2\5&-2&3\-1&0&-1end{vmatrix}=6+3-4-5=0;$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=begin{vmatrix}3&-1\5&-2end{vmatrix}=-1neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$left{begin{array}{lcl}3x_1-x_2+2с=0\ 5x_1-2x_2+3с=0end{array}right.Rightarrowleft{begin{array}{lcl}3x_1-x_2=-2c\5x_1-2x_2=-3cend{array}right.$$ 

По правилу Крамера находим $x_1$ и $x_2:$

$Delta=begin{vmatrix}3&-1\5&-2end{vmatrix}=-6+5=-1;$

$Delta_1=begin{vmatrix}-2c&-1\-3c&-2end{vmatrix}=4c-3c=c;$

$Delta_2=begin{vmatrix}3&-2c\5&-3cend{vmatrix}=-9c+10c=c;$

$x_1=frac{Delta_1}{Delta}=frac{c}{-1}=-c;$ $x_2=frac{Delta_2}{Delta}=frac{c}{-1}=-c.$

Таким образом, общее решение системы $X(c)=begin{pmatrix}-c\-c\cend{pmatrix}.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=begin{pmatrix}-1\-1\1end{pmatrix}.$ 

С использованием фундаментальной системы решений, общее решение может быть записано в виде $X(c)=cE.$

Ответ: $lambda=-1;$ $X=cbegin{pmatrix}-1\-1\1end{pmatrix}, cneq 0.$

 {jumi[*3]}

4.143. $A=begin{pmatrix}0&-1&0\1&1&-2\1&-1&0end{pmatrix}.$

Решение.

Найдем собственные вектора заданного линейного оператора. Число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда $det(A-lambda E)=0.$ Запишем характеристическое уравнение: 

$$A-lambda E=begin{pmatrix}0&-1&0\1&1&-2\1&-1&0end{pmatrix}-lambdabegin{pmatrix}1&0&0\0&1&0\0&0&1end{pmatrix}=$$ $$=begin{pmatrix}-lambda&-1&0\1&1-lambda&-2\1&-1&-lambdaend{pmatrix}.$$

$$det(A-lambda E)=begin{vmatrix}-lambda&-1&0\1&1-lambda&-2\1&-1&-lambdaend{vmatrix}=$$ $$=-lambda(1-lambda)(-lambda)+2-lambda+2lambda=$$ $$=-lambda^3+lambda^2+lambda+2=0.$$

Решим найденное уравнение, чтобы найти собственные числа.

$$-lambda^3+lambda^2+lambda+2=(lambda-2)(-lambda^2-lambda-1)=0Rightarrow lambda=2.$$

Собственный вектор для собственного числа $lambda=2$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A-2E)X=0, Xneq 0$$

$$(A-2E)X=begin{pmatrix}-2&-1&0\1&-1&-2\1&-1&-2end{pmatrix}begin{pmatrix}x_1\x_2\x_3end{pmatrix}=$$ $$=begin{pmatrix}-2x_1-x_2\x_1-x_2-2x_3\x_1-x_2-2x_3end{pmatrix}=0.$$

Решим однородную систему уравнений:

$$left{begin{array}{lcl}-2x_1-x_2=0\ x_1-x_2-2x_3=0\x_1-x_2-2x_3=0end{array}right.$$ 

Вычислим ранг матрицы коэффициентов $A=begin{pmatrix}-2&-1&0\1&-1&-2\1&-1&-2end{pmatrix}$ методом окаймляющих миноров:    

Фиксируем минор отличный от нуля второго порядка $M_2=begin{vmatrix}-2&-1\1&-1end{vmatrix}=2+1=3neq 0.$

Рассмотрим окаймляющий минор третьего порядка:  $begin{vmatrix}-2&-1&0\1&-1&-2\1&-1&-2end{vmatrix}=0;$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=begin{vmatrix}-2&-1\1&-1end{vmatrix}=3neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$left{begin{array}{lcl}-2x_1-x_2=0\ x_1-x_2-2с=0end{array}right.Rightarrowleft{begin{array}{lcl}-2x_1-x_2=0\x_1-x_2=2cend{array}right.$$ 

