- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Параллельные прямые
- Теорема о соответственных углах
Советуем посмотреть:
Параллельные прямые
Признаки параллельности двух прямых
Практические способы построения параллельных прямых
Аксиомы геометрии
Аксиома параллельных прямых
Теорема о накрест лежащих углах
Теорема об односторонних углах
Теорема об углах с соответственно параллельными сторонами
Теорема об углах с соответственно перпендикулярными сторонами
Параллельные прямые
Правило встречается в следующих упражнениях:
7 класс
Задание 205,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 209,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 242,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 439,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 554,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 587,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 589,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 590,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 18,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 853,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Базисные понятия
Угол — простая фигура в геометрии, образуемая двумя лучами, следующими из некоторой точки. Эту точку определяют как его вершину. Название «угол» может относиться к части плоскости, объединяющей все лучи, исходящие из вершины фигуры. Такое обозначение может также иметь угловая мера, чаще всего определяемая в градусах.
В геометрии существует несколько критериев, позволяющих выделить разные типы угловых фигур. Они бывают тупыми и острыми, смежными или вертикальными. Для углов, образуемых в результате пересечения секущей линией двух прямых, в качестве такого критерия берется свойство взаимных соотношений формируемых при этом фигур. При рассмотрении произвольного геометрического рисунка, образованного двумя прямыми линиями и секущей, можно увидеть 4 пары соответственных, по 2 пары внутренних и внешних накрест лежащих или односторонних угловых фигур. Все эти элементы могут быть как тупоугольными, так и остроугольными.
Углы, образующиеся при пересечении прямых
Чтобы понять, как выглядят соответственные углы, а также уметь находить их на любых геометрических рисунках, нужно хорошо усвоить разницу между типами фигур, образованных секущей линией. Кроме того, следует обратить внимание на наличие внутренней и внешней областей. Первая зона ограничивается площадью между двумя прямыми, второй внешней областью считается неограниченное пространство снаружи от этих двух линий.
Итак, образованным тремя прямыми линиями угловым фигурам можно дать следующие определения:
- Накрест лежащие внутренние углы — это разносторонние по отношению к секущей объекты внутри области, сформированной прямыми. Если обе фигуры лежат за пределами двух прямых по противоположные стороны от секущей, то такие угловые элементы называются внешними накрест лежащими.
- В отличие от предыдущих противолежащих фигур, односторонние углы расположены на одной стороне: внутри области, образованной двумя прямыми (внутренние), или во внешних областях (наружные).
- Соответственные по определению являются парными фигурами, образующимися по одну сторону от линии, пересекающей две других, с аналогичных сторон обеих прямых. Один из углов пары расположен между прямыми и является внутренним, а другой лежит вне этой зоны, поэтому считается внешним.
Более наглядное представление об этом типе углов можно получить, если секущую изобразить в виде направленного вектора. Парные угловые элементы расположены в одном направлении относительно прямых, пересеченных третьей линией.
Чтобы окончательно разобраться в вопросе, нужно усвоить понятие соответствия с математической точки зрения. В геометрии это свойство двух фигур, у которых углы, стороны или точки одного объекта аналогичны соответствующим элементам другого объекта. Аналогия проявляется не в их равенстве, а во взаимном соотношении элементов. О соответствии углов говорит аналогичное пространственное положение лучей в местах пересечения прямых с третьей секущей линией. Таким образом, речь идет об элементах, имеющих одинаковое относительное положение.
Соответственные углы при параллельных прямых
Свойства фигур, формирующихся при пересечении секущей параллельных прямых, давно описаны в планиметрии. Известно, что соответственные накрест лежащие угловые элементы при параллельных прямых равны. Сложение угловых величин односторонних фигур дает значение 180 градусов. В геометрии применяется формула для расчета суммы соответственных парных угловых фигур при условии параллельности двух линий. Для определения этого параметра из числа 360 надо вычесть удвоенную угловую величину одностороннего угла, прилежащего к любому из пары рассчитываемых соответственных угловых элементов.
Равные соответственные углы указывают на параллельность прямых. Справедливость этого признака вытекает из следующих утверждений:
- Отметим отрезок на секущей, начало и конец которого, точки C и D, находятся в местах пересечения секущей с прямыми a и b.
