Как найти соотношение косинуса

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Развёрнутый, прямой, острый и тупой углы

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается a.

Угол A обозначается соответствующей греческой буквой alpha.

Гипотенуза и катеты

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет a, лежащий напротив угла alpha, называется противолежащим (по отношению к углу alpha). Другой катет b, который лежит на одной из сторон угла alpha, называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

sin A=genfrac{}{}{}{0}{displaystyle a}{displaystyle c}.

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

cos A=genfrac{}{}{}{0}{displaystyle b}{displaystyle c}.

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

tg A =genfrac{}{}{}{0}{displaystyle a}{displaystyle b}.

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

tg A=genfrac{}{}{}{0}{displaystyle sin A}{displaystyle cos A}.

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

ctg A =genfrac{}{}{}{0}{displaystyle cos A}{displaystyle sin A}.

Обратите внимание на основные формулы для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

sin displaystyle alpha = frac{a}{c} sin{}^2 alpha +cosdisplaystyle {}^2 alpha =1 alpha + beta = 90 ^{circ} 
cos displaystyle alpha = frac{b}{c} 1+tg displaystyle {}^2 alpha =frac{1}{cos ^2 alpha} cosalpha = sin beta
tg displaystyle alpha = frac{a}{b} 1+ctg displaystyle {}^2 alpha =frac{1}{sin ^2 alpha} sinalpha = cosbeta
ctg displaystyle alpha = frac{b}{a} tgalpha = ctgbeta

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна 180^{circ}. Значит, сумма двух острых углов прямоугольного треугольника равнa 90^{circ}.
  2. С одной стороны, sin A =genfrac{}{}{}{0}{displaystyle a}{displaystyle c} как отношение противолежащего катета к гипотенузе. С другой стороны, cos B =genfrac{}{}{}{0}{displaystyle a}{displaystyle c}, поскольку для угла beta катет а будет прилежащим. Получаем, что cos beta =sin alpha. Иными словами, cos left( 90^{circ}-A right) = sin A.
  3. Возьмем теорему Пифагора: a^2+b^2=c^2. Поделим обе части на c^2, получаем displaystyle left ( frac{a}{c} right )^2+left ( frac{b}{c} right )^2=left ( frac{c}{c} right )^2 , то есть sin ^2 A+cos^2 A=1.
    Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на cos^2 A, получим: 1+tg ^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle cos ^2 A }. Это значит, что если нам дан тангенс острого угла alpha, то мы сразу можем найти его косинус. Аналогично,1+ctg ^2 A =genfrac{}{}{}{0}{1}{sin ^2 A }.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна 180^{circ}.

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: a^2+b^2=c^2.

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от 0^{circ} до 90^{circ}.

varphi 0 genfrac{}{}{}{0}{displaystyle pi}{displaystyle 6} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 4} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 3} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 2}
sinvarphi 0 displaystyle frac{1}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{sqrt{3}}{2} 1
cosvarphi 1 displaystyle frac{sqrt{3}}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{1}{2} 0
tgvarphi 0 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 1 sqrt{3}
ctgvarphi sqrt{3} 1 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 0

Обратите внимание на два прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Докажем теорему:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

В самом деле, пусть АВС и A_1B_1C_1 — два прямоугольных треугольника с прямыми углами С и C_1 и равными острыми углами А и A_1.

Треугольники АВС и A_1B_1C_1 подобны по первому признаку подобия треугольников, поэтому displaystyle frac{AB}{A_1 B_1}=frac{BC}{B_1 C_1}=frac{AC}{A_1 C_1 } .

Из этих равенств следует, что displaystyle frac{BC}{AB}=frac{B_1 C_1}{A_1 B_1} , т. е. sin А = sin A_1.

Аналогично, displaystyle frac{AC}{AB}=frac{A_1C_1}{A_1 B_1}, т. е. cos А = cosA_1, и displaystyle frac{BC}{AC}=frac{B_1C_1}{A_1 C_1}, т. е. tg A = tg A_1.

Это значит, что синус, косинус и тангенс зависят только от величины угла.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача 1. В треугольнике ABC угол C равен 90^{circ}, sin A = 0,1. Найдите cos B.

Задача решается за четыре секунды.

Поскольку A+B = 90^{circ}, sin A = cos B = 0,1.

Задача 2В треугольнике ABC угол C равен 90^{circ}, AB=5, sin A = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Найдите AC.

Решение:

sin A = genfrac{}{}{}{0}{displaystyle a}{displaystyle c} = genfrac{}{}{}{0}{displaystyle BC}{displaystyle AB} = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Отсюда

BC= genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25} cdot AB = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 5}.

Найдем AC по теореме Пифагора.

AC=sqrt{AB^2-BC^2} = genfrac{}{}{}{0}{displaystyle 24}{displaystyle 5} = 4,8.

Ответ: 4,8.

Задача 3. В треугольнике АВС угол С равен 90^circ , AВ = 13, ВС = 5. Найдите косинус и тангенс острого угла А. Ответ округлите до сотых.

Решение:

Для угла А противолежащий катет – это ВС,

АВ является гипотенузой треугольника, лежит против angle C. Значит, sin A displaystyle = frac{BC}{AB}= frac{5}{13}.

Катет, прилежащий к angle A – это катет АС, следовательно, cos⁡ А displaystyle = frac{AC}{AB}=frac{AC}{13}.

Длину катета АС найдем по теореме Пифагора: AC^2+BC^2=AB^2.

Тогда AC = sqrt{AB^2-BC^2}=sqrt{(13)^2-5^2}=sqrt{144}=12.

cos⁡ А displaystyle = frac{12}{13}=0,923 ... approx 0,92 ;

tg A displaystyle = frac{BC}{AC} = frac{5}{12}=0,416...approx 0,42.

Ответ: 0,92; 0,42.

Заметим, что если катеты прямоугольного треугольника равны 5 и 12, то гипотенуза равна 13. Это одна из так называемых Пифагоровых троек. О них мы расскажем в других статьях сайта.

Задача 4. В треугольнике АВС угол С равен 90^circ , AC = 2, sin A= displaystyle frac{sqrt{17}}{17} .

Найдите BC.
Решение:

AC = b = 2, BC = a, AB = c.

Так как sin A displaystyle = frac{a}{c} = frac{BC}{AB} = frac{sqrt{17}}{17}, displaystyle frac{a}{c} = frac{sqrt{17}}{17} , displaystyle c = frac{17a}{sqrt{17}}=sqrt{17}a.

По теореме Пифагора a^2+b^2=c^2, получим

a^2+2^2=(sqrt{17} a)^2;

a^2+4=17a^2;

16a^2=4, displaystyle a= frac{1}{2}=0,5;

BC = 0,5.

Ответ: 0,5.

Задача 5. В треугольнике АВС угол С равен 90^circ , AC = 4, tg A = displaystyle frac{33}{4sqrt{33}} . Найдите AB.

Решение:

AC = b = 4, tg A displaystyle = frac{a}{b}=frac{33}{4sqrt{33}},

displaystyle frac{a}{4}=frac{33}{4sqrt{33}}, displaystyle a=frac{4 cdot 33}{4 cdot sqrt{33}}=sqrt{33},

AB = c = sqrt{a^2+b^2}=sqrt{(sqrt{33})^2+4^2}=sqrt{33+16} =7.

Ответ: 7.

Задача 6.

В треугольнике АВС угол С равен 90^ circ, CH – высота, AB = 13, tg A = displaystyle frac{1}{5} . Найдите AH.

Решение:

AВ = с = 13, tg A = displaystyle frac{a}{b}=frac{1}{5} , тогда b = 5a.

По теореме Пифагора triangleABC: a^2+b^2=c^2,

a^2+(5a)^2=13^2,

26 a^2=169,

displaystyle a=sqrt{frac{169}{26}}=frac{13}{sqrt{26}}, тогда displaystyle b = 5a=5cdot frac{13}{sqrt{26}}=frac{65}{sqrt{26}}.

triangle AHC approx triangle ACB (по двум углам), следовательно displaystyle frac{AH}{AC}=frac{AC}{AB} , откуда

displaystyle AH = frac{AC^2}{AB}=frac{b^2}{c}=left ( frac{65}{sqrt{26}}right )^2:13=12,5.

Ответ: 12,5.

Задача 7. В треугольнике АВС угол С равен 90^circ,

CH – высота, BC = 3, sin A = displaystyle frac{1}{6} .

Найдите AH.

Решение:

Так как sin A = displaystyle frac{a}{c} = frac{BC}{AB} = frac{1}{6}, тогда displaystyle frac{3}{c} = frac{1}{6} , c = АВ = 18.

sin A = displaystyle frac{a}{c} = cos⁡ B = displaystyle frac{1}{6} .

Рассмотрим triangle BHC:

{cos B=  }displaystyle frac{BH}{BC} = displaystyle frac{1}{6} , получим displaystyle frac{BH}{3}=displaystyle frac{1}{6},

тогда BH = displaystyle frac{3}{6}=displaystyle frac{1}{2} = 0,5,

AH = AB — BH = 18 — 0,5 = 17,5.

Ответ: 17,5.

Задача 8. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BC = 3, cos A = displaystyle frac{sqrt{35}}{6}.

Найдите АH.

Решение:

Так как для triangle АВС: cos A = displaystyle frac{AC}{AB}= sin В = displaystyle frac{sqrt{35}}{6},

а для triangle ВНС: sin В = displaystyle frac{CH}{BC} = displaystyle frac{sqrt{35}}{6} , откуда СН = displaystyle frac{BC cdot  sqrt{35}}{6}=displaystyle frac{3 cdot sqrt{35}}{6}=displaystyle frac{sqrt{35}}{2},

По теореме Пифагора найдем ВН:

BH = sqrt{{BC}^2-{CH}^2}=sqrt{3^2-{left(displaystyle frac{sqrt{35}}{2}right)}^2}=

=sqrt{9-displaystyle frac{35}{4}}=sqrt{displaystyle frac{1}{4}}=displaystyle frac{1}{2}=0,5.

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому для triangle АВС получим:

{CH}^2=AH cdot BH, тогда AH= displaystyle frac{ {CH}^2}{BH}, ; AH= displaystyle frac{ {left(displaystyle frac{sqrt{35}}{2}right)}^2}{0,5}=displaystyle frac{35 cdot 2}{4}=17,5.

Ответ: 17,5.

Задача 9. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 24 и BН = 7. Найдите sin A.

Решение:

По определению sin A= displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = {cos B}.

Рассмотрим triangle BHC : {cos B=  }displaystyle frac{BH}{BC}.

ВС найдем по теореме Пифагора:

ВС= sqrt{{BH}^2+{CH}^2}=sqrt{7^2+{24}^2}=sqrt{49+576}=sqrt{625}=25,

тогда {cos B=  }displaystyle frac{BH}{BC}=displaystyle frac{7}{25}=0,28, а значит и sin A = {cos B  }= 0,28.

Ответ: 0,28.

Задача 10. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 8 и BН = 4. Найдите tg A.

Решение:

По определению sin A = displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = ;   cos A = displaystyle frac{b}{c} = displaystyle frac{AC}{AB} = {sin B },

тогда tg A = displaystyle frac{sin A}{{cos A }}=displaystyle frac{cosB}{sinB}=ctgB, который найдем из triangle BHC:

ctgB=displaystyle frac{BH}{CH}=displaystyle frac{4}{8}=0,5.

Ответ: 0,5.

Задача 11. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, tg A = displaystyle frac{2}{3}. Найдите АН.

Решение:

По определению tg A= displaystyle frac{BC}{AC}=ctgB=displaystyle frac{2}{3}.

Для triangle BHC: ctgB=displaystyle frac{BH}{CH}=displaystyle frac{2}{3} , значит displaystyle frac{12}{CH}=displaystyle frac{2}{3}, СН = displaystyle frac{12 cdot 3}{2}=18.

Для triangle АHC: tg A= displaystyle frac{CH}{AH}=displaystyle frac{2}{3}, то displaystyle frac{18}{AH}=displaystyle frac{2}{3}, AH = displaystyle frac{18 cdot 3}{2}=27.

Ответ: 27.

Задача 12. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, sin A = displaystyle frac{2}{3}. Найдите АВ.

Решение:

Так как cos В = displaystyle frac{BC}{AB} = sin A = displaystyle frac{2}{3}.

Из triangle СВН имеем cos В = displaystyle frac{HB}{BC} = displaystyle frac{2}{3}, тогда ВС = displaystyle frac{3 cdot  HB}{2}=displaystyle frac{3 cdot 12}{2}=18.

