Как найти соотношения между векторами

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Линейная алгебра для разработчиков игр

Эта статья является переводом цикла из четырёх статей «Linear algebra for game developers», написанных David Rosen и посвящённых линейной алгебре и её применению в разработке игр. С оригинальными статьями можно ознакомиться тут: часть 1, часть 2, часть 3 и часть 4. Я не стал публиковать переводы отдельными топиками, а объединил все статьи в одну. Думаю, что так будет удобнее воспринимать материал и работать с ним. Итак приступим.

Зачем нам линейная алгебра?

Одним из направлений в линейной алгебре является изучение векторов. Если в вашей игре применяется позиционирование экранных кнопок, работа с камерой и её направлением, скоростями объектов, то вам придётся иметь дело с векторами. Чем лучше вы понимаете линейную алгебру, тем больший контроль вы получаете над поведением векторов и, следовательно, над вашей игрой.

Что такое вектор?

В играх вектора используются для хранения местоположений, направлений и скоростей. Ниже приведён пример двухмерного вектора:

Вектор местоположения (также называемый «радиус-вектором») показывает, что человек стоит в двух метрах восточнее и в одном метре к северу от исходной точки. Вектор скорости показывает, что за единицу времени самолёт перемещается на три километра вверх и на два — влево. Вектор направления говорит нам о том, что пистолет направлен вправо.

Как вы можете заметить, вектор сам по себе всего лишь набор цифр, который обретает тот или иной смысл в зависимости от контекста. К примеру, вектор (1, 0) может быть как направлением для оружия, как показано на картинке, так и координатами строения в одну милю к востоку от вашей текущей позиции. Или скоростью улитки, которая двигается вправо со скоростью в 1 милю в час (прим. переводчика: довольно быстро для улитки, 44 сантиметра в секунду).

Важно отслеживать единицы измерения. Допустим у нас есть вектор V (3,5,2). Это мало что говорит нам. Три чего, пять чего? В нашей игре Overgrowth расстояния указываются в метрах, а скорости в метрах в секунду. Первое число в этом векторе — это направление на восток, второе — направление вверх, третье — направление на север. Отрицательные числа обозначают противоположные направления, на запад, вниз и на юг. Местоположение, определяемое вектором V (3,5,2), находится в трёх метрах к востоку, в пяти метрах вверху и в двух метрах к северу, как показано на картинке ниже.

Итак, мы изучили основы работы с векторами. Теперь узнаем как вектора использовать.

Сложение векторов

Чтобы сложить вектора, нам надо просто сложить каждую их составляющую друг с другом. Например:

(0, 1, 4) + (3, -2, 5) = (0+3, 1-2, 4+5) = (3, -1, 9)

Зачем нам нужно складывать вектора? Наиболее часто сложение векторов в играх применяется для физического интегрирования. Любой физический объект будет иметь вектора для местоположения, скорости и ускорения. Для каждого кадра (обычно это одна шестидесятая часть секунды), мы должны интегрировать два вектора: добавить скорость к местоположению и ускорение к скорости.

Давайте рассмотрим пример с прыжками Марио. Он начинает с позиции (0, 0). В момент начала прыжка его скорость (1, 3), он быстро двигается вверх и вправо. Его ускорение равно (0, -1), так как гравитация тянет его вниз. На картинке показано, как выглядит его прыжок, разбитый на семь кадров. Чёрным текстом показана его скорость в каждом фрейме.

Давайте рассмотрим первые кадры поподробнее, чтобы понять как всё происходит.

Для первого кадра, мы добавляем скорость Марио (1, 3) к его местоположению (0, 0) и получаем его новые координаты (1, 3). Затем мы складываем ускорение (0, -1) с его скоростью (1, 3) и получаем новое значение скорости Марио (1, 2).

Делаем то-же самое для второго кадра. Добавляем скорость (1, 2) к местоположению (1, 3) и получаем координаты (2, 5). Затем добавляем ускорение (0, -1) к его скорости (1, 2) и получаем новую скорость (1, 1).

Обычно игрок контролирует ускорение игрового персонажа с помощью клавиатуры или геймпада, а игра, в свою очередь, рассчитывает новые значения для скоростей и местоположения, используя физическое сложение (через сложение векторов). Это та-же задача, которая решается в интегральном исчислении, просто мы его сильно упрощаем для нашей игры. Я заметил, что мне намного проще внимательно слушать лекции по интегральному исчислению, думая о практическом его применении, которое мы только что описали.

Вычитание векторов

Вычитание рассчитывается по тому-же принципу что и сложение — вычитаем соответствующие компоненты векторов. Вычитание векторов удобно для получения вектора, который показывает из одного местоположения на другое. Например, пусть игрок находится по координатам (1, 2) с лазерным ружьём, а вражеский робот находится по координатам (4, 3). Чтобы определить вектор движения лазерного луча, который поразит робота, нам надо вычесть местоположение игрока из местоположения робота. Получаем:

(4, 3) — (1, 2) = (4-1, 3-2) = (3, 1).

Умножение вектора на скаляр

Когда мы говорим о векторах, мы называем отдельные числа скалярами. Например (3, 4) — вектор, а 5 — это скаляр. В играх, часто бывает нужно умножить вектор на число (скаляр). Например, моделируя простое сопротивление воздуха путём умножения скорости игрока на 0.9 в каждом кадре. Чтобы сделать это, нам надо умножить каждый компонент вектора на скаляр. Если скорость игрока (10, 20), то новая скорость будет:

0.9*(10, 20) = (0.9 * 10, 0.9 * 20) = (9, 18).

Длина вектора

Если у нас есть корабль с вектором скорости V (4, 3), нам также понадобится узнать как быстро он двигается, чтобы посчитать потребность в экранном пространстве или сколько потребуется топлива. Чтобы сделать это, нам понадобится найти длину (модуль) вектора V. Длина вектора обозначается вертикальными линиями, в нашем случае длина вектора V будет обозначаться как |V|.

Мы можем представить V как прямоугольный треугольник со сторонами 4 и 3 и, применяя теорему Пифагора, получить гипотенузу из выражения: x 2 + y 2 = h 2

В нашем случае — длину вектора H с компонентами (x, y) мы получаем из квадратного корня: sqrt(x 2 + y 2 ).

Итак, скорость нашего корабля равна:

|V| = sqrt(4 2 + 3 2 ) = sqrt(25) = 5

Этот подход используется и для трёхмерных векторов. Длина вектора с компонентами (x, y, z) рассчитывается как sqrt(x 2 + y 2 + z 2 )

Расстояние

Если игрок P находится в точке (3, 3), а взрыв произошёл в точке E по координатам (1, 2), нам надо определить расстояние между игроком и взрывом, чтобы рассчитать степень ущерба, нанесённого игроку. Это легко сделать, комбинируя две вышеописанных операции: вычитание векторов и их длину.
Мы вычитаем P — E, чтобы получить вектор между ними. А затем определяем длину этого вектора, что и даёт нам искомое расстояние. Порядок следования операндов тут не имеет значения, |E — P| даст тот-же самый результат.

Расстояние = |P — E| = |(3, 3) — (1, 2)| = |(2, 1)| = sqrt(2 2 +1 2 ) = sqrt(5) = 2.23

Нормализация

Когда мы имеем дело с направлениями (в отличие от местоположений и скоростей), важно, чтобы вектор направления имел длину, равную единице. Это сильно упрощает нам жизнь. Например, допустим орудие развёрнуто в направлении (1, 0) и выстреливает снаряд со скоростью 20 метров в секунду. Каков в данном случае вектор скорости для выпущенного снаряда?

Так как вектор направления имеет длину равную единице, мы умножаем направление на скорость снаряда и получаем вектор скорости (20, 0). Если-же вектор направления имеет отличную от единицы длину, мы не сможем сделать этого. Снаряд будет либо слишком быстрым, либо слишком медленным.

Вектор с длиной равной единице называется «нормализованным». Как сделать вектор нормализованным? Довольно просто. Мы делим каждый компонент вектора на его длину. Если, к примеру, мы хотим нормализовать вектор V с компонентами (3, 4), мы просто делим каждый компонент на его длину, то есть на 5, и получаем (3/5, 4/5). Теперь, с помощью теоремы Пифагора, мы убедимся в том, что его длина равна единице:

(3/5) 2 + (4/5) 2 = 9/25 + 16/25 = 25/25 = 1

Скалярное произведение векторов

Что такое скалярное произведение (записывается как •)? Чтобы рассчитать скалярное произведение двух векторов, мы должны умножить их компоненты, а затем сложить полученные результаты вместе

(a1, a2) • (b1, b2) = a1b1 + a2b2

Например: (3, 2) • (1, 4) = 3*1 + 2*4 = 11. На первый взгляд это кажется бесполезным, но посмотрим внимательнее на это:

Здесь мы можем увидеть, что если вектора указывают в одном направлении, то их скалярное произведение больше нуля. Когда они перпендикулярны друг другу, то скалярное произведение равно нулю. И когда они указывают в противоположных направлениях, их скалярное произведение меньше нуля.
В основном, с помощью скалярного произведения векторов можно рассчитать, сколько их указывает в одном направлении. И хоть это лишь малая часть возможностей скалярного произведения, но уже очень для нас полезная.

Допустим у нас есть стражник, расположенный в G(1, 3) смотрящий в направлении D(1,1), с углом обзора 180 градусов. Главный герой игры подсматривает за ним с позиции H(3, 2). Как определить, находится-ли главный герой в поле зрения стражника или нет? Сделаем это путём скалярного произведения векторов D и V (вектора, направленного от стражника к главному герою). Мы получим следующее:

V = H — G = (3, 2) — (1, 3) = (3-1, 2-3) = (2, -1)
D•V = (1, 1) • (2, -1) = 1*2 + 1*-1 = 2-1 = 1

Так как единица больше нуля, то главный герой находится в поле зрения стражника.

Мы уже знаем, что скалярное произведение имеет отношение к определению направления векторов. А каково его более точное определение? Математическое выражение скалярного произведения векторов выглядит так:

Где Θ (произносится как «theta») — угол между векторами A и B.

Это позволяет нам найти Θ (угол) с помощью выражения:

Как я говорил ранее, нормализация векторов упрощает нашу жизнь. И если A и B нормализованы, то выражение упрощается следующим образом:

Давайте опять рассмотрим сценарий со стражником. Пусть теперь угол обзора стражника будет равен 120 градусам. Получим нормализованные вектора для направления взгляда стражника (D’) и для направления от стражника к главному герою (V’). Затем определим угол между ними. Если угол более 60 градусов (половина от угла обзора), то главный герой находится вне поля зрения стражника.

D’ = D / |D| = (1, 1) / sqrt(1 2 + 1 2 ) = (1, 1) / sqrt(2) = (0.71, 0.71)
V’ = V / |V| = (2, -1) / sqrt(2 2 + (-1) 2 ) = (2,-1) / sqrt(5) = (0.89, -0.45)

Θ = acos(D’V’) = acos(0.71*0.89 + 0.71*(-0.45)) = acos(0.31) = 72

Угол между центром поля зрения стражника и местоположением главного героя составляет 72 градуса, следовательно стражник его не видит.

Понимаю, что это выглядит довольно сложно, но это потому, что мы всё делаем вручную. В программе это всё довольно просто. Ниже показано как я сделал это в нашей игре Overgrowth с помощью написанных мной С++ библиотек для работы с векторами:

Векторное произведение

Допустим у нас есть корабль с пушками, которые стреляют в правую и в левую стороны по курсу. Допустим, что лодка расположена вдоль вектора направления (2, 1). В каких направлениях теперь стреляют пушки?

Это довольно просто в двухмерной графике. Чтобы повернуть направление на 90 градусов по часовой стрелке, достаточно поменять местами компоненты вектора, а затем поменять знак второму компоненту.
(a, b) превращается в (b, -a). Следовательно у корабля, расположенного вдоль вектора (2, 1), пушки справа по борту будут стрелять в направлении (1, -2), а пушки с левого борта, будут стрелять в противоположном направлении. Меняем знаки у компонент вектора и получаем (-1, 2).

А что если мы хотим рассчитать это всё для трехмерной графики? Рассмотрим пример с кораблём.
У нас есть вектор мачты M, направленной прямо вверх (0, 1, 0) и направление ветра: север-северо-восток W (1, 0, 2). И мы хотим вычислить вектор направления паруса S, чтобы наилучшим образом «поймать ветер».

Для решения этой задачи мы используем векторное произведение: S = M x W.

Подставим теперь нужные нам значения:

S = MxW = (0, 1, 0) x (1, 0, 2) = ([1*2 — 0*0], [0*1 — 0*2], [0*0 — 1*1]) = (2, 0, -1)

Для расчётов вручную довольно сложно, но для графических и игровых приложений я рекомендую написать функцию, подобную той, что указана ниже и не вдаваться более в детали подобных расчётов.

Векторное произведение часто используется в играх, чтобы рассчитать нормали к поверхностям. Направления, в которых «смотрит» та или иная поверхность. Например, рассмотрим треугольник с векторами вершин A, B и С. Как мы найдем направление в котором «смотрит» треугольник, то есть направление перпендикулярное его плоскости? Это кажется сложным, но у нас есть инструмент для решения этой задачи.

Используем вычитание, для определения направления из A в С (C — A), пусть это будет «грань 1» (Edge 1) и направление из A в B (B — A), пусть это будет «грань 2» (Edge 2). А затем применим векторное произведение, чтобы найти вектор, перпендикулярный им обоим, то есть перпендикулярный плоскости треугольника, также называемый «нормалью к плоскости».

Вот так это выглядит в коде:

В играх основное выражение освещённости записывается как N • L, где N — это нормаль к освещаемой поверхности, а L — это нормализованный вектор направления света. В результате поверхность выглядит яркой, когда на неё прямо падает свет, и тёмной, когда этого не происходит.

Теперь перейдем к рассмотрению такого важного для разработчиков игр понятия, как «матрица преобразований» (transformation matrix).

Для начала изучим «строительные блоки» матрицы преобразований.

Базисный вектор

Допустим мы пишем игру Asteroids на очень старом «железе» и нам нужен простой двухмерный космический корабль, который может свободно вращаться в своей плоскости. Модель корабля выглядит так:

Как нам рисовать корабль, когда игрок поворачивает его на произвольный градус, скажем 49 градусов против часовой стрелки. Используя тригонометрию, мы можем написать функцию двухмерного поворота, которая принимает координаты точки и угол поворота, и возвращает координаты смещённой точки:

Применяя эту функцию ко всем трём точкам, мы получим следующую картину:

Операции с синусами и косинусами работают довольно медленно, но так как мы делаем расчёты лишь для трёх точек, это будет нормально работать даже на старом «железе» (прим. переводчика: в случаях, когда предполагается интенсивное использование тригонометрических функций, для ускорения вычислений, в памяти организуют таблицы значений для каждой функции и рассчитывают их во время запуска приложения. Затем при вычислении той или иной тригонометрической функции просто производится обращение к таблице).

Пусть теперь наш корабль выглядит вот так:

Теперь старый подход будет слишком медленным, так как надо будет поворачивать довольно большое количество точек. Одно из элегантных решений данной проблемы будет звучать так — «Что если вместо поворота каждой точки модели корабля, мы повернём координатную решётку нашей модели?»

Как это работает? Давайте посмотрим внимательнее, что собой представляют координаты.
Когда мы говорим о точке с координатами (3, 2), мы говорим, что её местоположение находится в трех шагах от точки отсчёта по координатной оси X, и двух шагах от точки отсчёта по координатной оси Y.

По-умолчанию координатные оси расположены так: вектор координатной оси X (1, 0), вектор координатной оси Y (0, 1). И мы получим расположение: 3(1, 0) + 2(0, 1). Но координатные оси не обязательно должны быть в таком положении. Если мы повернём координатные оси, в это-же время мы повернём все точки в координатной решётке.

Чтобы получить повернутые оси X и Y мы применим тригонометрические функции, о которых говорили выше. Если мы поворачиваем на 49 градусов, то новая координатная ось X будет получена путём поворота вектора (0, 1) на 49 градусов, а новая координатная ось Y будет получена путём поворота вектора (0, 1) на 49 градусов. Итак вектор новой оси X у нас будет равен (0.66, 0.75), а вектор новой оси Y будет (-0.75, 0.66). Сделаем это вручную для нашей простой модели из трёх точек, чтобы убедиться, что это работает так, как нужно:

Координаты верхней точки (0, 2), что означает, что её новое местоположение находится в 0 на новой (повёрнутой) оси X и 2 на новой оси Y:

0*(0.66,0.75) + 2*(-0.75, 0.66) = (-1.5, 1.3)

Нижняя левая точка (-1, -1), что означает, что её новое местоположение находится в -1 на повернутой оси X, и -1 на повернутой оси Y:

-1*(0.66,0.75) + -1*(-0.75, 0.66) = (0.1, -1.4)

Нижняя правая точка (1, -1), что означает её новое местоположение находится в 1 на повернутой оси X, и -1 на повернутой оси Y

1*(0.66,0.75) + -1*(-0.75, 0.66) = (1.4, 0.1)

Мы показали, как координаты корабля отображаются в другой координатной сетке с повернутыми осями (или «базисными векторами»). Это удобно в нашем случае, так как избавляет нас от необходимости применять тригонометрические преобразования к каждой из точек модели корабля.

Каждый раз, когда мы изменяем базисные вектора (1, 0) и (0, 1) на (a, b) и (c, d), то новая координата точки (x, y) может быть найдена с помощью выражения:

Обычно базисные вектора равны (1, 0) и (0, 1) и мы просто получаем x(1, 0) + y(0, 1) = (x, y), и нет необходимости заботиться об этом дальше. Однако, важно помнить, что мы можем использовать и другие базисные вектора, когда нам это нужно.

Матрицы

Матрицы похожи на двухмерные вектора. Например, типичная 2×2 матрица, может выглядеть так:

Когда вы умножаете матрицу на вектор, вы суммируете скалярное произведение каждой строки с вектором, на который происходит умножение. Например, если мы умножаем вышеприведённую матрицу на вектор (x, y), то мы получаем:

Будучи записанным по-другому, это выражение выглядит так:

Выглядит знакомо, не так-ли? Это в точности такое-же выражение, которые мы использовали для смены базисных векторов. Это означает, что умножая 2×2 матрицу на двухмерный вектор, мы тем самым меняем базисные вектора. Например, если мы вставим стандартные базисные вектора в (1, 0) и (0, 1) в колонки матрицы, то мы получим:

Это единичная матрица, которая не даёт эффекта, который мы можем ожидать от нейтральных базисных векторов, которые мы указали. Если-же мы повернём базисные вектора на 49-градусов, то мы получим:

Эта матрица будет поворачивать двухмерный вектор на 49 градусов против часовой стрелки. Мы можем сделать код нашей игры Asteriods более элегантным, используя матрицы вроде этой. Например, функция поворота нашего корабля может выглядеть так:

Однако, наш код будет ещё более элегантным, если мы сможем также включить в эту матрицу перемещение корабля в пространстве. Тогда у нас будет единая структура данных, которая будет заключать в себе и применять информацию об ориентации объекта и его местоположении в пространстве.

К счастью есть способ добиться этого, хоть это и выглядит не очень элегантно. Если мы хотим переместиться с помощью вектора (e, f), мы лишь включаем его в нашу матрицу преобразования:

И добавляем дополнительную единицу в конец каждого вектора, определяющего местоположение объекта, например так:

Теперь, когда мы перемножаем их, мы получаем:

(a, c, e) • (x, y, 1) + (b, d, f) • (x, y, 1) + (0, 0, 1) • (x, y, 1)

Что, в свою очередь, может быть записано как:

x(a, b) + y(c, d) + (e, f)

Теперь у нас есть полный механизм трансформации, заключённый в одной матрице. Это важно, если не принимать в расчёт элегантность кода, так как с ней мы теперь можем использовать все стандартные манипуляции с матрицами. Например перемножить матрицы, чтобы добавить нужный эффект, или мы можем инвертировать матрицу, чтобы получить прямо противоположное положение объекта.

Трехмерные матрицы

Матрицы в трехмерном пространстве работают так-же как и в двухмерном. Я приводил примеры с двухмерными векторами и матрицами, так как их просто отобразить с помощью дисплея, показывающего двухмерную картинку. Нам просто надо определить три колонки для базисных векторов, вместо двух. Если базисные вектора это (a,b,c), (d,e,f) and (g,h,i) то наша матрица будет выглядеть так:

Если нам нужно перемещение (j,k,l), то мы добавляем дополнительную колонку и строку, как говорили раньше:

И добавляем единицу [1] в вектор, как здесь:

Вращение в двухмерном пространстве

Так как в нашем случае у нас только одна ось вращения (расположенная на дисплее), единственное, что нам надо знать, это угол. Я говорил об этом ранее, упоминая, что мы можем применять тригонометрические функции для реализации функции двухмерного вращения наподобие этой:

Более элегантно это можно выразить в матричной форме. Чтобы определить матрицу, мы можем применить эту функцию к осям (1, 0) и (0, 1) для угла Θ, а затем включить полученные оси в колонки нашей матрицы. Итак, начнём с координатной оси X (1, 0). Если мы применим к ней нашу функцию, мы получим:

(1*cos(Θ) — 0*sin(Θ), 1*sin(Θ) + 0*cos(Θ)) = (cos(Θ), sin(Θ))

Затем, мы включаем координатную ось Y (0, 1). Получим:

(0*cos(Θ) — 1*sin(Θ), 0*sin(Θ) + 1*cos(Θ)) = (-sin(Θ), cos(Θ))

Включаем полученные координатные оси в матрицу, и получаем двухмерную матрицу вращения:

Применим эту матрицу к Сюзанне, мартышке из графического пакета Blender. Угол поворота Θ равен 45 градусов по часовой стрелке.

