Как найти соответсвенный угол

Определение, свойства и признаки соответственных углов

Базисные понятия

Свойства и признаки соответственных углов

Угол — простая фигура в геометрии, образуемая двумя лучами, следующими из некоторой точки. Эту точку определяют как его вершину. Название «угол» может относиться к части плоскости, объединяющей все лучи, исходящие из вершины фигуры. Такое обозначение может также иметь угловая мера, чаще всего определяемая в градусах.

В геометрии существует несколько критериев, позволяющих выделить разные типы угловых фигур. Они бывают тупыми и острыми, смежными или вертикальными. Для углов, образуемых в результате пересечения секущей линией двух прямых, в качестве такого критерия берется свойство взаимных соотношений формируемых при этом фигур. При рассмотрении произвольного геометрического рисунка, образованного двумя прямыми линиями и секущей, можно увидеть 4 пары соответственных, по 2 пары внутренних и внешних накрест лежащих или односторонних угловых фигур. Все эти элементы могут быть как тупоугольными, так и остроугольными.

Углы, образующиеся при пересечении прямых

Чтобы понять, как выглядят соответственные углы, а также уметь находить их на любых геометрических рисунках, нужно хорошо усвоить разницу между типами фигур, образованных секущей линией. Кроме того, следует обратить внимание на наличие внутренней и внешней областей. Первая зона ограничивается площадью между двумя прямыми, второй внешней областью считается неограниченное пространство снаружи от этих двух линий.

Итак, образованным тремя прямыми линиями угловым фигурам можно дать следующие определения:

Свойства соответственных углов

  • Накрест лежащие внутренние углы — это разносторонние по отношению к секущей объекты внутри области, сформированной прямыми. Если обе фигуры лежат за пределами двух прямых по противоположные стороны от секущей, то такие угловые элементы называются внешними накрест лежащими.
  • В отличие от предыдущих противолежащих фигур, односторонние углы расположены на одной стороне: внутри области, образованной двумя прямыми (внутренние), или во внешних областях (наружные).
  • Соответственные по определению являются парными фигурами, образующимися по одну сторону от линии, пересекающей две других, с аналогичных сторон обеих прямых. Один из углов пары расположен между прямыми и является внутренним, а другой лежит вне этой зоны, поэтому считается внешним.

Более наглядное представление об этом типе углов можно получить, если секущую изобразить в виде направленного вектора. Парные угловые элементы расположены в одном направлении относительно прямых, пересеченных третьей линией.

Чтобы окончательно разобраться в вопросе, нужно усвоить понятие соответствия с математической точки зрения. В геометрии это свойство двух фигур, у которых углы, стороны или точки одного объекта аналогичны соответствующим элементам другого объекта. Аналогия проявляется не в их равенстве, а во взаимном соотношении элементов. О соответствии углов говорит аналогичное пространственное положение лучей в местах пересечения прямых с третьей секущей линией. Таким образом, речь идет об элементах, имеющих одинаковое относительное положение.

Соответственные углы при параллельных прямых

Свойства фигур, формирующихся при пересечении секущей параллельных прямых, давно описаны в планиметрии. Известно, что соответственные накрест лежащие угловые элементы при параллельных прямых равны. Сложение угловых величин односторонних фигур дает значение 180 градусов. В геометрии применяется формула для расчета суммы соответственных парных угловых фигур при условии параллельности двух линий. Для определения этого параметра из числа 360 надо вычесть удвоенную угловую величину одностороннего угла, прилежащего к любому из пары рассчитываемых соответственных угловых элементов.