В triangle АВС имеем sinA = displaystyle frac{BC}{AB} = displaystyle frac{2}{3}, тогда AВ = displaystyle frac{3 cdot BC}{2}=displaystyle frac{3 cdot 18}{2}=27.

Ответ: 27.

Задача 13. В треугольнике АВС угол С равен 90{}^circ, из вершины прямого угла к гипотенузе проведена высота СН. Найдите cos A, AC и AB, если СН = 12, ВС = 20.

Решение:

Найдем НВ по теореме Пифагора из triangle ВСН:

HB = sqrt{BC^2-BH^2}=sqrt{20^2-12^2}=sqrt{(20-12)(20+12)}=

sqrt{8 cdot 32}= sqrt{8 cdot 2 cdot 16}=16.

sin В = displaystyle frac{CH}{BC} = displaystyle frac{12}{20}=displaystyle frac{3}{5}.

Для triangle АВС: cos A = displaystyle frac{AC}{AB}=sin B=displaystyle frac{3}{5}, получили cos A = 0,6.

Найдем АС и АВ несколькими способами.

1-й способ.

Так как cos A = displaystyle frac{AC}{AB}=displaystyle frac{3}{5}, то пусть АС = 3х, АВ = 5х,

тогда по теореме Пифагора {AC}^2+{BC}^2= {AB}^2, получим {(3x)}^2+{(20)}^2= {(5x)}^2
{25x}^2-{9x}^2= {20}^2 ,

{16x}^2= {20}^2,

x^2= {left(displaystyle frac{20}{4}right)}^2,
х = 5 ( так как хtextgreater 0). Значит, AC=15,  AB=25.

2-й способ.

triangle HBC approx triangle CBA (по двум углам), значит displaystyle frac{HB}{CB}=frac{HC}{AC}=frac{BC}{AB} или displaystyle frac{16}{20}={12}{AC}={20}{AB} = k,

k = displaystyle frac{16}{20}=displaystyle frac{4}{5} , тогда displaystyle frac{12}{AC}=displaystyle frac{4}{5}, АС = displaystyle frac{12 cdot 5}{4}=15; displaystyle frac{20}{AB}=displaystyle frac{4}{5}, АВ = displaystyle frac{20 cdot 5}{4}=25.

3-й способ.

{CH}^2=AH cdot HB (высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой) , тогда {12}^2=AH cdot 16, АН = 144:16 = 9.

АВ = АН + НВ = 9 + 16 = 25.

По теореме Пифагора найдем АС:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{25}^2-{20}^2}=sqrt{(25-20)(25+20)} = sqrt{5cdot 45}=sqrt{5cdot 5cdot 9}=15.

Ответ: cos A = 0,6; АС = 15, АВ = 25.

Задача 14.

Высота ВН прямоугольного треугольника АВС, проведенная из вершины прямого угла В, равна 24 и отсекает от гипотенузы АС отрезок НС, равный 18.

Найдите АВ и cos А.

Решение:

Из прямоугольного triangle ВНС по теореме Пифагора найдем гипотенузу ВС и cos C:

ВС = sqrt{{HC}^2+{BH}^2}=sqrt{{18}^2+{24}^2}=sqrt{324+576}= sqrt{900}=30;

cos C = displaystyle frac{HC}{BC}=displaystyle frac{18}{30}=displaystyle frac{3}{5}.

Для triangle АВС: sin А = displaystyle frac{BC}{AC} = cos C = displaystyle frac{3}{5}.

Для triangle АНВ: sin А = displaystyle frac{BH}{AB} = displaystyle frac{3}{5}, то displaystyle frac{24}{AB} = displaystyle frac{3}{5}, АВ = displaystyle frac{24 cdot 5}{3}=40.

Из основного тригонометрического тождества найдем

cos A = sqrt{1-{sin}^2A}=sqrt{1-0,36}=sqrt{0,64}=0,8.

Ответ: АВ = 40, cos A = 0,8.

Задача 15.

Гипотенуза АС прямоугольного треугольника АСЕ равна 50, sin А = displaystyle frac{7}{25}.

Найдите площадь треугольника.

Решение:

В прямоугольном triangle АСЕ sin А = displaystyle frac{CE}{AC},

значит CE=AC cdot sinA=50 cdot displaystyle frac{7}{25} = 14.

Второй катет найдем, используя теорему Пифагора: AE= sqrt{{AC}^2-{CE}^2};

AE = sqrt{{50}^2-{14}^2}=sqrt{(50-14)(50+14)} =sqrt{36cdot 64}=6cdot8=48.

Площадь прямоугольного треугольника равна S = displaystyle frac{1}{2}ab,

поэтому S_{ACE}= displaystyle frac{1}{2} AEcdot CE=displaystyle frac{48cdot 14}{2}=336.

Ответ: 336.

Задача 16.

В треугольнике АВС угол С — прямой, катеты АВ = 13 и ВС = 12, СК — высота.

Найдите sin angle ACK. Результат округлите до сотых.

Решение:

triangle CAK approx triangle BAC ( angle A-общий, angle AKC=angle ACB=90{}^circ ),

значит angle ACK=angle ABC, sin angle ACK=displaystyle frac{AK}{AC}=displaystyle frac{AC}{AB}.

Найдем АС по теореме Пифагора из triangle САВ:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{13}^2-{12}^2}=

=sqrt{(13-12)(13+12)}=sqrt{25}= 5.

Тогда sin angle ACK=displaystyle frac{5}{13}=0,384..approx 0,38.

Ответ: 0,38.

Задача 17. В треугольнике АВС АС = ВС, АВ = 72, cos A = displaystyle frac{12}{13}. Найдите высоту СН.

Решение:

Так как АС = ВС, то triangle АВС — равнобедренный с основанием АВ, тогда

высота СН является медианой, то есть АН = НВ = displaystyle frac{1}{2}AB=36.

Поскольку triangle АСН — прямоугольный,

cos A = displaystyle frac{AH}{AC}= displaystyle frac{12}{13}, то есть displaystyle frac{36}{AC}= displaystyle frac{12}{13} Rightarrow АС = displaystyle frac{36 cdot 13}{12}=39.

По теореме Пифагора {AH}^2+{CH}^2={AC}^2, тогда

CH = sqrt{{AC}^2-{AH}^2} = sqrt{{39}^2-{36}^2}=

=sqrt{(39-36)(39+36)}=sqrt{3cdot 3cdot 25}=15.

Ответ: 15.

Задача 18. В треугольнике АВС угол С равен 90{}^circ, sin A = displaystyle frac{11}{14}, AC = 10sqrt{3}. Найдите АВ.

Решение:

1-й способ.

Поскольку sin A = displaystyle frac{BC}{AB}= displaystyle frac{11}{14}, то можно обозначить

ВС = 11х, АВ = 14х.

По теореме Пифагора AC^2+{BC}^2={AB}^2;

{(10sqrt{3})}^2+{(11x)}^2={(14x)}^2;

{(14x)}^2-{(11x)}^2 = 3 cdot 100;

(14х- 11х)(14х + 11х) = 3 cdot 100;

3cdot 25 x^2 = 3 cdot 100.

x^2=4, учитывая, что длина стороны положительна, х = 2,

следовательно, АВ = 14 cdot 2 = 28.

2-й способ.

Воспользуемся основным тригонометрическим тождеством {sin}^2A+{cos}^2A=1;

cos A = sqrt{1-{sin}^2A}=sqrt{1-{left(displaystyle frac{11}{14}right)}^2}=sqrt{displaystyle frac{196-121}{196}}=sqrt{displaystyle frac{75}{196}}=displaystyle frac{5sqrt{3}}{14}.

По определению cos A = displaystyle frac{AC}{AB}, значит displaystyle frac{AC}{AB}= displaystyle frac{5sqrt{3}}{14}.

Так как АС=10sqrt{3}, то displaystyle frac{10sqrt{3}}{AB}= displaystyle frac{5sqrt{3}}{14}, откуда АВ = displaystyle frac{10sqrt{3} cdot 14}{5sqrt{3}} = 28.

Ответ: 28.

Задача 19. Найдите углы ромба АВСD, если его диагонали АС и ВD равны 4sqrt{3} и 4.

Решение:

Пусть angle ВАО = alpha .

Диагонали ромба делят его углы пополам, значит, angle DAO=angle BAO = alpha .

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно, в прямоугольном треугольнике АВО катет АО = displaystyle frac{1}{2} AC=2sqrt{3}, а катет ВО = displaystyle frac{1}{2}BD =2.

Поэтому tgalpha =displaystyle frac{BO}{AO}=displaystyle frac{2}{2sqrt{3}}=displaystyle frac{1}{sqrt{3}}, откуда alpha =30{}^circ .

angle BAD=2alpha =60{}^circ , ; angle ADC=angle ABC=180{}^circ -60{}^circ =120{}^circ .

Ответ: {60}^circ, {120}^circ, {60}^circ, {120}^circ .

Часто в задачах встречаются треугольники с углами 90^{circ},, 30^{circ} и 60^{circ} или с углами 90^{circ},, 45^{circ} и 45^{circ}. Основные соотношения для них запоминайте наизусть!

Прямоугольные треугольники с углами 30, 60, 90 и 45, 45, 90 градусов

Для треугольника с углами 90^{circ},, 30^{circ} и 60^{circ} катет, лежащий напротив угла в 30^{circ}, равен половине гипотенузы.

Треугольник с углами 90^{circ},, 45^{circ} и 45^{circ} — равнобедренный. В нем гипотенуза в sqrt{2} раз больше катета.

Задача 20.

В треугольнике АВС угол С равен 90{}^circ, угол А равен 30{}^circ, АВ = 2sqrt{3} .

Найдите высоту CH.

Решение:

Рассмотрим triangle АВС:

По свойству катета, лежащего против угла {30}^circ, имеем ВС = displaystyle frac{1}{2} АВ = sqrt{3}.

В triangle BHC: angle BHC=90{}^circ ,;  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно, ВН = displaystyle frac{1}{2} BC = displaystyle frac{sqrt{3}}{2}.

По теореме Пифагора найдем НС:

HC = sqrt{{BC}^2-{BH}^2}=sqrt{{left(sqrt{3}right)}^2-{left(displaystyle frac{sqrt{3}}{2}right)}^2}=sqrt{3-displaystyle frac{3}{4}}=

=sqrt{2displaystyle frac{1}{4}}=sqrt{displaystyle frac{9}{4}}=displaystyle frac{3}{2}=1,5.

Ответ: 1,5.

Задача 21.

В треугольнике АВС угол С равен 90{}^circ, CH — высота, АВ = 2, angle A=30{}^circ . Найдите АH.

Решение:

Из triangle АВС найдем ВС = displaystyle frac{1}{2} АВ = 1 (по свойству катета, лежащего против угла 30{}^circ),

angle A=30{}^circ , то angle B=60{}^circ .

Из triangle ВСН: angle BHC=90{}^circ ,  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно,

ВН = displaystyle frac{1}{2} ВС = displaystyle frac{1}{2}.

АН = АВ — НВ = 2 — displaystyle frac{1}{2} = 1,5.

Ответ: 1,5.

Еще раз повторим, что такое синус, косинус и тангенс угла в прямоугольном треугольнике.

Как запомнить эти соотношения? Лучший способ – решать много задач, и на уроках геометрии, и готовясь к ЕГЭ. Тогда все формулы, равенства, соотношения запомнятся сами собой.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Если вам понравился разбор данной темы — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Синус, косинус и тангенс острого угла прямоугольного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

формулы связи.jpg

Внимание! Эти формулы работают только если аргументы у тригонометрических функций одинаковые, т.е.

(sin^2⁡ 776^° +cos^2⁡ 776^° =1)
(tg, 3xcdot ctg, 3x=1)

Но:

(sin^2⁡x+cos^2⁡3x≠1)
(tg, xcdot ctg, y≠1)

Все формулы связи тригонометрических функций учить не надо, потому что они достаточно легко получаются друг из друга несложными преобразованиями (подробности в этих видео). Кроме того, при частом использовании они постепенно запоминаются сами.

Примеры применения формул связи

Зачем нужны формулы связи? Они позволяют найти все тригонометрические функции угла, если известна лишь одна из них, а также дают возможность упрощать выражения, доказывать тождества, решать тригонометрические уравнения, заменяя одну функцию другой и так далее.