Как видите — это работает. Но что если нам надо осуществить вращение вокруг точки, отличной от (0, 0)?
Например, мы хотим вращать голову мартышки вокруг точки, расположенной в её ухе:

Чтобы сделать это, мы можем начать с создания матрицы перемещения (translation matrix) T, которая перемещает объект из начальной точки в точку вращения в ухе мартышки, и матрицу вращения R, для вращения объекта вокруг начальной точки. Теперь для вращения вокруг точки, расположенной в ухе, мы можем сперва переместить точку в ухе на место начальной точки, с помощью инвертирования матрицы T, записанной как T -1 . Затем, мы вращаем объект вокруг начальной точки, с помощью матрицы R, а затем применяем матрицу T для перемещения точки вращения назад, к своему исходному положению.
Ниже дана иллюстрация к каждому из описанных шагов:

Это важный шаблон, который мы будем применять позднее — применение вращения для двух противоположных трансформаций позволяет нам вращать объект в другом «пространстве». Что очень удобно и полезно.

Теперь рассмотрим трёхмерное вращение.

Трёхмерное вращение

Вращение вокруг оси Z работает по тому-же принципу, что и вращение в двухмерном пространстве. Нам лишь нужно изменить нашу старую матрицу, добавив к ней дополнительную колонку и строку:

Применим эту матрицу к трехмерной версии Сюзанны, мартышки из пакета Blender. Угол поворота Θ пусть будет равен 45 градусов по часовой стрелке.

То-же самое. Вращение только вокруг оси Z ограничивает нас, как насчёт вращения вокруг произвольной оси?

Вращение, определяемое осью и углом (Axis-angle rotation)

Представление вращения, определяемого осью и углом, также известно как вращение в экспоненциальных координатах, параметризованное вращением двух величин. Вектора, определяющего вращение направляющей оси (прямая линия) и угла, описывающего величину поворота вокруг этой оси. Вращение осуществляется согласно правилу правой руки.

Итак, вращение задаётся двумя параметрами (axis, angle), где axis — вектор оси вращения, а angle — угол вращения. Этот приём довольно прост и являет собой отправную точку для множества других операций вращения, с которыми я работаю. Как практически применить вращение, определяемое осью и углом?

Допустим мы имеем дело с осью вращения, показанной на рисунке ниже:

Мы знаем как вращать объект вокруг оси Z, и мы знаем как вращать объект в других пространствах. Итак, нам лишь надо создать пространство, где наша ось вращения будет являться осью Z. И если эта ось будет осью Z, то что будет являться осями X и Y? Займемся вычислениями сейчас.

Чтобы создать новые оси X и Y нам нужно лишь выбрать два вектора, которые перпендикулярны новой оси Z и перпендикулярны друг другу. Мы уже говорили ранее о векторном умножении, которое берёт два вектора и даёт в итоге перпендикулярный им вектор.

У нас есть один вектор сейчас, это ось вращения, назовём его A. Возьмём теперь случайный другой вектор B, который находится не в том-же направлении, что и вектор A. Пусть это будет (0, 0, 1) к примеру.

Теперь мы имеем ось вращения A и случайный вектор B, мы можем получить нормаль C, через векторное произведение A и B. С перпендикулярен векторам A и B. Теперь мы делаем вектор B перпендикулярным векторам A и C через их векторное произведение. И всё, у нас есть все нужные нам оси координат.

На словах это звучит сложно, но довольно просто выглядит в коде или будучи показанным в картинках.
Ниже показано, как это выглядит в коде:

Тут показана иллюстрация для каждого шага:

Теперь, имея информацию о новых координатных осях, мы можем составить матрицу M, включив каждую ось как колонку в эту матрицу. Нам надо убедиться, что вектор A является третьей колонкой, чтобы он был нашей новой осью координат Z.

Теперь это похоже на то, что мы делали для поворота в двухмерном пространстве. Мы можем применить инвертированную матрицу M, чтобы переместиться в новую систему координат, затем произвести вращение, согласно матрице R, чтобы повернуть объект вокруг оси Z, затем применить матрицу M, чтобы вернуться в исходное координатное пространство.

Теперь мы можем вращать объект вокруг произвольной оси. В конце концов мы можем просто создать матрицу T = T = M -1 RM и использовать её много раз, без дополнительных усилий с нашей стороны. Есть более эффективные способы конвертирования вращений, определяемых осью и углом во вращения, определяемые матрицами. Просто описанный нами подход показывает многое из того, о чём мы говорили ранее.

Вращение, определяемое осью и углом, возможно, самый интуитивно понятный способ. Применяя его, очень легко инвертировать поворот, поменяв знак у угла, и легко интерполировать, путём интерполяции угла. Однако тут есть серьёзное ограничение, и заключается оно в том, что такое вращение не является суммирующим. То есть вы не можете комбинировать два вращения, определяемых осью и углом в третье.
Вращение, определяемое осью и углом — хороший способ для начала, но оно должно быть преобразовано во что-то другое, чтобы использоваться в более сложных случаях.

Эйлеровские углы

Эйлеровские углы представляют собой другой способ вращения, заключающийся в трёх вложенных вращениях относительно осей X, Y и Z. Вы, возможно, сталкивались с их применением в играх, где камера показывает действие от первого лица, либо от третьего лица.

Допустим вы играете в шутер от первого лица и вы повернулись на 30 градусов влево, а затем посмотрели на 40 градусов вверх. В конце-концов в вас стреляют, попадают, и, в результате удара, камера поворачивается вокруг своей оси на 45 градусов. Ниже показано вращение с помощью углов Эйлера (30, 40, 45).

Углы Эйлера — удобное и простое в управлении средство. Но у этого способа есть два недостатка.

Первый, это вероятность возникновения ситуации под названием «блокировка оси» или «шарнирный замок» (gimbal lock). Представьте, что вы играете в шутер от первого лица, где вы можете посмотреть влево, вправо, вверх и вниз или повернуть камеру вокруг зрительной оси. Теперь представьте, что вы смотрите прямо вверх. В этой ситуации попытка взглянуть налево или направо будет аналогична попытке вращения камеры. Всё что мы можем вы этом случае, это вращать камеру вокруг своей оси, либо посмотреть вниз. Как вы можете представить, это ограничение делает непрактичным применение углов Эйлера в лётных симуляторах.

Второе — интерполяция между двумя эйлеровскими углами вращения не даёт кратчайшего пути между ними.
Например, у вас две интерполяции между двумя одинаковыми вращениями. Первая использует интерполяцию эйлеровского угла, вторая использует сферическую линейную интерполяцию (spherical linear interpolation (SLERP)), чтобы найти кратчайший путь.

Итак, что-же больше подойдет для интерполяции вращений? Может быть матрицы?

Вращение с помощью матриц

Как мы уже говорили ранее, матрицы вращения хранят в себе информацию о трёх осях. Это означает, что интерполяция между двумя матрицами лишь линейно интерполирует каждую ось. В результате это даёт нам эффективный путь, то так-же привносит новые проблемы. Например, тут показаны два вращения и одно интерполированное полу-вращение:

Как вы можете заметить, интерполированное вращение значительно меньше, чем любое из исходных вращений, и две оси более не перпендикулярны друг другу. Это логично, если вдуматься — середина отрезка, соединяющего любые две точки на сфере будет расположена ближе к центру сферы.

Это в свою очередь порождает известный «эффект фантика» (candy wrapper effect), при применении скелетной анимации. Ниже показана демонстрация этого эффекта на примере кролика из нашей игры Overgrowth (прим. переводчика: обратите внимание на середину туловища кролика).

Вращение, основанное на матричных операциях, очень полезно, так как они могут аккумулировать вращения без всяких проблем, вроде блокировки оси (gimbal lock), и может очень эффективно применяться к точкам сцены. Вот почему поддержка вращения на матрицах встроена в графические карты. Для любого типа трёхмерной графики матричный формат вращения — это всегда итоговый применяемый способ.

Однако, как мы уже знаем, матрицы не очень хорошо интерполируются, и они не столь интуитивно понятны.

Итак, остался только один главный формат вращения. Последний, но тем не менее, важный.

Кватернионы

Что-же такое кватернионы? Если очень кратко, то это альтернативный вариант вращения, основанный на оси и угле (axis-angle rotation), который существует в пространстве.

Подобно матрицам они могут аккумулировать вращения, то есть вы можете составлять из них цепочку вращений, без опаски получить блокировку оси (gimbal lock). И в то-же время, в отличие от матриц, они могут хорошо интерполироваться из одного положения в другое.

Являются-ли кватернионы лучшим решением, нежели остальные способы вращений (rotation formats)?
На сегодняшний день они комбинируют все сильные стороны других способов вращений. Но у них есть два слабых места, рассмотрев которые, мы придём к выводу, что кватернионы лучше использовать для промежуточных вращений. Итак, каковы недостатки кватернионов.

Во-первых кватернионы непросто отобразить на трёхмерном пространстве. И мы вынуждены всегда реализовывать вращение более простым способом, а затем конвертировать его. Во-вторых, кватернионы не могут эффективно вращать точки, и мы вынуждены конвертировать их в матрицы, чтобы повернуть значительное количество точек.

Это означает, что вы скорее всего не начнете или не закончите серию вращений с помощью кватернионов. Но с их помощью можно реализовать промежуточные вращения более эффективно, нежели при применении любого другого подхода.

«Внутренняя кухня» механизма кватернионов не очень понятна и не интересна мне. И, возможно, не будет интересна и вам, если только вы не математик. И я советую вам найти библиотеки, которые работают с кватернионами, чтобы облегчить вам решение ваших задач с их помощью.

Математические библиотеки «Bullet» или «Blender» будут хорошим вариантом для начала.

источники:

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

http://habr.com/ru/post/131931/

Отношение коллинеарных векторов

В данном разделе рассматриваются векторы, коллинеарные заданной прямой, т.е. принадлежащие или параллельные ей.

Согласно определению (см. разд. 1.1.2), при умножении данного вектора на число получаем вектор, коллинеарныи данному. Можно определить и «обратную» операцию — «деление коллинеарных векторов».

Треугольник, построенный на векторах

Отношением коллинеарных векторов vec{a} и vec{b}nevec{o} называется действительное число, равное по модулю отношению длин этих векторов, положительное, если векторы vec{a} и vec{b} одинаково направленные, и отрицательное, если векторы vec{a} и vec{b} противоположно направленные:

vec{a}:vec{b}=frac{vec{a}}{vec{b}}=begin{cases}phantom{-}|vec{a}|:|vec{b}|,&vec{a}uparrowuparrowvec{b},\-|vec{a}|:|vec{b}|,&vec{a}uparrowdownarrowvec{b}.end{cases}

По определению равенство frac{vec{a}}{vec{b}}=lambda эквивалентно равенству vec{a}=lambdavec{b} для любых коллинеарных векторов vec{a} и vec{b}nevec{o}.

Например, найдем отношения коллинеарных векторов, изображенных на рис. 1.6:

overrightarrow{AN}:overrightarrow{ML}=1;quad overrightarrow{AN}:overrightarrow{BN}=-1;quad frac{overrightarrow{AM}}{overrightarrow{AC}}= frac{overrightarrow{NL}}{overrightarrow{AC}}= frac{1}{2};quad overrightarrow{CL}:overrightarrow{BL}=-1.


Свойства отношений коллинеарных векторов

Для любых коллинеарных векторов справедливы следующие свойства:

1. Отношение frac{vec{a}}{vec{b}} любых коллинеарных векторов vec{a} и vec{b}nevec{o} определено однозначно.

2. Арифметические действия с отношениями коллинеарных векторов аналогичны действиям с числовыми дробями, а именно для любых коллинеарных векторов справедливы равенства

begin{array}{*{20}{l}}1)~dfrac{vec{a}+vec{b}}{vec{c}}=dfrac{vec{a}}{vec{c}}+dfrac{vec{b}}{vec{c}}~(vec{c}nevec{o});&quad2)~dfrac{lambdavec{a}}{vec{b}}=lambdacdotdfrac{vec{a}}{vec{b}}~(vec{b}nevec{o});\\3)~~dfrac{vec{a}}{vec{c}}cdotdfrac{vec{c}}{vec{b}}=dfrac{vec{a}}{vec{b}}~(vec{b}nevec{o},vec{c}nevec{o});&quad4)~dfrac{vec{a}}{vec{c}}:dfrac{vec{b}}{vec{c}}=dfrac{vec{a}}{vec{b}}~(vec{b}nevec{o},vec{c}nevec{o}).end{array}


Докажем первое свойство. Предположим противное. Пусть vec{a}:vec{b}=lambda и vec{a}:vec{b}=mu, причем lambdanemu. Тогда vec{a}=lambdavec{b} и vec{a}=muvec{b}, т.е. lambdavec{b}=muvec{b}, и следовательно, (lambda-mu)vec{b}=vec{o}. Разделив обе части равенства на число lambda-mune0, получим vec{b}=vec{o}, что противоречит условию vec{b}nevec{o}.

Докажем, например, последнее равенство (свойство 2,г). Пусть frac{vec{a}}{vec{c}}=lambda и frac{vec{b}}{vec{c}}=mu, тогда vec{a}=lambdavec{c} и vec{b}=lambdavec{c}. Надо доказать, что frac{vec{a}}{vec{b}}=frac{lambda}{mu}. Найдем отношение длин векторов frac{vec{a}}{vec{b}}=frac{|lambda|cdot|vec{c}|}{|mu|cdot|vec{c}|}=left|frac{lambda}{mu}right|. По определению получаем frac{vec{a}}{vec{b}}=pmfrac{lambda}{mu}, где знак плюс берется, если vec{a}uparrowuparrowvec{b}, а минус — при vec{a}uparrowdownarrowvec{b}.

Если все векторы одинаково направлены, то lambda>0,~mu>0, поэтому frac{vec{a}}{vec{b}}=frac{lambda}{mu}.

Если vec{a}uparrowdownarrowvec{c} и vec{b}uparrowdownarrowvec{c}, то vec{a}uparrowuparrowvec{b} и frac{vec{a}}{vec{b}}=+frac{(-lambda)}{(-mu)}=frac{lambda}{mu}, так как lambda<0,~mu<0.

Если vec{a}uparrowuparrowvec{c} и vec{b}uparrowdownarrowvec{c}, то vec{a}uparrowdownarrowvec{b} и frac{vec{a}}{vec{b}}=-frac{lambda}{(-mu)}=frac{lambda}{mu}.

Если vec{a}uparrowdownarrowvec{c} и vec{b}uparrowuparrowvec{c}, то vec{a}uparrowdownarrowvec{b} и frac{vec{a}}{vec{b}}=-frac{(-lambda)}{mu}=frac{lambda}{mu}.

Таким образом, во всех случаях получаем frac{vec{a}}{vec{b}}=frac{lambda}{mu}, что и требовалось доказать.


Трапеция, построенная на векторах

Пример 1.4. Диагонали трапеции ABCD высекают на её средней линии MN отрезок KL (рис. 1.12). Найти отношения векторов

overrightarrow{KL}:overrightarrow{AB};~~ overrightarrow{KL}: overrightarrow{CD};~~ overrightarrow{MN}: overrightarrow{KL}, если overrightarrow{CD}: overrightarrow{AB}= lambda,.

Решение. По свойствам средних линий треугольника и трапеции находим отношения коллинеарных векторов:

overrightarrow{KN}:overrightarrow{AB}=frac{1}{2} (так как overrightarrow{KN}uparrowuparrowoverrightarrow{AB});

overrightarrow{LN}:overrightarrow{CD}=-frac{1}{2} (так как overrightarrow{LN}uparrowdownarrowoverrightarrow{CD});

overrightarrow{MK}:overrightarrow{CD}=-frac{1}{2} (так как overrightarrow{MK}uparrowdownarrowoverrightarrow{CD}).

Отсюда следуют соотношения

overrightarrow{MN}=overrightarrow{MK}+overrightarrow{KN}=-frac{1}{2}cdot overrightarrow{CD}+frac{1}{2}cdotoverrightarrow{AB};qquad overrightarrow{KL}= overrightarrow{KN}- overrightarrow{LN}= frac{1}{2}cdotoverrightarrow{AB}+ frac{1}{2}cdotoverrightarrow{CD}

Теперь, используя свойства отношений коллинеарных векторов, получаем

begin{gathered}dfrac{overrightarrow{KL}}{overrightarrow{AB}}=dfrac{dfrac{1}{2}overrightarrow{AB}+dfrac{1}{2}overrightarrow{CD}}{overrightarrow{AB}}=dfrac{1}{2}!left(dfrac{overrightarrow{AB}}{overrightarrow{AB}}+dfrac{overrightarrow{CD}}{overrightarrow{AB}}right)=dfrac{1+lambda}{2};\[3pt]dfrac{overrightarrow{KL}}{overrightarrow{CD}}=dfrac{overrightarrow{KL}}{overrightarrow{AB}}:dfrac{overrightarrow{AB}}{overrightarrow{CD}}=dfrac{1+lambda}{2}cdotdfrac{1}{lambda}=dfrac{1+lambda}{2lambda};\[3pt]dfrac{overrightarrow{MN}}{overrightarrow{KL}}=dfrac{dfrac{1}{2}overrightarrow{AB}-dfrac{1}{2}overrightarrow{CD}}{dfrac{1}{2}overrightarrow{AB}+dfrac{1}{2}overrightarrow{CD}}=dfrac{overrightarrow{AB}-overrightarrow{CD}}{overrightarrow{AB}+overrightarrow{CD}}=dfrac{dfrac{overrightarrow{AB}}{overrightarrow{AB}}-dfrac{overrightarrow{CD}}{overrightarrow{AB}}}{dfrac{overrightarrow{AB}}{overrightarrow{AB}}+dfrac{overrightarrow{CD}}{overrightarrow{AB}}}=dfrac{1+lambda}{1-lambda}.end{gathered}

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Вектором называется направленный отрезок. Вектор обозначается либо символом Векторная алгебра: основные понятия и определения (Векторная алгебра: основные понятия и определения — точка начала, Векторная алгебра: основные понятия и определения — точка конца вектора), либо Векторная алгебра: основные понятия и определения. В математике обычно рассматриваются свободные векторы, то есть векторы, точка приложения которых может быть выбрана произвольно.

Векторная алгебра: основные понятия и определения

2. Длиной (модулем) вектора Векторная алгебра: основные понятия и определения называется длина отрезка Векторная алгебра: основные понятия и определения. Модуль вектора обозначается Векторная алгебра: основные понятия и определения.

3.Вектор называется единичным, если его длина равна «1»; единичный вектор Векторная алгебра: основные понятия и определения направления вектора Векторная алгебра: основные понятия и определения называется ортом вектора Векторная алгебра: основные понятия и определения и определяется по формуле Векторная алгебра: основные понятия и определения.

4. Вектор называется нулевым, если его начало и конец совпадают Векторная алгебра: основные понятия и определения; любое направление можно считать направлением нулевого вектора.

5. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарность векторов обозначается: Векторная алгебра: основные понятия и определения. Необходимым и достаточным условием коллинеарности векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения является существование такого числа Векторная алгебра: основные понятия и определения, что Векторная алгебра: основные понятия и определения.

6. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и направление.

7. Вектор Векторная алгебра: основные понятия и определения называется противоположным вектору Векторная алгебра: основные понятия и определения, если модули их равны, а направления противоположны.

8. Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

Для решения задач необходимо уметь выполнять линейные операции над вектором в геометрической форме, то есть над вектором, как над
направленным отрезком: сложение, вычитание векторов и умножение вектора на число.

9. Сложение двух векторов можно выполнить по правилу параллелограмма (рис. 1) или по правилу треугольника (рис. 2).

Векторная алгебра: основные понятия и определения

При сложении более двух векторов, лежащих в одной плоскости, используется правило «замыкающей линии многоугольника» (рис. 3).

Векторная алгебра: основные понятия и определения

При сложении трех некомпланарных векторов удобно пользоваться правилом «параллелепипеда» (рис. 4).

Векторная алгебра: основные понятия и определения

10. Действие вычитания двух векторов связано с действием сложения (рис.5).

Векторная алгебра: основные понятия и определения

Разностью двух векторов называется вектор, проведенный из конца вычитаемого в конец уменьшаемого. Заметим, что разностью является вектор, служащий второй диагональю параллелограмма.

Разность можно также представить в виде сложения с противоположным вектором (рис. 6).

Векторная алгебра: основные понятия и определения

11. Произведением вектора Векторная алгебра: основные понятия и определения на число Векторная алгебра: основные понятия и определения называется вектор Векторная алгебра: основные понятия и определения, который имеет :

12. Для решения задач полезно знать также следующие законы и свойства:

Примеры задач решаемых с применением векторной алгебры

Задача:

Пусть даны точки Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения

1) Найти координаты векторов

Векторная алгебра: основные понятия и определения

2) Написать разложение этих векторов по базису Векторная алгебра: основные понятия и определения

3) Найти длины этих векторов

4) Найти скалярное произведение Векторная алгебра: основные понятия и определения

5) Найти угол между векторами Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

6) Найти разложение вектора Векторная алгебра: основные понятия и определения по базису Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения

Решение:

1) Вычислим координаты векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения (нужно из координат точки его конца вычесть координаты его начала):

Векторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения, аналогично, Векторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения

2) Векторная алгебра: основные понятия и определения

3)

Векторная алгебра: основные понятия и определения

4) Для вычисления угла между векторами воспользуемся формулой:

Векторная алгебра: основные понятия и определения

5) Разложить вектор Векторная алгебра: основные понятия и определения по векторам Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения — это значит представить вектор Векторная алгебра: основные понятия и определения в виде линейной комбинации векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения, т. е.

Векторная алгебра: основные понятия и определения, где Векторная алгебра: основные понятия и определения. Имеем Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения, но у равных векторов соответственно равны координаты, следовательно, получим систему, из которой найдем Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Задача:

а). Даны векторы Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения в некотором базисе. Показать, что векторы Векторная алгебра: основные понятия и определения образуют базис и найти координаты вектора Векторная алгебра: основные понятия и определения в этом базисе.