- Через среднюю точку K отрезка опустим перпендикуляр к прямой a. Точки его пересечения с прямыми обозначим как A и B. Сформированные отрезками треугольники CKA и DKB являются прямоугольными, а отрезки AK и BK — сторонами, прилежащими к прямоугольным вершинам. Каждый из этих катетов одновременно является высотой треугольника, проведенной из остроугольной вершины.
- Для доказательства следует учитывать равенство вертикальных ∠CKA и ∠DKB, ∠BDK и ∠АСК равны по условию равенства соответственных углов с учетом того, что вертикальные углы с вершинами в точках C и D равны, CK и KD — два равных отрезка по условию.
- Таким образом, в треугольниках CKA и DKB сторона и прилежащие к ней углы имеют равные величины, что соответствует одному из признаков равенства треугольников.
- Поскольку AB перпендикулярен прямой a и отрезку AC, то CKA — прямоугольный треугольник, и это дает основание считать, что равный ему треугольник DKB также прямоугольный, из чего следует перпендикулярность отрезка AB по отношению к прямой b.
- Было доказано, что две прямые перпендикулярны к третьей прямой, и это подтверждает их параллельность.
Доказательство можно развернуть и в обратном направлении. Параллельные линии при пересечении третьей прямой формируют одинаковые по величине соответственные углы. Это утверждение известно как свойство параллельных линий.
Такого рода свойства встречаются в описаниях признаков и теорем. Их равенство — часть доказательств равенства и подобия треугольников. В свою очередь, используя признаки подобных и равных треугольников, можно обосновывать доказательства сложных теорем, находить решения сложных задач, править возможные ошибки.
Доказательство подобия треугольников
Существует три признака, по которым могут быть определены подобные треугольники. Во-первых, подобие подтверждается пропорциональностью всех трех сторон треугольников. Во-вторых, подобными считаются треугольники, имеющие две пропорциональные стороны, угловая величина между которыми равна соответствующему элементу второго треугольника. В-третьих, подобие подтверждается, когда имеет место равенство двух углов обоих треугольников.
Рассмотрим доказательство этого признака, в ходе которого применяется свойство тождественности соответственных угловых объектов:
- Возьмем два треугольника ABC и A1B1C1, в которых равны два угла. Из этого следует, что величина третьего угла также одинакова в обеих фигурах. Требуется доказать подобие треугольников.
- Отметим точку A2 на AB таким образом, чтобы величина BA2 совпала с A1B1. Через A2 параллельно основанию AC проведем прямую, проходящую через BC в точке B2.
- Треугольники A2BC2 и A1B1C1 равны, что подтверждается одинаковыми величинами сторон A1B1, BA2 и углов B, B1 (по построению или условию), а также равенством углов A, A1 как соответственных при параллельных линиях.
- Поскольку, согласно лемме, параллельная стороне треугольника прямая отсекает от него подобный треугольник, то A2BC2 подобен ABC. Из этого следует подобие треугольников ABC и A1B1C1.
Подобного рода рассуждения и доказательства, учитывающие свойства соответственных угловых фигур, учитываются при решении разного рода задач.
В сложных планиметрических фигурах в качестве секущей, формирующей этот тип геометрических объектов, может выступать медиана, биссектриса треугольника или какие-либо другие линии. Для решения таких задач требуется хорошее знание базовых понятий, признаков, свойств, аксиом, позволяющее заметить определенные соотношения и закономерности в том или ином задании.
Соответственные углы — вид углов, образованный при пересечении двух прямых секущей.
Один из пары соответственных углов лежит во внутренней области между прямыми, другой — во внешней, причем оба угла находятся по одну сторону от секущей.
При пересечении двух прямых секущей образуется четыре пары соответственных углов.
∠1 и∠5
∠2 и∠6
∠3 и∠7
∠4 и∠8
— соответственные углы при прямых a и b и секущей c.
Наибольший интерес в геометрии представляют соответственные углы при параллельных прямых.
Свойство параллельных прямых
Если две параллельные прямые пересечены третьей прямой, то соответственные углы равны.
Если a ∥ b, то
∠1 =∠2
(как соответственные углы при при a ∥ b и секущей c).
Всего при параллельных прямых и секущей образуется четыре пары равных соответственных углов:
∠1 =∠5
∠2 =∠6
∠3 =∠7
∠4 =∠8
Признак параллельных прямых
Если соответственные углы равны, то прямые параллельны.