Пример. Найдите (5sin⁡,α), если (cos,⁡α=frac{2sqrt{6}}{5}) и (α∈(frac{3π}{2};2π)). 
Решение. Нам известен косинус, найти надо синус. А что связывает синус и косинус? Основное тригонометрическое тождество:

(sin^2α+cos^2⁡α=1).

Подставим вместо косинуса его значение:

(sin^2⁡α+)((frac{2sqrt{6}}{5}))(^2=1)
(sin^2⁡α+)(frac{4cdot 6}{25})(=1)
(sin^2⁡α+)(frac{24}{25})(=1)
(sin^2⁡α=1-)(frac{24}{25})
(sin^2⁡α=)(frac{1}{25})
(sin⁡α=±)(frac{1}{5})

Внимание! Последняя строчка – место, где теряется огромное количество баллов на ЕГЭ! Это одна из самых популярных ошибок – забыть отрицательный корень. Пожалуйста, раз и навсегда запомните, что у неполного квадратного уравнения вида (x^2=a) (при (a>0)) два корня (x_1=sqrt{a})  и (x_2=-sqrt{a}). Пусть двойка над иксом (та которая «квадрат») будет вам вечным маяком, сигнализирующим: «тут ДВА корня! Два! Не забудь!»

Вернемся к задаче. Получилось, что синус может иметь значение (frac{1}{5}), а может (-)(frac{1}{5}). И какое значение нам надо выбрать — с минусом или плюсом? Тут нам на помощь приходит информация, что (α∈(frac{3π}{2};2π)). Давайте нарисуем числовую окружность и отметим отрезок ((frac{3π}{2};2π)).

от 3пи на 2 до 2 пи

Обратите внимание – в этой четверти синус принимает только отрицательные значения (можно провести перпендикуляры до оси синусов и убедиться, что это так).

определяем знак синуса в четвертой четверти

Значит, в нашем случае (sin,⁡α=-frac{1}{5}) т.е. (5sin,⁡α=5cdot(-frac{1}{5})=-1).

Ответ: (-1).

Пример.Найдите (tg,α), если (cos,⁡α=)(frac{sqrt{10}}{10}) и (α∈(frac{3π}{2};2π)). 
Решение. Есть 2 пути решения этой задачи:

— напрямую вычислить тангенс через формулу (tg^2α+1=)(frac{1}{cos^2⁡α});
— сначала с помощью тождества (sin^2⁡α+cos^2⁡α=1) найти (sin⁡,α), а потом через формулу (tg,α=)(frac{sin⁡,α}{cos⁡,α}) получить тангенс.

В учебниках обычно идут первым путем, поэтому мы пойдем вторым.

Вычисляем синус:

(sin^2⁡α+)((frac{sqrt{10}}{10})^2)(=1)
(sin^2⁡α+)(frac{10}{100})(=1)
(sin^2⁡α+)(frac{1}{10})(=1)
(sin^2⁡α=1-)(frac{1}{10})
(sin^2⁡α=)(frac{9}{10});
(sin⁡,α=±)(frac{3}{sqrt{10}})

Опять (α∈(frac{3π}{2};2π)), значит в итоге синус может быть только отрицательным. То есть, (sin⁡,α=-)(frac{3}{sqrt{10}}).
А теперь вычисляем тангенс: (tg,α=-)(frac{3}{sqrt{10}})(:)(frac{sqrt{10}}{10})(=)(-frac{3}{sqrt{10}}cdotfrac{10}{sqrt{10}})(=-)(frac{30}{10})(=-3).

Ответ: (-3).

Пример. Известно, что (tg,α=-frac{3}{4}) и (frac{π}{2}<α<π). Найдите значения трех других тригонометрических функций угла (α).
Решение. Проще всего из тангенса найти котангенс:

(ctg, α=)(frac{1}{tg, α})
(ctg,α=1:(-frac{3}{4})=1cdot(-frac{4}{3})=-frac{4}{3}).

Теперь вычислим косинус по упомянутой выше формуле:

(tg^2 α+1=)(frac{1}{cos^2⁡α})
((-)(frac{3}{4}))(^2+1=)(frac{1}{cos^2⁡α})
(frac{9}{16})(+1=)(frac{1}{cos^2⁡α})
(frac{9+16}{16})(=)(frac{1}{cos^2⁡α})
(frac{25}{16})(=)(frac{1}{cos^2⁡α})
(cos^2⁡α=)(frac{16}{25})
(cos⁡α=±)(frac{4}{5})

Опять перед нами стоит выбор плюс или минус. Отметим отрезок ((frac{π}{2};π)) на тригонометрической окружности и посмотрим какие значения принимает косинус в этой четверти, чтобы определится со знаком.

определяем знак косинуса во второй четверти

Очевидно, что косинус отрицателен в этой четверти, а значит (cos,⁡α=-)(frac{4}{5}).

Осталось найти синус:

(sin^2⁡α+cos^2⁡α=1)
(sin^2⁡α+(-)(frac{4}{5})()^2=1)
(sin^2⁡α+)(frac{16}{25})(=1)
(sin^2⁡α=1-)(frac{16}{25})
(sin^2⁡α=)(frac{9}{25})
(sin,⁡α=±)(frac{3}{5})

Опять используем круг, чтобы определить знак.

определяем знак синуса во второй четверти

Получается, что (sin,⁡α=)(frac{3}{5}).

Ответ: (ctg,α=-)(frac{4}{3});   (cos,⁡α=-)(frac{4}{5});    (sin,α=)(frac{3}{5}).

Пример (ЕГЭ). Найдите (tg^2 α), если (5 sin^2⁡α+13 cos^2⁡α=6).
Решение. Давайте пойдем от того, что известно. В равенстве (5 sin^2⁡α+13 cos^2⁡α=6) синус заменим на косинус:

(5(1-cos^2⁡α)+13 cos^2⁡α=6)
(5-5 cos^2⁡α+13 cos^2⁡α=6)
(5+8 cos^2⁡α=6)
(8 cos^2⁡α=1)
(cos^2⁡α=)(frac{1}{8})

Поняли почему именно синус заменили на косинус, а не наоборот? И почему не надо извлекать корень, досчитывая до «чистого» косинуса? Потому что для нахождения (tg^2α) хорошо подходит формула (tg^2α+1=)(frac{1}{cos^2⁡α}) :

(tg^2 α+1=1:)(frac{1}{8})
(tg^2 α+1=1cdot)(frac{8}{1})
(tg^2 α+1=8)
(tg^2 α=7)

Ответ: (7).

Теперь еще одна задача из ЕГЭ, для наглядности мы ее решение оформили картинкой.

решение сложной 9 задачи ЕГЭ

Пример. Упростите выражение (frac{1}{sin^2 α})(-ctg^2 α-cos^2 β).
Решение.

(frac{1}{sin^2 α})(-ctg^2 α-cos^2 β)

Самое очевидное, что можно сделать – это представить котангенс как отношение косинуса к синусу.

(=)(frac{1}{sin^2 α})(-)(frac{cos^2⁡α}{sin^2 α})(-cos^2 β=)

 

Приводим дроби к общему знаменателю.

(=)(frac{1-cos^2⁡α}{sin^2 α})(-cos^2 β=)

 

(1-cos^2⁡α) можно заменить на (sin^2 α).

(=)(frac{sin^2 α}{sin^2 α})(-cos^2 β=)

 

Сокращаем синусы.

(=1-cos^2 β=sin^2 β).

 

Пример. Докажите тождество (frac{cos^4⁡α-sin^4⁡α}{(1-sin⁡α)(1+sin⁡α)})(+2tg^2 α=)(frac{1}{cos^2 α}).
Решение.

(frac{cos^4⁡α-sin^4⁡α}{(1-sin⁡α)(1+sin⁡α)})(+2tg^2 α=)(frac{1}{cos^2 α})

Чтобы доказать это тождество, будем преобразовывать левую часть, пытаясь свести ее к правой. Поехали. Разложим числитель левой дроби по формуле разности квадратов, а знаменатель, наоборот, соберем по ней же.

(frac{(cos^2⁡α-sin^2⁡α )(cos^2 α+sin^2⁡α)}{1-sin^2⁡α})(+2tg^2 α=)(frac{1}{cos^2 α})

 

Очевидно, что вторая скобка числителя равна (1) (по основному тригонометрическому тождеству), а знаменатель можно заменить на (cos^2 α).

(frac{cos^2⁡α-sin^2⁡α}{cos^2 α})(+2tg^2 α=)(frac{1}{cos^2 α})

 

Теперь разложим тангенс по формуле (tg, α=)(frac{sin⁡,α}{cos,⁡α}).

(frac{cos^2⁡α-sin^2⁡α}{cos^2 α})(+2)(frac{sin^2⁡α}{cos^2⁡α})(=)(frac{1}{cos^2 α})

 

Приводим дроби к общему знаменателю.

(frac{cos^2⁡α-sin^2⁡α+2 sin^2⁡α}{cos^2 α})(=)(frac{1}{cos^2 α})

Приводим подобные слагаемые.

(frac{cos^2⁡α+sin^2⁡α}{cos^2 α})(=)(frac{1}{cos^2 α})

И вновь нас выручает основное тригонометрическое тождество

(frac{1}{cos^2 α}) (=)(frac{1}{cos^2 α})

Левая часть полностью идентична правой, то есть тождество доказано.

Как доказать все формулы связи

Содержание:

Пусть в прямоугольном треугольнике гипотенуза равна с, один из острых углов равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определения синуса, косинуса, тангенса и котангенса острого угла

Определение. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определение. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример:

Угол К в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияравен 90° (рис. 7).
Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для угла N катет МК — противолежащий, а катет NK — прилежащий (см. рис. 7, с. 11). Поэтому согласно определениям получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Можно заметить, что синус острого угла а прямоугольного треугольника и косинус другого острого угла этого треугольника, содержащего Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равны, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Так же Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
А теперь выполните Тест 1 и Тест 2.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значение синуса острого угла, а также косинуса, тангенса и котангенса зависит только от величины угла и не зависит от размеров и расположения прямоугольного треугольника с указанным острым углом.
Это следует из того, что прямоугольные треугольники с равным острым углом подобны, а у подобных треугольников соответствующие стороны пропорциональны. Так, в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 8) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°

Рассмотрим прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 9). Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то АВ = 2. По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 9), то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Рассмотрим равнобедренный прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 10). По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Составим таблицу значений синусов, косинусов, тангенсов и котангенсов для углов 30°, 45° и 60°.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение значений тригонометрических функций

Значения синуса, косинуса, тангенса и котангенса данного угла можно приближенно находить при помощи специальных тригонометрических таблиц* либо калькулятора.

Например, с помощью калькулятора, компьютера или мобильного телефона (смартфона) находим: sin45° = 0,707106… . Приближенное значение тригонометрических функций при решении задач будем брать с округлением до четырех знаков после запятой: sin45° = 0,7071.
Итак, точное значение sin 45° равно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения . а приближенное — 0,7071.
Таблицы и калькулятор также позволяют находить величину острого угла по значению синуса, косинуса или тангенса. Например, найдем острый угол, синус которого равен 0,4175. Выбрав на компьютере вид калькулятора «инженерный», далее «градусы», нужно ввести последовательно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. На экране появится ответ: 24,676… . Округлим его до десятых долей градуса и получим 24,7°. Учитывая, что 1° содержит 60 угловых минут, получим: 0,7° = 0,7 • 60′ = 42′. Искомый угол, синус которого 0,4175, приближенно равен 24°42′.
А теперь выполните Тест 3.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тригонометрические функции острого угла

Синус, косинус, тангенс и котангенс являются функциями угла, так как каждому острому углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответствует единственное значение синуса, косинуса, тангенса и котангенса. Они называются тригонометрическими функциями и записываются так: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Поскольку в прямоугольном треугольнике катет меньше гипотенузы, то для острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливо: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения следовательно синус и косинус острого угла положительны и меньше 1.
Тангенс и котангенс острого угла могут принимать любое положительное значение. Например, tg85° ~ 11,4.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

С увеличением острого угла синус и тангенс возрастают, а косинус и котангенс убывают (рис. 11), то есть если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (cm. c. 28, задачу 2*). Это гарантирует, что синус (косинус, тангенс и котангенс) острого угла определяют этот угол однозначно.

Пример №1

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, катет ВС равен 8 см, гипотенуза АВ равна 17 см. Найти косинус угла А (рис. 12).