Решение:

Три вектора образуют базис, если Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Найдем координаты вектора Векторная алгебра: основные понятия и определения в базисе Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Два вектора равны, если их соответствующие координаты равны.

Векторная алгебра: основные понятия и определения

Решим систему методом Крамера:

Векторная алгебра: основные понятия и определения

Ответ: Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Задача:

Даны координаты вершин тетраэдра Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения. Найти: 1) координаты точки пересечения медиан треугольника Векторная алгебра: основные понятия и определения; 2) уравнение прямой, проходящей через вершину Векторная алгебра: основные понятия и определения параллельно медиане, проведенной из вершины Векторная алгебра: основные понятия и определения треугольника Векторная алгебра: основные понятия и определения; 3) координаты точки, симметричной точке Векторная алгебра: основные понятия и определения относительно плоскости Векторная алгебра: основные понятия и определения. Сделать чертёж.

Решение:

1) Найдем координаты т. Векторная алгебра: основные понятия и определения середины отрезка Векторная алгебра: основные понятия и определения (рис. 16): Векторная алгебра: основные понятия и определенияВекторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения

Точка Векторная алгебра: основные понятия и определения пересечения медиан треугольника делит медиану Векторная алгебра: основные понятия и определения в отношении Векторная алгебра: основные понятия и определения, считая от вершины Векторная алгебра: основные понятия и определения. Найдем координаты точки Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

2) Найдем направляющий вектор прямой Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения. Уравнение прямой, проходящей через вершину Векторная алгебра: основные понятия и определения параллельно прямой Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

3) Найдем уравнение плоскости Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

Найдем каноническое уравнение прямой, перпендикулярной плоскости Векторная алгебра: основные понятия и определения и проходящей через т. Векторная алгебра: основные понятия и определения: Векторная алгебра: основные понятия и определения. Запишем каноническое уравнение прямой в параметрическом виде: Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения.

Найдем координаты точки Векторная алгебра: основные понятия и определения пересечения плоскости Векторная алгебра: основные понятия и определения и найденной прямой: Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения

Координаты точки Векторная алгебра: основные понятия и определения симметричной точке Векторная алгебра: основные понятия и определения относительно плоскости Векторная алгебра: основные понятия и определенияВекторная алгебра: основные понятия и определения.

Ответ: 1) координаты точки пересечения медиан Векторная алгебра: основные понятия и определения уравнение прямой Векторная алгебра: основные понятия и определения; 3) координаты симметричном точки Векторная алгебра: основные понятия и определения.

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Высшая математика краткий курс лекций для заочников

Возможно вам будут полезны эти страницы:

Векторная алгебра — решение заданий и задач по всем темам с вычислением

Понятие вектора. Линейные операции над векторами

1°. Любые две точки Векторная алгебра пространства, если они упорядочены (например, А является первой, а В — второй точкой), определяют отрезок вместе с выбранным направлением (а именно, от A к В). Направленный отрезок называется вектором. Вектор с началом в A и концом в В обозначается Векторная алгебра или Векторная алгебра Длина вектора, обозначаемая Векторная алгебра , АВ или Векторная алгебра а, называется также модулем вектора. Чтобы найти координаты вектора, нужно из координат конца вектора вычесть одноименные координаты начала: Векторная алгебра Тогда длина вектора найдется так:

Векторы, расположенные на одной прямой или на параллельных прямых, называются коллинеарными.

Два вектора Векторная алгебра называются равными, если они коллинеарны, имеют одинаковые модули и направления. В этом случае пишутВекторная алгебра Равные векторы имеют равные координаты.

Векторы Векторная алгебраназываются противоположными, если они коллинеарны, имеют одинаковые длины и противоположные направления: Векторная алгебра

Вектор называется нулевым, если его модуль равен нулю, и обозначается Векторная алгебра

2°. Линейными называются действия сложения, вычитания векторов и умножения вектора на число.

1.Если начало Векторная алгебра совмещено с концом Векторная алгебра то начало Векторная алгебрасовпадает с началом Векторная алгебра а конец — с концом Векторная алгебра (рис. 3.1).

2.Если начала векторов Векторная алгебра совмещены, то начало Векторная алгебра совпадает с концом Векторная алгебра, а конец Векторная алгебра совпадает с концом Векторная алгебра (рис. 3.2).

3.При умножении вектораВекторная алгебра на число (скаляр) Векторная алгебрадлина вектора умножается на Векторная алгебра, а направление сохраняется, еслиВекторная алгебра и изменяется на противоположное, если Векторная алгебра (рис. 3.3).

Вектор Векторная алгебраназывается ортом, или единичным вектором вектора Векторная алгебра его длина равна единице:Векторная алгебра

3°. Запись ci — Векторная алгебра означает, что вектор Векторная алгебраимеет координатыВекторная алгебра или Векторная алгебра разложен по базису Векторная алгебра — орты осей Ох, Оу и Oz пространственной системы координат Oxyz). При этом

Векторная алгебра

4°. Числа Векторная алгебра называются направляющими косинусами вектора Векторная алгебра — углы между вектором Векторная алгебра и координатными осями Ох, Оу, Oz соответственно. Единичный вектор Векторная алгебра — орт вектора Векторная алгебра. Для любого вектора справедливо: Векторная алгебра

5°. Линейные операции над векторами, которые заданы своими координатами, определяются так: пусть Векторная алгебратогда

Векторная алгебра

Следовательно, при сложении векторов складываются их соответствующие координаты, а при умножении вектора на число умножаются на число все координаты вектора.

6°. Необходимое и достаточное условие коллинеарности векторов Векторная алгебра, устанавливаемое равенством Векторная алгебра может быть записано соотношениями Векторная алгебра из которых следует пропорциональность их координат: Векторная алгебра

Если один из членов какого-нибудь из этих отношений равен нулю, то и второй член того же отношения должен быть нулем. Геометрически это значит, что в этом случае оба вектора перпендикулярны соответствующей координатной оси (например, если Векторная алгебра то векторы Векторная алгебра).

7°. Система векторов Векторная алгебра называется линейно независимой, если равенство

Векторная алгебра

(Векторная алгебра — действительные числа) возможно только при Векторная алгебра Если же равенство (1) возможно при некотором нетривиальном наборе Векторная алгебра то система этих векторов называется линейно зависимой. Любой вектор линейно зависимой системы линейно выражается через остальные.

Примеры с решениями

Пример:

Доказать, что треугольник с вершинами в точках A(1,2), B(2,5), С(3,4) прямоугольный.

Решение:

Построим векторы, совпадающие со сторонами треугольника (см. п. 1°): Векторная алгебра (рис. 3.4).

Векторная алгебра

Найдем длины сторон: Векторная алгебра Векторная алгебра
Нетрудно видеть, что Векторная алгебра Следовательно, треугольник ABC прямоугольный с гипотенузой Векторная алгебра и катетами Векторная алгебра

Пример:

Проверить, что точки А( 2,-4,3), В(5, —2,9), С( 7,4,6) и D(6,8, -3) являются вершинами трапеции.

Решение:

Составим векторы-стороны с целью обнаружения коллинеарности векторов (в трапеции ВС || AD) (рис. 3.5):

Векторная алгебра

Имеем Векторная алгебра значит, ABCD — трапеция.

Пример:

Найти орт и направляющие косинусы вектора Векторная алгебра

Решение:

Имеем Векторная алгебра В соответствии с п. 3°, 4°

Векторная алгебраи направляющие косинусы вектора Векторная алгебраВекторная алгебра причем Векторная алгебра

Пример:

Определить точку В, которая является концом вектора Векторная алгебра, если его начало совпадает с точкой

Решение:

Пусть точка В имеет координаты B(x,y,z) (рис. 3.6). Тогда координа- ^ ты вектора (п. 1°)

Векторная алгебра

Векторная алгебра

Следовательно, Векторная алгебра Ответ. В(5, -5,3).

Пример:

Вектор Векторная алгебра разложить по векторам

Векторная алгебра

Решение:

Необходимо найти такие числа х, у, z, что Векторная алгебрат.е.

Векторная алгебра

Имея в виду, что при сложении векторов складываются их координаты и равные векторы имеют равные координаты, приходим к системе уравнений

Векторная алгебра

из которой

Векторная алгебра

Ответ. Векторная алгебра

Пример:

Показать, что система векторов Векторная алгебраВекторная алгебра линейно независима.

Решение:

В данном случае равенство (1) имеет вид Векторная алгебра, или Векторная алгебра Отсюда получаем систему уравнений

Векторная алгебра

из которой следует, что Векторная алгебра Это подтверждает линейную независимость данных векторов.

Пример:

Показать, что система векторов Векторная алгебраВекторная алгебра линейно зависима.

Решение:

Равенство (1) равносильно системе уравнений

Векторная алгебра

Она имеет ненулевое решение, например, Векторная алгебра Таким образом, Векторная алгебра Отсюда видно, что Векторная алгебрат.е. вектор Векторная алгебра линейно выражается через Векторная алгебра Очевидно, что Векторная алгебра можно выразить через Векторная алгебра— через Векторная алгебра

Скалярное произведение векторов

1°. Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению их длин на косинус угла Векторная алгебра между ними:

Векторная алгебра

Из Векторная алгебра (рис. 3.7) имеемВекторная алгебра (Векторная алгебра — проекция вектораВекторная алгебра на направление вектора Векторная алгебра).

Итак, Векторная алгебра

2°. Если

Векторная алгебра

т.е. скалярное произведение векторов равно сумме произведений одноименных координат этих векторов.

При этом Векторная алгебра если же Векторная алгебра, т. е. Векторная алгебрапоскольку cos 90° = 0 (условие перпендикулярности двух векторов).

3°. Из определения скалярного произведения следует формула для вычисления угла между двумя векторами:

Векторная алгебра

Примеры с решениями

Пример:

Перпендикулярны ли векторы Векторная алгебра если Векторная алгебра

Решение:

Условие перпендикулярности векторов (п. 2°) Векторная алгебра в нашем случае

Векторная алгебра

Ответ. Да.

Пример:

Найти проекцию вектора Векторная алгебра на направление вектора Векторная алгебра

Решение:

Имеем Векторная алгебра (п. 1°). Подставив сюда выражение для Векторная алгебра из п. 3°, получим

Векторная алгебра

Ответ Векторная алгебра

Пример:

Зная векторы, совпадающие с двумя сторонами: Векторная алгебра и Векторная алгебра найти внутренние углы треугольника ABC.

Решение:

Имеем (рис. 3.8)

Векторная алгебра

Векторная алгебра

Векторная алгебра

При помощи таблиц находим Векторная алгебра Для нахождения других углов нам понадобится вектор Векторная алгебракоторый является суммой Векторная алгебра : Векторная алгебра поэтому Векторная алгебра

Векторная алгебра

Ответ. 123° 10′, 19°29′, 37°21′.

Пример:

Найти координаты вектора Векторная алгебра если Векторная алгебра где Векторная алгебраи Векторная алгебра

Решение:

На рис. 3.9 имеем Векторная алгебра Из условий перпендикулярности векторов (п. 2°) имеем Векторная алгебраПоложим Векторная алгебра Условие задачи перепишем в виде Рис. 3.9 системы

Векторная алгебра

Векторная алгебра

Векторное произведение векторов

1°. Векторы Векторная алгебра приведенные к одному началу, образуют правую (левую) тройку при условии: если смотреть из конца вектора Векторная алгебра на плоскость векторов Векторная алгебра то кратчайший поворот от Векторная алгебра совершается против (по) часовой стрелки (рис. 3.10).

Векторная алгебра

2°. Векторным произведением ненулевых векторов Векторная алгебра называется вектор Векторная алгебра, обозначаемый Векторная алгебра удовлетворяющий следующим трем условиям.

1)Векторная алгебра вектор Векторная алгебра перпендикулярен плоскости векторов Векторная алгебра

2) Вектор Векторная алгебра направлен так, что векторы Векторная алгебра образуют правую тройку.

3) Векторная алгебра т.е. его длина численно равна площади параллелограмма, построенного на векторах Векторная алгебра (рис. 3.11), таким образом, Векторная алгебра

Если векторы Векторная алгебра коллинеарны, то под Векторная алгебра понимается нулевой вектор:Векторная алгебра

3°. Если известны координаты векторов-сомножителей Векторная алгебра то для отыскания координат векторного произведения служит формула

Векторная алгебра

в которой определитель следует разложить по элементам первой строки.

Примеры с решениями

Пример:

Найти площадь треугольника, вершины которого находятся в точках А(1,2,3), В{3,2,1), С(1,0,1).

Решение:

Найдем координаты векторов Векторная алгебраОпределим координаты векторного произведения Векторная алгебра (рис. 3.12):

Векторная алгебра

Найдем длину этого вектора, которая равна численно площади параллелограмма S (п. 2°): Векторная алгебра Площадь треугольника Векторная алгебра равна Векторная алгебра

Векторная алгебра

Пример:

Построить параллелограмм на векторах Векторная алгебра и Векторная алгебра вычислить его площадь и высоту, опущенную на Векторная алгебра.

Сделаем чертеж (рис. 3.13). Имеем Векторная алгебра Отдельно вычисляем векторное произведение:

Векторная алгебра

Следовательно,

Векторная алгебра

Векторная алгебра

Смешанное произведение векторов

1°. Смешанным произведением трех ненулевых векторов Векторная алгебра называется число, равное скалярному произведению двух векторов, один из которых — векторное произведение Векторная алгебра, а другой — вектор Векторная алгебра. Обозначение: Векторная алгебра Если Векторная алгебра образуют правую тройку, то Векторная алгебра ЕслиВекторная алгебра образуют левую тройку, то Векторная алгебра

Модуль смешанного произведения векторовВекторная алгебра равен объему параллелепипеда (рис. 3.14), построенного на этих векторах,Векторная алгебра Условие Векторная алгебра равносильно тому, что векторы Векторная алгебра расположены в одной плоскости, т.е. компланарны. Имеет место равенство

Векторная алгебра

Объем тетраэдра с вершинами в точках Векторная алгебраВекторная алгебра можно вычислить по формуле Векторная алгебрагде

Векторная алгебра

Векторная алгебра

2°. Условие Векторная алгебра равносильно условию линейной независимости Векторная алгебра, а тогда любой вектор Векторная алгебра линейно выражается через них, т. е. Векторная алгебра Для определения х, у, z следует решить соответствующую систему линейных уравнений

Примеры с решениями

Пример:

Найти объем параллелепипеда, построенного на векторах Векторная алгебра

Решение:

Искомый объем Векторная алгебра Поскольку

Векторная алгебра

Пример:

В точках 0(0,0,0), А(5,2,0), В(2,5,0) и С(1,2,4) находятся вершины пирамиды. Вычислить ее объем, площадь грани ABC и высоту пирамиды, опущенную на эту грань.

Решение:

1) Сделаем схематический чертеж (рис. 3.15).

2) Введем векторы Векторная алгебра Векторная алгебра.Объем пирамиды ОАВС (тетраэда) равен

Векторная алгебра

3) Площадь грани ABC

Векторная алгебра

4) Объем пирамиды Векторная алгебра отсюда Векторная алгебра
Ответ. Векторная алгебра

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Прямоугольные декартовы координаты

Координатная ось

Пусть на плоскости или в пространстве задана произвольная прямая L: Ясно, что по этой прямой L сы можем перемещаться в oднoм из двух противоположных направлений. Выбор любого (одного) из этих направлений будем называть ориентацией прямой L.

Оnределение:

Прямая с заданной на ней ориентацией называется осью. На чертеже ориентация оси указывается стрелкой (рис. 1 ) . Фиксируем на оси Векторная алгебра некоторую точку О и выберем какой-нибудь отрезок а, доложив по определению его длину равной единице (рис. 2).

Пусть М — произвольная точка оси Векторная алгебра. Поставим этой точке в соответствие число х по следующему прав илу: х равно расстоюiию между точками О и М, взятому со знаком плюс или со знаком минус н зависимости от того, совпадает ли направление движения от точки О к точке М с заданным направлением или противоположно ему (рис. 3).

Векторная алгебра

Оnределение:

Ось Векторная алгебра с точкой начала отсчета О и масштабными отрезками а называется координатной осью, а число х, вычисляемое по указанному правилу, называется координатой точки М. Обозначение: М (х).

Прямоугольные декартовы координаты на плоскости

Пусть П — произвольная плоскость. Возьмем на ней некоторую точку О и проведем через эту точку взаимно перпендикулярные прямые L 1 и L 2. Зададим на каждой из nрямых L 1 и L 2 ориентацию и выберем единый масштабный отрезок а. Тогда эти прямые nревратятся в координатные оси с общей точкой отсчета О (рис. 4).

Векторная алгебра

Назовем одну из координатных осей осью абсцисс (осью Ох), друrую —осью ординат (осью Оу) (рис. 5). Точка О называется началом координат. Пусть М — произвольная точка плоскости П (рис. 6). Проведем через точку М прямые, перпендикулярные координатным осям, и поставим ей в соответствие упорядоченную пару чисел (х, у) по следующему nравилу:

Векторная алгебра

Числа х и у называются прямоугольными декартовыми при этом х называется ее абсциссой, а у — ординатой. координатами точки М; Обозначение: М(х, у). Чтобы кратко охарактеризовать описанную конструкцию, говорят, что на плоскости П задана прямоугольная декартова система координат Ох у. Координатные оси разбивают плоскость на четыре части, называемые четвертями или квадрантами. На рисунке и в таблице показано, как эти квадранты нумеруются (рис. 7).

Векторная алгебра

Замечание:

Масштабные от резки на координатных осях могут быть и разной длины. В этом случае координатная система называется просто прямоугольной.

Прямоугольные декартовы координаты в пространстве

Возьмем в пространстве некоторую точку О и проведем через нее три взаимно перпендикулярные прямые L 1 , L 2 и L 3 . Выберем на каждой из nрямых ориентацию и единый масштаб. Прямые L 1 , L 2 и L 3 превратятся в координатные оси с общей точкой отсчета О (рис. 8).

Векторная алгебра

Назовем одну из этих осей осью абсцисс (осью Ох), вторую — осью ординат (осью Оу) и третью — осью аппликат (осью Oz) (рис. 9). Точка О называется началом координат. Пусть М — nроизвольная точка (рис. 10). Проведем через точку М nлоскости, перпендикулярные координатным осям, и поставим ей в соответстnие упорядоченную тройку чисел (х, у, z) по следующему правилу:

Векторная алгебра

Числа х, у и z называются прямоугольными декартовыми координатами точки М; при этом х называется абсциссой точки М, у — ее ординатой, а z —аппликатой. Обозначение: М(х, у, z). Таким образом, в пространстве введена прямоугольная декартова система координат.

Оnределение:

Плоскость, проходящая через любую пару координатных осей, называется координатной плоскостью.

Координатных плоскостей три: Оху, Oyz и Oxz. Эти плоскости разбивают пространство на восемь частей — октантов. 1 .4. Простейшие задачи аналитической геометрии А. Расстояние между точками Пусть М 11 ) и М 22 )- две точки на координатной оси. Тогда расстояние d между ними вычисляется по формуле

Векторная алгебра

Если на плоскости задана прямоугольная декартова система координат Оху, то расстояние d между любыми двумя точками М 11 , у1 и М22 , y2) вычисляется по следующей формуле

Векторная алгебра

Рассмотрим прямоугольный треугольник ∆MM1M2 (pиc. l l). По теореме Пифагора

Векторная алгебра

Так как расстояние d между точками M 1 и M 2 равно длине отрезка M1M2 а |M1M| = |x 2 — x 1|, |MM2| = |y 2 — y 1|, то отсюда получаем, что

Векторная алгебра

Замечая, что

Векторная алгебра

,и извлекая из обеих частей равенства квадратный корень, приходим к требуемой формуле .

Замечание:

Расстояние между точками Векторная алгебра в пространстве вычисляется по следующей формуле

Векторная алгебра

Векторная алгебра

Задача:

Написать уравнение окружности радиуса т с центром в точке Р(а, b).

Пусть М(х, у) — точка окружности (рис. 12). Это означает, что |M P| = r. Заменим |M P|его выражением

Векторная алгебра

и возведем обе части полученного равенства в квадрат:

Векторная алгебра

Это есть каноническое уравнение окружности радиуса r с центром в точке Р(а, b) .

Задача:

Пусть F л (-с, 0) и F n (c, 0) -фиксированные точки плоскости, а -заданное число (а > с ≥ 0). Найти условие, которому удовлетворяют координаты х и у точки М, обладающей следующим свойством: сумма расстояний от точки М до Fл и до F n равна 2а.

Вычислим расстояния между точками М и F л и между точками М и F n . Имеем

Векторная алгебра

(рис. 13). Отсюда

Векторная алгебра

Перенесем второй корень в правую часть

Векторная алгебра

Возводя обе части в квадрат, после простых преобразований получим

Векторная алгебра

С целью дальнейших упрощений вновь возводим обе части в квадрат. В результате nриходим к равенству

Векторная алгебра

Полагая b 2 = а 2 — с 2 и деля обе части nоследнего соотноwения на а 2 b2 , nолучаем уравнение эллипса

Векторная алгебра

(см. главу 111) .

Деление отрезка в данном отношении:

Пусть М11 , y1) и М22 , y2) — различные точки плоскости. Пусть, далее, точка М(х, у) лежит на отрезке М1М2 и делит его в отношении λ 1 : λ 2 , т. е.