∠1 =∠2
А так как эти углы — соответственные при прямых при a и b и секущей c,
то a ∥ b (по признаку параллельных прямых).
Равенство соответственных углов используется, в частности, для доказательства равенства треугольников и подобия треугольников.
Что такое соответственные углы? Они равны между собой? Чему равна сумма двух соответственных углов при параллельных прямых? Соответственные углы образуются при пересечении секущей двух прямых. Также образуются односторонние и накрест лежащие углы. Соответственные углы при параллельных прямых равны между собой, при непараллельных — не равны. Сумма соответственных углов (при параллельных) равна 360 минус удвоенный односторонний угол к любому из соответственных, взятых для расчета. Геометрически соответственные углы находятся по одну сторону от секущей, и …если представить секущую в виде вектора, имеющего направление… в одном направлении относительно точек пересечения секущей с параллельными прямыми. автор вопроса выбрал этот ответ лучшим Возьмем две произвольные прямые на плоскости, их пересекает третья прямая, называемая секущей ( все три прямые лежат в одной плоскости ). При пересечении двух прямых секущей и образуются соответственные углы. При пересечении двух прямых секущей образуется восемь углов. Разберемся, какие из них являются соответственными с помощью рисунка. Но сначала замечу, что в геометрии при решении различных задач, чаще рассматривается вариант, когда две прямые, пересекаемые третьей, параллельны между собой. В этом случае образуемые при пересечении углы обладают рядом свойств. На рисунке мы видим две параллельные прямые a и b, которые пересекает секущая c. Соответственными в данном случае являются: 2 и 6, 3 и 7, 4 и 8, 1 и 5. Соответственные углы, образуемые при пересечении двух параллельных прямых третьей, равны: 2=6, 3=7, 4=8, 1=5. Углы, одной стороной которых является секущая и находящиеся по одну сторону от секущей, называются односторонними, например углы 1 и 6 будут односторонними. На рисунке также хорошо видно, что углы с вершиной в одной точке 1, 2 и 5, 6 составляют угол 180 градусов, то есть 1+2=180, 5+6=180. Поскольку 2=6, то совершенно очевидно, что 1=5. Углы с вершиной в одной точке 1, 2, 3, 4 и 5, 6, 7, 8 составляют угол 360 градусов, то есть 1+2+3+4=360, 5+6+7+8+=360. Если известен односторонний угол 1, то то сумма соответственных углов 2+6= 360 — 2х1. Если выразить это словами, то сумма соответственных углов равна разности между 360 градусами и удвоенным односторонним углом. При изучении параллельных прямых можно столкнуться с понятием соответствующих углов. Если взять две параллельные прямые и нарисовать еще одну прямую, которая пересекает их обе, то будет образовано восемь углов. При этом образуется так соответствующие углы, которые равны между собой. На картинке они показаны красным. При этом сумма односторонних углов равна 180°. То есть, сумма красного и синего угла равна 180°. Отсюда также видно, что углу, которые расположены накрест, также равны. Что касается суммы соответствующих углов, то однозначного ответа нет. Она может быть самой разной в численном выражении. Сумма таких углов — это разница между 180° и односторонним углом, умноженная на два. Galina7v7 6 лет назад Если две прямые пересекающиеся в пределах чертежа) пересечь третьей прямой, называемой — секущей, то образуются множество углов. Но рассмотрим углы соответственные.Так они называются (соответственными) по логике их отношения к чему-то аналогичному.То есть два соответственных угла образованные , допустим, двумя параллельными прямыми и общей секущей, и один из углов будет образован верхней прямой и секущей, и будет находиться сверху от этой прямой, такая же история (соответственно) образован нижней параллельной прямой, и секущей и тоже расположен сверху этой прямой.То есть определение аналогично, но 1-е определение и угол касается 1-й верхней прямой, а второе ко нижней. Также можно повторить для угла под прямой-нижней и верхней. Сколько пар соответственных углов при двух прямых и секущей? Я считаю — 4 пары соответственных углов, а всего их будет 8, но соответственных пар будет 4.И ещё: при параллельных прямых соответственные углы равны между собой. Повторю с чертежом: Соответственные углы : пара 1 с 5 ,2 и 6, 4 и 8 , 3 и 7. Но тут чертёжж не с параллельными прямыми.