Соответственные углы при параллельных прямых

Равные соответственные углы указывают на параллельность прямых. Справедливость этого признака вытекает из следующих утверждений:

Урок

  1. Отметим отрезок на секущей, начало и конец которого, точки C и D, находятся в местах пересечения секущей с прямыми a и b.
  2. Через среднюю точку K отрезка опустим перпендикуляр к прямой a. Точки его пересечения с прямыми обозначим как A и B. Сформированные отрезками треугольники CKA и DKB являются прямоугольными, а отрезки AK и BK — сторонами, прилежащими к прямоугольным вершинам. Каждый из этих катетов одновременно является высотой треугольника, проведенной из остроугольной вершины.
  3. Для доказательства следует учитывать равенство вертикальных ∠CKA и ∠DKB, ∠BDK и ∠АСК равны по условию равенства соответственных углов с учетом того, что вертикальные углы с вершинами в точках C и D равны, CK и KD — два равных отрезка по условию.
  4. Таким образом, в треугольниках CKA и DKB сторона и прилежащие к ней углы имеют равные величины, что соответствует одному из признаков равенства треугольников.
  5. Поскольку AB перпендикулярен прямой a и отрезку AC, то CKA — прямоугольный треугольник, и это дает основание считать, что равный ему треугольник DKB также прямоугольный, из чего следует перпендикулярность отрезка AB по отношению к прямой b.
  6. Было доказано, что две прямые перпендикулярны к третьей прямой, и это подтверждает их параллельность.

Доказательство можно развернуть и в обратном направлении. Параллельные линии при пересечении третьей прямой формируют одинаковые по величине соответственные углы. Это утверждение известно как свойство параллельных линий.

Такого рода свойства встречаются в описаниях признаков и теорем. Их равенство — часть доказательств равенства и подобия треугольников. В свою очередь, используя признаки подобных и равных треугольников, можно обосновывать доказательства сложных теорем, находить решения сложных задач, править возможные ошибки.

Доказательство подобия треугольников

Существует три признака, по которым могут быть определены подобные треугольники. Во-первых, подобие подтверждается пропорциональностью всех трех сторон треугольников. Во-вторых, подобными считаются треугольники, имеющие две пропорциональные стороны, угловая величина между которыми равна соответствующему элементу второго треугольника. В-третьих, подобие подтверждается, когда имеет место равенство двух углов обоих треугольников.

Рассмотрим доказательство этого признака, в ходе которого применяется свойство тождественности соответственных угловых объектов:

Доказательство подобия треугольников

  1. Возьмем два треугольника ABC и A1B1C1, в которых равны два угла. Из этого следует, что величина третьего угла также одинакова в обеих фигурах. Требуется доказать подобие треугольников.
  2. Отметим точку A2 на AB таким образом, чтобы величина BA2 совпала с A1B1. Через A2 параллельно основанию AC проведем прямую, проходящую через BC в точке B2.
  3. Треугольники A2BC2 и A1B1C1 равны, что подтверждается одинаковыми величинами сторон A1B1, BA2 и углов B, B1 (по построению или условию), а также равенством углов A, A1 как соответственных при параллельных линиях.
  4. Поскольку, согласно лемме, параллельная стороне треугольника прямая отсекает от него подобный треугольник, то A2BC2 подобен ABC. Из этого следует подобие треугольников ABC и A1B1C1.

Подобного рода рассуждения и доказательства, учитывающие свойства соответственных угловых фигур, учитываются при решении разного рода задач.

В сложных планиметрических фигурах в качестве секущей, формирующей этот тип геометрических объектов, может выступать медиана, биссектриса треугольника или какие-либо другие линии. Для решения таких задач требуется хорошее знание базовых понятий, признаков, свойств, аксиом, позволяющее заметить определенные соотношения и закономерности в том или ином задании.

Соответственные углы — вид углов, образованный при пересечении двух прямых секущей.

Один из пары соответственных углов лежит во внутренней области между прямыми, другой — во внешней, причем оба угла находятся по одну сторону от секущей.

При пересечении двух прямых секущей образуется четыре пары соответственных углов.

sootvetstvennyie uglyi

    ∠1 и∠5

    ∠2 и∠6

    ∠3 и∠7

    ∠4 и∠8

— соответственные углы при прямых a и b и секущей c.

Наибольший интерес в геометрии представляют соответственные углы при параллельных прямых.

Свойство параллельных прямых

Если две параллельные прямые пересечены третьей прямой, то  соответственные углы равны.

sootvetstvennyie uglyi ravnyi

Если a ∥ b, то

∠1 =∠2

(как соответственные углы при при a ∥ b и секущей c).