Векторная алгебра

Требуется выразить координаты х и у этой точки через координаты концов отрезка М1М2 и числа λ 1 и λ 2 . Предположим сначала, что отрезок М1М2 не параллелен оси ординат Оу (рис. 14). Тогда

Векторная алгебра

Так как

Векторная алгебра

то из последних двух соотношений получаем, что

Векторная алгебра
Векторная алгебра

Точка М лежит между точками М1 и М2 , поэтому либо х 1 < х < х 2 , либо х 1 > х > х 2 . В любом из этих случаев разности х1 — х и х — х 2 имеют одинаковые знаки. Это позволяет переписать последнее равенство в следующей форме

Векторная алгебра

Отсюда

Векторная алгебра

В случае, когда отрезок М1М2 параллелен оси Оу, х 1 = х 2 = х. Заметим, что тот же результат дает формула (*), если nоложить в ней х 1 = х 2 . Справедливость формулы

Векторная алгебра

доказывается аналогичным рассуждением .

Задача:

Найти координаты центра тяжести М треугольника с вершинами в точках . М1 ( х 1 , у 1 ), М2 ( х 2 , у 2 ) и М3 ( х 3 , у 3 ). Восnользуемся тем, что центр тяжести треугольника совпадает с точкой пересечения его медиан. Точка М делит каждую медиану в отношении 2 : 1, считая от вершины (рис. 15). Тем самым, ее координаты х и у можно найти по формулам

Векторная алгебра

где х’ и у’ — координаты второго конца М’ медианы М3 М’. Так как М’ — середина отрезка М1М2, то

Векторная алгебра
Векторная алгебра

Полученные соотношения позволяют выразить координаты z и у центра тяжести М треугольника ∆М1М2М3 через координаты его вершин:

Векторная алгебра

Замечание:

Если точка М(х,у,z ) делит отрезок с концами М1( х1, у1, z1) и М2( х2, у2, z2) в отношении λ1 : λ2, то ее координаты вычисляются по формулам

Векторная алгебра

Полярные координаты

Предположим, что задана точка О, ось Векторная алгебра.содержащая точку О, и масштабный отрезок (эталон длины) (рис. 16).

Пусть М — произвольная точка плоскости, отличная от точки О (рис.17). Ее положение на плоскости однозначно определяется двумя числами: расстоянием г между точками О и М и отсчитываемым против часовой стрелки углом φ между положительным лучом оси Векторная алгебра и лучом ОМ с началом в точке О. Пару (г, φ) называют полярными координатами точки М; г — полярный радиус точки М , φ — полярный угол.

Точка О называется полюсом, Векторная алгебра — полярной осью.

Ясно, чтоВекторная алгебраЕсли точка М совпадаете полюсом, то считаем г = 0; полярный угол φ в этом случае не определен.

Таким образом, на плоскости можно задать еще одну координатную систему — полярную.

Прямоугольную декартову систему координат Оху будем называть согласованной с заданной полярной, если начало координат 0(0, 0) — полюс, ось Ох — полярная ось, а ось Оу составляете осью Ох угол, равныйВекторная алгебра. Тогда

Векторная алгебра

Векторная алгебра

(рис.18). В свою очередь Векторная алгебра

Пример:

Пусть R > О — заданное число. Множество точек плоскости, полярные координаты (г, <р) которых удовлетворяют равенству

r = R,

является окружностью радиуса R с центром в полюсе (рис. 19)

Векторная алгебра

Определители 2-го и 3-го порядков

Пусть имеем четыре числа а11, а12, а21, а22 (читается — «а-один-один», «а-один-два», «а-два-один», «а-два-два»).

Определителем второго порядка называется число

Векторная алгебра

Обозначение:

Векторная алгебра

Числа а11, а12, а21, а22 называются элементами определителя; пары элементов а11, а12 и а21, а22 образуют строки определителя, а пары элементов а11, а21 и а12, а22 — его столбцы; пара элементов а11, а22 образует главную диагональ определителя, а пара а12, а21побочную диагональ.

Тем самым, для вычисления определителя второго порядка нужно из произведения а11, а22 элементов главной диагонали вычесть произведение а12, а21 элементов его побочной диагонали (рис. 20).

Векторная алгебра

Пример:

Вычислить определитель

Векторная алгебра

По правилу (1) имеем

Векторная алгебра

С определителями второго порядка мы встречаемся уже при отыскании решения системы двух линейных алгебраических уравнений с двумя неизвестными

Векторная алгебра

Решая эту систему методом исключения неизвестных при условии, что

Векторная алгебра

находим

Векторная алгебра

Пусгь теперь даны девять чисел aij (i = I, 2, 3; j = I, 2, 3).

Определителем третьего порядка называется число, обозначаемое символом

Векторная алгебра

и вычисляемое по следующему правилу:

Векторная алгебра

Первый индекс i элемента aij указывает номер строки, в которой он расположен, а второй индекс j — номер столбца.

Элементы а11, а22, а33 образуют главную диагональ определителя ∆, элементы а13, а22, а31 — побочную диагональ, элементы а13, а22, а31 — побочную диагональ.

Чтобы разобраться с распределением знаков в правой части формулы (2), обратим внимание на следующее: произведение элементов а11, а22, а33 главной диагонали входит в формулу со своим знаком, также как и произведение а11, а22, а33 и а11, а22, а33 элементов, расположенных в вершинах треугольников, основания которых параллельны главной диагонали (рис. 21); с другой стороны, произведение а13, а22, а31 элементов побочной диагонали, а также произведения а12, а21, а33 и а11, а23, а32 — с противоположным знаком (рис.22). Такой подход к вычислению определителя третьего порядка называется правилом треугольника.

Векторная алгебра

Пример:

Вычислить определитель

Векторная алгебра

Применяя правило треугольника, находим

Векторная алгебра

Установим некоторые свойства определителей 3-го порядка, легко проверяемые при помощи разложений (1) и (2).

Свойство:

Величина определителя не изменится, если все его строки заменить его столбцами с теми же номерами

Векторная алгебра

Свойство:

При перестановке любых двух строк (или любых двух столбцов) определителя он изменяет свой знак на противоположный.

Свойство:

Общий множитель всех элементов одной строки (или одного столбца) определителя можно вынести за знак определителя

Векторная алгебра

Следующие три свойства определителя вытекают из свойств 1-3. Впрочем, в их справедливости можно убедиться и непосредственно, пользуясь формулами (1) и (2).

Свойство:

Если определитель имеет две равные строки (или дна равных столбца), то он равен нулю.

Свойство:

Если все элементы некоторой строки (или некоторого столбца) равны нулю, то и сам определитель равен нулю.

Свойство:

Если соответствующие элементы двух строк (или двух столбцов) пропорциональны, то определитель равен нулю.

Укажем еще один способ вычисления определителя 3-го порядка

Векторная алгебра

Минором Mij элемента aij определителя ∆ называется определитель, получаемый изданного путем вычеркивания элементов i-й строки и j-ro столбца, на пересечении которых находится этот элемент. Например, минором элемента a23 будет определитель

Векторная алгебра

Алгебраическим дополнением элемента Aij называется минор Mij — этого элемента, взятый со своим знаком, если сумма i + j номеров строки и столбца, на пересечении которых расположен элемент aij, есть число четное, и с противоположным знаком, если это число нечетное:

Векторная алгебра

Теорема:

Определитель равен сумме произведений элементов любой его строки (любого его столбца) на их алгебраические дополнения, так что имеют место следующие равенства

Векторная алгебра

Покажем, например, что

Векторная алгебра

Пользуясь формулой (2), получаем, что

Векторная алгебра

Правило (3) называется разложением определителя по элементам i-й строки, а правило (4) — разложением определителя по элементам j -го столбца.

Пример:

Вычислить определитель

Векторная алгебра

Раскладывая определитель по элементам 1-ой строки, получим

Векторная алгебра

Понятия связанного и свободного векторов

Рассмотрим две точки А и В. По соединяющему их отрезку можно перемещаться в любом из двух противоположных направлений. Если считать, например, точку А начальной, а точку В конечной, то тогда получаем направленный отрезок АВ, в другом случае — направленный отрезок В А. Направленные отрезки часто называют связанными или закрепленными векторами. На чертеже заданное направление указывается стрелкой (рис. 1).

Векторная алгебра

В случае, когда начальная и конечная точки совпадают, А = В, связанный вектор называется нулевым.

Определение:

Будем говорить, что связанные векторы АВ и CD равны, если середины отрезков AD и ВС совпадают (рис. 2).

Обозначение:

А В = CD.

Заметим, что в случае, когда точки А, В, С и D не лежат на одной прямой, это равносильно тому, что четырехугольник ABCD — параллелограмм. Ясно, что равные связанные векторы имеют равные длины.

Пример:

Рассмотрим квадрат и выберем векторы, как указано на рис.3. Векторы АВ и DC равны, а векторы ВС и DA не равны.

Укажем некоторые свойства равных связанных векторов:

  1. Каждый связанный вектор равен самому себе: АВ = АВ.
  2. Если АВ = CD, той CD = АВ.
  3. Если АВ = CD и CD = EF,то АВ = EF (рис.4).

Пусть АВ — заданный связанный вектор и С — произвольная точка. Ясно, что, опираясь на определение, всегда можно построить точку D так, чтобы

CD = АВ.

Тем самым, от каждой точки можно отложить связанный вектор, равный исходному (рис. 5).

Мы будем рассматривать свободные векторы, т. е. такие векторы, начальную точку которых можно выбирать произвольно, или, что то же самое, которые можно произвольно переносить параллельно самим себе. Ясно, что свободный вектор Векторная алгебра однозначно определяется заданием связанного вектора АВ.

Если в качестве начальных выбирать лишь те точки, которые лежат на прямой, определяемой заданным (ненулевым) связанным вектором, то мы приходим к понятию скользящего вектора (рис. 6).

Векторная алгебра

Связанные и скользящие векторы широко используются в теоретической механике.

Для обозначен ия свободных векторов будем пользоваться полужирными строчными латинскими буквами — а, b, с,… ; нулевой вектор обозначается через 0.

Пусть заданы вектор а и точка А. Существует ровно одна точка В, для которой

Векторная алгебра = а

(рис.7). Операция построения связанного вектора АВ, для которого выполняется это равенство, называется откладыванием свободного вектора а от точки А.

Векторная алгебра

Заметим, что связанные векторы, получаемые в результате описанной операции откладывания, равны между собой и, значит, имеют одинаковую дли ну. Это позволяет ввести длину свободного вектора а, которую мы будем обозначать символом |а. Длина нулевого вектора равна нулю. Если а = b, то |а| = |b; обратное неверно.

Линейные операции над векторами

Сложение векторов

Пусть заданы два вектора а и b. Возьмем какую-нибудь точку О и отложим от нее вектор a: Векторная алгебра= а. От полученной точки А отложим вектор b: Векторная алгебра = b. Полученный в результате векторВекторная алгебра называется суммой векторов а и b и обозначается через a + b (рис. 8). Этот способ построения суммы векторов называется правилом треугольника.

Нетрудно заметить, что сложение векторов коммутативно, т. е. для любых векторов а и b справедливо равенство

Векторная алгебра

Если отложить векторы а и 1» от обшей точки О и построить на них как на сторонах параллелограмм, то вектор Векторная алгебра, идущий из общего начала О в противоположную вершину параллелограмма, будет их суммой а + b (или b +а) (рис. 10). Этот способ построения суммы векторов называется правилом параллелограмма.

Векторная алгебра

Пусть заданы три вектора, например, a, b и с. Отложим от произвольной точки О вектор a: Векторная алгебра = а; от полученной точки А отложим вектор b: Векторная алгебра = b; отточки В — вектор с: Векторная алгебра= с (рис. 11). По определению суммы Векторная алгебра— а + b и Векторная алгебра = (а + b) + с (рис. 12). С другой стороны, АС = b + с и, значит, ОС = а + (Ь + с) (рис. 13). Тем самым, для любых векторов a, b и с выполняется равенство

(а +b) + с = а + (b + с),

т. е. сложение векторов ассоциативно. Опуская скобки, можно говорить о сумме трех векторов и записывать ее так:

а + b + с.

Векторная алгебра

Аналогично определяется сумма любого числа векторов: это есть вектор, который замыкает ломаную, построенную из заданных векторов. На рис. 14 показан», как построить сумму семи векторов:

Векторная алгебра

Приведенный способ сложения произвольного числа векторов называется правилом замыкающего ломаную.

Пример:

Найти сумму векторов, идущих из центра правильного шестиугольника в его вершины.

По правилу замыкающего ломаную получаем

Векторная алгебра

(рис. 15).

Векторная алгебра

Умножение вектора на число

Определение:

Свободные векторы а и b называются коллинеарными, если определяющие их связанные векторы лежат на параллельных или на совпадающих прямых (рис. 16).

Векторная алгебра

Обозначение: а||b.

Замечание:

Из определения следует, что если хотя бы один из векторов a и b нулевой, то они коллинеарны.

Если отложить коллинеарные векторы а и b от обшей точки О, Векторная алгебра = n, Векторная алгебра = Ь, то точки О, А н В будут лежать на одной прямой. При этом возможны два случая: точки А и В располагаются на этой прямой: 1) по одну сторону от точки О, 2) по разные стороны (рис. 17). В первом случае векторы а и b называются одинаково направленными, а во втором — противоположно направленными.

Векторная алгебра

Если векторы имеют равные длины и одинаково направлены, то они равны. Пусть а — вектор, λ — вещественное число.

Определение:

Произведением вектора а на число λ называется вектор b такой, что

  1. |Ь| = |λ| • |а|;

2) векторы а и b одинаково (соответственно, противоположно) направлены, если λ > 0 (соответственно, λ < 0).
Обозначение: b = λа.

При λ = 0 положим λа = 0.

Таким образом, векторы а и Ь = λа коллинеарны по определению. Верной обратное: если векторы а(а ≠ 0) и Ь коллинеарны, то можно найти число А такое, что h = λа.

Укажем основные свойства этой операции умножения вектора на число:

Векторная алгебра

(здесь λ и μ — любые действительные числа, а и Ь — произвольные векторы).
Определение:

Вектор, длина которого равна единице, называется единичным вектором, или ортом, и обозначается а° (читается: а с нуликом), |а°| = 1.
Если а ≠ 0, то вектор

Векторная алгебра

есть единичный вектор (орт) направления вектора а (рис. 18).

Векторная алгебра

Координаты и компоненты вектора

Выберем в пространстве прямоугольную декартову систему координат. Обозначим через i, j, к единичные векторы (орты) положительных направлений осей Ox, Оу, Oz (рис. 19). Рассмотрим произвольный вектор п, начало которого лежит в начале координат О, а конец — в точке А. Проведем через точку А плоскости, перпендикулярные осям Ох, Оу и Oz. Эти плоскости пересекут координатные оси в точках Р, Q и R соответственно. Из рис. 20 видно, что

Векторная алгебра

Векторы Векторная алгебра коллинеарны соответственно единичным векторам i, j, k,

Векторная алгебра

поэтому найдутся числа х, у, z такие, что

Векторная алгебра

и, следовательно,

а = xi + yj + zk. (2)

Формула (2) называется разложением вектора а по векторам i, j, к. Указанным способом всякий вектор может быть разложен по векторам i, j, k.

Векторы i, j, к попарно ортогональны, и их длины равны единице. Тройку i, j, k называют ортонормированным (координатным) базисом (ортобазисом).

Можно показать, что для каждого вектора а разложение (2) по базису i, j, к единственно, т. е. коэффициенты х, у, z в разложении вектора а по векторам i, j, к определены однозначно. Эти коэффициенты называются координатами вектора а. Они совпадают с координатами х, у, z точки А — конца вектора а. Мы пишем в этом случае

а = {х, y,z}.

Эта запись означает, что свободный вектор а однозначно задастся упорядоченной тройкой своих координат. Векторы xi, yj, zk, сумма которых равна вектору а, называются компонентами вектора а.

Векторная алгебра

Из вышеизложенного следует, что два вектора а = { х1, у1, z1 } и b = {х2, у2, z2} равны тогда и только тогда, когда соответственно равны их координаты, т. е.

Векторная алгебра

Радиус-вектором точки М(х,у, z) называется вектор г = xi + yj + zk, идущий из начала координат О в точку М (рис. 21).

Линейные операции над векторами в координатах

Пусть имеем два вектора а = { х1, у1, z1} и b = { х2, у2, z2 },так что а = х1i, у1j+ z1k. b = х2i+ у2j+z2k. На основании правила сложения векторов имеем

Векторная алгебра

или, что то же,

Векторная алгебра

— при сложении векторов их координаты попарно складываются. Аналогично получаем

Векторная алгебра

Далее,

Векторная алгебра

или, что то же,

Векторная алгебра

— при умножении вектора на число все его координаты умножаются на это число.
Пусть а = { х1, у1, z1}, b = { х2, у2, z2 } — коллинеарные векторы, причем b ≠ 0. Тогда а = μb, т.е.

Векторная алгебра

или (3)

Векторная алгебра

Обратно, если выполняются соотношения (3), то а = μb, т. е. векторы a и b коллинеарны.

Таким образом, векторы а и b коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Векторная алгебра

Пример:

Найти координаты вектора Векторная алгебраначало которого находится в точке М1 ( х1, у1, z1 ). а конец — в точке M2 (х2, у2, z2).
Из рис. 22 видно, что Векторная алгебра = r2 — r1 , где r2, r1 — радиус-векторы точек М1 и M2 соответственно. Поэтому

Векторная алгебра

— координаты вектора ММг равны разностям одноименных координат конечной М2 и начальной М точек этого вектора.

Проекция вектора на ось

Рассмотрим на оси l ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси l называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси l, и со знаком «-», если эти направления противоположны.

Рассмотрим теперь произвольный вектор Векторная алгебра, определяемый связанным вектором АВ. Опуская из его начала и конца перпендикуляры на заданную ось l, построим на ней направленный отрезок CD (рис. 24).

Векторная алгебра

Определение:

Проекцией вектора Векторная алгебрана ось l называется величина направленного отрезка CD, построенного указанным выше способом.

Обозначение: Векторная алгебра

Основные свойства проекций

  1. Проекция вектора АВ на какую-либо ось l равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25)Векторная алгебра
  2. Проекция суммы векторов на какую-либо ось l равна сумме проекций векторов на ту же ось.

Например,

Векторная алгебра

(рис. 26).

Векторная алгебра

Скалярное произведение векторов

Пусть имеем два вектора a и b.

Определение:

Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а, b) и определяемое равенством

Векторная алгебра

(1)
где φ, или в иной записи (Векторная алгебра), есть угол между векторами а и b (рис. 27 а).
Заметив, что |b| cos φ есть проекция вектора b на направление вектора а, можем написать

Векторная алгебра

(рис. 27 б) и, аналогично,’ (2)

Векторная алгебра
Векторная алгебра

(рис. 27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или b — нулевой, будем считать, что

(a, b) = 0.

Свойства скалярного произведения

  1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и b ортогональны, a ⊥ b.

Это следует из формулы (1), определяющей скалярное произведение.

Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так:

Векторная алгебра

2. Скалярное произведение коммутативно:

(а, b) = (b, а).

Справедливость утверждения вытекает из формулы (I), если учесть четность функции cos φ: cos(- φ) = cos φ.

3. Скалярное произведение обладает распределительным свойством относительно сложения:

(а + b, с) = (а, с) + (b, c).

Действительно,

Векторная алгебра

4. Числовой множитель А можно выносить за знак скалярного произведения

(λа, b) = (а, λb) = λ (а, b).

  • Действительно, пусть λ > 0. Тогда
Векторная алгебра

поскольку при λ > 0 углы (Векторная алгебра) и (λВекторная алгебра) равны (рис.28).

Аналогично рассматривается случай λ < 0. При λ = 0 свойство 4 очевидно.

Векторная алгебра

Замечание:

В общeм случае (а, b)c ≠ a(b, c).

Скалярное произведение векторов, заданных координатами

Пусть векторы а и b заданы своими координатами в ортонормированном базисе i, j, k:

Векторная алгебра

Рассмотрим скалярное произведение векторов а и b:

Векторная алгебра

Пользуясь распределительным свойством скалярного произведения, находим

Векторная алгебра

Учитывая, что

Векторная алгебра

получаем (4)

Векторная алгебра

То есть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат.

Пример:

Найти скалярное произведение векторов n = 4i — 2j + k и b = 6i + 3j + 2k.

(a, b) = 4 • 6 + (-2) • 3 + 1 • 2 = 20.

Скалярное произведение вектора на себя называется скалярным квадратом:

(а, а) = а2.

Применяя формулу (4) при b = а, найдем (5)

Векторная алгебра

С другой стороны,

Векторная алгебра

так что из (5) следует, что (6)

Векторная алгебра

— в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат.

Косинус угла между векторами. Направляющие косинусы

Согласно определению

(а, b) = |а| • |b| • cos φ,

где φ — у гол между векторами а и b. Из этой формулы получаем
(7)

Векторная алгебра

(предполагается, что векторы а и b — ненулевые).

Пусть а = { х1, у1, z1}, b = { х2, у2, z2 }. Тогда формула (7) примет следующий вид

Векторная алгебра

Пример:

Найти угол между векторами a = {2, -4,4,} и d = {-3,2,6}. Пользуясь формулой (8), находим

Векторная алгебра

Пусть b = i, T.e. b = {1,0,0}. Тогда для всякого вектора а = { х1, у1, z1} ≠ 0 имеем

Векторная алгебра

или, в координатной записи, (9)

Векторная алгебра

где а есть угол, образованный вектором я с осью Ох. Аналогично получаем формулы

Векторная алгебра
Векторная алгебра

Формулы (9)-(11) определяют направляющие косинусы вектора а, т. е. косинусы углов, образуемых вектором n с осями координат (рис. 29).

Пример:

Найти координаты единичного вектора n°. По условию | n°| = 1. Пусть n° = zi+ yj+ zk. Тогда

Векторная алгебра

Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат:

Векторная алгебра

Отсюда получаем

Векторная алгебра
Векторная алгебра

Пример:

Пусть единичный вектор n° ортогонален оси z:

Векторная алгебра

(рис. 30). Тогда его координаты г и у соответственно равны

x=cos φ, y = sin φ.