По правилу Крамера находим $x_1$ и $x_2:$

$Delta=begin{vmatrix}-2&-1\1&-1end{vmatrix}=2+1=3;$

$Delta_1=begin{vmatrix}0&-1\2c&-1end{vmatrix}=2c;$

$Delta_2=begin{vmatrix}-2&0\1&2cend{vmatrix}=-4c;$

$x_1=frac{Delta_1}{Delta}=frac{2c}{3};$ $x_2=frac{Delta_2}{Delta}=frac{-4c}{3}.$

Таким образом, общее решение системы $X(c)=begin{pmatrix}frac{2c}{3}\-frac{4c}{3}\cend{pmatrix}.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=begin{pmatrix}frac{2}{3}\-frac{4}{3}\1end{pmatrix}.$ 

С использованием фундаментальной системы решений, общее решение может быть записано в виде $X(c)=cE.$ Переобозначив постоянную, $alpha=3c,$ получаем собственный вектор $X=alphabegin{pmatrix}2\-4\3end{pmatrix}, alphaneq 0.$

Ответ: $lambda=2;$ $X=alphabegin{pmatrix}2\-4\3end{pmatrix}, alphaneq 0.$

Домашнее задание.

Найти собственные числа и собственные векторы линейных операторов, заданных своими матрицами.

 4.135. $A=begin{pmatrix}0&1&0\-4&4&0\-2&1&2end{pmatrix}.$

Ответ: $lambda=2;$ $X=c_1begin{pmatrix}1\2\0end{pmatrix}+c_2begin{pmatrix}0\0\1end{pmatrix}, $c_1$ и $ c_2$ не равны одновременно нулю.

4.142. $A=begin{pmatrix}1&-3&1\3&-3&-1\3&-5&1end{pmatrix}.$

Ответ: $lambda_1=-1,$ $X(lambda_1)=cbegin{pmatrix}1\1\1end{pmatrix};$ $lambda_2=2,$ $X(lambda_2)=cbegin{pmatrix}4\1\7end{pmatrix};$ $lambda_3=-2,$ $X(lambda_3)=cbegin{pmatrix}2\3\3end{pmatrix}, cneq 0.$

  {jumi[*4]}

Собственные векторы и собственные значения матрицы

Пусть A — числовая квадратная матрица n-го порядка. Матрица A-lambda E называется характеристической для A, а ее определитель Delta_{A}(lambda)=det(A-lambda E) характеристическим многочленом матрицы A:

A-lambda E=begin{pmatrix}a_{11}-lambda&cdots&a_{1n}\ vdots&ddots& vdots\ a_{n1}&cdots&a_{nn}-lambdaend{pmatrix}!,quad Delta_{A}(lambda)=det(A-lambda E)= begin{vmatrix} a_{11}-lambda&cdots&a_{1n}\ vdots&ddots&vdots\ a_{n1}&cdots&a_{nn}-lambdaend{vmatrix}!.

(7.12)

Характеристическая матрица — это λ-матрица. Ее можно представить в виде регулярного многочлена первой степени с матричными коэффициентами. Нетрудно заметить, что степень характеристического многочлена равна порядку n характеристической матрицы.

Пусть A — числовая квадратная матрица n-го порядка. Ненулевой столбец x=begin{pmatrix}x_1\vdots\x_nend{pmatrix}, удовлетворяющий условию

Acdot x=lambdacdot x,

(7.13)

называется собственным вектором матрицы A. Число lambda в равенстве (7.13) называется собственным значением матрицы A. Говорят, что собственный вектор x соответствует {принадлежит) собственному значению lambda.