Решение:

По теореме Пифагора найдем катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см). Косинус острого угла прямоугольного треугольника равен от ношению прилежащего катета к гипотенузе. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №2

Гипотенуза АВ прямоугольного треугольника АВС равна 20 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 13). Найти площадь треугольника.

Решение:

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения ВС = 4 • 4 = 16(см), Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 96 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №3

При помощи циркуля и линейки построить угол, синус которого равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Идея решения. Построим прямоугольный треугольник с катетом, равным 4 единицы, и ги­потенузой, равной 5 единиц. Синус угла, противолежащего указанному катету, будет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение. 1) Строим прямой угол С (рис. 14), для чего проводим произвольную прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения отмечаем на ней точку С и строим прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проходящую через точку С перпендикулярно прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (вспомните по рисунку алгоритм построения). 2) На прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от точки С откладываем последова­тельно четыре равных отрезка. Получаем отрезок ВС, который содержит 4 единицы. 3) Строим окружность с центром в точке В радиусом, равным пяти единицам. В пересечении этой окружности и прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получаем точку А.
Угол ВАС — искомый.

Доказательство:

Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгоритм решения прямоугольного треугольника

Под решением прямоугольного треугольника понимают нахождение его неизвестных сторон и углов по некоторым элементам, определяющим этот треугольник. Рассмотрим три задачи:

  1. нахождение катета по гипотенузе и острому углу;
  2. нахождение катета по другому катету и острому углу;
  3. нахождение гипотенузы по катету и острому углу.

Пример №4

Гипотенуза прямоугольного треугольника равна 6, острый угол равен 32° (рис. 23). Найти катет, прилежащий к данному углу. Ответ округлить до 0,1.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Примем длину искомого катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 5,1.

Пример №5

Катет прямоугольного треугольника равен 2,5, а прилежащий к нему угол равен 68° (рис. 24). Найти другой катет. Ответ округлить до 0,1.
 

Решение:

Примем длину неизвестного катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 6,2.

Пример №6

Катет прямоугольного треугольника равен 4,2, противолежа­щий ему угол равен 29° (рис. 25). Найти гипотенузу треугольника. Ответ округлить до 0,1.

Решение:

Примем длину гипотенузы за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 8,7.

Правила решения прямоугольного треугольника

Преобразуем формулы синуса, косинуса, тангенса и котангенса и запишем результаты для треугольника на рисунке 26:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Удобно пользоваться следующими правилами:

  • Катет равен гипотенузе, умноженной на синус противолежащего или на косинус прилежащего угла (рис. 27, а).
  • Гипотенуза равна катету, деленному на синус противолежащего или на косинус прилежащего угла (рис. 27, б).
  • Катет равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к первому катету угла (рис. 27, в).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №7

В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 28).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Полезно запомнить!
Если в прямоугольном треугольнике с углом 30° (или 60°) дан меньший катет а, то больший
катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
 (рис. 29, а). А если дан больший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то меньший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 29, б).
Если в прямоугольном треугольнике с углом 45° дан катет а,

то гипотенуза Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 30, а), а если дана гипотенуза с, то ка­тет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 30, б).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №8

В прямоугольном треугольнике АВС известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота, проведенная к гипотенузе (рис. 31). Найти проекцию НВ катета ВС на гипотенузу.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Заметим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №9

В равнобедренной трапеции ABCD меньшее основание ВС равно 7, боковая сторона АВ равна 10, sinA = 0,8. Найти площадь трапеции.

Решение:

Площадь трапеции находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияНайдем большее основание и высоту трапеции. Проведем в трапеции высоты ВН и СК (рис. 32). Так как НВСК — прямоугольник (все углы — прямые), то НК = ВС = 7. Из равенства прямоугольных треугольников АНВ и DKC (по катету и гипотенузе) АН = KD. Из прямоугольного треугольника АНВ находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда АН = 6 (пифагорова тройка 6, 8, 10). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 104.

Тригонометрические формулы

Используя формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениягде Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — катеты, с — гипотенуза прямоугольного треугольника, можно по­лучить формулы, связывающие значения тригонометрических функций острого угла.

1. Основное тригонометрическое тождество

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

По теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

Так как синус и косинус острого угла а положительны, то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Выражение тангенса и котангенса через синус и косинус

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

a)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения б)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Проверим справедливость основного тригонометрического тождества.
Верно ли, например, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Да, это верно, так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Основная задача

ДаноСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый угол.

Найти: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. Используем основное тригонометрическое тождество: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как косинус острого угла больше нуля, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Изобразим прямоугольный треугольник с катетом 5 и гипотенузой 13 (рис. 41). Синус угла, противолежащего данному катету, равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поэтому этот угол равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора другой катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 3. Пусть катет, противолежащий углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен 5х, тогда гипотенуза равна Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора прилежащий катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияОтсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №10

В параллелограмме ABCD (рис. 42) сторона ВС = 50 см, высота ВК = 30 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Найти периметр параллелограмма.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Из треугольника АВК находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз основного тригонометрического тождества следует: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (так как угол А — острый, то sinA > 0). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(см ) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Ответ: 168 см.

Пример №11

Доказать, что при увеличении угла от 0° до 90°:

а) синус угла увеличивается от 0 до 1, а косинус — уменьшается от 1 до 0;

б) тангенс угла увеличивается от О до бесконечности.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

а) Рассмотрим прямоугольные треугольники с гипотенузой, равной 1. Для этого опишем радиусом ОМ, равным 1, четверть окружности — ду­гу МК (рис. 43). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Опустим из точки А перпендикуляр АВ на ОМ. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При повороте радиуса ОМ вокруг центра О против часовой стрелки, начиная от ОМ и заканчивая ОК, угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0° до 90° (образуя указанные на чертеже углы: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д.). Величина катета АВ, противолежащего углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0 до 1. А величина катета ОВ, наоборот, будет уменьшаться от 1 до 0. Таким образом, при увеличении угла от 0° до 90° его синус увеличивается от 0 до 1, а косинус уменьшается от 1 до 0.
Из формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения также следует (учитывая положительность синуса и косинуса острого угла), что с увеличением синуса от 0 до 1 косинус уменьшается от 1 до 0. 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения 

б) Для определения изменения тангенса угла удобно рассматривать треугольники, у которых при­лежащий катет не изменяется и остается равным 1, а противолежащий катет изменяется. Рассмотрим прямоугольный треугольник АОМ, у которого отре­зок ОМ = 1, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 44). По определению Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения станем изменять, перемещая точку А по прямой MN, начиная от точки М и проходя через точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д. При этом угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и его тангенс начнут возрастать. Таким образом, когда угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения при движении точки А вверх будет стремиться к углу КОМ, равному 90°, то тангенс этого угла будет неограниченно возрастать.
К такому же выводу можно прийти, рассматривая формулу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При увеличении угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от 0° до 90° числитель дроби будет увеличиваться от 0 до 1, а знаменатель — уменьшаться от 1 до 0, значит, вся дробь будет увеличиваться от 0 до бесконечности. Таким образом, при увеличении угла от 0° до 90° его тангенс увеличивается от 0 до бес­конечности.

Пример №12

В основании прямоугольного параллелепипеда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения лежит квадрат, диагональ которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см. Диагональ Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения боковой грани составляет с ребром основания Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 46). Найдите объем параллелепипеда.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Объем прямоугольного параллелепипеда находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, где а, b и с — его измерения. Так как ABCD — квадрат, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Искомый объем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения.
Ответ: 576 см3.

Синус, косинус, тангенс и котангенс тупого угла

1. Определение значений Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а от 0° до 180°

Ранее мы дали определения синуса, косинуса, тангенса и котангенса острого угла через отношение сторон прямоугольного треугольника. Сделаем теперь это для углов от 0° до 180°.

Рассмотрим полуокружность с центром в начале координат и радиусом, равным 1 (рис. 48). От положительной полуоси Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения против часовой стрелки отложим острый угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения сторона которого пересекает полуокружность в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника OMN, где ОМ = 1, ON = х, MN = у, получаем: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то есть синус, косинус,

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

тангенс и котангенс острого угла а выражаются через координаты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Точно так же определяются значения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а из промежутка Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, синусом угла а называется ордината Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения косинусом — абсцисса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тангенсом — отношение ординаты к абсциссе Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения  а котангенсом — отношение абсциссы к ординате Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки М единичной полуокружности.

Например, для тупого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 48), где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для любого положения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения на единичной полуокружности верно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (докажите самостоятельно). Поэтому для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно основное тригонометрическое тождество Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Также верны тождества: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение синуса, косинуса, тангенса и котангенса тупых углов

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 49). Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по гипотенузе и острому углу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТочки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения имеют координаты: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято есть для углов от 0° до 180° справедливы равенства: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
 

Синус тупого угла равен синусу смежного с ним острого угла.
Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».

 

Пример 1. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Разделив почленно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияна равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения а затем наоборот, получим равенства:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».

Пример 2. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Указанные формулы и правила позволяют находить значения триго­нометрических функций тупого угла через значения тригонометрических функций острого угла, который дополняет данный тупой угол до 180°: синусы углов, дополняющих друг друга до 180°, равны между собой, а косинусы, тангенсы и котангенсы — противоположны. Так как синус, косинус, тангенс и котангенс острого угла по­ложительные, то синус тупого угла положительный, а косинус, тангенс и котангенс — отрицательные.

Значения тригонометрических функций для углов 0°, 90°, 180°

Если луч ОМ совпадет с лучом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 50), то будем считать, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

а) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияне определено, так как деление на нуль невозможно; 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениязначение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно; в) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значе­ние Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно.
Поскольку проекции радиуса, равного 1, на оси координат меньше либо равны 1, то для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливы неравенства: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №13

Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — тупой угол.

Решение:

Способ 1. Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поскольку угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — тупой, то его косинус отрицательный. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТогдаСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Синус острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения смежного с данным тупым углом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен также Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Построим прямоугольный треугольник со сторонами 3, 4 и 5 (рис. 52). В нем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТак как косинусы смежных углов противоположны, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Аналогично, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ:Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Формулы площади треугольника и площади параллелограмма

Тригонометрические функции позволяют получить формулы для вычисления площади треугольника и площади параллелограмма. Сформулируем их в виде двух теорем.

Теорема. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть в треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота (рис. 56, а).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Из  прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тупой (рис. 56, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый. Из прямоугольно­го треугольника АКС следует, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — прямоугольный с катетами Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Учитывая, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Теорема доказана.

Теорема. Площадь параллелограмма равна произведению двух его соседних сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Используя рисунок 57, докажите эту теорему самостоятельно.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Замечание. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то параллелограмм является прямоугольником. Его площадь Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, формула площади прямоугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — частный случай формулы площади параллелограмма Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Известно, что слово «синус» в переводе с латинского имеет множество значений: изгиб, дуга, пазуха, бухта, впадина, залив, хорда, забота и нежная любовь. При помощи Интернета выясните:

а) какое из значений подходит к математическому понятию «синуса»;

б) какие из значений относятся к медицине и почему насморк врачи иногда называют синуситом.

Пример №14

Дан параллелограмм ABCD, площадь которого 40 см2, а периметр 36 см. Найти стороны параллелограмма, если его угол D равен 150° (рис. 58).
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Полупериметр параллелограмма ра­вен 18 см. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениясм, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Тогда

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
По условию Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Составим и решим уравнение: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— корни.
Если CD = 8 см, то AD = 10 см, если CD = 10 см, то AD = 8 см.
Ответ: 8 см, 10 см.

Пример №15

Доказать, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними, т.е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть диагонали Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения четырехугольника ABCD (рис. 59) пересекаются в точке О, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Докажем, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Заме­тим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениякак вертикальные, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по свойству смежных углов. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По фор­муле площади треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения у получим:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Утверждение доказано

Среднее пропорциональное (среднее геометрическое) в прямоугольном треугольнике

Если для положительных чисел Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения выполняется пропорция Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется средним пропорциональным чисел а и с (между чис­лами а и с). Из указанной пропорции Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения В такой форме записи число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения еще называют средним геометрическим чисел а и с.
 

Пример №16

Число 4 является средним пропорциональным, или средним геометрическим чисел 2 и 8, так как = Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения или Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, проведем высоту СК (рис. 61). Отрезок АК является проекцией катета АС на гипотенузу, а отрезок ВК — проекцией катета ВС на гипотенузу. Катеты, гипотенуза, высота и проекции катетов на гипотенузу связаны отношениями, которые мы сформулируем в виде следующей теоремы.