Тем самым,

Векторная алгебра

Векторное произведение векторов

Определение:

Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [a, b] (или a х b), такой, что

1) длина вектора [а, b] равна |а| • |Ь| • sin φ, где φ — угол между векторами а и b (рис.31);

2) вектор [а, b] перпендикулярен векторам а и b, т.е. перпендикулярен плоскости этих векторов;

3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от л к Ь виден происходящим против часовой стрелки (рис. 32).

Векторная алгебра

Иными словами, векторы я, b и [a, b] образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы a и b коллинеарны, будем считать, что [a, b] = 0.

Векторная алгебра

По определению длина векторного произведения (1)

Векторная алгебра

численно равна площади Векторная алгебра параллелограмма (рис.33), построенного на перемножаемых векторах a и b как на сторонах:

|[a, b]| = Векторная алгебра.

Свойства векторного произведения

  1. Векторное произведение равно нулевому вектору тогда и только тогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы я и b коллинеарны, то угол между ними равен либо 0, либо тг).

Это легко получить из того, что |[a, b]| = |a| • |b| • sin φ.

Если считать нулевой вектор коллинеарным любому вектору, то условие коллинеарности векторов a и b можно выразить так

Векторная алгебра

2. Векторное произведение антикоммутативно, т. е. всегда (2)

Векторная алгебра

В самом деле, векторы [а, b] и [b, а] имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [a, b] кратчайший поворот от a к b будет виден происходящим против часовой стрелки, а из конца вектора [b, a] — почасовой стрелке (рис. 34).

Векторная алгебра

3. Векторное произведение обладает распределительным свойством по отношению к сложению

Векторная алгебра

4. Числовой множитель λ можно выносить за знак векторного произведения

Векторная алгебра

Векторное произведение векторов, заданных координатами

Пусть векторы a и b заданы своими координатами в базисе i,j, k: а = { х1, у1, z1}, b = { х2, у2, z2 }. Пользуясь распределительным свойством векторного произведения, находим (3)

Векторная алгебра

Выпишем векторные произведения координатных ортов (рис. 35):

Векторная алгебра
Векторная алгебра
Векторная алгебра

Поэтому для векторного произведения векторов a и b получаем из формулы (3) следующее выражение (4)

Векторная алгебра

Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: (5)

Векторная алгебра

Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры:

  1. Найти площадь параллелограмма, построенного на векторах а = i + j- k, b = 2i + j- k.

Искомая площадь Векторная алгебра = |[а, b]. Поэтому находим

Векторная алгебра

откуда

Векторная алгебра
Векторная алгебра

2. Найти площадь треугольника ОАВ (рис.36).

Ясно, что площадь S∆ треугольника ОАВ равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение [a, b] векторов a=Векторная алгебра и b = Векторная алгебра, получаем

Векторная алгебра

Отсюда

Векторная алгебра

Замечание:

Векторное произведение не ассоциативно, т.е. равенство [[а, b], с] = [а, b,с]] в общем случае неверно. Например, при а = i, b = j. c= j имеем

Векторная алгебра

Смешанное произведение векторов

Пусть имеем три вектора а, b и с. Перемножим векторы а и b векторно. В результате получим вектор [а, b). Умножим его скалярно на вектор с:

([a, b], с).

Число ([а, b], с) называется смешанным произведением векторов а, b, с и обозначается символом (а, b, с).

Геометрический смысл смешанного произведения

Отложим векторы а, b и с от общей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, b], с) = 0. Это следует из того, что вектор [а, b] перпендикулярен плоскости, в которой лежат векторы а и b, а значит, и вектору с.

Векторная алгебра

Если же точки О, А, В, С не лежат в одной плоскости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем

Векторная алгебра

где Векторная алгебра — площадь параллелограмма OADB, а с — единичный вектор, перпендикулярный векторам а и b и такой, что тройка а, b, с — правая, т. е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 6).

Векторная алгебра

Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что

Векторная алгебра

Число ргe с равно высоте h построенного параллелепипеда, взятого со знаком « + », если угол ip между векторами с и с острый (тройка а, b, с — правая), и со знаком «-», если угол — тупой (тройка а, b, с — левая), так что

Векторная алгебра

Тем самым, смешанное произведение векторов a, b и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, b, с — правая, и -V, если тройка а, b, с — левая.

Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая те же векторы a, b и с в любом другом порядке, мы всегда будем О получать либо +V, либо -V. Знак произведения будет зависеть лишь от того, какую тройку образуют перемножаемые векторы — правую или левую. Если векторы а, b, с образуют правую тройку, то правыми будут также тройки b, с, а и с, а, b. В то же время все три тройки b, а, с; а, с, b и с, b, а — левые. Тем самым,

(а, b, с) = (b, с, а) = (с, a,b) = -(b, а, с) = -(а, с, b) = -(с, b, а).

Еще раз подчеркнем, что смешанное произведение векторов равно нулю тогда и только тогда, когда перемножаемые векторы а, b, с компланарны:

{а, b, с компланарны} <=> (а, b, с) = 0.

Смешанное произведение в координатах

Пусть векторы а, b, с заданы своими координатами в базисе i, j, k:

Векторная алгебра

Найдем выражение для их смешанного произведения (а, b, с). Имеем

Векторная алгебра

Откуда

Векторная алгебра

Итак,

Векторная алгебра

— смешанное произведение векторов, заданных своими координатами в базисе i, j, k, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов.

Необходимое и достаточное условие компланарности векторов а = { х1, у1, z1}, b = { х2, у2, z2 }, c = { х3, у3, z3} запишется в следующем виде

Векторная алгебра

Пример:

Проверить, компланарны ли векторы

a = {7, 4,-6}, b = {2, 1,1}, с ={19, 11,17}.

Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель

Векторная алгебра

Разлагая его по элементам первой строки, получим

Векторная алгебра

Двойное векторное произведение

Двойное векторное произведение [а, [b, с]] представляет собой вектор, перпендикулярный к векторам а и [b, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула

[а, [b, с]] = b(а, с) — с(а, b).

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

План урока:

Разложение векторов

Координаты векторов

Сложение и вычитание векторов

Признак коллинеарности векторов

Разложение векторов

Заметим, что если два вектора и коллинеарны, то обязательно найдется такое число k, для которого будет справедливо равенство:

1 metod koordinat

Длина а составляет 6 клеток, а длина b – 9 клеток, при этом они сонаправлены. Получается, что длиннее в 9/6 = 1,5 раза, а потому можно записать:

2 metod koordinat

Мы смогли выразить b через а. Иначе можно сказать, что мы разложили вектор b по вектору a. Можно и наоборот, выразить b через a:

3 metod koordinat

Теперь посмотрим на вектора с и d. Их длины составляют 4 и 8 клеток, то есть отличаются в 2 раза, при этом они противоположно направлены. Поэтому эти вектора можно выразить так:

4 metod koordinat

Обратите внимание, что выразить, например, а через с не удастся. Действительно, предположим, что есть такое число k, что

5 metod koordinat

Тогда, по определению операции умножения вектора на число, вектора а и c должны быть коллинеарными, но они таковыми не являются.

Вектор можно раскладывать не на один, а на два вектора, которые ему не коллинеарны. Покажем это на примере:

6 metod koordinat

Здесь вектора р, а и не коллинеарны, при этом р выражен через а и b:

7 metod koordinat

В данном случае говорят, что р разложен на вектора а и b, а числа 2 и 4 именуют коэффициентами разложения.

Верно следующее утверждение:

8 metod koordinat

Продемонстрируем, как можно осуществить такое разложение. Пусть заданы вектора с, а и b, и требуется разложить на а и b:

9 metod koordinat

На первом шаге просто отложим все три вектора от одной точки. Далее построим прямые, проходящие через вектора а и b:

10 metod koordinat

Далее через конец вектора с проведем прямые, параллельные построенным на предыдущем шаге прямым. В результате у нас получится некоторый параллелограмм АВСD:

11 metod koordinat

Заметим, что вектор с оказался диагональю в этом параллелограмме. Тогда, согласно правилу параллелограмма, можно записать:

12 metod koordinat

Ясно, что вектора АВ и коллинеарны, так как лежат на одной и той же прямой. Тогда найдется такое число k, для которого будет верно отношение:

13 metod koordinat

Конкретно в данном случае видно по рисунку, что АВ вдвое длиннее вектора b, поэтому

14 metod koordinat

Аналогично коллинеарными являются вектора а и АD, поэтому существует число m, при котором справедливо равенство:

15 metod koordinat

Понятно, что числа и m определяются единственным образом. В общем случае они могут быть не только целыми, но и дробными (в том числе иррациональными) и даже отрицательными числами. Проще говоря, они могут быть любыми действительными числами.

Задание. Найдите коэффициенты разложения вектора d на вектора e и f:

16 metod koordinat

Решение. Отложим все три вектора от одной точки. Далее проведем прямые, на которых лежат вектора e и f:

17 metod koordinat

Теперь через конец d проводим ещё две прямые, параллельные двум уже построенным прямым, и в результате получаем параллелограмм:

18 metod koordinat

Вектор d можно представить в виде суммы:

19 metod koordinat

Особняком стоит случай, когда раскладываемый вектор коллинеарен одному из тех векторов, на которые он раскладывается. В этом случае один из коэффициентов разложения оказывается равным нулю. Например, пусть с надо разложить на а и b:

20 metod koordinat

Строить параллелограмм в данном случае не нужно. Так как а и с коллинеарны, то найдется некоторое число k, при котором будет выполняться равенство:

21 metod koordinat

Координаты векторов

Из курса алгебры нам известна прямоугольная система координат. В ней есть оси Ох и Оу, а каждая отмеченная на плоскости точка имеет свои координаты:

22 metod koordinat

Естественно, что на координатной плоскости можно отметить и вектора. Построим два вектора, которые начинаются в начале координат, имеют длину, равную единице, и направление которых совпадает с направлениями осей координат. Тот вектор, который лежит на оси Ох, обозначают буквой i, а тот, который лежит на оси Оу, обозначают как j.

23 metod koordinat

Эти вектора называют единичными векторами, или ортами (ещё используется термин координатный вектор). Они не коллинеарны друг другу, а это означает, что любой вектор на плоскости можно разложить на единичные вектора. Коэффициенты такого разложения как раз и являются координатами вектора.

24 metod koordinat

Посмотрим на примере, как находить координаты вектора. Пусть задан вектор а:

25 metod koordinat

Нам надо разложить а по векторам и j. Для этого их следует отложить от одной точки. Удобно перенести вектор а к началу координат:

26 metod koordinat

Теперь надо через конец а провести прямые, параллельные векторам iи j. В результате получится прямоугольник АВСD:

27 metod koordinat

Можно записать равенство:

28 metod koordinat

Значит, и координаты данного вектора – это числа 3 и 2. Записывается это так:

29 metod koordinat

Обратите внимание, что порядок чисел в скобках принципиально важен. Первое число – это коэффициент разложения, стоящий перед вектором i. Эту координату можно называть координатой х (по аналогии с координатами точек). Второе число – это коэффициент при векторе j, оно является координатой у. Также заметим очевидный факт, что координаты равных векторов одинаковы.

В приведенном выше примере легко заметить, что после того, как мы перенесли вектор в начало координат, координаты его конца (он обозначен точкой С) совпали с координатами самого вектора. Действительно, точка С имеет координаты (3; 2).

30 metod koordinat

Это правильно несколько упрощает определение координат вектора. Достаточно просто отложить вектор от точки начала координат, после чего посмотреть на координаты его конечной точки. Отметим, что вектор, чье начало совпадает с началом координат, имеет особое название – радиус-вектор.

31 metod koordinat

Задание. Определите координаты векторов a, b, c и d, отмеченных на рисунке:

32 metod koordinat

Решение. Во всех случаях будем просто переносить вектора к началу координат, получая радиус вектора. Далее будем просто смотреть, каковы координаты конца радиус-вектора. Начнем с а:

33 metod koordinat

После переноса а его конец оказался в точке А(4; 3), поэтому и координаты всего вектора можно записать так:

34 metod koordinat

После переноса вершина радиус-вектора попала в точку B (1; – 3), поэтому вектор имеет координаты {1; – 3}.

Выполним построение и для с:

35 metod koordinat

Конец вектора попал в точку С (3,5; 0), а потому и координаты вектора составляют {3,5; 0}.

Осталось рассмотреть d:

36 metod koordinat

Здесь координаты вектора будут равны {– 2,5; – 2,5}, так как такие же координаты имеет точка D.

Ответ: а{4;3}; b{1; – 3}; с{3,5; 0}; d{– 2,5; – 2,5}.

Рассмотрим решение обратной задачи, в которой необходимо построить вектор по заранее заданным координатам.

Задание. Даны координаты вектора:

37 metod koordinat

Постройте по три вектора, имеющие заданные координаты.

Решение. Проще всего построить радиус-вектор, вершина которого будет иметь те же координаты, что и требуемый вектор:

38 metod koordinat

Чтобы построить ещё два вектора с такими же координатами, надо просто отложить уже построенный вектор от любых других точек:

39 metod koordinat

Аналогично поступаем и во второй задаче – сначала откладываем радиус-вектор с заданными координатами, а потом добавляем ещё два равных ему вектора, отложенных от других точек:

40 metod koordinat

Отдельно отметим нулевой вектор. Очевидно, что все его координаты равны нулю, так как для него можно записать такое разложение на орты:

41 metod koordinat

Также можно сказать, что если отложить нулевой вектор от начала координат, то его конец также будет находиться в начале координат (так как у нулевого вектора начало и конец совпадают), то есть в точке с координатами (0; 0).

Сложение и вычитание векторов

Пусть у нас есть векторы a{x1; у1} и b{x2; у2}. Можно ли, зная только их координаты, определить их сумму и разность? Оказывается, можно. Действительно, по определению координат векторов (напомним, они являются коэффициентами разложения вектора на орты) можно записать:

42 metod koordinat

Эта запись означает, что с имеет координаты {х1 + х2; у1 + у2}. В результате мы можем сформулировать правило сложения векторов:

43 metod koordinat

Проиллюстрируем правило на примере. Пусть надо сложить вектора а {2; 3} и {4; 5}. Понятно, что в результате получится новый вектор, который мы обозначим как с {х; у}. Чтобы найти его первую координату, надо сложить первые координаты векторов и b:

x = 2 + 4 = 6

Для нахождения второй координаты складываем соответственно вторые координаты векторов:

y = 3 + 5 = 8

В итоге получился вектор с {6; 8}.

Задание. Сложите вектора, имеющие координаты:

44 metod koordinat

Решение. Сначала просто складываем первые числа в скобках (и получаем координату х), а потом – вторые (и получаем координату у):

45 metod koordinat

Теперь попытаемся понять, как вычислять разность двух векторов. Пусть есть вектора с заранее заданными координатами a{x1; у1} и b{x2; у2}. Снова запишем их разложение на единичные вектора:

46 metod koordinat

Теперь мы можем сформулировать правило вычитания векторов:

47 metod koordinat

Например, пусть надо вычесть из вектора а{5; 3} вектор b{2;1}. Искомая разность будет представлять собой вектор, чья координата х будет равна разности первых координат векторов а и b:

x = 5 — 2 = 3

Аналогично вычисляем и координату у:

y = 3 — 1 = 2

В итоге получили вектор с координатами {3; 2}.

Задание. Вычтите из вектора а вектор b, если известны их координаты:

48 metod koordinat

Решение. Во всех случаях мы сначала из первой координаты вектора а вычитаем первую координату b, в результате чего получаем координату х искомого вектора. Далее повторяем процесс со второй координатой (то есть с у):

49 metod koordinat

Далее рассмотрим такую операцию, как умножение вектора на число. Снова запишем, что вектор а с координатами х1и у1 можно разложить на орты следующим образом:

50 metod koordinat

Это означает, что при умножении вектора на число надо просто умножить на это число каждую его координату.

51 metod koordinat

Например, есть вектор а{3; 7}, который надо умножить на 5. Умножим на 5 по отдельности каждую координату:

x = 5*3 = 15

y = 5*7 = 35

В результате получился вектор {15; 35}.

Задание. Умножьте вектор а на число k, если известно, что:

52 metod koordinat

Решение. Надо всего лишь умножить каждую координату а на число k, и таким образом получить новые координаты:

53 metod koordinat

Признак коллинеарности векторов

Напомним, что если два вектора (обозначим их как и b) коллинеарны, то обязательно существует такое число k, что 

54 metod koordinat

Из равенства (1) и рассмотренного нами правила умножения вектора на число вытекают два соотношения между этими координатами:

x1 = k * x2

y1 = k * y2

Если числа х2 и у2 не равны нулю, то можно выразить из каждого уравнения число k, после чего выражения можно будет приравнять:

55 metod koordinat

Получили соотношение, которое можно считать свойством коллинеарных векторов. Это правило работает и в обратную сторону – если координаты векторов удовлетворяют выведенному отношению, то можно смело утверждать, что вектора – коллинеарны.

56 metod koordinat

Примечание. Формулировка «тогда и только тогда» означает, что правило действует в обе стороны – из пропорциональности координат следует коллинеарность векторов, а из коллинеарности векторов следует пропорциональность координат.

Покажем, как пользоваться этим признаком коллинеарности векторов. Пусть вектор а имеет координаты {8; 5}, а у вектора b они равны {24; 15}. Нам надо определить, коллинеарны ли они. Для этого поделим друг на друга их координаты х:

24:8 = 3

Получили число 3. Далее поделим и координаты у:

15:5 = 3

Снова получили тройку. То, что в обоих случаях получилось одно и тоже число, указывает на то, что вектора коллинеарны. Более того, можно даже записать, что вектор b втрое больше a:

57 metod koordinat

В данном примере мы делили координаты второго вектора b на координаты первого вектора a. Но можно было поступить и наоборот, делить координаты а на координаты b:

58 metod koordinat

Естественно, снова получилось одинаковое число.

Особняком стоит случай, когда одна из координат вектора равна нулю. Например, пусть вектор имеет координаты {0; у1}, причем у1≠ 0. Любой коллинеарный ему вектор можно получить, умножив вектор на какое-то число k. В этом случае его координаты {x2; у2} составят:

59 metod koordinat

Получается, что и у коллинеарного вектора координата х обязательно будет равняться нулю. В свою очередь координаты уи умогут быть любыми, ведь мы всегда можем найти такое число k, для которого будет выполняться условие

y2 = ky1

Например, есть вектор {0; 5}. Можно сказать, что ему будет коллинеарен любой вектор, у которого первая координата также равна нулю, в частности,

60 metod koordinat

Но любой вектор, у которого координата х НЕ равна нулю, НЕ будет коллинеарен вектору {0; 5}. В частности, ему не будут коллинеарны вектора:

61 metod koordinat

Аналогичная логика действует и тогда, когда нулю равна не координата х, а координата у.

62 metod koordinat

Если же у вектора обе координаты равны нулю, то он является нулевым вектором, то есть точкой. Напомним, что такой вектор считается коллинеарным любому другому вектору.

Задание. Определите, являются ли коллинеарными два вектора, если их координаты равны:

63 metod koordinat

Решение. В первых пяти случаях все координаты – ненулевые, а поэтому надо просто проверить их пропорциональность. Для этого надо делить координаты друг на друга:

64 metod koordinat

65 metod koordinat

Числа различны, поэтому вектора НЕ коллинеарны.

В следующих примерах как минимум одна из координат равна нулю, поэтому делить координаты уже не нужно.

е) {0; 5} и {0; 12}

У обоих векторов координаты х нулевые, этого достаточно, чтобы утверждать, что они коллинеарны.

ж) {0; 3} и {2; 6}

У первого вектора координата х – нулевая, в то время как у второго нет. Значит, они не коллинеарны.

з) {9; 0} и {4; 0}

У первого вектора координата х – нулевая, в то время как у второго нет. Значит, они не коллинеарны.

и) {0; 3} и {12; 0}

Здесь у первого вектора нулю равна координата х, а у второго она ненулевая, поэтому вектора не коллинеарны.

к) {0; 0} и {5; 8}

Здесь имеет место особый случай, ведь первый вектор – нулевой, то есть представляющий собой точку. Считается, что он коллинеарен любому вектору, поэтому в данном примере вектора коллинеарны.

Ответ: а) да; б) нет; в) да; г) да; д) нет; е) да; ж) нет; з) да; и) нет; к) да.

Пока что мы рассматривали задачи, в которых фигурируют только вектора. Однако в будущем мы научимся с помощью метода координат решать и другие задачи, в которых рассматриваются отрезки, треугольники, окружности и прочие геометрические фигуры.

Содержание:

  1. Векторы
  2. Действия над векторами
  3. Умножение вектора на число
  4. Скалярное произведение векторов
  5. Векторное произведение
  6. Смешенное произведение векторов
  7. Разложение вектора по базису
  8. Действия над векторами, заданными своими координатами
  9. Проекция вектора на ось
  10. Проекции вектора на оси координат
  11. Направляющие косинусы вектора
  12. Разложение вектора по ортам
  13. Действия над векторами, заданными в координатной форме
  14. Вектор — основные определения
  15. Операции над векторами и их свойства
  16. Сформулируем и докажем ещё одну важную для решения некоторых задач теорему.
  17. Координаты вектора
  18. Скалярное произведение векторов и его свойства
  19. Векторы и их решение
  20. Собственные числа и собственные векторы
  21. Векторная алгебра
  22. Векторы: основные определения, линейные операции
  23. Линейные операции над векторами
  24. Умножения вектора на скаляр
  25. Основные свойства проекции вектора на ось
  26. Прямоугольная система координат в пространстве. Координатная и алгебраическая формы задания векторов
  27. Скалярное, векторное, смешанное произведения векторов
  28. Векторное произведение двух векторов
  29. Смешанное произведение векторов, заданных в координатной форме
  30. Простейшие задачи аналитической геометрии
  31. Задача об определении площади треугольника
  32. Задача о деление отрезка в заданном отношении

Векторы

В математике вектором называют величину, которая характеризуется только числом и направлением. Так определённые векторы ещё называют свободными векторами. Примером физических величин, которые имеют векторный характер являются скорость, сила, ускорение. Геометрически вектор — это направленный отрезок, хотя правильней говорить про целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковые длину и направление.