Поставим задачу нахождения собственных значений и собственных векторов матрицы. Определение (7.13) можно записать в виде (A-lambda E)x=o, где E — единичная матрица n-го порядка. Таким образом, условие (7.13) представляет собой однородную систему n линейных алгебраических уравнений с n неизвестными x_1,x_2,ldots,x_n:

begin{cases}(a_{11}-lambda)x_1+a_{12}x_2+ldots+a_{1n}x_n=0,\ a_{21}x_1+(a_{22}-lambda)x_2+ldots+a_{2n}x_n=0,\ cdotscdotscdotscdotscdots\ a_{n1}x_1+a_{2n}x_2+ldots+(a_{nn}-lambda)x_n=0. end{cases}

(7.14)

Поскольку нас интересуют только нетривиальные решения (xne o) однородной системы, то определитель матрицы системы должен быть равен нулю:

det(A-lambda E)=begin{vmatrix}a_{11}-lambda&a_{12}&cdots&a_{1n}\ a_{21}&a_{22}-lambda&cdots&a_{2n}\ vdots&vdots&ddots&vdots\ a_{n1}&a_{n2}& cdots&a_{nn}-lambda end{vmatrix}=0.

(7.15)

В противном случае по теореме 5.1 система имеет единственное тривиальное решение. Таким образом, задача нахождения собственных значений матрицы свелась к решению уравнения (7.15), т.е. к отысканию корней характеристического многочлена Delta_{A}(lambda)=det(A-lambda E) матрицы A. Уравнение Delta_{A}(lambda)=0 называется характеристическим уравнением матрицы A. Так как характеристический многочлен имеет n-ю степень, то характеристическое уравнение — это алгебраическое уравнение n-го порядка. Согласно следствию 1 основной теоремы алгебры, характеристический многочлен можно представить в виде

Delta_{A}(lambda)= det(A-lambda E)= a_{n}(lambda-lambda_1)^{n_1}cdot (lambda-lambda_2)^{n_2}cdotldotscdot(lambda-lambda_k)^{n_k},

где lambda_1,lambda_2,ldots,lambda_k — корни многочлена кратности n_1,n_2,ldots,n_k соответственно, причем n_1+n_2+ldots+n_k=n. Другими словами, характеристический многочлен имеет п корней, если каждый корень считать столько раз, какова его кратность.


Теорема 7.4 о собственных значениях матрицы. Все корни характеристического многочлена (характеристического уравнения (7-15)) и только они являются собственными значениями матрицы.

Действительно, если число lambda — собственное значение матрицы A, которому соответствует собственный вектор xne o, то однородная система (7.14) имеет нетривиальное решение, следовательно, матрица системы вырожденная, т.е. число lambda удовлетворяет характеристическому уравнению (7.15). Наоборот, если lambda — корень характеристического многочлена, то определитель (7.15) матрицы однородной системы (7.14) равен нулю, т.е. operatorname{rg}(A-lambda E)<n.В этом случае система имеет бесконечное множество решений, включая ненулевые решения. Поэтому найдется столбец xne o, удовлетворяющий условию (7.14). Значит, lambda — собственное значение матрицы A.


Свойства собственных векторов

Пусть A — квадратная матрица n-го порядка.

1. Собственные векторы, соответствующие различным собственным значениям, линейно независимы.

В самом деле, пусть s_1 и s_2 — собственные векторы, соответствующие собственным значениям lambda_1 и lambda_2, причем lambda_1ne lambda_2. Составим произвольную линейную комбинацию этих векторов и приравняем ее нулевому столбцу:

alpha_1cdot s_1+alpha_2cdot s_2=o.

(7.16)

Надо показать, что это равенство возможно только в тривиальном случае, когда alpha_1=alpha_2=0. Действительно, умножая обе части на матрицу A и подставляя As_1=lambda_1s_1 и As_2=lambda_2s_2 имеем

A(alpha_1s_1+alpha_2s_2)=oquad Leftrightarrowquad alpha_1As_1+ alpha_2As_2= oquad Leftrightarrowquad alpha_1 lambda_1s_1+alpha_2 lambda_2s_2=o.

Прибавляя к последнему равенству равенство (7.16), умноженное на (-lambda_2), получаем

alpha_1cdotlambda_1cdot s_1-alpha_2cdotlambda_2cdot s_2=oquad Leftrightarrowquad alpha_1cdot(lambda_1-lambda_2)cdot s_1=o.