и соответственые углы не равны. 127771 3 года назад Это определение известно из школьного курса геометрии. Итак, соответственными углами называют такие углы, которые образуются при пересечении двух прямых секущей. При пересечении 2-х прямых секущей образуется четыре пары соответственных углом. Ниже в ответе рисунок, на котором представлены такие углы: Перед нами 4 пары соответственных углов, а именно: углы 2 и 6, углы 1 и 5, углы 3 и 7, углы 4 и 8. Особый интерес представляет, если перед нами параллельные прямые: В этом случае у нас получается, что угол один равен углу пять. Угол два равен углу шесть. Угол четыре равен углу восемь. Угол три равен углу семь. davsenorm 6 лет назад Когда две прямые линии пересекаются одной секущей — получаются соответственные, односторонние и накрест лежащие углы. Если прямые линии параллельны друг другу — соответственные углы будут равны, если же не параллельны — не равны. Чтобы высчитать сумму соответственных углов при параллельных прямых линиях, нужно применить следующую формулу: 360 — с*2 где С — это односторонний угол к любому из соответственных углов. Profilaktika 6 лет назад Соответственные углы — это вид углов, которые образуются при пересечении двух произвольных прямых секущей. При этом образуется 4 пары соответственных углов. Соответственные углы равны между собой, в случае параллельных прямых. Равенство соответствующих углов используется в доказательствах подобия и равенства двух треугольников. Также, если соответственные углы равны, то внутренние накрест лежащие углы тоже равны, и наоборот. Один угол из пары соответственных всегда будет внешним, второй — внутренним. Визуально они как будто находятся на разных ступеньках. Уже из названия видно что «соответственные» углы, значит что они тождественны, либо чему то еще, либо между собой. Так и есть, соответствующие углы образуются при пересечении двух параллельных прямых(!) одной секущей прямой проходящей через их обе. В месте пересечения каждой из параллельных они образуют углы равные между собой. Так перпендикуляр проведенный через две параллельные углы образует четыре соответственных угла. Если секущая идет под углом не равным 90 градусов, то образует два одинаковых острых угла и два одинаковых тупых угла. МариМари28 6 лет назад Соответственные это углы образованные двумя параллельными прямыми и секущей (то есть пересекающей прямой). Соответственные углы равны между собой. Чтобы посчитать чему равна сумма двух соответственных углов, надо из 180 градусов вычесть односторонний угол и умножить на два. TheSun 3 года назад Соответственные углы образуются при пересечении двух прямых линий с секущей. При пересечении эти углы обязательно находятся по одну сторону от секущей линии. Соответственные углы могут быть равными и не равными. Углы равны в том случае, если линии, которые пересекает секущая параллельны. В этом случае, их сумма будет равна 360° минус удвоенный односторонний угол. На рисунке приведённом ниже показаны соответственные углы, которые равны между собой. Знаете ответ? |
Пересечение двух параллельных прямых секущей
Параллельными называются пара прямых, которые при продолжении не пересекаются.
Когда две паралелльные прямые $a$ и $b$ пересекаются секущей $c$ , то образуется много разнообразных углов.
Некоторые пары углов имеют свои имена — названия:
пара накрест лежащие углы : ∠3 и ∠5, ∠4 и ∠6;
пара односторонние углы : ∠4 и ∠5, ∠3 и ∠6;
пара соответственные углы : ∠1 и ∠5, ∠4 и ∠8, ∠2 и ∠6, ∠3 и ∠7.
Свойства:
- накрест лежащие углы равны: 3 = 5, 4 = 6.
- соответственные углы равны: 1 = 5, 4 = 8, 2 = 6, 3 = 7.
- сумма односторонних углов равна 180 градусов: 3 + 6 = 180 градусов, 4 + 5 = 180 градусов.
_____________________________________________________________________________________
Теорема Если две параллельные линии пересекаются третьей (Секущей), тогда выполняется следующее:
ТеоремаТеорема * накрест лежащие углы равны ;
ТеоремаТеорема * соответственные углы равны ;
ТеоремаТеорема * сумма односторонних углов 180 град. ;
ТеоремаТеорема * вертикальные равны ∠3 = ∠1, ∠8 = ∠6 .
_____________________________________________________________________________________
Теорема Если две прямые перпендикулярны (обе одновременно) к третьей, то они параллельны друг другу.