Векторы

Векторы обозначают малыми латинскими буквами с чертой сверху Векторы, или двумя большими латинскими буквами, которые обозначают его начало и конец, например  Векторы. Длина (модуль) вектора — это длина отрезка, который отвечает данному вектору и обозначается Векторы В зависимости от соотношения длин и направлений различают следующие виды векторов:

Векторы

Векторы

Действия над векторами

Рассмотрим основные действия, определённые над векторами.

1. Сложение векторов. Суммой векторов Векторы называют вектор Векторы, который соединяет начало вектора Векторы с концом вектора Векторы, при условии, что вектор Векторы отложен от конца вектора Векторы. Такой способ сложения векторов называют правилом треугольника.

Векторы

Учитывая, что Векторы, то найти сумму векторов Векторы можно также по так называемым «правилом параллелограмма» (рис. 3)

Векторы

Вычитание векторов сводится к сложению противоположного вектора

Векторы

Запишем основные свойства действий сложения векторов:

 Векторы

Заметим, что сумма нескольких векторов находится последовательным сложением двух из них, например:

Векторы

Геометрически сумма нескольких векторов находится их последовательным отложением один за одним так, чтоб начало следующего совпадало с концом предыдущего. Суммой является вектор, который будет соединять начало первого с концом последнего (рис. 4). Если такая последовательность векторов даёт замкнутую ломаную то суммой векторов является Векторы (рис. 5).

Векторы

Умножение вектора на число

Произведением вектора Векторы на число Векторы называют вектор Векторы, для которого выполняются условия:

а) Векторы;

б) Векторы, причём Векторы сонаправленные если Векторы противоположно направленные, если Векторы. Отсюда, очевидно, что необходимым и достаточным условием коллинеарности векторов является соотношение Векторы.

Запишем основные свойства действий умножения вектора на число:

Векторы

Скалярное произведение векторов

Скалярным произведением Векторы или Векторы векторов Векторы и Векторы называют выражение Векторы, где Векторы угол, который образуют векторы. Отметим, что углом между векторами считают угол между их направлениями. Если хотя бы один из векторов равен Векторы, то их скалярное произведение считают равным нулю.

Очевидно, что скалярное произведение двух ненулевых векторов будет равно нулю тогда и только тогда когда эти вектора перпендикулярны (ортогональны). Действительно, если Векторы. Но Векторы, следовательно,

Векторы

Наоборот, если Векторы и согласно определениям

Векторы.

Например, скалярное произведение Векторы будет равным

Векторы

Запишем основные свойства действий скалярного умножения векторов:

Векторы

Векторное произведение

Векторным произведением Векторы двух векторов Векторы и Векторы называется вектор Векторы, который удовлетворяет условия:

1) модуль вектора Векторы равен произведению модулей векторов  Векторы и Векторы на синус угла между ними

 Векторы

2) вектор Векторы перпендикулярный к плоскости, которая определяется векторами Векторы и Векторы (рис. 5).

3) вектор Векторы направленный так, что кратчайший поворот вектора Векторы к вектору Векторы видно с конца вектора Векторы таким, что происходит против движения стрелки (то есть вектора ВекторыВекторы и  образуют правую упорядоченную тройку, или правый руль).

Векторы

Модуль векторного произведения равен площади параллелограмма, построенного на векторах Векторы и Векторы. Векторное произведение выражается формулой Векторы, где Векторы площадь параллелограмма построенного на векторах Векторы и ВекторыВекторы единичный вектор направления Векторы.

Приведём основные свойства векторного произведения:

1) векторное произведение Векторы равно нулю, если векторы  Векторы и Векторы коллинеарные, или один из них нулевой;

2) от перестановки местами векторов-сомножителей векторное произведение меняет знак на противоположный: Векторы (векторное произведение не имеет свойств перестановки);

3) Векторы (распределительный закон);

4) Векторы (соединительный закон).

Физическое содержание векторного произведения такое. Если Векторы сила, а Векторы радиус-вектор точки её приложения, которая имеет начало в точке Векторы, то моментом силы Векторы относительно точки Векторы является вектор, который равен векторному произведению Векторы на Векторы, то есть Векторы.

Смешенное произведение векторов

Смешенным произведением векторов Векторы называют скалярное произведение вектора Векторы на вектор Векторы. Смешенное произведение обозначают (Векторы), поэтому по определению имеем

Векторы

Как результат скалярного произведения векторов Векторы и Векторы смешенное произведение является скалярной величиной (числом). Геометрически смешенное произведение — это объём параллелепипеда, построенного на эти векторах, взятый со знаком плюс, если векторы Векторы образуют правую тройку, и со знаком минус, когда эта тройка левая      (рис. 7).

 Векторы

Действительно, Векторы, где Векторы угол между векторами Векторы угол между векторами Векторы и Векторы.

Объём V параллелепипеда, построенного на векторах Векторы равный произведению площади основы S на высоту h.

Векторы

Однако, знак смешенного произведения совпадает со знаком Векторы, то есть он положительный, когда угол Векторы острый (Векторы образуют правую тройку векторов) и отрицательный, когда угол Векторы тупой (Векторы образуют левую тройку векторов). Поэтому:

Векторы

Из геометрического содержания смешенного произведения выходит, что 

1) смешанное произведение равно нулю тогда и только тогда, когда перемноженные вектора копланарные (условие компланарных векторов);

2) Векторы

Учитывая коммутативность скалярного произведения и антикоммутативность векторного, для произвольных векторов Векторы имеем

Векторы

Пример 1.

Доказать, что когда М — точка АВС и О — произвольные точки пространства, то выполняется равенство: Векторы

Решение.

Пусть Векторы медиана треугольника АВС. По свойствам медиан треугольника Векторы Применив к векторам Векторы и Векторы формулу вычитания векторов

Векторы

тогда

Векторы

Пример 2.

У прямоугольного параллелепипеда рёбра Векторы, имеют длину 2, 3, 5. Вычислить длины отрезков Векторы и Векторы и угол между прямыми Векторы и Векторы.

Решение.

Пусть Векторы единичные вектора направленные вдоль рёбер, которые рассматриваются. Тогда Векторы (поскольку параллелепипед прямоугольный).

рис. 9.Векторы

Далее,

Векторы

Этим закончен «перевод» условия задачи на «язык» векторов.

Теперь произведём вычисления с векторами:

Векторы

Наконец «переводим» полученные вектора равенства снова на «геометрический язык». Поскольку Векторы аналогично Векторы.

Далее поскольку Векторы, где Векторы угол между данными векторами то Векторы, отсюда получаем Векторы. Теперь с помощью тригонометрических таблиц находим значения угла Векторы.

Разложение вектора по базису

Базисом на площади называют упорядоченную пару неколлинеарных векторов и точку отсчёта. 

Теорема. Любой вектор Векторы на плоскости можно разложить по двум неколлинеарным векторам Векторы и Векторы, то есть представить в виде: Векторы.

Доказательство.

Векторы

Пусть векторы Векторы компланарные и векторы Векторы и Векторы неколлинеарные. От точки О отложим все три вектора и на продолжении векторов Векторы и Векторы построим параллелограмм  ONCM так, чтобы вектор Векторы был его диагональю.

Тогда по правилу параллелограмма Векторы.

Но Векторы, как коллинеарные векторы. Следовательно, векторВекторы.

Числа, которые стоят при базисных векторах в разложении вектора за двумя неколлинеарными векторами называют координатами вектора в данном базисе и обозначают Векторы.

Соответственно в пространстве базисом называется упорядоченная тройка некомпланарных векторов и точки отсчёта.  Для четырёх некомпланарных векторов справедлива следующая теорема.

Теорема. Любой вектор  Векторы в пространстве можно разложить по трём некомпланарным векторам ВекторыВекторы и Векторы, то есть представить в виде: Векторы.

Доказательство.

От точки О отложим векторы  Векторы и на продолжении векторов Векторы построим параллелограмм Векторы 

Векторы

в котором вектор Векторы является диагональю. Как видим

Векторы

Числа х,у,z которые стоят при базисных векторах в разложении вектора по трём некомпланарным векторам называют координатами вектора в пространстве и обозначают Векторы. Если базисные вектора взаимно перпендикулярны (их обозначают Векторы), то вместе с точкой отсчёта они образуют декартовую систему координат, а координаты вектора в таком базисе называют декартовыми координатами. В декартовой системе координат разложение вектора будет иметь вид Векторы. Если началом вектора Векторы является точка Векторы, а концом — точка Векторы, то координаты вектора Векторы вычисляют как разность соответствующих координат точек А и В,

Векторы

Отсюда легко установить длину вектора как расстояние между двумя точками:

Векторы

Действия над векторами, заданными своими координатами

1. При сложении двух, или более векторов их соответствующие координаты складываются:

Векторы

Действительно:

Векторы

2. При вычитании векторов соответствующие координаты вычитаются:

Векторы

Доказательство аналогично предыдущему.

3. При умножении вектора на число все координаты умножаются на это число.

Правда, для вектора Векторы и числа Векторы имеем:

Векторы

4. Скалярное произведение двух векторов Векторы равно сумме произведений соответствующих координат:Векторы

Правда:

Векторы

Поскольку Векторы выполняется ВекторыСледовательно, мы можем записать

Векторы

5. Векторное произведение векторов Векторы заданных своими координатами вычисляется так:

Векторы

6. Смешенное произведение трёх векторов Векторы равняется:

Векторы

Пример 1.

Зная координаты векторов Векторы, найти координаты векторов Векторы.

Решение:

Векторы

Ответ: Векторы.

Пример 2.

Зная координаты векторов Векторы вычислить координаты вектора Векторы.

Решение.

Векторы

Ответ: Векторы.

Пример 3.

Зная координаты векторов Векторы вычислить:

а) скалярное произведение векторов Векторы

б) векторное произведение векторов Векторы

в) смешенное произведение векторов Векторы.

Решение.

Векторы

Ответ: Векторы

На основании приведённых выше формул действий над векторами можно установить следующие условия и соотношения для нулевых векторов

Векторы

1. Угол между векторами.

Векторы

2. Условие перпендикулярности двух векторов:

Векторы

(векторы перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю).

3. Условие коллинеарности двух векторов: Векторы (векторы коллинеарные тогда и только тогда, когда соответствующие их координаты пропорциональны).

4. Условие компланарности трёх векторов.

 Векторы

(три вектора компланарны тогда и только тогда, когда их смешенное произведение равно нулю).

5. Деление отрезка АВ в заданном отношении.

Если точка Векторы делит отрезок АВ в отношении Векторы, то координаты точки М находят по формуле:

Векторы

Если точка М делит отрезок АВ на пополам то Векторы, и координаты точки находят согласно формуле:

Векторы

Действия над векторами (теория)

а) Произведение вектора на число.
Определение 1. Произведением вектора Векторы на число λ называется вектор Векторы,
который имеет длину Векторы  и направление его совпадает с направлением вектора Векторыесли λ > 0,  и противоположно ему, если λ < 0 (рис.12).

Векторы
Рис. 12.

Условие Векторы                                                                           (2.6)
является условием коллинеарности двух векторов.

б) Сложение векторов.

Определение 2. Суммой двух векторов Векторы  и  Векторы  называется вектор   Векторы , начало которого совпадает с началом вектора Векторы,  а конец совпадает с концом вектора Векторы, при условии, что начало вектора Векторы  совпадает с концом вектора  Векторы  (правило треугольника)  (рис.13).

Векторы

Рис. 13.

Понятно, что вектор Векторы в этом случае является диагональю параллелограмма, построенного на векторах Векторы  и  Векторы  (правило параллелограмма) (рис.13).
Для векторной суммы справедливый переместительный закон
Векторы
Легко убедиться, что для векторной суммы имеет место соединительный
закон  Векторы .
Исходя из определения 2, легко находим сумму, например, четырех векторов Векторы (рис. 14).
Векторы
Рис. 14.
Вектор Векторы соединяет начало первого вектора   Векторы с концом вектора  Векторы  (правило многоугольника).

в) Вычитание векторов.
Действие вычитание векторов можно рассматривать как обратное действие относительно сложения векторов.

Определение. Разностью Векторы  называется вектор Векторы , который в сумме с вектором Векторы дает вектор  Векторы  (рис. 15), т.е. Векторы

Векторы
Рис. 15.

Как видно из рис. 15,  одна диагональ Векторы является суммой  Векторы ,  а  вторая диагональ Векторы  является разностью векторов  Векторы и  Векторы.
Дадим еще одно определение разности векторов.

Определение. Разностью двух векторов Векторы и  Векторы , которые имеют общее начало, называется вектор Векторы , который соединяет концы этих векторов и направлен в сторону уменьшаемого.

Проекция вектора на ось

Пусть имеем произвольную ось l на плоскости и некоторый вектор Векторы (рис. 16).
Векторы

Рис. 16.

Опустим из начала A вектора и из конца B перпендикуляры на ось l. Основаниями перпендикуляров будут точки A1 и B1, которые называются проекциями точек A и B.

Величина A1B1 называется проекцией вектора Векторы на ось l и обозначается  Векторы, то есть Векторы.
Определение 1. Проекцией вектора Векторы  на ось l называется величина отрезка  A1B1, взята со знаком плюс, если направление отрезка A1B1  совпадает с направлением оси l, и с знаком минус, если направления противоположные.

Из точки A проведем прямую, параллельную оси l, которая пересечет отрезок  BB1 в точке C. Вектор Векторы образует с осью l угол φ. Величина отрезка AC равна величине отрезка  A1B1, а тогда из Δ ABC находим  
Векторы    или       Векторы                                        (2.7)

Определение 2. Проекция вектора на любую ось равна произведению длины этого вектора на косинус угла между осью и вектором.

Если угол φ острый, то проекция  Векторы — положительное число, а если угол φ тупой, то проекция Векторы  —  отрицательное число.

Свойства проекций.

1. Если векторы  Векторы и  Векторы равны, то величины их проекций на одну и ту же ось l также равны, то есть:  Векторы.
2. Проекция суммы векторов на любую ось равна сумме проекций слагаемых на ту же ось, то есть:
Векторы

3. Проекция разности двух векторов на ось l равна разности величин проекций на ту же ось, то есть:
Векторы

4. Если вектор Векторы умножен на любое число λ, то величина проекции вектора Векторы на ось также умножится на число λ, то есть: 
Векторы
 

Проекции вектора на оси координат

Рассматривается прямоугольная система координат Oxyz в пространстве и произвольный вектор Векторы.
Пусть Векторы  Векторы
Проекции x, y, z вектора Векторы  на координатные оси называют координатами вектора и записывают Векторы.
Если заданы две точки A (x1; y1; z1и B (x2; y2; z2), то координаты вектора Векторы находятся по формулам
x = x2 – x1,   y = y2 –  y1,  z = z2 – z.

Векторы

Рис. 17

Действительно, проведем через точки A и B плоскости, перпендикулярные оси Ox и обозначим точки их пересечения соответственно A1 и B1 (рис.17). Точки A1 и B1 имеют на оси Ox координаты   x1  и  x, но Векторы на основе формулы (2.1), а потому
x = x2 – x1 . Аналогично доказывается, что y = y2 –  y1,  z = z2 – z.
 

Направляющие косинусы вектора

Пусть имеем вектор Векторы  и будем считать, что он выходит из начала координат и не находится ни в одной координатной плоскости.

Векторы

Рис. 18

Через точку M проведем плоскости, перпендикулярные к осям координат, и вместе с координатными плоскостями они образуют параллелепипед, диагональ которого — отрезок OM (рис.18). Через α, β, γ обозначим углы, которые образует вектор Векторы с осями координат. Величины cos α, cos β, cos γ называются направляющими косинусами вектора Векторы. Координаты вектора Векторы.

Квадрат диагонали прямоугольного параллелепипеда равна сумме квадратов длин трех его измерений.
Поэтому
Векторы или  Векторы
Векторы                                                                     (2.8)
Формула (2.8) выражает длину вектора через его координаты. Тогда на основе формул (2.7) и (2.8) получим
Векторы
Отсюда для направляющих косинусов получаем

Векторы                  (2.9)

Для направляющих косинусов справедливо равенство Векторы  (это вытекает из (2.9)).

Разложение вектора по ортам

Рассмотрим прямоугольную систему координат в пространстве и вектор, начало которого в точке O (рис.19) .

Векторы

Рис. 19.

Обозначим орты осей координат Ox, Oy, Oz соответственно через  Векторы,  причем
Векторы

Спроецируем вектор Векторы  на координатные оси (через точку M проведем плоскости, перпендикулярные координатным осям). Проекциями точки M на координатные оси будут соответственно точки А, В, С (рис.19).

Из прямоугольника ODMC видно, что вектор  Векторы, но из прямоугольника AOBD получаем, что вектор  Векторы.
Тогда
Векторы                                                                          (2.10)
Вектор  Векторы, который соединяет точку O с точкой M (x, y, z) называется радиусом-вектором этой точки.
Векторы Векторы называются составными или компонентами вектора Векторы, а их величины OA = x, OB = y, OC = z  координатами этого вектора. Компоненты вектора Векторывыразим через его координаты и единичные векторы Векторы, а именно Векторы.
Подставляя эти значения в равенство (2.10), учитывая, что  Векторы, получим
Векторы                                                                                 (2.11)

Слагаемые  Векторы являются составными или компонентами вектора  Векторы.
Тройка векторов  Векторы  называется координатным базисом, а разложение (2.11) называется разложением вектора по базису Векторы.  Это основная формула векторной алгебры.

Пример 1. Построить вектор Векторы.
Векторы

Рис. 20.

Решение. Компоненты вектора  Векторы  являются  Векторы  и  Векторы, и им 
соответствует прямоугольный параллелепипед, диагональ которого является искомый вектор (рис. 20).

Действия над векторами, заданными в координатной форме

Если векторы заданы в координатной форме, то действия сложения, вычитания, умножения вектора на число можно заменить простыми арифметическими операциями над координатами этих векторов по таким правилам.

Правило 1. При сложении векторов их одноименные координаты складываются

Пусть имеем векторы Векторы и  Векторы. Найдем  Векторы.  Запишем разложение векторов  Векторы  и  Векторы.  Тогда  Векторы.
Сложив эти равенства, получим
Векторы.
Итак, координаты вектора   Векторы  будут  Векторы

Правило 2. Чтобы отнять от вектора Векторы   вектор Векторы нужно вычесть из координат вектора Векторы  соответствующие координаты вектора  Векторы, то есть
Векторы

Правило 3. Чтобы умножить вектор  Векторы на число λ,  нужно каждую из его координат умножить на это число. То есть, если
Векторы   то  Векторы.
Пример 1. Найти вектор Векторы , если   Векторы
Решение. Выполним действия последовательно и найдем
Векторы
Векторы.
Значит, Векторы

Вектор — основные определения

Определение вектора в пространстве ничем не отличается от определения вектора на плоскости.

Определение 1. Вектором называется направленный отрезок, т.е. отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом.

Так же как и на плоскости, векторы обозначаются Векторы и т. п. и на чертеже изображаются стрелкой.

Определение 2. Длиной (или модулем) вектора Векторы называется длина отрезка Векторы а направление, определяемое лучом Векторы называется направлением вектора Векторы

Длина вектора Векторы обозначается Векторы длина вектора Векторы обозначается Векторы

Любая точка пространства также считается вектором, который называется нулевым. Начало такого вектора совпадает с его концом, а длина равна нулю. Обозначения нулевого вектора: Векторы

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Определение 3. Векторы Векторы и Векторы называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.

Если ненулевые векторы Векторы и Векторы лежат на параллельных прямых (следовательно, в одной плоскости), причём лучи Векторы лежат в одной полуплоскости, границей которой является прямая Векторы то векторы Векторы и Векторы называются сонаправленными в случае же, когда эти векторы принадлежат одной прямой, они называются сонаправленными, если один из лучей Векторы или Векторы целиком содержится в другом. Нулевой вектор будем считать сонаправленным с любым вектором в пространстве.

Ясно, что сонаправленные векторы, в силу их определения, коллинеарны. Если два коллинеарных вектора не сонаправлены, то они называются противоположно направленными. Обозначения остаются обычными: Векторы (векторы Векторы и Векторы сонаправлены), Векторы (векторы Векторы и Векторы противоположно направлены).

Определение 4. Векторы Векторы и Векторы называются равными, если Векторы и Векторы (т.е. если векторы сонаправлены и их длины равны).

Теорема 1. От любой тонки пространства можно отложить вектор, равный данному, и притом только один.

Доказательство этой теоремы аналогично доказательству соответствующей планиметрической теоремы.

Возможно вам будут полезны данные страницы:

Операции над векторами и их свойства

Операции над векторами в пространстве аналогичны соответствующим операциям на плоскости.

Пусть даны два вектора Векторы и Векторы В силу теоремы 1 от произвольной точки Векторы пространства можно отложить вектор Векторы а от точки Векторы — вектор Векторы Тогда вектор Векторы называется по определению суммой векторов Векторы и Векторы а описанное правило построения суммы двух векторов — правилом треугольника (рис. 1).

Теорема 2. Сумма Векторы векторов Векторы и Векторы не зависит от выбора точки Векторы от которой при сложении откладывается вектор Векторы (Докажите эту теорему самостоятельно.)

Правило треугольника можно сформулировать и так: для любых трёх точек Векторы пространства выполняется равенство

Векторы

Кроме того, сумму двух неколлинеарных векторов с общим началом можно построить и по правилу параллелограмма: Векторы где Векторы — вектор, модуль которого_равен длине диагонали параллелограмма, построенного на векторах Векторы причём вектор Векторы откладывают от той же точки, что и векторы Векторы (рис. 2).