Так как s_1ne o и lambda_1ne lambda_2, делаем вывод, что alpha_1=0. Тогда из (7.16) следует, что и alpha_2=0 (поскольку s_2ne o). Таким образом, собственные векторы s_1 и s_2 линейно независимы. Доказательство для любого конечного числа собственных векторов проводится по индукции.

2. Ненулевая линейная комбинация собственных векторов, соответствующих одному собственному значению, является собственным вектором, соответствующим тому же собственному значению.

Действительно, если собственному значению lambda соответствуют собственные векторы s_1,ldots,s_k, то из равенств S_i=lambda s_i, i=1,ldots,k, следует, что вектор s=alpha_1s_1+ldots+alpha_ks_k также собственный, поскольку:

As=A(alpha_1s_1+ldots+alpha_ks_k)= alpha_1lambda s_1+ldots+alpha_klambda s_k=lambda(alpha_1s_1+ldots+alpha_ks_k)=lambda s.

3. Пусть (A-lambda E)^{+} — присоединенная матрица для характеристической матрицы (A-lambda E). Если lambda_0 — собственное значение матрицы A, то любой ненулевой столбец матрицы (A-lambda E)^{+} является собственным вектором, соответствующим собственному значению lambda_0.

В самом деле, применяя формулу (7.7) имеем (A-lambda E)(A-lambda E)^{+}=Delta_k(lambda)cdot E. Подставляя корень lambda_0, получаем (A-lambda_0E)(A-lambda_0E)^{+}=O. Если s — ненулевой столбец матрицы (A-lambda_0E)^{+}, то (A-lambda_0E)s=oLeftrightarrow As=lambda_0s. Значит, s — собственный вектор матрицы A.


Замечания 7.5

1. По основной теореме алгебры характеристическое уравнение имеет п в общем случае комплексных корней (с учетом их кратностей). Поэтому собственные значения и собственные векторы имеются у любой квадратной матрицы. Причем собственные значения матрицы определяются однозначно (с учетом их кратности), а собственные векторы — неоднозначно.

2. Чтобы из множества собственных векторов выделить максимальную линейно независимую систему собственных векторов, нужно для всех раз личных собственных значений lambda_1,lambda_2, ldots,lambda_k записать одну за другой системы линейно независимых собственных векторов, в частности, одну за другой фундаментальные системы решений однородных систем

(A-lambda_1E)cdot x=o,quad (A-lambda_2E)cdot x=o,quad ldots,quad (A-lambda_kE)cdot x=o.

Полученная система собственных векторов будет линейно независимой в силу свойства 1 собственных векторов.

3. Совокупность всех собственных значений матрицы (с учетом их кратностей) называют ее спектром.

4. Спектр матрицы называется простым, если собственные значения матрицы попарно различные (все корни характеристического уравнения простые).

5. Для простого корня lambda=lambda_0 характеристического уравнения соответствующий собственный вектор можно найти, раскладывая определитель матрицы (A-lambda_0E) по одной из строк. Тогда ненулевой вектор, компоненты которого равны алгебраическим дополнениям элементов одной из строк матрицы (A-lambda_0E), является собственным вектором.


Нахождение собственных векторов и собственных значений матрицы

Для нахождения собственных векторов и собственных значений квадратной матрицы A n-го порядка надо выполнить следующие действия.

1. Составить характеристический многочлен матрицы Delta_A(lambda)=det(A-lambda E).

2. Найти все различные корни lambda_1,lambda_2,ldots,lambda_k характеристического уравнения Delta_A(lambda)=0 (кратности n_1,n_2,ldots,n_k (n_1+n_2+ldots+n_k=n) корней определять не нужно).

3. Для корня lambda-lambda_1 найти фундаментальную систему varphi_1,varphi_2,ldots,varphi_{n-r} решений однородной системы уравнений

(A-lambda_1E)cdot x=o, где r=operatorname{rg}(A-lambda_1E)

Для этого можно использовать либо алгоритм решения однородной системы, либо один из способов нахождения фундаментальной матрицы (см. пункт 3 замечаний 5.3, пункт 1 замечаний 5.5).