_____________________________________________________________________________________
Теорема Если две прямые не параллельны друг другу, то равенства для сумм углов не выполняются: 3 + 6 < 180 ; 4 + 5 > 180 .
_____________________________________________________________________________________
Теорема Если одна прямая параллельна второй, а вторая параллельна третьей, то первая прямая так же параллельна третьей.
_____________________________________________________________________________________
Задача 1: На рисунке АС и МК параллельны, отрезки АВ = ВК равные. Дан угол ∠АКМ = 40°. Найти ∠КВС.
- Решение: АС ║ МК параллельны, АК — секущая, $Rightarrow$ ∠АКМ и ∠КАВ накрест лежащие, $Rightarrow$ ∠КАВ = 40°.
- ∆АВК – равнобедренный, АВ = ВК $Rightarrow$ углы у основания ∠КАВ = ∠АКВ значит, $Rightarrow$ ∠АКВ = 40°.
- Значит, углы ∠АКВ = ∠АКМ равные. Угол ∠МКВ состоит из частей, аддитивность, ∠МКВ = ∠АКВ + ∠АКМ = 80°.
- АС ║ МК параллельны, АК — секущая, $Rightarrow$ ∠ВКМ и ∠КВС накрест лежащие, $Rightarrow$ Ответ: ∠КВС = 80°.
Задача 2: На рисунке, даны углы ∠ВАМ = 30°, ∠АВК = 150°, ∠ВКС = 110°. Найти ∠АМР.
- Решение: Углы ∠ВАМ и ∠АВК — односторонные от секущей АВ. Их сумма ∠ВАМ + ∠АВК = 180°.
- Сумма односторонных 180°? … по теореме «о параллельных», прямые АМ и ВК должны быть параллельными. АМ ║ ВК.
- Теперь: АМ ║ ВК, СР — секущая. Односторонные углы равные, ∠ВКС = ∠АМК. Значит, ∠АМК = 110°.
- Наконец, углы ∠АМК и ∠АМР — смежные. Значит, ∠АМК + ∠АМР = 180°. $Rightarrow$ ∠АМР = 180° — ∠АМК = 70°.
- Ответ: ∠АМР = 70°. Замечание: «надо видеть все секущие к параллельным, и углы к ним».
Задача 3: На рисунке, АВ параллельно МК, угол ∠РМК составляет треть угла ∠САВ. Найти эти углы.
- Решение: Дано: отношение углов ∠РМК : ∠САВ = 1 : 3. Выразим: ∠САВ = 3∠РМК
- Как связаны искомые углы по рисунку? ∠САВ и ∠МАВ — смежные, значит ∠МАВ = 180° — ∠САВ.
- Углы ∠МАВ и ∠РМК односторонные углы при параллельных АВ ║ МК и секущей РС. Значит, ∠МАВ = ∠РМК
- Из двух равенств получаем ∠РМК = 180° — ∠САВ. Вспомним ∠САВ = 3∠РМК, подставим: ∠РМК = 180° — 3∠РМК
- ∠РМК = 45°, значит ∠САВ = 3∠РМК = 135°. Ответ: 45°, 135°
Задача 4: На рисунке, АD параллельно ВС, угол ∠МВС = 65°, ∠ВСК = 80°. Найти четырехугольника АВСD.
- Трапеция АВСD: Четырехугольник с двумя параллельными сторонами называется трапецией. АD ║ ВС.
- Решение: Угол трапеции ∠АВС смежен с ∠МВС, значит ∠АВС = 180° — ∠МВС = 115°.
- Аналогично, угол трапеции ∠ВСD смежный к углу ∠ВСК, значит ∠ВСD = 180° — ∠ВСК = 100°.
- АМ секущая к АD ║ ВС $Rightarrow$ ∠ВАD и ∠МВС соответственные, значит равные ∠ВАD = ∠МВС = 65°.
- Аналогично, КD секущая к АD ║ ВС $Rightarrow$ ∠АDС и ∠ВСК соответственные, значит равные ∠АDС = ∠ВСК = 80°.
- Ответ: Углы трапеции ∠ВАD = 65° ∠АВС = 115° ∠ВСD = 100° ∠АDС= 80°
Задача 4, продолжение, «углы в трапеции»: Пусть углы любые: ∠МВС = х, ∠ВСК = у.