Все свойства операции сложения векторов, справедливые на плоскости, остаются справедливыми и в пространстве:

1) Векторы

2) Векторы — коммутативность (переместительный закон);

3) Векторы — ассоциативность (сочетательный закон).

Здесь Векторы — произвольные векторы в пространстве.

Определение 5. Два ненулевых вектора называются противоположными, если их длины равны и эти векторы противоположно направлены.

Вектор, противоположный данному ненулевому вектору Векторы обозначается Векторы

Определение 6. Разностью двух векторов Векторы и Векторы называется вектор Векторы такой, что его сумма с вектором Векторы равна вектору Векторы

Разность векторов Векторы и Векторы обозначается Векторы Таким образом, по определению Векторы если Векторы

Разность векторов Векторы и Векторы можно найти по формуле Векторы (рис. 3) (докажите эту формулу самостоятельно). Векторы Замечание. Так же как и на плоскости, для сложения нескольких векторов в пространстве можно использовать правило многоугольника (рис. 4), только в последнем случае этот многоугольник будет пространственным (т.е. не все векторы, его составляющие, лежат в одной плоскости).

Векторы

Из законов сложения векторов следует, что сумма нескольких векторов не зависит от порядка слагаемых.

Умножение (произведение) вектора на число и его свойства, так же как и свойства операции сложения, не претерпевают изменений и в пространстве.

Определение 7. Произведением ненулевого вектора Векторы на действительное число Векторы называется вектор Векторы длина которого равна произведению длины вектора Векторы на модуль числа Векторы причём вектор Векторы сонаправлен с вектором Векторы при Векторы и противоположно направлен вектору Векторы при Векторы

Таким образом, по определению, Векторы если Векторы причём Векторы при Векторы Ясно, что векторы Векторы коллинеарны. Если же Векторы или Векторы то Векторы

Свойства умножения вектора на число не отличаются от аналогичных свойств на плоскости:

  1.  Векторы — ассоциативность (сочетательный закон);
  2.  Векторы —дистрибутивность относительно сложения векторов (1-й распределительный закон);
  3.  Векторы — дистрибутивность относительно сложения чисел (2-й распределительный закон).

Здесь Векторы и Векторы — произвольные векторы, Векторы — произвольные действительные числа.

Справедлива также и лемма о коллинеарных векторах: если векторы Векторы и Векторы коллинеарны и Векторы то существует такое действительное число Векторы

что Векторы (ясно, что Векторы если Векторы

Сформулируем и докажем ещё одну важную для решения некоторых задач теорему.

Теорема 3. Пусть Векторы где Векторы — некоторое действительное число, отличное от -1, тогда точки ВекторыВекторы принадлежат одной прямой. Для произвольной точки Векторы пространства справедливо равенство:

Векторы

Доказательство 

1. Из равенства Векторы следует, что векторы Векторы коллинеарны, и так как Векторы — общая точка прямых Векторы и Векторы эти прямые совпадают, поэтому точки Векторы принадлежат одной прямой.

2. Пусть Векторы — произвольная точка пространства. Тогда Векторы и поскольку ВекторыВекторы откуда Векторы Поделив обе части последнего равенства на Векторы приходим к формуле (1). Теорема доказана.

З. Компланарные и некомпланарные векторы

Следующее понятие уже не имеет аналога в планиметрии.

Определение 8. Векторы называются компланарными, если лучи, задающие их направления, параллельны некоторой плоскости.

Замечание. Из определения 8 следует, что при откладывании от одной точки векторов, равных нескольким данным компланарным векторам, получим векторы, лежащие в одной плоскости. Таким образом, компланарные векторы лежат либо в одной плоскости, либо в параллельных плоскостях.

Очевидно, что любые два вектора компланарны и любые три вектора, два из которых коллинеарны, также являются компланарными (поясните). Рассмотрим теперь условия, при которых три вектора, из которых никакие два не коллинеарны, являются компланарными.

Теорема 4. Векторы Векторы из которых никакие два не коллинеарны, являются компланарными в том и только том случае, если существуют такие действительные числа Векторы и Векторы что

Векторы (иными словами, векторы Векторы являются компланарными в том и только том случае, если один из них можно выразить через два других, или, как говорят, разложить по двум другим).

Доказательство

1. Пусть векторы Векторы компланарны. Докажем, что для них имеет место равенство (5). Отложим от произвольной

точки Векторы векторы ВекторыВекторы Векторы Векторы лежат в одной плоскости (см. замечание). Проведём через точку Векторы прямую Векторы до пересечения с прямой Векторы в точке Векторы и прямую Векторы до пересечения с прямой Векторы в точке Векторы (см. рис. 8). Так как векторы Векторы коллинеарны, по лемме о коллинеарных векторах (см. §1.2) существуют такие действительные числа Векторы и Векторы что Векторы ВекторыНо по правилу параллелограмма Векторы откуда Векторы Обратно, пусть выполнено равенство (5).

Докажем, что векторы Векторы компланарны. Векторы Векторы при откладывании от одной точки определяют некоторую плоскость. Согласно правилу параллелограмма и равенству (5) вектор Векторы принадлежит той же плоскости, откуда следует, что векторы Векторы Векторы и Векторы а значит, и векторы Векторы компланарны. Теорема доказана.

Отложим от произвольной точки Векторы пространства векторы Векторы Векторыгде Векторы — три данных некомпланарных вектора, и рассмотрим параллелепипед Векторы построенный на векторах Векторы (рис. 9). Тогда сумму векторов Векторыможно найти следующим образом: ВекторыВекторы Это правило сложения трёх некомпланарных векторов называется правилом параллелепипеда.

Если векторы Векторы не являются компланарными и для вектора Векторы имеет место равенство Векторы где Векторы — некоторые действительные числа, то говорят, что вектор Векторы разложен по трём некомпланарным векторам

Векторы а числа Векторы называются коэффициентами разложения.

Следующая теорема, называемая теоремой о разложении вектора по трём некомпланарным векторам, является основной во всей элементарной (школьной) векторной алгебре.

Теорема 5. Любой вектор Векторы пространства можно разложить по трём данным некомпланарным векторам Векторы причём коэффициенты разложения определятся единственным образом. Доказательство. 1. Если векторы Векторы и Векторы коллинеарны, то ВекторыВекторы и теорема доказана.

2. Пусть векторы Векторы и Векторы не коллинеарны. Отложим от произвольной точки Векторы пространства векторы ВекторыВекторы (рис. 10). Проведём через точку Векторы прямую Векторы до пересечения с плоскостью Векторы в точке Векторы Через точку Векторы в плоскости Векторы проведём прямую Векторы до пересечения с прямой Векторы в точке Векторы (в частности, если Векторы то точка Векторы совпадает с точкой Векторы Согласно правилу многоугольника Векторы но векторы Векторы Векторы по построению коллинеарны, поэтому в силу леммы о коллинеарных векторах ВекторыВекторы где Векторы — некоторые действительные числа Таким образом, учитывая, что Векторы приходим к равенству ВекторыВекторы

3. Докажем теперь, что разложение вектора Векторы по данным векторам Векторы единственно. Допустим, что это не так, т.е. существует ещё одно разложение Векторы в котором хотя бы один коэффициент не равен соответствующему коэффициенту в полученном нами разложении. Пусть, например, Векторы Вычтем последнее равенство из предпоследнего.

Тогда Векторы отсюда ВекторыВекторы— т. е. векторы Векторы компланарны, что противоречит условию теоремы. Значит, наше допущение о ещё одном разложении неверно, т.е. разложение вектора Векторы по данным векторам Векторы единственно. Теорема доказана.

Итак, любой вектор Векторы пространства можно разложить по трём данным некомпланарным векторам Векторы причём единственным образом. Заданную тройку некомпланарных векторов Векторы называют базисом, сами векторы Векторы — базисными векторами, а разложение вектора Векторы по векторам Векторы называют разложением по данному базису Векторы

Координаты вектора

Так же как и на плоскости, в пространстве помимо координат точки вводятся координаты вектора. Рассмотрим три попарно перпендикулярных вектора Векторы отложенных от некоторой точки Векторы пространства, таких, что Векторы (например, их можно направить по рёбрам единичного куба). Эти векторы, очевидно, не являются компланарными. Поэтому, в силу теоремы 5, любой вектор Векторы можно разложить_по векторам Векторы причём единственным образом: Векторы Введём прямоугольную систему координат с началом в точке Векторы так, чтобы направления осей Векторы совпали_с направлениями векторов Векторы соответственно. Тогда векторы Векторы называются единичными векторами осей координат, а числа Векторы — координатами вектора Векторы в системе координат Векторы (обозначения: Векторы

Свойства векторов пространства, заданных своими координатами, аналогичны соответствующим свойствам векторов на плоскости:

  1. Два вектора равны в том и только том случае, если равны их координаты.
  2. Координаты суммы (разности) двух векторов равны суммам (разностям) соответствующих координат этих векторов, т.е. для векторов Векторы получаем Векторы
  3. При умножении вектора на число каждая его координата умножается на это число, т.е. для вектора Векторы и действительного числа Векторы получаем Векторы

Докажем, например, свойство 2. Так как ВекторыВекторы то, согласно свойствам сложения векторов и умножения вектора на число, Векторы т. е. вектор Векторы имеет координаты Векторы что и требовалось доказать. Остальные свойства доказываются аналогично.

Скалярное произведение векторов и его свойства

Определение скалярного произведения векторов Векторы и Векторы в пространстве ничем не отличается от аналогичного определения для векторов на плоскости.

Определение 11. Скалярным произведением векторов Векторы называется произведение длин этих векторов на косинус угла между ними (обозначение: Векторы Таким образом, по определению,

Векторы

Теорема 8. Два ненулевых вектора Векторы взаимно перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю, т. е.

Векторы

Доказательство этой теоремы вытекает из формулы (9).

Определение 12. Скалярным квадратом вектора Векторы называется скалярное произведение Векторы Скалярный квадрат обозначается Векторы т.е. по определению Векторы

Так как Векторы то

Векторы

Таким образом, длина вектора равна квадратному корню из его скалярного квадрата.

Замечание. Скалярное произведение есть число, поэтому грубой ошибкой явилась бы запись: Векторы

Если векторы Векторы и Векторы заданы своими координатами: ВекторыВекторы то скалярное произведение может быть выражено через их координаты.

Теорема 9. Скалярное произведение векторов равно сумме произведений их соответственных координат, т. е.

Векторы

Доказательство. Отложим от произвольной точки Векторы пространства векторы Векторы При этом, как мы знаем, соответствующие координаты векторов Векторы и Векторы а также Векторы и Векторы будут равны, а угол Векторы По теореме косинусов для треугольника Векторы получим

Векторы

итак как Векторы имеем ВекторыВекторы откуда Векторы Но

Векторы

поэтому

Векторы

Решение любой геометрической задачи на вычисление сводится, в сущности, к нахождению величин двух типов: расстояний и углов. Если в пространстве задан некоторый базис (в частности, прямоугольный), т. е. тройка некомпланарных векторов, то на основании теоремы 5 любой вектор пространства можно разложить по векторам этого базиса, причём единственным образом.

Если известны длины векторов, образующих базис, углы между ними и разложение некоторого вектора по векторам этого базиса, то, используя свойства скалярного произведения, можно определить длину такого вектора и угол, образуемый им с любым другим вектором, разложение которого по векторам этого базиса известно.

Таким образом, векторы позволяют находить решения довольно широкого класса геометрических задач, а умение определять разложение вектора по базисным векторам является важнейшим фактором их решения.

Для решения задач о разложении вектора по трём данным некомпланарным векторам, разумеется, необходимо, помимо теоремы 5, знание предшествующего ей материала.

Примеры с решением

Задача 1.

Основанием четырёхугольной пирамиды Векторы является параллелограмм Векторы Точки Векторы и Векторы — середины рёбер Векторы и Векторы соответственно. Найдите разложение векторов Векторы по векторам Векторы

Решение (см. рис. 14).

1. Векторы но Векторы поэтому Векторы

2. Так как Векторы — середина Векторы но ВекторыВекторы (см. следствие 1 теоремы 3), поэтому ВекторыВекторы

Ответ: Векторы

Заметим, что в разложении вектора Векторы по векторам Векторы коэффициент разложения при векторе Векторы равен нулю, а это означает, в силу теоремы 4, что векторы Векторы компланарны. Если заранее «увидеть», что Векторы где Векторы — середина Векторы (отсюда Векторы то разложение вектора Векторы можно было бы найти проще. Но векторный метод тем и хорош, что, даже не обладая развитым пространственным воображением, а лишь зная основные определения и теоремы, можно получить правильный ответ (пусть и не всегда самым оптимальным путём)!

Задача 2.

Пусть Векторы — точка пересечения медиан треугольника Векторы — произвольная точка пространства. Найдите разложение вектора Векторы по векторам Векторы

Решение (см. рис. 15). Пусть Векторы — середина ребра Векторы Так как Векторы — точка пересечения медиан треугольника Векторы точки Векторы принадлежат одной прямой, причём, в силу теоремы о точке пересечения медиан треугольника, ВекторыСогласно следствию I теоремы 3 Векторы Тогда Векторы

Векторы

Ответ: Векторы

Векторы и их решение

Вектором называется направленный отрезок. Направление отрезка показывается стрелкой. Различают начало и конец отрезка. 

Два вектора называются равными между собой, если каждый из них можно получить параллельными перенесениями другого. 

Равные векторы являются параллельными (колинеарными), имеют одно и то же направление и одинаковую длину. Длина вектора Векторы называется абсолютной величиной или модулем вектора и обозначается Векторы

Вектор называется нулевым (ноль- вектором), если он имеет нулевую длину, то есть его конец сходится с началом. 

Чтобы найти сумму двух векторов Векторы и Векторы совместим начало вектора Векторы с концом вектора Векторы.

Суммой Векторы векторов Векторы и Векторы  называется вектор, начало которого сходится с началом вектора Векторы, а конец — с концом вектора Векторы (рис. 1.1).

Векторы Правило треугольника

Векторы Правило параллелограмма 

Векторы

Для складывания векторов имеют место такие законы: 

1) переставной (коммутативный)

Векторы

2) связующий 

Векторы

3) для каждого вектора Векторы существует противоположный Векторы такой, что 

Векторы

4)Векторы

5) для некоторых двух  векторов Векторы и Векторы  выполняются неравенства: 

Векторы

Если вектор Векторы образует угол Векторы с осью Векторы (рис. 1.2), то проекцию вектора Векторы на ость называется величина 

Векторы

Пусть вектор имеет начало в точке Векторы а конец — в точке  Векторы Тогда величины Векторы Векторы являются проекциями вектора Векторы на оси Векторы Проекции вектора однозначно определяют вектор. Потому имеет место равенство 

Векторы

Если вектор Векторы то проекция суммы векторов 

Векторы

Произведением вектора Векторы на число Векторы называется вектор Векторы длина которого равна Векторы Умножение вектора на число имеет свойство ассоциативности и дистрибутивности, то есть для произвольных чисел Векторы и векторов Векторы и Векторы справедливы равенства: 

Векторы

Любой вектор Векторы можно записать в видеВекторы

где Векторы — единичные векторы, Векторы Векторы называются компонентами вектора   Векторы  (рис. 1.3) .

Векторы

Векторы

Пример 1.73  

Даны два вектора: Векторы и Векторы 

Найти вектор Векторы

Решение Векторы

Признаком колинеарности двух векторов Векторы  и  Векторы  является пропорциональность их координат: 

Векторы

Скалярным произведением двух векторов Векторы  и  Векторы  называется число Векторы которое равно произведению их модулей на косинус угла между ними: 

Векторы

Скалярное произведение можно записать в таком виде: 

Векторы

Если векторы Векторы  и  Векторы  заданы своими координатами, то их скалярное произведение вычисляется по формуле: 

Векторы

Учитывая формулы (1.18) и (1.19), можно найти косинус угла между векторами  Векторы  и  Векторы

Векторы

Отсюда получается условие перпендикулярности двух векторов: если Векторы  и Векторы   или в координатной форме: 

Векторы

Среди свойств скалярного произведения отметим так: 

Векторы

Векторным произведением вектора Векторы на вектор Векторы называется вектор Векторы который имеет такие свойства: 

1) длина вектора Векторы равна произведению длин сомножителей на синус угла между ними: Векторы

2) вектор Векторы перпендикулярный к векторам Векторы и Векторы

3) из конца вектора Векторы  кратчайший поворот от Векторы  к  Векторы  является таким, что происходит против часовой стрелки (рис. 1.4). 

Векторы

Заметим, что Векторы а модуль векторного произведения равен плоскости параллелограмма, построенного на векторах Векторы  и   Векторы, если у них общее начало.  

В координатной форме векторное произведение векторов Векторы и Векторы можно записать в виде:  

Векторы

Смешанным или скалярно — векторным произведением трех векторов Векторы называется векторное произведение векторов  Векторы  и   Векторы, скалярно умноженный на вектор Векторы то есть Векторы

Если векторы Векторы — компланарны, то есть расположены в одной плоскости или на параллельных плоскостях, то их смешанное произведение равно нулю. 

Если известные координаты сомножителей ВекторыВекторы то смешанное произведение вычисляется по формуле: 

Векторы

Если три ненулевых Векторы разложены в одной плоскости (компланарны), то из смешанное произведение Векторы

Следует, в координатной форме условие компланарности трех ненулевых векторов имеет вид: 

Векторы

Решение примеров:

Пример 1.74 

Заданы координатами точек Векторы Векторы и Векторы Найти: 

1) вектор Векторы если Векторы

2) угол между векторами Векторы и Векторы

3) координаты вектора Векторы

4) объем пирамиды с вершинами в точках Векторы

Решение 

1) По формуле (1.14) находим 

Векторы

тогда Векторы

2) Косинус угла между векторами Векторы и Векторы вычислим по формуле (1.20): 

Векторы

Поскольку косинус угла отрицательный, то угол Векторы тупой. 

3) Координаты векторного произведения находим по формуле (1.22):

Векторы

Векторы

4) Чтобы найти объем пирамиды, найдем сначала смешанное произведение векторов, что выходят из одной вершины пирамиды: 

Векторы

Тогда объем пирамиды

Векторы

Собственные числа и собственные векторы

Вектор — столбец Векторы  называется собственным вектором квадратной матрицы Векторы Векторы — ого порядка, что соответствует собственному значению Векторы если он удовлетворяют матричному уравнению Векторы или ВекторыВекторы

Тут Векторы — единичная матрица Векторы — ого порядка, а Векторы — нулевой вектор — столбец. При условии, что Векторы получим характеристическое уравнение для определения собственных значений Векторы

Векторы

Координаты собственного вектора Векторы что соответствуют собственному значению Векторы является решением системы уравнений: 

Векторы

Собственный вектор обозначаются с точностью к постоянному множителю.

Решение примеров:

Пример 1.90.

Обозначить  собственные определения и собственные векторы матрицы

Векторы

Решение. Характеристические уравнения данной матрицы имеет вид (1.24): 

Векторы или Векторы

отсюда получается, что матрица Векторы имеет два собственных значения Векторы и Векторы Собственный вектор Векторы что соответствует Векторы обозначаются с системой уравнений вида (1.25)

Векторы  или Векторы

которое приводится к одному уравнению Векторы

Возьмем Векторы получим решение в виде Векторы

Следует, первый собственный вектор является 

Векторы

Второй вектор Векторы что соответствует собственному значению Векторы определяется из системы уравнений вида (1.25)

Векторы

Эта система уравнений так же приводится к одному уравнению Векторы положив Векторы запишем ее решение в виде Векторы Следует, второй собственный вектор: 

Векторы

Таким образом, матрица Векторы имеет два разных определения Векторы и Векторы и два собственных вектора, равных Векторы и Векторы (с точностью к постоянному множителю). 

Пример 1.91 

Найти собственные векторы и собственные значения матрицы 

Векторы

Решение. Характеристическое уравнение

Векторы

Раскрыв определитель получим: 

Векторы

Корень Векторы — кратный, показатель кратности Векторы корень Векторы — простой, Векторы

Система уравнений для определения собственных векторов имеет вид: 

Векторы

Последовательно подставим Векторы и Векторы в записанную систему: 

Векторы

Векторы

Фундаментальная система уравнений получается, если свободным переменным Векторы последовательно дать значения Векторы

Векторы

Получили два линейно независимые собственные векторы. Вся совокупность векторов, что соответствуют собственному значению Векторы имеет вид: 

Векторы

Векторы

Векторы

Фундаментальная система решений получается, если взять Векторы

Векторы

Векторная алгебра

Понятие «вектор» (от лат. vector — носитель), как отрезка, имеет определенную длину и определенное направление, впервые появилось в работах по построению числовых систем в ирландского математика Уильяма Гамильтона (1805-1865). Это понятие связано с объектами, которые характеризуются величиной и направлением, например, скорость, сила, ускорение. При этом скорость можно понимать в широком смысле: скорость изменения издержек производства, доходов, спроса, потребления и предложения и др. Вектор может указывать направление наибольшего возрастания или убывания функции, описывающей различные экономические процессы. Векторы, рассмотренные в данном разделе, является частным случаем Векторы-мерных векторов: они предполагают геометрическую интерпретацию, потому что принадлежат к векторным линейных пространств размерности Векторы

Для графического изображения решения экономических задач на плоскости и в пространстве применяются средства аналитической геометрии. Аналитическая геометрия — математическая наука, объектом изучения которой являются геометрические фигуры, а предметом — установление их свойств средствами алгебры с помощью координатного метода. Теоретической базой этой науки является частично известна из школы векторная алгебра.

Основателем метода координат и, вместе с тем, аналитической геометрии является Рене Декарт (1596-1650) — французский философ, математик, физик и физиолог. Его именем и названа известная «декартова прямоугольная система координат», которая позволяет определить положение фигуры на плоскости и тела в пространстве.