Теорема (о среднем пропорциональном в прямоугольном треугольнике).

а) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 61).

б) Катет есть среднее пропорциональное между гипотенузой и проек­цией этого катета на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

а)3аметим, что если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения до 90°) (рис. 62). Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Аналогично доказывается, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Теорема доказана.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Обозначив катеты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения гипотенузу с, высо­ту Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проекции катетов на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 63), получим следующие формулы: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №17

Найти площадь прямоугольного треугольника, если проекции катетов на гипотенузу равны 2 см и 8 см.

Решение:

Пусть СН — высота прямоугольного треугольника АВС  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения АН = 2 см — проекция катета АС на гипотенузу, НВ = 8 см —

проекция катета СВ на гипотенузу (рис. 64). Так как высота СН есть среднее геометрическое между проекциями катетов на гипотенузу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 20 см2.

Пример №18

В прямоугольном треугольнике АВС из вершины прямого угла С проведена высота Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, АК = 12 см (рис. 65). Найти гипотенузу АВ.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо смыслу задачи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Значит, КВ = 3 см, АВ = 15 см.
Ответ: 15 см.

Пример №19

При помощи циркуля и линейки построить отрезок, равный среднему геометрическому отрезков т и п .

Решение:

Пусть даны отрезки т и п . Необходимо построить отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение.
1) На произвольной прямой откладываем данные отрезки: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2) На отрезке АВ как на диаметре строим полуокружность, для чего находим середину О отрезка АВ, откуда ОА — радиус данной окружности.

3) Из точки К восстанавливаем перпендикуляр к прямой АВ до пересечения с полуокружностью в точке М (рис. 66).
Отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— среднее пропорциональное отрезков Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— прямой как вписанный угол, опирающийся на диаметр. В прямоугольном треугольнике АМВ высота МК является средним пропорциональным проекций катетов AM и МВ на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Повторение*
В 8-м классе мы доказали следующую теорему:

Теорема (о касательной и секущей). Если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной, соединяющего данную точку и точку касания, равен произведению отрезков се­ кущей, соединяющих данную точку и точки пересечения секущей с окружностью, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 70).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Как видим, отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения является средним пропорциональным между отрезками Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения секущей. Глядя на рисунок 70, вспомните идею доказательства теоремы.

Теорема о площадях треугольников с общим (равным) углом

Площади треугольников, имеющих общий угол (или равный угол), относятся как произведения сторон, заключающих этот угол (рис. 75),
т.е.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие: Верно:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №20

Площадь треугольника АВС равна 16, АК : КС = 3 :1 , AM : МВ = 1 :2 (рис. 76). Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. По следствию из теоремы о площадях треугольников с общим углом получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2.  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 4.

Теорема Менелая

Если дан треугольник АВС и прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает стороны ВС, АВ и продолжение стороны АС в точках Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответственно (рис. 79), тоСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Проведем отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(по двум углам), то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Перемножив почленно указанные пропорции, получим

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Замечание. При составлении произведения трех отношений теоремы Менелая можно начинать с любой из шести точек (трех вершин треугольника и трех точек пересечения прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения с прямыми, содержащими стороны треугольника) и двигаться по контуру либо по часовой, либо против часовой стрелки. При этом вершины треугольника и точки пересечения должны чередоваться.

Пример №21

В треугольнике АВС на сторонах АВ и АС взяты соответственно точки М и К, такие, что AM : МВ = 2 :1 , АК : КС = 3 :2 . Отрезки СМ и ВК пересекаются в точке О. Найти ВО : ОК.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1 (теорема Менелая). Рассмотрим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 80). Прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает две его стороны АВ и ВК соответственно в точках М и О и продолжение тре­тьей стороны АК в точке С. По теореме Менелая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2 (теорема Фалеса обобщенная). Проведем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 81). По теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда АЕ — три части, ЕМ — две части, AM — пять частей, откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Для Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
по теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №22

Дан равнобедренный треугольник АВС (АВ = ВС), площадь которого равна 80. Точка К делит высоту ВН в отношении 1 : 3, считая от основания. Прямая АК пересекает сторону ВС в точке М. Найти площадь четырехугольника НКМС (рис. 82).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

1) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (ВН — высота и медиана треугольника АВС).

2) Применим теорему Менелая к треугольнику НВС.
Прямая AM пересекает его стороны ВН и ВС соответственно в точках К и М и продолжение стороны НС в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 22.

Неравенство Коши

Среднее арифметическое двух неотрицательных чисел больше либо равно их среднему геометрическому, т. е.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Действительно, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгебраическое доказательство указанного неравенства таково. Рассмотрим разность левой и правой частей неравенства Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияпри всех допустимых Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Следовательно, неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно.
Неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется неравенством Коши по имени известного французского математика и часто используется при решении олимпиадных задач.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Приведем геометрическое доказательство указанного неравенства. Изобразим окружность с диаметром АВ и центром в точке О (рис. 87). На диаметре возьмем точку К (для определенности левее центра О). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из точки К вос­становим перпендикуляр КС, где точка С принад­лежит окружности. Проведем радиус ОС. Так как вписанный угол, опирающийся на диаметр, прямой, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения прямоугольный, СК — его высота, проведенная к гипотенузе. По теореме о среднем пропорциональном в прямоугольном треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Но радиус ОС равен половине диаметра АВ, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения катет меньше гипотенузы, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как катет меньше гипотенузы. Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Равенство левой и правой частей неравенства достигается, когда точ­ка К совпадает с точкой О и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения становится равнобедренным и прямоугольным. Поэтому справедливо неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решеният. е Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

ЗАПОМИНАЕМ

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Значения тригонометрических функций углов 30 45°, 60°: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Тригонометрические формулы (тождества): 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Примеры:  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4. Формулы площади треугольника и параллелограмма: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

5. Среднее пропорциональное в прямоугольном треугольнике: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

  • Сумма углов треугольника
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Угол — определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников

        Итак, в прошлый раз мы с вами успешно познакомились с тригонометрическими функциями — синусом, косинусом, тангенсом и котангенсом. И чётко уяснили себе следующее:

        1. Синус, косинус, тангенс и котангенс — это просто какие-то безразмерные числа. Отношения сторон в прямоугольном треугольнике. Для каждого конкретного угла — свои.

        2. Тригонометрические функции крепко-накрепко связаны с углом. Знаем угол — знаем и все его тригонометрические функции. И наоборот.

        Если не уяснили эти простые вещи, то добро пожаловать по ссылочке, пока не поздно. А мы продолжаем.

        То, что между этой великолепной четвёркой существует тесная связь, не вызывает никаких сомнений. Всякая связь в математике задаётся, чаще всего, формулами. В тригонометрии формул — огромное количество. Это и формулы приведения, и формулы сложения, двойного угла, понижения степени и многие-многие другие.

        В этом же уроке мы рассмотрим лишь самые главные из них. Они так и называются — основными тригонометрическими формулами. Их всего шесть.

        Вот они:

        Здесь «альфа» — какой-то угол.

        Эти шесть формул — краеугольный камень всей тригонометрии. То, чего не знать нельзя. Если вы не знаете, чему равен, скажем, косинус тройного угла — не проблема. Никто вас не осудит. Но если вы не знаете, что sin2x+cos2x = 1, то будьте готовы получить заслуженную двойку. Вот так вот.

        Сразу предупреждаю, что три последних формулы (4-6) очень часто выпадают из памяти. Почему-то… Можно, конечно, легко вывести эти формулы из первых трёх, но в тревожной боевой обстановке ЕГЭ, когда на карту поставлена ваша дальнейшая судьба… сами понимаете.) Но не переживайте, совсем скоро я вам покажу простой и наглядный способ вывести все эти формулы просто и безошибочно!

        Из этих формул сразу видно, что они неразрывно связывают между собой синус, косинус, тангенс и котангенс одного и того же угла. Именно эти формулы нам позволяют находить все тригонометрические функции одного и того же угла, если известна хотя бы одна из них. Причём (важно!) не находя сам угол! Такие задания очень популярны как сами по себе, так и могут быть промежуточным этапом в более серьёзных заданиях. В тригонометрических уравнениях, к примеру. И особенно в высшей математике, в тех же пределах, интегралах, дифференциальных уравнениях и прочих крутых темах.

        Кстати говоря, хочу обратить ваше внимание на один частый ляп в неправильном написании тригонометрических функций в степенях — в квадрате, в кубе и так далее.

        Например, выражение квадрат синуса (или синус в квадрате) в тригонометрии пишется вот так:

        sin2x

        Двойка (т.е. степень) в этом случае пишется между углом и названием функции. Эта запись как раз и говорит нам о том, что в квадрат возводится именно сама функция (т.е. в нашем случае — синус).

        А вот запись

        sin x2

        будет говорить уже о том, что в квадрат возводится, не синус угла, а только сам угол! Почувствуйте разницу, что называется.)

        Во избежание путаницы, ещё раз (и навсегда!) всё то же самое, но со скобочками:

        sin2x = (sin x)2

       sin x2 = sin(x2)

        Конечно, заниматься возведением углов в квадрат мы в школьной тригонометрии вряд ли будем. За ненадобностью.) Зато возведением функций в квадрат — постоянно. Так что привыкаем, не путаемся и пишем правильно.

        Ну что, посмотрим на вывод основных формул? Чтобы всё встало на свои места. Зачем и почему? Да потому, что любая формула запоминается гораздо проще, если есть возможность её «пощупать» в реале, а не механически зазубривать и бездумно принимать на веру, как само собой разумеющееся.) Тем более что это не просто, а очень просто!

Вывод и смысл основных тригонометрических формул.

        Первым делом, я снова нарисую наш старый добрый прямоугольный треугольник. Не обязательно по линеечке, по клеточкам, а просто схематично. От руки.

        Как-то вот так:

        

        Что нам понадобится ещё для дальнейшей работы?

        1. Теорема Пифагора:

        a2 + b2 = c2

        2. Определения тригонометрических функций:

        sin α = a/c

        cos α = b/c

        tg α = a/b

        ctg α = b/a

        3. Тождественные преобразования уравнений.

        Всё. Вот и все инструменты.

        А вот теперь начинается самое весёлое. Сейчас я беру нашу горячо любимую теорему Пифагора a2 + b2 = c2 и… начинаю всячески над ней издеваться, подвергая её всевозможным пыткам.) Результатами пыток станут целых три формулы из нашего списка!

        Итак, пытка №1. Берём теорему Пифагора

        a2 + b2 = c2

        и делим обе части на квадрат гипотенузы. На с2. А чего? Имеем полное право! Любая формула — это тоже уравнение! И к любой формуле применимы все те же тождественные преобразования (перенос вправо/влево, умножение/деление), которые мы проделываем для «обычных» уравнений с иксом.

        Что получим:

        

        А вот теперь соображаем, уже из тригонометрии, что же такое a/c? Правильно, синус альфа! Противолежащий катет (a) к гипотенузе (c). А b/c? Косинус альфа! А дробь с22  — это… это… единичка! Как и любое число, делённое само на себя, да. Элементарно, Ватсон!)

        Так у нас с вами рождается на свет формула №1:

        Эта формула — самая популярная во всей тригонометрии! По-другому её ещё называют основным тригонометрическим тождеством.

        Она же, но записанная слегка по-другому (в зависимости от того, что именно надо выразить):

        sin2α = 1 — cos2α

        cos2α = 1 — sin2α

        Эти две модификации формулы №1 весьма и весьма часто применяются в примерах по тригонометрии! Именно они позволяют легко перевращать синусы в косинусы (и наоборот). Имеет смысл запомнить.

        А теперь продолжаем мучить теорему Пифагора дальше.) А что если в этот раз поделить обе части не на c2, а, скажем, на b2? Ну разве b2 чем-то хуже?!

        Давайте поделим и посмотрим:

        

        

        И снова соображаем из тригонометрии (и нашего рисунка), что же такое a/b. Верно, тангенс альфа! А c/b? Так сразу и не скажешь… Стоп! Но ведь что такое b/c — это же нам ясно! Это косинус альфа! У нас же в формуле стоит тот же косинус, только перевёрнутый вверх ногами — c/b. Значит, справа в скобках у нас стоит величина, обратная косинусу: 1/cos α.

        Итого имеем следующее:

        

        Переписываем в привычном виде и рождаем формулу №5:

        А если поделить всё на a2? Верно! Получится шестая формула!

        Попробуйте получить самостоятельно, очень полезно.)