Всего при параллельных прямых и секущей образуется четыре пары равных соответственных углов:

kakie sootvetstvennyie uglyi    ∠1 =∠5

    ∠2 =∠6

    ∠3 =∠7

    ∠4 =∠8

                               
Признак параллельных прямых

Если соответственные углы равны, то прямые параллельны.

esli sootvetstvennyie uglyi ravnyi      ∠1 =∠2

А так как эти углы — соответственные при прямых при a и b и секущей c,

то a ∥ b (по признаку параллельных прямых).

Равенство соответственных углов используется, в частности, для доказательства равенства треугольников и подобия треугольников.

Что такое соответственные углы?

Они равны между собой?

Чему равна сумма двух соответственных углов при параллельных прямых?

Соответственные углы образуются при пересечении секущей двух прямых. Также образуются односторонние и накрест лежащие углы.

Соответственные углы при параллельных прямых равны между собой, при непараллельных — не равны. Сумма соответственных углов (при параллельных) равна 360 минус удвоенный односторонний угол к любому из соответственных, взятых для расчета.

Геометрически соответственные углы находятся по одну сторону от секущей, и …если представить секущую в виде вектора, имеющего направление… в одном направлении относительно точек пересечения секущей с параллельными прямыми.

автор вопроса выбрал этот ответ лучшим

Возьмем две произвольные прямые на плоскости, их пересекает третья прямая, называемая секущей ( все три прямые лежат в одной плоскости ). При пересечении двух прямых секущей и образуются соответственные углы. При пересечении двух прямых секущей образуется восемь углов. Разберемся, какие из них являются соответственными с помощью рисунка.

Но сначала замечу, что в геометрии при решении различных задач, чаще рассматривается вариант, когда две прямые, пересекаемые третьей, параллельны между собой. В этом случае образуемые при пересечении углы обладают рядом свойств.

На рисунке мы видим две параллельные прямые a и b, которые пересекает секущая c.

Соответственными в данном случае являются: 2 и 6, 3 и 7, 4 и 8, 1 и 5.

Соответственные углы, образуемые при пересечении двух параллельных прямых третьей, равны: 2=6, 3=7, 4=8, 1=5.

Углы, одной стороной которых является секущая и находящиеся по одну сторону от секущей, называются односторонними, например углы 1 и 6 будут односторонними.

На рисунке также хорошо видно, что углы с вершиной в одной точке 1, 2 и 5, 6 составляют угол 180 градусов, то есть 1+2=180, 5+6=180. Поскольку 2=6, то совершенно очевидно, что 1=5.

Углы с вершиной в одной точке 1, 2, 3, 4 и 5, 6, 7, 8 составляют угол 360 градусов, то есть 1+2+3+4=360, 5+6+7+8+=360.

Если известен односторонний угол 1, то то сумма соответственных углов 2+6= 360 — 2х1. Если выразить это словами, то сумма соответственных углов равна разности между 360 градусами и удвоенным односторонним углом.

При изучении параллельных прямых можно столкнуться с понятием соответствующих углов. Если взять две параллельные прямые и нарисовать еще одну прямую, которая пересекает их обе, то будет образовано восемь углов.

При этом образуется так соответствующие углы, которые равны между собой. На картинке они показаны красным.

При этом сумма односторонних углов равна 180°. То есть, сумма красного и синего угла равна 180°. Отсюда также видно, что углу, которые расположены накрест, также равны.

Что касается суммы соответствующих углов, то однозначного ответа нет. Она может быть самой разной в численном выражении. Сумма таких углов — это разница между 180° и односторонним углом, умноженная на два.

Galin­a7v7
[120K]

6 лет назад 

Если две прямые пересекающиеся в пределах чертежа) пересечь третьей прямой, называемой — секущей, то образуются множество углов.