После изучения данной темы вы сможете:

● использовать инструмент векторной алгебры для геометрического изображения и анализа объектов экономических процессов;
● применять уравнение прямой линии на плоскости для геометрической интерпретации зависимости между функциональному признаку и аргументом, что на нее влияет;
● применять уравнение кривых второго порядка при построении нелинейных математических моделей экономических задач;
● осуществлять геометрическую интерпретацию решений экономических задач с помощью поверхностей и плоскостей.

Векторы: основные определения, линейные операции

Выберем на произвольной прямой (в Векторы или в Векторы) отрезок Векторы и укажем, которую из точек Векторы или Векторы считать начальной (началом отрезка), а какую — конечной (концом отрезка). Конец отрезка обозначают стрелке и говорят, что на отрезке задано направление. Отрезок Векторы с заданным на нем направлением, или коротко — направленный отрезок, называется вектором. Вектор обозначается символом Векторы или строчными буквами латинского
алфавита с чертой: Векторы и др. (Рис. 6.1). 

Векторы

Рис. 6.1

В применимых задачах естественных наук существенным является обстоятельство — где, в какой точке находится начало вектора. Например, результат действия силы зависит не только от ее величины и направления действия, но и от того, в какой точке она прикладывается.

Вектор, для которого фиксированная (не фиксирована) начальная точка называется связанным (свободным). Векторы, которые применяются в экономических задачах, как правило, не являются связанными, поэтому в дальнейшем будем рассматривать преимущественно свободные векторы

Длиной, или модулем, вектора называется длина соответствующего отрезка и обозначается одним из символов: Векторы

Нулевым вектором 0, или ноль-вектором, называется вектор, длина которого равна нулю, а направление его считается произвольным (неопределенным).

Единичным вектором Векторы называется вектор, длина которого равна единице.

Равными векторами называются векторы, которые принадлежат одной прямой или параллельным прямым, одинаково направлены и имеют равные длины.

Взаимно противоположными называются векторы, которые принадлежат одной прямой или параллельным прямым, имеют равные длины, но противоположно направлены. Вектор, противоположный вектору Векторы, обозначают символом Векторы.

Коллинеарными называют векторы, которые принадлежат одной прямой или параллельным прямым.

Компланарными называются векторы, которые принадлежат одной плоскости или параллельным плоскостям.

Линейные операции над векторами

Будем считать, что векторы Векторы принадлежат одни плоскости. Осуществляя параллельный перенос одного из векторов Векторы, совместим начало вектора Векторы с концом вектора Векторы (или наоборот) и по отрезками, соответствующие векторам, как по двум сторонам, построим треугольник (рис. 6.2 а).

1. Суммой векторов Векторы называется вектор Векторы, который определяется третьей стороной треугольника, с началом в начале вектора Векторы. Порядок построения суммы двух векторов по этому определению называют правилом треугольника.

Параллельный перенос можно осуществить и так, что объединятся начала векторов Векторы и Векторы, тогда на векторах как на сторонах построим параллелограмм (рис. 6.2 б), и придем к известному из школьного курса алгебры правилу параллелограмма.

Векторы

Рис. 6.2

Правило треугольника обобщается на произвольное конечное число векторов. Если параллельным переносом расположить векторы так, что конец предыдущего вектора (начиная с первого) является началом следующего, то результирующим будет вектор, соединяющий начало первого вектора слагаемого с концом последнего (рис. 6.3):

Векторы

Векторы

Рис. 6.3

Соответствующее правило называют правилом многоугольника.
Свойства суммы векторов:
1) переставная, или коммутативна:

Векторы

2) соединительная, или ассоциативная:

Векторы

3) Векторы

4) Векторы

Разницу Векторы можно рассматривать как сумму вектора Векторы с вектором, противоположным вектору Векторы

Векторы

Умножения вектора на скаляр

Пусть Векторы — некоторое действительное число Векторы. Произведением вектора Векторы со скаляром Векторы называется вектор Векторы, модуль которого равен произведению модулей Векторы, а направление Векторы совпадает с направлением Векторы, если Векторы, или противоположно направлению Векторы, если Векторы (рис. 6.4):

Векторы

Векторы

Рис. 6.4

ПриВекторы вектор Векторы превращается в ноль-вектор Векторы.
Свойства умножения вектора на скаляр:
1) переставной или коммутативных закон:

 Векторы где Векторы

2) соединительный, или ассоциативный закон:

Векторы где Векторы

3) распределительный или дистрибутивный закон:

Векторы где Векторы

4) Векторы

5) Векторы

Из определения умножения вектора на скаляр следует необходимое и достаточное условие коллинеарности двух векторов: вектора Векторы и Векторы коллинеарны тогда и только тогда, когда каждый из них является произведением другого из скаляром:

Векторы

Известно, что три ненулевые векторы Векторы и Векторы компланарны тогда и только тогда, когда один из них является линейной комбинацией двух других:

Векторы компланарны Векторы

Рассмотрим понятие, имеет очень важное значение в теории векторов — проекции вектора на ось (прямую, имеет направление; заданное направление считать положительным, противоположное направление — отрицательным).

Компонентой вектора Векторы относительно оси Векторы называют вектор, начало которого является проекцией начала вектора Векторы на ось Векторы, а конец — проекцией конца вектора Векторы на ось Векторы (рис. 6.5).

Векторы

Рис. 6.5

Проекцией вектора Векторы на ось Векторы называют скаляр, равный длине компоненты вектора Векторы относительно оси Векторы со знаком Векторы, если направление компоненты совпадает с направлением оси Векторы, или со знаком Векторы, если ее направление противоположно направлению оси:

Векторы

Основные свойства проекции вектора на ось

1. Проекция вектора на ось Векторы равна произведению длины вектора Векторы с косинусом угла между вектором и осью:

Векторы

2. Проекция суммы двух векторов на эту ось равна сумме их проекций на эту ось:

Векторы

Это свойство обобщается на любое конечное число векторов.

3. Проекция на ось произведения вектора со скаляром равна произведению со скаляром проекции самого вектора на ось:

Векторы

Прямоугольная система координат в пространстве. Координатная и алгебраическая формы задания векторов

Пусть в трехмерном векторном пространстве Векторы задана прямоугольная декартова система координат Векторы, что определяется тремя взаимно перпендикулярными числовыми осями — осями, на которых указано масштаб (единицу длины) — с общей точкой Векторыначалом координат (рис. 6.6).

Векторы

Рис. 6.6

Выберем в пространстве произвольную точку Векторы и соединим ее отрезком прямой с началом координат Векторы. Вектор Векторы, началом которого является начало координат Векторы, а концом данная точка Векторы, называется радиусом-вектором точки Векторы. Отметим, что радиусы-векторы точек пространства являются связанными векторами. 

Под декартовыми прямоугольными координатами точки Векторы понимают проекции ее радиус-вектора Векторы на оси Векторы

Векторы

Точка Векторы с координатами Векторы обозначается через Векторы. Вектор Векторы каждой точки пространства (кроме точки Векторы) определяет прямоугольный параллелепипед с диагональю, что является отрезком, на котором построено вектор Векторы (рис. 6.6).

Измерениями параллелепипеда есть модули координат точки Векторы. Длина диагонали параллелепипеда определяется по формуле: 

Векторы

Углы Векторы, которые образованы радиусом-вектором Векторы с координатными осями Векторы называются его направляющими углами. 

Векторы

откуда:

Векторы

Косинусы направляющих углов называются направляющими косинусами радиус-вектора Векторы. С (6.4) получаем свойства:
1) направляющие косинусы являются координатами единичного радиус-вектора: Векторы

2) сумма квадратов направляющих косинусов вектора Векторы равна единице: Векторы

Понятие «координата», «направляющие углы», «направляющие косинусы» без изменений переносятся на любые свободные векторы, потому начало каждого из них параллельным переносом можно поместить в начало Векторы, дает радиус вектор определенной точки.

Координатами любого вектора Векторы в пространстве называются его проекции на оси координат. Они обозначаются символами Векторы и пишут: Векторыили Векторы, где согласно определению координат:

Векторы

Задача вектора тройкой его координат Векторы, называют координатной формой задачи.

Для единичных векторов Векторы, расположенных соответственно на осям Векторы, имеем:

Векторы

Длина произвольного вектора Векторы и его направляющие косинусы вычисляются по формулам:

Векторы

Найти длину и направляющие косинусы вектора ВекторыВекторы

По формулам (6.5) имеем: 

Векторы

Установим связь между координатами вектора — числами — и его компонентами — векторами — с помощью единичных векторов Векторы (рис. 6.7).

Векторы

Рис. 6.7

Компонентами вектора Векторы относительно координатных осей являются векторы Векторы Векторы (рис. 6.7). Согласно операции сложения векторов по правилу многоугольника получаем:

Векторы

Следовательно, любой вектор Векторы в трехмерном пространстве является суммой трех его компонент относительно координатных осей:

Векторы

Изображение вектора с Векторы в виде суммы произведений координат с единичными векторами (ортами) называют алгебраической формой задания вектора.

Согласно свойствами операций над векторами, алгебраическая форма задания дает возможность установить результаты действий над векторами, заданными в координатной форме.
1. При добавлении (вычитании) двух векторов с Векторы: Векторы и Векторы, их соответствующие по номеру координаты прилагаются (вычитаются):

Векторы

Действительно, по свойствам ассоциативности и дистрибутивности имеем:

Векторы

2. При умножении вектора Векторы на скаляр Векторы все его координаты умножаются на этот скаляр:

Векторы

Действительно, согласно распределительным свойствам умножения скаляра на сумму векторов имеем:

Векторы

Скалярное, векторное, смешанное произведения векторов

Скалярным произведением двух векторов Векторы и Векторы называется число (скаляр), равное произведению их модулей с косинус угла между ними Векторы и обозначается Векторы:

Векторы

Вместо Векторы часто пишут Векторы или используют обозначения Векторы. Название этой операции согласуется с ее сути, а именно: скалярное произведение является скаляром, то есть числом.

Для определения угла Векторы между векторами Векторы и Векторы совмещают их начала и рассматривают угол между двумя лучами Векторы и Векторы (рис. 6.8). Если угол Векторы острый, то Векторы, если тупой, то Векторы.

Основные свойства скалярного произведения векторов вытекают из его определения (6.7).

1. Скалярное произведение Векторы ненулевых векторов равно нулю тогда и только тогда, когда векторы взаимно перпендикулярны (ортогональные):

Векторы

2. Скалярный квадрат вектора равен квадрату его модуля, то есть

Векторы

3. Скалярное произведение подчиняется всем законам арифметики чисел относительно линейных операций:

Векторы

Векторы

4. Скалярное произведение двух векторов равно произведению модуля одного из них с проекцией второго на ось, направление которого определяется первым вектором:

Векторы

Доказательство этого свойства основывается на определении (6.3).

Скалярное произведение векторов Векторы и Векторы, заданных в координатной форме. Пусть имеем два вектора Векторы

1. Вычислим скалярные произведения единичных векторов Векторы По свойству Векторы Для других пар на основании свойства 1 имеем: Векторы

2. Находим произведение Векторы, подавая векторы в алгебраической форме (6.6) и используя распределительный закон:

Векторы

Раскрываем скобки и получаем:

Векторы

Скалярное произведение двух векторов равно сумме произведений одноименных координат. Это полностью совпадает с определением скалярного произведения Векторы-мерных векторов.

Как следствие из (6.12) при Векторы получаем формулу (6.5) модуля вектора через его координаты:

Векторы

Определим угол между двумя ненулевыми векторами Векторы и Векторы, заданные в координатной форме. Воспользуемся определением скалярного произведения (6.7) и соотношения (6.5). В результате получаем:

Векторы

Следовательно, косинус угла между двумя векторами определяется формулой: 

Векторы

Отсюда Векторы

В результате с соотношением (6.13) получим критерий ортогональности двух векторов, заданных в координатной форме: 

Векторы

Критерием коллинеарности векторов Векторы и Векторы, заданных в координатной форме является пропорциональность их координат:

Векторы

Векторное произведение двух векторов

Пусть Векторы и Векторы — векторы пространства Векторы Векторы, определяющие некоторую плоскость Векторы. Вектор Векторы называется векторным произведением векторов Векторы и Векторы, если вектор Векторы удовлетворяет условиям: 

1) модуль его численно равен площади параллелограмма, построенного на векторах Векторы и Векторы как на сторонах;
2) он перпендикулярный плоскости параллелограмма Векторы и направленный так, что поворот вектора Векторы до совмещения с вектором Векторы кратчайшим путем наблюдается с конца вектора Векторы против часовой стрелки (рис. 6.9).

Векторы

Рис. 6.9

Векторное произведение обозначается символами: Векторы, или Векторы

Следовательно,

Векторы

где Векторынаименьший из углов Векторы что соответствует совмещению Векторы с Векторы поворотом вектора Векторы против часовой стрелки.

Основные свойства векторного произведения вытекают из его определения.
1. Векторное произведение ненулевых векторов равно ноль-вектору тогда и только тогда, когда векторы Векторы и Векторы коллинеарны:

Векторы

Еще одним критерием коллинеарности векторов является равенство нулевому вектору их векторного произведения.

2. Векторные произведения с разным порядком сомножителей являются взаимно противоположными векторами:

Векторы

Это означает, что векторное произведение не подчиняется переставному (коммутативному) закону.

3. Векторное произведение подчиняется ассоциативному закону относительно скалярного множителя и дистрибутивному закону относительно сложения:

Векторы

где Векторы

Векторное произведение векторов Векторы и Векторы, заданных в координатной форме. Пусть имеем два ненулевые векторы: Векторы

1. Определяем векторные произведения ортов Векторы (рис. 6.10).

Векторное произведение одноименных векторов по свойству 1 дает ноль вектор:

Векторы

Однако все векторные произведения разноименных единичных векторов будут давать единичные векторы:

Векторы

Векторы

Рис. 6.10

Рассмотрим, например, произведение Векторы. Совмещение Векторы с Векторы кратчайшим путем (указано дугой со стрелкой на рис. 6.10) происходит против часовой стрелки, если смотреть с конца вектора Векторы, следовательно, Векторы. Тогда по свойству Векторы

2. Находим произведение Векторы, подавая векторы в алгебраической форме и используя арифметические свойства (6.18) и соотношения (6.19):

Векторы

Множители при Векторы это вскрытые определители 2-го порядка, поэтому Векторы

Коэффициенты при единичных векторах в соотношении (6.20) являются координатами вектора Векторы как векторного произведения векторов Векторы и Векторы.

Если символы Векторы в соотношении (6.20) считать элементами первой строки определителя 3-го порядка, то окончательно получим представление Векторы в виде определителя: 

Векторы

Найдем векторное произведение векторов Векторы и Векторы

Векторы

Модуль векторного произведения Векторы определяет площадь параллелограмма, построенного на векторах Векторы и Векторы

Смешанным произведением трех векторов Векторы и Векторы называется векторное произведение двух из них, умножен скалярно на третий вектор, то есть Векторы и т. д.

Смешанное произведение можно обозначать тройкой векторов Векторы, в которой первые два элемента считают связанными векторным произведением, а результат векторного произведения умножают на третий вектор скалярно, то есть Векторы — это все равно, что Векторы. Понятно, что результатом смешанного произведения является скаляр, поскольку векторное произведение Векторы является вектором (обозначим его через Векторы), а произведение Векторы дает скаляр.

Геометрическая интерпретация смешанного произведения. Пусть Векторы и Векторы — некомпланарные векторы. Построим на этих векторах как на ребрах параллелепипед (рис. 6.11).

Векторы

Рис. 6.11

Вектор Векторы по длине численно равна площади параллелограмма, построенного на векторах Векторы и Векторы как на сторонах. Этот параллелограмм является основой параллелепипеда, построенного на векторах Векторы и Векторы. Вектор Векторы является перпендикулярным плоскости параллелограмма.

Согласно (6.11) скалярное произведение Векторы можно представить как произведение модуля Векторы и проекции вектора Векторы на ось, определяется вектором Векторы:

Векторы

где Векторы, причем Векторы является положительным числом, если угол между векторами Векторы и Векторы острый, и отрицательным, если этот угол тупой. По модулю эта проекция равна высоте параллелепипеда Векторы.

Модуль смешанного произведения трех векторов численно равен объему параллелепипеда Векторы, построенного на векторах как на ребрах:

Векторы

Основные свойства смешанного произведения вытекают из его определения и геометрической интерпретации.
1. Смешанное произведение ненулевых векторов равно нулю, если по крайней мере два из трех векторов коллинеарны или все три — компланарны, и наоборот.

Необходимым и достаточным условием компланарности трех ненулевых векторов является равенство нулю их смешанного произведения:

Векторы компланарны Векторы

Свяжем с изображенными на плоскости векторами Векторы круг (рис. 6.12). Перечисление векторов, начиная с любого, против часовой стрелки назовем положительным, или циклическим, перестановкой векторов, в противном случае — отрицательной перестановкой.

2. Циклическая перестановка трех сомножителей смешанного произведения не меняет его величины, а отрицательное перестановки меняет его знак на противоположный:

Векторы

Смешанное произведение векторов, заданных в координатной форме

Пусть имеем три ненулевые векторы Векторы По определению смешанного произведения и представлением векторного и скалярного произведений в координатной форме имеем:

Векторы

Полученная сумма произведений является расписанием определителя 3-го порядка, составленный из координат векторов, по элементам его третьей строки, то есть:

Векторы

Векторы Векторы компланарны тогда и только тогда, когда определитель 3-го порядка, элементами строк которого являются координаты этих векторов равен нулю (свойство 1):

Векторы компланарны Векторы

С помощью смешанного произведения векторов легко определить, относятся ли четыре точки Векторы одной плоскости. Для этого следует проверить выполнение условия компланарности трех векторов с общим началом в одной из точек.

Простейшие задачи аналитической геометрии

Задача об определении длины отрезка. Найти длину отрезка Векторы, если известны координаты его концов: Векторы. Эту задачу можно рассматривать как задачу о нахождении расстояния между двумя точками.

1. Введем в рассмотрение вектор Векторы с началом Векторы и концом Векторы и радиусы-векторы ВекторыВекторы (рис. 6.13).
2. Определим координаты вектора Векторы как разности векторов Векторыи Векторы: Векторы
3. Находим модуль вектора Векторы, который и равна длине отрезка Векторы:

Векторы

Задача об определении площади треугольника

Найдем площадь треугольника, заданного координатами вершин: ВекторыВекторы

По аксиомой стереометрии известно, что три точки в пространстве определяют плоскость и притом только одну. Для упрощения изложения, не нарушает общего подхода к решению задачи, договоримся рассматривать треугольник Векторы, принадлежащей плоскости Векторы: Векторы и Векторы.

1. Введем в рассмотрение векторы:

Векторы

и найдем их векторное произведение Векторы

По соотношению (6.20) имеем: 

Векторы

2. Вычислим модуль вектора Векторы, численно равна площади параллелограмма Векторы, построенного на векторах Векторы как на сторонах (рис. 6.14):

Векторы

Тогда для площади треугольника Векторы имеем: 

Векторы

Знак Векторыили Векторы берется в зависимости от того, каким будет определитель — положительным или отрицательным.

Если треугольник принадлежит не плоскости Векторы, а любой другой плоскости в пространстве, то его площадь тоже можно найти по формуле:

Векторы

Найдем площадь треугольника с вершинами Векторы Векторы Векторы

Введем в рассмотрение векторы: Векторы и Векторы Векторы и определим их векторное произведение:

Векторы

Тогда 

Векторы (кв. ед.)

Задача о деление отрезка в заданном отношении

Пусть в пространстве заданы две точки Векторы. Проведем через них произвольную прямую Векторы и установим на этой прямой положительное направление, согласно которому определим направление на отрезке Векторы (рис. 6.15). На прямой Векторы возьмем точку Векторы, которая может принадлежать отрезку Векторы, или его продолжению. При этом, если точка Векторы принадлежит отрезку Векторы (рис. 6.15 а), говорится, что она осуществляет внутреннее деление отрезка на части, если не принадлежит (рис. 6.15 б) — то внешний.

Векторы

Рис. 6.15

Число Векторы, которое определяется формулой

Векторы

называется отношением, в котором точка Векторы разделяет направленный отрезок Векторы. Если Векторы, то Векторы осуществляет внутреннее (внешнее) деление отрезка на части.

Задача о деление отрезка в заданном отношении формулируется так: найти координаты точки Векторы, что разделяет отрезок Векторы в отношении Векторы, если отрезок Векторы задан координатами начала Векторы и конца — Векторы

Пусть точкам Векторы соответствуют радиусы-векторы Векторы (рис. 6.16). Из определения (6.29) следует, что векторы Векторы и Векторы коллинеарны, то есть Векторы. Следовательно, Векторы

С этого векторного равенства найдем вектор Векторы

Векторы

или в координатах:

Векторы

Отсюда, если отрезок разделить на две равные части точкой Векторы то координаты точки Векторы могут быть найдены следующим образом:

Векторы

Можно доказать, что координаты точки пересечения медиан треугольника, заданного координатами его вершин Векторы вычисляются по формулам: 

Векторы

Векторы

Векторы

Лекции:

  • Объем конуса
  • Разложение на множители
  • Деление многочлена на многочлен
  • Правила дифференцирования
  • Теорема Пифагора
  • Асимптотическое поведение функций. Сравнение бесконечно малых функций
  • Прямая линия на плоскости
  • Выпуклость и вогнутость графика функции
  • Матанализ для чайников
  • Производные некоторых элементарных функций

Понравилась статья? Поделить с друзьями:
  • В инстаграме найти контакты телефона как друзей
  • Как найти в тексте спп предложения
  • Как найти нужный символ в тексте
  • Как найти валентность ионов
  • Как найти ответы тесты по английскому языку