        Вторая, третья и четвёртая формулы выводятся совсем элементарно, исходя только из определения тригонометрических функций и элементарных действий с дробями. Теорема Пифагора здесь не нужна.

        Что, например, у нас получится, если мы просто поделим синус на косинус?

        Делим и получаем:

        

        И все дела.) С котангенсом — аналогично.

        А если перемножить тангенс и котангенс? Ну-ка, ну-ка…

        

        Вот и вся премудрость. Убедились, насколько всё просто?)

Решение простейших заданий по тригонометрии.

        Теория теорией, но нам ведь опыт наращивать надо, верно? Так что пора приступать к задачкам. Всё как всегда — от совсем простых и безобидных до вполне себе серьёзных.

        Ну что, приступим? :)

        1. Вычислить значение tg x, если ctg x = 1,25.

        Здесь, ясное дело, надо искать формулу, связывающую тангенс и котангенс. Это четвёртая формула. Самое главное — сообразить, что вместо «альфа» можно писать любую другую букву. Лишь бы везде одна и та же была. Для нашего задания будет:

        tg x · ctg x = 1

        Можно прямо в эту формулу подставить значение ctg x = 1,25:

        tg x · 1,25 = 1

        Осталось лишь решить это простенькое уравнение. Да-да. Ещё раз подчёркиваю, что любая формула, любое соотношение, соединённое знаком равенства («=»), — это всегда уравнение! А там, где уравнение, там автоматически и тождественные преобразования уравнений, да…

        Наше соотношение — это тоже уравнение. Где роль неизвестного играет tg x. Прошу заметить, не икс, а именно весь тангенс целиком! Вас же не смущает уравнение, скажем, y·1,25 = 1? Что вы обычно делаете в таких случаях? Правильно, делите обе части на 1,25, чтобы слева остался чистый игрек. Вот и здесь тоже делим обе части на 1,25, добиваясь слева чистого тангенса.

        Делим и получаем:

        tg x = 0,8

        И все дела. Это и есть верный ответ.

        Можно поступить иначе. Сначала выразить из общей формулы тангенс:

        tg x = 1/ctg x

        А уже теперь подставить вместо ctg x его значение 1,25. Получим то же самое. И так и эдак можно. Разницы — никакой. Но… если осознать смысл этой формулы поглубже, то можно получить очень простой и очень полезный практический приём.

        Запоминаем:

        Если единицу разделить на котангенс, то получим тангенс. И наоборот, единица, делённая на тангенс, даёт котангенс. Эти две функции взаимно обратны!

        Что? Не знаете, как разделить единичку на число? Ну, это вопрос не к тригонометрии. Вопрос к шестому классу, к дробям… Как разделить? Да просто перевернуть это самое число и все дела!

        Например:

        — если tg x = 3/4, то ctg x = 4/3;

        — если ctg x = 2, то tg x = 1/2;

        — если tg x = 0,7 = 7/10, то ctg x = 10/7;

        — если ctg x = 0,25 = 1/4, то tg x = 4.

        И так далее и тому подобное. В общем, вы поняли…)

        Продолжаем развлекаться?)

        Например, классика жанра:

        2. Известно, что β — острый угол в прямоугольном треугольнике.

        Найти sinβ, если cosβ = 0,6.

        Ищем формулу, связывающую синус и косинус. Это самая первая формула:

        sin2β+cos2β = 1

        Подставляем в неё известную нам величину 0,6 вместо косинуса:

        sin2β+0,62 = 1

        И считаем, как обычно:

        sin2β+0,36 = 1

        sin2β = 1 — 0,36

        sin2β = 0,64

        Вот, практически, и всё. У нас есть квадрат синуса. А нужен сам синус. Для этого осталось всего лишь извлечь корень и — ответ готов! Корень из 0,64 будет 0,8.

        sinβ = 0,8

        Задачка почти элементарная. Но словечко «почти» я здесь употребил не случайно. Почему? Дело всё в том, что ответ -0,8 тоже вполне себе подходит: (-0,8)2 тоже будет 0,64.

        Два разных ответа получается. А нужен один. Второй — неправильный. Что делать? Да всё как обычно! Внимательно прочитать задание! Там зачем-то сказано: «… если β — острый угол…» А лишних слов в заданиях, как правило, не бывает, да… Именно эти слова — и есть дополнительная информация к решению.

        Что такое острый угол? Это угол меньше 90 градусов. А у таких углов все тригонометрические функции (в том числе и синус, да…) всегда положительные. То есть, отрицательный ответ мы здесь просто отбрасываем. Имеем полное право.

        Ответ: sinβ = 0,8

        Собственно, на данном этапе нам такие тонкости особо не нужны. Пока… Ибо сейчас мы работаем только с прямоугольными треугольниками, где углы могут быть только острые. И не знаем, счастливые, что бывают и отрицательные углы, и углы в 1000 градусов… И у всех этих жутких углов тоже есть свои тригонометрические функции! С плюсом и с минусом. Всё от конкретного угла зависит.

        А вот старшеклассникам без учёта знака — никак. К сожалению… Но не будем бежать впереди паровоза. Всему своё время.)

        Решаем следующую задачку. Покруче.

        Определить косинус острого угла β в прямоугольном треугольнике, если ctgβ = 4/3.

        На первый взгляд, всё просто. Но попробуем найти в нашем списке формулу, связывающую котангенс и косинус. Ищем и… Вы правы! Такой формулы нету.) Надо как-то выкручиваться…

        Можно работать с шестой формулой:

        

        Подставим в эту формулу значение котангенса и преобразуем:

        

        Выразим из этой пропорции (т.е. тоже уравнения!) квадрат синуса:

        sin2β = 9/25

        Итак, квадрат синуса у нас есть. Теперь его легко можно превратить в квадрат косинуса по первой формуле:

        cos2β = 1 — sin2β

        

        Извлекаем корень и определяем сам косинус:

        

        Читаем ещё раз задание и вспоминаем, что у острого угла все тригонометрические функции всегда положительны. Отбрасываем отрицательное значение и получаем окончательный ответ:

        cosβ = 4/5

        Это был один способ. Можно решать и по-другому, через пятую формулу:

        

        Для этого нам надо:

        1) Превратить котангенс в тангенс по формуле №4;

        2) Подставить значение тангенса в формулу;

        3) Преобразовать выражение и выразить из него квадрат косинуса;

        4) Извлечь корень и получить два значения косинуса;

        5) Сообразить (из условия задания), что в прямоугольном треугольнике все тригонометрические функции всегда положительны. Отбросить отрицательный ответ и получить косинус.

        Как видим, хрен редьки не слаще, да.) Но это ещё не всё. Для такого решения надо ещё вспомнить эти формулы! А если забыли? Собственно, в этом-то и кроется главная проблема в их применении. Да ещё и куча вычислений… В общем, не подарок…

        Без паники! Для таких задачек есть очень простой и, главное, наглядный способ решения! Геометрический.) Читаем, вникаем и запоминаем.

        Итак, нам дано: ctgβ = 4/3.

        Нарисуем этот котангенс!

        Да-да! Схематично. Как? Очень просто! Берём черновик и рисуем любой прямоугольный треугольник. Кривовато, от руки, даже не соблюдая пропорций. У нас не ИЗО и не черчение с вами.) Выбираем любой острый угол и обозначаем его «бета».

        Вот так:

        

        Вспоминаем теперь, что котангенс — это отношение прилежащего катета к противолежащему. И ставим на соответствующих катетах их длины. Какие? А какие в нашем котангенсе записаны! 4 и 3. Противолежащий катет a = 3, а прилежащий b = 4.

        Кстати, прошу заметить, что реальные размеры треугольника нас совершенно не интересуют! Мы говорим сами себе: «Допустим, прилежащий к углу катет будет 4, а противолежащий — 3″. Тогда котангенс нашего угла β будет как раз 4/3, как и в задании.

        

        Чего ещё нам не хватает для полного счастья? Гипотенузы нам не хватает! Не беда: Пифагор ещё никого не подводил.)

        Считаем:

        c2 = a2 + b2

        c2 = 42 + 32 = 25

        c = 5

        Итак, гипотенуза равна пяти. Подписываем на картинке.)

        А теперь считаем косинус прямо по заклинанию: отношение прилежащего катета к гипотенузе.

        cosβ = b/c = 4/5

        Всё! Быстро, правда?) Вот такой красивый графический способ-лайт. Безо всяких формул.) Ну… почти. Ведь теорему Пифагора всяко надо знать, да.)

        Следующее задание.

        Упростите выражение:

        

        Что, внушает? В таких замороченных примерах необходимо понимать, что синусы и косинусы никоим образом не отменяют всей остальной математики. И подчиняются тем же самым общим правилам, что и обычные числа и буквы в алгебре! А именно — разложение на множители, формулы сокращённого умножения, раскрытие скобок, приведение подобных, сокращение дробей и т.п.

        Вас же никак не смущает дробь

        

        правда ведь? Хотя кого-то она, возможно, тоже смущает, да…

        Естественно, к основным правилам алгебры добавляется ещё и специфика самой тригонометрии, от этого никуда не денешься. Собственно, с этой целью и разбираем соответствующий пример, да.)

        Начнём с числителя нашей здоровенной дроби. Забудем на минутку про тригонометрию и прикинем, что там можно сделать, основываясь на обычных правилах алгебры. Да хотя бы вынести один синус за скобки! Верно, давайте вынесем:

        sin3x·cos x + sin x·cos3x = sin x (sin2x·cos x+cos3x)

        Ой, ещё и косинус вынести можно!

        sin x (sin2x·cos x+cos3x) = sin x·cos x (sin2x+cos2x)

        Вот так. Самые грамотные вообще сразу целиком вынесут произведение sin x·cos x за скобку. Знания и наблюдательность иногда очень помогают. Если они есть.)

        А вот теперь и тригонометрия в дело вступает! Что у нас в скобочках? Да! В скобочках у нас — чистая формула №1. Или основное тригонометрическое тождество:

        sin2x+cos2x = 1

        От умножения на единичку выражение не меняется. Значит, числитель нашей дроби будет не что иное, как просто sin x·cos x.

        Всё. Числитель упростили до упора. Работаем со знаменателем:

        (1–sin x)(1+sin x)

        А здесь что? Разность ква… Точно! Разность квадратов! Такая родная и знакомая формула:

        (ab)(a+b) = a2 — b2

        Под буквой «a» здесь скрывается единичка, а под буквой «b» — выражение sin x. Ну и что? Важно понимать, что под буквами в алгебраических выражениях может скрываться всё что угодно! И числа, и синусы, и логарифмы, и степени — любые сложные выражения! Алгебре все выражения по плечу. Иначе она не была бы алгеброй, да…)

        Вот и срабатываем прямо по формуле разности квадратов:

        (1–sin x)(1+sin x) = 12 — (sin x)2 = 1 — sin2x

        А вот теперь соображаем, уже из тригонометрии, что

        1 — sin2x = cos2x

        Вставляем упрощённые числитель и знаменатель в нашу дробь, сокращаем что сокращается и получаем:

        

        Казалось бы, всё. В рамках алгебры 7-го класса такая дробь дальнейшему упрощению уже не поддаётся, но алгебра в этом примере и так постаралась на славу. Зато в рамках тригонометрии эта дробь вполне себе упрощается! Что же такое синус поделить на косинус? Тангенс, конечно же! Чистая формула №2.

        

        Вот теперь всё. Значит, окончательный результат упрощения вот такой:

        

        Эффект потрясающий, правда?

        Запоминаем:

        В тригонометрии очень популярны задания, где надо использовать алгебру 7-го класса. А именно — разложение на множители, формулы сокращённого умножения, раскрытие скобок, приведение подобных, сокращение дробей и т.п. Проверяем замороченные примеры на алгебру 7-го класса!

        Ещё из той же оперы:

        Докажите тождество:

        

        Напоминаю, что страшная фраза «доказать тождество» всего лишь означает, что надо упростить обе части предлагаемого равенства (или какую-то одну, более сложную) и убедиться, что слева и справа стоит одно и то же выражение.

        Вот и пробуем добраться до одинакового выражения! Начинаем с левой части. Превращаем тангенс в отношение синуса к косинусу по второй формуле:

        

        Выражение в скобках превращаем в квадрат косинуса по первой формуле:

        

        Подставляем, сокращаем косинусы и получаем:

        

        Ну вот. Левая часть упрощена по максимуму. С правой частью аналогично — формулы №1 и №3 нам в помощь:

        

        Вот и всё! Слева и справа мы получили совершенно одинаковые выражения! А именно — sinα·cosα. Что и требовалось доказать.)