4. Записать линейно независимые собственные векторы матрицы A, отвечающие собственному значению lambda_1:

s_1=C_1varphi_1,quad s_2=C_2varphi_2,quad ldots,quad s_{n-r}=C_{n-r}varphi_{n-r},

(7.17)

где C_1,C_2,ldots,C_{n-r} — отличные от нуля произвольные постоянные. Совокупность всех собственных векторов, отвечающих собственному значению lambda_1, образуют ненулевые столбцы вида s=C_1varphi_1+C_2varphi_2+ldots+C_{n-r}varphi_{n-r}. Здесь и далее собственные векторы матрицы будем обозначать буквой s.

Повторить пункты 3,4 для остальных собственных значений lambda_1,lambda_2,ldots,lambda_k.


Пример 7.8. Найти собственные значения и собственные векторы матриц:

A=begin{pmatrix}1&-2\3&8end{pmatrix}!,quad B=begin{pmatrix}1&-4\ 1&1 end{pmatrix}!,quad C=begin{pmatrix}1&1&1\1&1&1\1&1&1end{pmatrix}!.

Решение. Матрица A. 1. Составляем характеристический многочлен матрицы

Delta_{A}(lambda)=begin{vmatrix}1-lambda&-2\3&8-lambdaend{vmatrix}= (1-lambda)(8-lambda)+6=lambda^2-9 lambda+8+6= lambda^2-9 lambda+14.

2. Решаем характеристическое уравнение: lambda^2-9 lambda+14=0~Rightarrow~! left[!begin{gathered}lambda_1=2,\ lambda_2=7.end{gathered}right..

3(1). Для корня lambda_1=2 составляем однородную систему уравнений (A-lambda_1E)x=o:

begin{pmatrix}1-2&-2\ 3&8-2 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-1&-2\ 3&6 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-1&-2!!&vline!!&0\ 3&6!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2!!&vline!!&0\ 3&6!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}!.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-2x_2. Полагая x_2=1, получаем решение varphi_1= begin{pmatrix}-2\1end{pmatrix}.

4(1). Записываем собственные векторы, соответствующие собственному значению lambda_1=2colon~ s_1=C_1cdotvarphi_1, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов второй строки матрицы begin{pmatrix}-1&-2\3&6end{pmatrix}, то есть begin{pmatrix}2\-1 end{pmatrix}. Умножив этот столбец на (-1), получим varphi_1.

3(2). Для корня lambda_2=7 составляем однородную систему уравнений (A-lambda_2E)x=o:

begin{pmatrix}1-7&-2\ 3&8-7 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-6&-2\ 3&1 end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-6&-2!!&vline!!&0\ 3&1!!&vline!!&0end{pmatrix}sim begin{pmatrix}3&1!!&vline!!&0\ -6&-2!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&1/3!!& vline!!&0\ -6&-2!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&1/3!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}!.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-frac{1}{3}x_2. Полагая x_2=1, получаем решение varphi_2=begin{pmatrix}-1/3\1end{pmatrix}.

4(2). Записываем собственные векторы, соответствующие собственному значению lambda_2=7colon~ s_2=C_2cdotvarphi_2, где C_2 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-6&-2\3&1end{pmatrix}, т.е. begin{pmatrix}1\-3 end{pmatrix}. Поделив его на (- 3), получим varphi_2.

Матрица B. 1. Составляем характеристический многочлен матрицы

Delta_{B}(lambda)= begin{vmatrix}1-lambda&-4\1&1-lambdaend{vmatrix}= (1-lambda)^2+4=lambda^2-2 lambda+1+4= lambda^2-2 lambda+5.

2. Решаем характеристическое уравнение: lambda^2-2 lambda+5=0~Rightarrow~! left[! begin{gathered}lambda_1=1+2i,\ lambda_2=1-2i.end{gathered}right..