- Такими же рассуждениями о смежных и односторонных, получим: ∠А = х ∠В = 180° — х ∠С = 180° — у ∠D = у
- Видно: ∠А + ∠В = 180° ∠С + ∠D = 180°. Сумма углов при боковой стороне трапеции 180° . Односторонные!
- Видно: ∠А + ∠В + ∠С + ∠D = 180°. Сумма всех углов трапеции равна 360°. . Как у четырехугольника?
Факты, Следствия из теорем о углах при параллельных и секущей к ним:
- В параллелограмме и трапеции диагонали образуют со сторонами равные накрест лежащие углы. Что секущая?
- В паралеллограмме сумма углов у одной стороны равен 180 град. — внутренные односторонные. Что секущая?
- В трапеции сумма углов у боковых сторон равен 180 град. — внутренные односторонные. Что секущая?
- Еще о углах: Диаметры в окружности при пересечении образуют равные вертикальные углы.
- Сумма углов треугольника 180 градусов . Достроить параллельную, увидеть секущую!
Интерактивные Упражнения:
Задачи из сайта https://resh.edu.ru :
Задача 1: Установите соответствие между углами и их градусными мерами, если ∠РМЕ = 50°, а ∠1 = ∠2 и РМ = РЕ.
Задача 2: На рисунке через параллельные прямые m и n проведена секущая k, угол 1 составляет 50% угла 2. Найдите угол 1.
Задача 3: По рисунку найдите градусную меру неизвестного угла х. Параллельные прямые а и b пересечены секущими МК и МF.
Задача 4: Прямые а и m параллельны. АК и КР – секущие, ∆ВКО – равнобедренный. ∠3 = 120°. Чему равен ∠2?
Задача 5: На рисунке прямые AB║CD, при этом AB = AC, ∠BCD = 45°. Найдите угол 2
Задача 6: Прямые FP и EK параллельны, чему равна градусная мера угла x?
Задача 7: Через параллельные прямые а и b проведены секущие ВА и ВС, так что АВ = ВС, при этом ∠ВСА = 80°. Найдите градусную меру угла 1.
Задача 8: В треугольнике АВС BD – секущая к параллельным прямым BC и DE, при этом ВD = DC, ∠BDE = 40°. Чему равен угол ADВ?
Задача 9: Прямые KN и ME параллельны. По рисунку найдите угол ЕМР, если сумма углов треугольника равна 180°.
Задача 10: На рисунке через параллельные прямые m и n проведена секущая k, угол 1 составляет 20 % угла 2. Найдите угол 1.
Задача 11: Прямые a и b параллельны. Основываясь на рисунке, определите, чему равна градусная мера угла y.
Задача 12: ∆ВКО – равнобедренный. ∠3 = 110°. Чему равен ∠2?
Задача 13: На рисунке AB║CD, при этом AB=AC, ∠BCD = 45°. Найдите угол BAC.
Задача 14: На рисунке прямые а║b, при этом MO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ?
Задача 15: Дан треугольник АВС. BD – секущая к параллельным прямым BC и DE, при этом ВD = DC, ∠BDE = 50°. Чему равен угол ADE?
Задача 16: Прямые а и b параллельны. Чему равна градусная мера суммы углов 1, 2, 3?
Задача 17: Проведена секущая к прямым BC и DE, при этом ВD = DC, BC || DE, ∠BDE = 40°. Чему равен ∠ADE?
Задача 18: Один из односторонних углов при двух параллельных прямых и секущей на 66º меньше другого. Найдите меньший из односторонних углов.
Задача 19: Сумма пары накрест лежащих углов, образованных при пересечении параллельных прямых секущей, равна 110°. Найдите, чему равен один накрест лежащий угол.
Задача 20: «углы в параллелограмме и трапеции»:
-
один из углов параллелограмма 40. найти остальные
-
найти углы параллелограмма, если известно, что сумма двух 80. (100, 160)
-
найти углы параллелограмма, если известно, что разность двух 70. (110, 130)
-
Диагональ параллелограмма состовляет с одной из сторон углы 25 и 35. найти все углы параллелограмма
-
Углы параллелограмма относятся как 2:3 найти все углы
-
Чему равны углы равнобедренной трапеции, если разность противолежащих 40