        Итак, самое главное.

        Чётко уясняем: тригонометрические функции (синус, косинус, тангенс и котангенс) одного угла неразрывно связаны между собой основными тригонометрическими формулами. Если нам известна хотя бы одна из функций — значит, можно (при наличии необходимой дополнительной информации) вычислить и все остальные!

        А теперь порешаем, как обычно.

        Простенькие задачки:

        1. Косинус острого угла равен 7/25. Найдите синус этого угла.

        2.  Известно, что β — угол в прямоугольном треугольнике. Найти tgβ, если sinβ = 15/17.

        3. Найдите косинус острого угла A, если известно, что ctg A = 2,4.

        Покруче:

        4. Найдите значение выражения 4cos213° — 4 + 4sin213°.

        5. Упростите выражение и найдите его значение, если sinβ = 1:

        

        И совсем круто:

        6. Известно, что tg y = 3. Найдите значение выражения:

        

        Что, страшно? Мы такого не решали? Да, не решали. Но и самим поразмышлять тоже иногда полезно, да.) Подсказка: основное свойство дроби вам в помощь! Ну и формула №2 для тангенса, само собой.)

        Ответы (в традиционном беспорядке):

        

Соотношения между тригонометрическими функциями с одинаковыми значениями аргумента

tan⁡z=sin⁡z/cos⁡z  ,(cos⁡z)2+(sin⁡z)2=1  ,
tan z =sin z /cos z ;,
qquad
(cos z)^2 +(sin z)^2 =1 ;,

1+(tan⁡z)2=(cos⁡z)−2  ,1+(tan⁡z)−2=(sin⁡z)−2  .
1 +(tan z)^2 =(cos z)^{-2} ;,
qquad
1 +(tan z)^{-2} =(sin z)^{-2} ;.

Формулы b), c) и d) позволяют выразить через любую из трех функций cos⁡xcos x, sin⁡xsin x, tan⁡xtan x две другие данные функции с точностью до знака:
cos⁡z=±1−(sin⁡z)2=±11+(tan⁡z)2=±1/tan⁡z1+(1/tan⁡z)2  ,
cos z =pm sqrt{1 -(sin z)^2}
=pm frac{1}{ sqrt{1 +(tan z)^2} }
=pm frac{1/tan z}{ sqrt{1 +(1/tan z)^2} } ;,

sin⁡z=±1−(cos⁡z)2=±tan⁡z1+(tan⁡z)2=±11+(1/tan⁡z)2  ,
sin z =pm sqrt{1 -(cos z)^2}
=pm frac{tan z}{ sqrt{1 +(tan z)^2} }
=pm frac{1}{ sqrt{1 +(1/tan z)^2} } ;,

tan⁡z=±1−(cos⁡z)2cos⁡z=±sin⁡z1−(sin⁡z)2  .
tan z =pm frac{ sqrt{1 -(cos z)^2} }{cos z}
=pm frac{sin z}{ sqrt{1 -(sin z)^2} } ;.

Формулы приведения

Следующие соотношения представляют собой частные случаи форул сложения (см. пункт 3); они позволяют выражать значения тригонометрических функций для любого значения аргумента zz, учитывая четность и периодичность соответствующей функции, через значения тригонометрических функций от аргумента z′z’, удовлетворяющего условию 0≤Rez′<π/40le text{Re} z'< pi/4. В частности, значения тригонометрических функций от произвольного действительного аргумента могут быть выражены через значения функций от аргумента, заключенного между 00 и π/4pi/4.
cos⁡(π+z)=−cos⁡z  ,sin⁡(π+z)=−sin⁡z  ,
cos(pi +z) =-cos z ;,qquad
sin(pi +z) =-sin z ;,

cos⁡(π/2−z)=sin⁡z  ,sin⁡(π/2−z)=cos⁡z  ,
cos(pi/2 -z) =sin z ;,qquad
sin(pi/2 -z) =cos z ;,

tan⁡(π/2−z)=1/tan⁡z  .
tan(pi/2 -z) =1/tan z ;.

С помощью данных формул можно составить таблицу формул приведения (см. таблицу 1).

Таблица 1. Формулы приведения для тригонометрических функций

z′=π/2±zz’ =pi/2 pm z z′=π±zz’ =pi pm z z′=(3/2) π±zz’ =(3/2) ,pi pm z z′=2π±zz’ =2pi pm z
cos⁡z′cos z’ ∓sin⁡zmp sin z −cos⁡z-cos z ±sin⁡zpm sin z cos⁡zcos z
sin⁡z′sin z’ cos⁡zcos z ∓sin⁡zmp sin z −cos⁡z-cos z ±sin⁡zpm sin z
tan⁡z′tan z’ ∓1/tan⁡zmp 1/tan z ±tan⁡zpm tan z ∓1/tan⁡zmp 1/tan z ±tan⁡zpm tan z

Формулы сложения для тригонометрических функций

cos⁡(z1+z2)=cos⁡z1⋅cos⁡z2−sin⁡z1⋅sin⁡z2  ,
cos(z_1 +z_2) =cos z_1 cdot cos z_2 -sin z_1 cdot sin z_2 ;,

cos⁡(z1−z2)=cos⁡z1⋅cos⁡z2+sin⁡z1⋅sin⁡z2  ,
cos(z_1 -z_2) =cos z_1 cdot cos z_2 +sin z_1 cdot sin z_2 ;,

sin⁡(z1+z2)=sin⁡z1⋅cos⁡z2+cos⁡z1⋅sin⁡z2  ,
sin(z_1 +z_2) =sin z_1cdot cos z_2 +cos z_1 cdot sin z_2 ;,

sin⁡(z1−z2)=sin⁡z1⋅cos⁡z2−cos⁡z1⋅sin⁡z2  ,
sin(z_1 -z_2) =sin z_1 cdot cos z_2 -cos z_1 cdot sin z_2 ;,

tan⁡(z1+z2)=tan⁡z1+tan⁡z21−tan⁡z1⋅tan⁡z2  ,
tan(z_1 +z_2) =frac{ tan z_1 +tan z_2 }{ 1 -tan z_1 cdot tan z_2 } ;,

tan⁡(z1−z2)=tan⁡z1−tan⁡z21+tan⁡z1⋅tan⁡z2  .
tan(z_1 -z_2) =frac{tan z_1 -tan z_2 }{ 1 +tan z_1 cdot tan z_2 } ;.

Если z1=x2z_1=x_2 и z2=x2z_2=x_2 – действительные переменные, то формулы сложения для косинуса и синуса легко получить приравнивая действительные и мнимые части соотношения
cos⁡(x1+x2)+i⋅sin⁡(x1+x2)==(cos⁡x1+i⋅sin⁡x1)⋅(cos⁡x2+i⋅sin⁡x2)  .
cos(x_1+x_2) + icdot sin(x_1+x_2) =
\
=bigl(cos x_1 + icdot sin x_1bigr)cdot
bigl(cos x_2 +icdot sin x_2bigr) ;.

(которое следует из равентсва exp⁡(i (x1+x2))=exp⁡(i x1)⋅exp⁡(i x2)expbigl(i,(x_1 +x_2)bigr) =exp(i,x_1)cdot exp(i,x_2)). С помощью принципа аналического продолжения результат обобщается на случай произвольных ограниченных комплексных значений z1z_1 и z2z_2.

Если u(z)=α cos⁡z+β sin⁡zu(z) =alpha ,cos z +beta ,sin z, где αalpha, β=constbeta =text{const}, и u′(z)=(d/dz) u(z)u'(z) =(d/d z) ,u(z), то

u(z1+z2)=u(z1)⋅cos⁡z2+u′(z1)⋅sin⁡z2  ,u(z_1 +z_2) = u(z_1)cdot cos z_2 +u'(z_1)cdot sin z_2 ;,

u(z1−z2)=u(z1)⋅cos⁡z2−u′(z1)⋅sin⁡z2    .
u(z_1 -z_2) = u(z_1)cdot cos z_2 -u'(z_1)cdot sin z_2 ; ;.

Дополнительные формулы сложения для тангенса:
tan⁡(z1+z2)=sin⁡(2 z1)+sin⁡(2 z2)cos⁡(2 z1)+cos⁡(2 z2)  ,
tan(z_1 +z_2) = frac{sin(2 ,z_1) +sin(2 ,z_2)}{cos(2 ,z_1) +cos(2 ,z_2)} ;,

tan⁡(z1+z2)=cos⁡(2 z2)−cos⁡(2 z1)sin⁡(2 z1)−sin⁡(2 z2)  .
tan(z_1 +z_2) = frac{cos(2 ,z_2) -cos(2 ,z_1)}{sin(2 ,z_1) -sin(2 ,z_2)} ;.

Данные формулы можно использовать при определении действительной и мнимой частей функций tan⁡ztan z и 1/tan⁡z1/tan z комплексного аргумента.

Формулы e) и f) можно получить следующим образом:

tan⁡(z1+z2)=sin⁡(z1+z2)cos⁡(z1+z2)=2 sin⁡(z1+z2)⋅cos⁡(z1−z2)2 cos⁡(z1+z2)⋅cos⁡(z1−z2)=…  ,
tan(z_1 +z_2) =frac{sin(z_1 +z_2)}{cos(z_1 +z_2)}
=frac{2 ,sin(z_1 +z_2)cdot cos(z_1 -z_2)}{2 ,cos(z_1 +z_2)cdot cos(z_1 -z_2)} =… ;,

tan⁡(z1+z2)=sin⁡(z1+z2)cos⁡(z1+z2)=2 sin⁡(z1+z2)⋅sin⁡(z1−z2)2 cos⁡(z1+z2)⋅sin⁡(z1−z2)=…  ,
tan(z_1 +z_2) =frac{sin(z_1 +z_2)}{cos(z_1 +z_2)}
=frac{2 ,sin(z_1 +z_2)cdot sin(z_1 -z_2)}{2 ,cos(z_1 +z_2)cdot sin(z_1 -z_2)} =… ;,

откуда следует необходимый результат.

Тригонометрические функции двойного и половинного аргумента

cos⁡(2z)=(cos⁡z)2−(sin⁡z)2=1−(tan⁡z)21+(tan⁡z)2  ,
cos(2 z) =(cos z)^2 -(sin z)^2 =frac{1 -(tan z)^2}{1 +(tan z)^2 } ;,

sin⁡(2z)=2 sin⁡z cos⁡z=2 tan⁡z1+(tan⁡z)2  ,
sin(2 z) =2,sin z ,cos z =frac{2,tan z}{1 +(tan z)^2} ;,

tan⁡(2z)=2 tan⁡z1−(tan⁡z)2  ,
tan(2 z) =frac{2,tan z}{1 -(tan z)^2} ;,

2 (cos⁡(z/2))2=1+cos⁡z  ,
2,bigl(cos(z/2)bigr)^2 =1 +cos z ;,

2 (sin⁡(z/2))2=1−cos⁡z  ,
2,bigl(sin(z/2)bigr)^2 =1 -cos z ;,

tan⁡(z/2)=sin⁡z1+cos⁡z=1−cos⁡zsin⁡z  .
tan(z/2) =frac{sin z}{1 +cos z} =frac{1 -cos z}{sin z} ;.

Если f(z)f(z) – рациональная или дробно-рациональная функция от cos⁡zcos z и sin⁡zsin z, то с помощью формул a) и b) ее можно представить в виде дробно-рациональной функции одной переменной ξ=tan⁡(z/2)xi=tan(z/2). Поэтому при решении уравнения f(z)=0f(z)=0 часто оказывается целесообразной замена независимой переменной по формуле ξ=tan⁡(z/2)xi=tan(z/2). Аналогичная замена переменной может применяться при интегрировании функции f(z)f(z).