3(1). Для корня lambda_1=1+2i составляем однородную систему уравнений (B-lambda_1E)x=o

begin{pmatrix}1-(1+2i)&-4\ 1&8-1-(1+2i) end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}-2i&-4\ 1&-2i end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}-2i&-4!!&vline!!&0\ 1&-2i!!&vline!!&0end{pmatrix}sim begin{pmatrix} 1&-2i!!&vline!!&0\ -2i&-4!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&-2i!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=2i,x_2. Полагая x_2=1, получаем решение varphi_1= begin{pmatrix}2i\1 end{pmatrix}.

4(1). Записываем собственные векторы, соответствующие собственному значению lambda_1= 1+2icolon~ s_1=C_1cdotvarphi_1, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-2i&-4\1&-2iend{pmatrix}, то есть begin{pmatrix}-2i\ -1 end{pmatrix}. Умножив этот столбец на (-1), получим varphi_1.

3(2). Для корня lambda_2=1-2i составляем однородную систему уравнений (B-lambda_2E)x=o:

begin{pmatrix}1-(1-2i)&-4\ 1&8-1-(1-2i) end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0end{pmatrix}quad Leftrightarrowquad begin{pmatrix}2i&-4\ 1&2i end{pmatrix}!cdot! begin{pmatrix}x_1\x_2 end{pmatrix}= begin{pmatrix}0\0 end{pmatrix}!.

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду

begin{pmatrix}2i&-4!!&vline!!&0\ 1&2i!!&vline!!&0end{pmatrix}sim begin{pmatrix} 1&2i!!&vline!!&0\ 2i&-4!!&vline!!&0end{pmatrix}sim begin{pmatrix}1&2i!!& vline!!&0\ 0&0!!&vline!!&0end{pmatrix}.

Ранг матрицы системы равен 1 (r=1), число неизвестных n=2, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисную переменную x_1 через свободную: x_1=-2i,x_2. Полагая x_2=1, получаем решение varphi_2= begin{pmatrix}-2i\1 end{pmatrix}.

4(2). Записываем собственные векторы, соответствующие собственному значению lambda_2=1-2icolon~ s_2=C_2cdotvarphi_2, где C_2 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}2i&-4\1&2iend{pmatrix}, т.е. begin{pmatrix}2i\-1 end{pmatrix}. Умножив его на (-1), получим varphi_2.

Матрица C 1. Составляем характеристический многочлен матрицы

Delta_{C}(lambda)= det(C-lambda E)= begin{vmatrix}1-lambda&1&1\1&1-lambda&1\ 1&1&1-lambda end{vmatrix}= (1-lambda)^3+2-3(1-lambda)= -lambda^3+3 lambda^2.

2. Решаем характеристическое уравнение: -lambda^3+3 lambda^2=0~Rightarrow~! left[! begin{gathered}lambda_1=3,\ lambda_2=0end{gathered}right..

3(1). Для корня lambda_1=3 составляем однородную систему уравнений (C-lambda_1E)x=o:

begin{pmatrix}1-3&1&1\ 1&1-3&1\ 1&1&1-3end{pmatrix}!cdot! begin{pmatrix} x_1\x_2\x_3end{pmatrix}=begin{pmatrix}0\0\0end{pmatrix}quad Leftrightarrowquad begin{cases}-2x_1+x_2+x_3=0,\ x_1-2x_2+x_3=0,\ x_1+x_2-2x_3=0.end{cases}

Решаем эту систему методом Гаусса, приводя расширенную матрицу системы к упрощенному виду (ведущие элементы выделены полужирным курсивом):

begin{gathered}begin{pmatrix}C-lambda_1Emid oend{pmatrix}= begin{pmatrix} -2&1&1!!&vline!!&0\ 1&-2&1!!&vline!!&0\ 1&1&-2!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&1&-2!!&vline!!&0\ -2&1&1!!&vline!!&0\ 1&-2&1!!&vline!!&0 end{pmatrix}sim\[2pt] simbegin{pmatrix} 1&1&-2!!&vline!!&0\ 0&3&-3!!&vline!!&0\ 0&-3&3!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&1&-2!!&vline!!&0\ 0&1&-1!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&0&-1!!&vline!!&0\ 0&1&-1!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}!.end{gathered}

Ранг матрицы системы равен 2 (r=2), число неизвестных n=3, следовательно, фундаментальная система решений состоит из n-r=1 решения. Выражаем базисные переменные x_1,x_2 через свободную x_3colon begin{cases}x_1=x_3,\x_2=x_3,end{cases} и, полагая x_3=1, получаем решение varphi=begin{pmatrix}1\1\1end{pmatrix}.

4(1). Все собственные векторы, соответствующие собственному значению lambda_1=3, вычисляются по формуле s=C_1cdotvarphi, где C_1 — отличная от нуля произвольная постоянная.

Заметим, что, согласно пункту 5 замечаний 7.5, в качестве собственного вектора можно выбрать вектор, составленный из алгебраических дополнений элементов первой строки матрицы begin{pmatrix}-2&1&1\1&-2&1\1&1&-2end{pmatrix}, то есть begin{pmatrix}3\3\3end{pmatrix}, так как

A_{11}=(-1)^{1+1}begin{vmatrix} -2&1\1&-2 end{vmatrix} =3;quad A_{12}=(-1)^{1+2} begin{vmatrix} 1&1\1&-2 end{vmatrix}= 3;quad A_{13}=(-1)^{1+3}begin{vmatrix}1&-2\ 1&1 end{vmatrix}=3.

Разделив его на 3, получим varphi.

3(2). Для собственного значения lambda_2=0 имеем однородную систему Cx=o. Решаем ее методом Гаусса:

begin{pmatrix}Cmid oend{pmatrix}= begin{pmatrix}1&1&1!!&vline!!&0\ 1&1&1!!&vline!!&0\ 1&1&1!!&vline!!&0 end{pmatrix}sim begin{pmatrix}1&1&1!!& vline!!&0\ 0&0&0!!&vline!!&0\ 0&0&0!!&vline!!&0 end{pmatrix}!.

Ранг матрицы системы равен единице (r=1), следовательно, фундаментальная система решений состоит из двух решений (n-r=2). Базисную переменную x_1, выражаем через свободные: x_1=-x_2-x_3. Задавая стандартные наборы свободных переменных x_2=1,~x_3=0 и x_2=0,~ x_3=1, получаем два решения

varphi_1=begin{pmatrix}-1\1\0end{pmatrix}!,qquad varphi_2=begin{pmatrix}-1\0\1 end{pmatrix}!.

4(2). Записываем множество собственных векторов, соответствующих собственному значению lambda_2=0colon~ s=C_1varphi_1+C_2varphi_2, где C_1,C_2 — произвольные постоянные, не равные нулю одновременно. В частности, при C_1=0, C_2=-1 получаем s_1=begin{pmatrix}1&0&-1end{pmatrix}^T; при C_1=0,~C_2=-1colon s_2=begin{pmatrix}1&-1&0end{pmatrix}^T. Присоединяя к этим собственным векторам собственный вектор s_3=begin{pmatrix}1&1&1 end{pmatrix}^T, соответствующий собственному значению lambda_1=3 (см. пункт 4(1) при C_1=1), находим три линейно независимых собственных вектора матрицы C:

s_1=begin{pmatrix}1\0\-1end{pmatrix}!,qquad s_2=begin{pmatrix}1\-1\0 end{pmatrix}!,qquad s_3=begin{pmatrix}1\1\1end{pmatrix}!.

Заметим, что для корня lambda_2=0 собственный вектор нельзя найти, применяя пункт 5 замечаний 7.5, так как алгебраическое дополнение каждого элемента матрицы A равно нулю.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Жужжание в наушниках как исправить
  • Электростатика как найти расстояние
  • Как на клавиатуре компьютера найти собачку
  • Как найти часть от числа не дробями
  • Api ms win crt runtime l1 1 0 dll что это за ошибка как исправить