Формулы для кратных значений аргумента

Пусть mm – целое положительное число.

cos⁡(mz)=Tm(cos⁡z)  ,sin⁡(mz)=1m sin⁡z⋅Tm′(cos⁡z)  ,
cos(m z) =T_m (cos z) ;,qquad
sin(m z) =frac{1}{m} ,sin z cdot T’_m (cos z) ;,

где Tm(ξ)T_m(xi) и Tm′(ξ)T’_m(xi) – полиномы Чебышева и их производные.

cos⁡(m z)=∑k=0m/2(−1)k Cm2k⋅(cos⁡z)m−2k⋅(sin⁡z)2k
cos(m ,z) = sum_{k=0}^{m/2}
(-1)^k ,C_m^{2 k}cdot bigl(cos zbigr)^{m -2 k}cdot bigl(sin zbigr)^{2 k}

=(cos⁡z)m−Cm2⋅(cos⁡z)m−2⋅(sin⁡z)2
= (cos z)^m -C_m^2 cdot (cos z)^{m-2}cdot (sin z)^2

+Cm4⋅(cos⁡z)m−4⋅(sin⁡z)4−…  ;
+C_m^4 cdot (cos z)^{m-4}cdot (sin z)^4 -… ;;

sin⁡(m z)=∑k=0(m−1)/2(−1)k Cm2k+1⋅(cos⁡z)m−2k−1⋅(sin⁡z)2k+1
sin(m,z) = sum_{k=0}^{(m-1)/2}
(-1)^k ,C_m^{2 k +1}cdot (cos z)^{m -2 k -1}cdot (sin z)^{2 k +1}

=Cm1⋅(cos⁡z)m−1⋅sin⁡z−Cm3⋅(cos⁡z)m−3⋅(sin⁡z)3
= C_m^1 cdot (cos z)^{m-1}cdot sin z
-C_m^3 cdot (cos z)^{m-3}cdot (sin z)^3

+Cm5⋅(cos⁡z)m−5⋅(sin⁡z)5−…  ;
+C_m^5 cdot (cos z)^{m-5}cdot (sin z)^5 -… ;;

tan⁡(m z)=∑k(−1)k Cm2k+1⋅(tan⁡z)2k+1∑k(−1)k Cm2k⋅(tan⁡z)2k
tan(m ,z)
= frac{ sum_k (-1)^k ,C_m^{2 k +1}cdot (tan z)^{2 k +1} }
{ sum_k (-1)^k ,C_m^{2 k}cdot (tan z)^{2 k} }

=Cm1⋅tan⁡z−Cm3⋅(tan⁡z)3+Cm5⋅(tan⁡z)5−…1−Cm2⋅(tan⁡z)2+Cm4⋅(tan⁡z)4−…  .
= frac{ C_m^1 cdot tan z -C_m^3 cdot (tan z)^3 +C_m^5 cdot (tan z)^5 -… }
{ 1 -C_m^2 cdot (tan z)^2 +C_m^4 cdot (tan z)^4 -… } ;.

Если z=xz=x – действительная переменная, то формулы для кратных значений аргумента косинуса и синуса легко получить приравнивая действительные и мнимые части соотношения
cos⁡(m x)+i sin⁡(m x)=(cos⁡x+i sin⁡x)m
cos(m,x) + i,sin(m,x)
=bigl(cos x + i,sin xbigr)^m

=∑k=0mCmk⋅(cos⁡x)m−k⋅(i sin⁡x)k  .
=sum_{k=0}^{m} C_m^k cdot (cos x)^{m-k}cdot (i,sin x)^k ;.

(которое следует из равентсва eimx=(eix)me^{imx}=bigl(e^{ix}bigr)^m). Спомощью принципа аналического продолжения результат обобщается на случай произвольного ограниченного комплексного значения zz.

Степени тригонометрических функций

a) Если mm – нечетное положительное число, то

(cos⁡z)m=(1/2)m−1 ∑k=0(m−1)/2Cmk⋅cos⁡((m−2k) z)  ,(sin⁡z)m=(−1)(m−1)/2⋅(1/2)m−1 ∑k=0(m−1)/2(−1)k Cmk⋅sin⁡((m−2k) z)  .
(cos z)^m = (1/2)^{m-1} ,sum_{k=0}^{(m-1)/2}
C_m^k cdot cosbigl((m -2 k) ,zbigr) ;,
\
(sin z)^m = (-1)^{(m-1)/2}cdot (1/2)^{m-1} ,sum_{k=0}^{(m-1)/2}
(-1)^k ,C_m^k cdot sinbigl((m -2 k) ,zbigr) ;.

b) Если mm – четное неотрицательное число, то

(cos⁡z)m=(1/2)m−1 ∑k=0(m−2)/2Cmk⋅cos⁡((m−2k) z)+(1/2)m⋅Cmm/2  ,
(cos z)^m = (1/2)^{m-1} ,sum_{k=0}^{(m-2)/2}
C_m^k cdot cosbigl((m -2 k) ,zbigr)
+(1/2)^m cdot C_m^{m/2} ;,

(sin⁡z)m=(−1)m/2⋅(1/2)m−1 ∑k=0(m−2)/2(−1)k⋅Cmk⋅cos⁡((m−2k) z)
(sin z)^m = (-1)^{m/2}cdot (1/2)^{m-1} ,sum_{k=0}^{(m-2)/2}
(-1)^k cdot C_m^k cdot cosbigl((m -2 k) ,zbigr)

+(1/2)m⋅Cmm/2  .
+(1/2)^m cdot C_m^{m/2} ;.

Выражение сумм тригонометрических функций через произведения некоторых других тригонометрических функций

Обозначим

ξ≡(z1+z2)/2иη≡(z1−z2)/2  .
xi equiv (z_1 +z_2)/2 quadtext{и} quad eta equiv (z_1 -z_2)/2 ;.

Тогда

Формулы для косинусов и синусов:
cos⁡z1+cos⁡z2=2 cos⁡ξ⋅cos⁡η  ,
cos z_1 +cos z_2 = 2 ,cos xi cdot cos eta ;,

cos⁡z1−cos⁡z2=−2 sin⁡ξ⋅sin⁡η  ,
cos z_1 -cos z_2 = -2 ,sin xi cdot sin eta ;,

sin⁡z1+sin⁡z2=2 sin⁡ξ⋅cos⁡η  ,
sin z_1 +sin z_2 = 2 ,sin xi cdot cos eta ;,

sin⁡z1−sin⁡z2=2 cos⁡ξ⋅sin⁡η  .
sin z_1 -sin z_2 = 2 ,cos xi cdot sin eta ;.

Формулы для линейной комбинации косинуса и синуса: если u(z)=α cos⁡z+β sin⁡zu(z) =alpha ,cos z +beta ,sin z, где αalpha, β=constbeta =text{const}, и u′(z)=(d/dz) u(z)u'(z) =(d/d z) ,u(z), то

u(z1)+u(z2)=2 u(ξ)⋅cos⁡η  ,
u(z_1) +u(z_2) = 2 ,u(xi)cdot cos eta ;,

u(z1)−u(z2)=2 u′(ξ)⋅sin⁡η  .
u(z_1) -u(z_2) = 2 ,u'(xi)cdot sin eta ;.

Формулы для тангенсов:
tan⁡z1+tan⁡z2=sin⁡(z1+z2)cos⁡z1⋅cos⁡z2  ,
tan z_1 +tan z_2 = frac{ sin(z_1 +z_2) }{ cos z_1 cdot cos z_2 } ;,

tan⁡z1+1/tan⁡z2=cos⁡(z1−z2)cos⁡z1⋅sin⁡z2  ,
tan z_1 +1/tan z_2 = frac{ cos(z_1 -z_2) }{ cos z_1 cdot sin z_2 } ;,

1/tan⁡z1+1/tan⁡z2=sin⁡(z1+z2)sin⁡z1⋅sin⁡z2  .
1/tan z_1 +1/tan z_2 = frac{ sin(z_1 +z_2) }{ sin z_1 cdot sin z_2 } ;.

Выражение произведений тригонометрических функций через суммы некоторых других тригонометрических функций

Произведения двух функций:
2 cos⁡z1 cos⁡z2=cos⁡(z1+z2)+cos⁡(z1−z2)  ,
2 ,cos z_1 ,cos z_2 =cos(z_1 +z_2) +cos(z_1 -z_2) ;,

2 sin⁡z1 sin⁡z2=cos⁡(z1−z2)−cos⁡(z1+z2)  ,
2 ,sin z_1 ,sin z_2 =cos(z_1 -z_2) -cos(z_1 +z_2) ;,

2 cos⁡z1 sin⁡z2=sin⁡(z1+z2)−sin⁡(z1−z2)  .
2 ,cos z_1 ,sin z_2 =sin(z_1 +z_2) -sin(z_1 -z_2) ;.

Данные формулы удобно использовать, в частности, при интегрировании.

Произведения трех функций:
4 cos⁡z1 cos⁡z2 cos⁡z3=cos⁡(z1+z2+z3)+cos⁡(z1+z2−z3)
4 ,cos z_1 ,cos z_2 ,cos z_3
=cos(z_1 +z_2 +z_3) +cos(z_1 +z_2 -z_3)

+cos⁡(z2+z3−z1)+cos⁡(z3+z1−z2)  ,
+cos(z_2 +z_3 -z_1) +cos(z_3 +z_1 -z_2) ;,

4 cos⁡z1 cos⁡z2 sin⁡z3=sin⁡(z1+z2+z3)−sin⁡(z1+z2−z3)
4 ,cos z_1 ,cos z_2 ,sin z_3
=sin(z_1 +z_2 +z_3) -sin(z_1 +z_2 -z_3)

+sin⁡(z2+z3−z1)+sin⁡(z3+z1−z2)  ,
+sin(z_2 +z_3 -z_1) +sin(z_3 +z_1 -z_2) ;,

4 cos⁡z1 sin⁡z2 sin⁡z3=−cos⁡(z1+z2+z3)+cos⁡(z1+z2−z3)
4 ,cos z_1 ,sin z_2 ,sin z_3
=-cos(z_1 +z_2 +z_3) +cos(z_1 +z_2 -z_3)

−cos⁡(z2+z3−z1)+cos⁡(z3+z1−z2)  ,
-cos(z_2 +z_3 -z_1) +cos(z_3 +z_1 -z_2) ;,

4 sin⁡z1⋅sin⁡z2⋅sin⁡z3=−sin⁡(z1+z2+z3)+sin⁡(z1+z2−z3)
4 ,sin z_1 cdot sin z_2 cdot sin z_3
=-sin(z_1 +z_2 +z_3) +sin(z_1 +z_2 -z_3)

+sin⁡(z2+z3−z1)+sin⁡(z3+z1−z2)  .
+sin(z_2 +z_3 -z_1) +sin(z_3 +z_1 -z_2) ;.

Дополнительные соотношения:
cos⁡(z1+z2)⋅cos⁡(z1−z2)=(cos⁡z2)2−(sin⁡z1)2  ,
cos(z_1 +z_2)cdot cos(z_1 -z_2) =(cos z_2)^2 -(sin z_1)^2 ;,

sin⁡(z1+z2)⋅sin⁡(z1−z2)=(cos⁡z2)2−(cos⁡z1)2  .
sin(z_1 +z_2)cdot sin(z_1 -z_2) =(cos z_2)^2 -(cos z_1)^2 ;.

Неравенства

sin⁡x≤x≤tan⁡x(0≤x≤2π/4)  ,
sin x le x le tan x
qquad (0 le x le 2pi/4) ;,

cos⁡x≤x−1⋅sin⁡x≤1(0≤x≤π)  ,
cos x le x^{-1}cdot sin x le 1
qquad (0 le x le pi) ;,

x−1⋅sin⁡(x⋅π/2)>1(−1≤x≤1)  ,
x^{-1}cdot sinbigl(xcdot pi/2bigr) > 1
qquad (-1 le x le 1 ) ;,

π<x−1(1−x)−1⋅sin⁡(π x)≤4(0≤x≤1)  ,
pi < x^{-1}(1-x)^{-1}cdot sin(pi ,x) le 4
qquad (0 le x le 1) ;,

1−cos⁡x<x2/2<1/cos⁡x−1(∣x∣<π/2  ,  x≠0)  ,
1-cos x < x^2/2 < 1/cos x -1
qquad (|x|< pi/2 ;,; xne 0) ;,

∣sinh⁡(Im z)∣≤∣cos⁡z∣≤∣cosh⁡(Im z)∣  ,
|sinh(text{Im}, z)| le |cos z| le |cosh(text{Im}, z)| ;,

∣sinh⁡(Im z)∣≤∣sin⁡z∣≤∣cosh⁡(Im z)∣  .
|sinh(text{Im}, z)| le |sin z| le |cosh(text{Im}, z)| ;.

Тест по теме «Функциональные соотношения для тригонометрических функций»

Понравилась статья? Поделить с друзьями:
  • Одинаковая нумерация страниц в ворде как исправить
  • 0x80070490 windows 10 как исправить принтер
  • Как найти человека в днепре
  • Как можно найти видеомонтажа
  • Как найти картинки на заставку телефона