Но рассмотрим углы соответственные.Так они называются (соответственными) по логике их отношения к чему-то аналогичному.То есть два соответственных угла образованные , допустим, двумя параллельными прямыми и общей секущей, и один из углов будет образован верхней прямой и секущей, и будет находиться сверху от этой прямой, такая же история (соответственно) образован нижней параллельной прямой, и секущей и тоже расположен сверху этой прямой.То есть определение аналогично, но 1-е определение и угол касается 1-й верхней прямой, а второе ко нижней.

Также можно повторить для угла под прямой-нижней и верхней.

Сколько пар соответственных углов при двух прямых и секущей?

Я считаю — 4 пары соответственных углов, а всего их будет 8, но соответственных пар будет 4.И ещё:

при параллельных прямых соответственные углы равны между собой.

Повторю с чертежом: Соответственные углы : пара 1 с 5 ,2 и 6, 4 и 8 , 3 и 7.

Но тут чертёжж не с параллельными прямыми.и соответственые углы не равны.

12777­1
[273K]

3 года назад 

Это определение известно из школьного курса геометрии.

Итак, соответственными углами называют такие углы, которые образуются при пересечении двух прямых секущей. При пересечении 2-х прямых секущей образуется четыре пары соответственных углом. Ниже в ответе рисунок, на котором представлены такие углы:

Перед нами 4 пары соответственных углов, а именно: углы 2 и 6, углы 1 и 5, углы 3 и 7, углы 4 и 8.

Особый интерес представляет, если перед нами параллельные прямые:

В этом случае у нас получается, что угол один равен углу пять. Угол два равен углу шесть. Угол четыре равен углу восемь. Угол три равен углу семь.

davse­norm
[7.5K]

6 лет назад 

Когда две прямые линии пересекаются одной секущей — получаются соответственные, односторонние и накрест лежащие углы. Если прямые линии параллельны друг другу — соответственные углы будут равны, если же не параллельны — не равны.

Чтобы высчитать сумму соответственных углов при параллельных прямых линиях, нужно применить следующую формулу:

360 — с*2

где С — это односторонний угол к любому из соответственных углов.

Profi­lakti­ka
[95.7K]

6 лет назад 

Соответственные углы — это вид углов, которые образуются при пересечении двух произвольных прямых секущей. При этом образуется 4 пары соответственных углов.

Соответственные углы равны между собой, в случае параллельных прямых.

Равенство соответствующих углов используется в доказательствах подобия и равенства двух треугольников. Также, если соответственные углы равны, то внутренние накрест лежащие углы тоже равны, и наоборот.

Один угол из пары соответственных всегда будет внешним, второй — внутренним. Визуально они как будто находятся на разных ступеньках.

Уже из названия видно что «соответственные» углы, значит что они тождественны, либо чему то еще, либо между собой. Так и есть, соответствующие углы образуются при пересечении двух параллельных прямых(!) одной секущей прямой проходящей через их обе. В месте пересечения каждой из параллельных они образуют углы равные между собой. Так перпендикуляр проведенный через две параллельные углы образует четыре соответственных угла. Если секущая идет под углом не равным 90 градусов, то образует два одинаковых острых угла и два одинаковых тупых угла.

МариМ­ари28
[7.1K]

6 лет назад 

Соответственные это углы образованные двумя параллельными прямыми и секущей (то есть пересекающей прямой). Соответственные углы равны между собой. Чтобы посчитать чему равна сумма двух соответственных углов, надо из 180 градусов вычесть односторонний угол и умножить на два.

TheSu­n
[2.3K]

3 года назад 

Соответственные углы образуются при пересечении двух прямых линий с секущей.

При пересечении эти углы обязательно находятся по одну сторону от секущей линии.

Соответственные углы могут быть равными и не равными. Углы равны в том случае, если линии, которые пересекает секущая параллельны. В этом случае, их сумма будет равна 360° минус удвоенный односторонний угол.

На рисунке приведённом ниже показаны соответственные углы, которые равны между собой.

Знаете ответ?

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Углы при параллельных прямых и секущей

Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Углы при параллельных прямых и секущей

Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны, то есть

angle 1=angle 3;

angle 2=angle 4.

Конечно, углы 5 и 7, 6 и 8 — тоже вертикальные.

Углы 1 и 2 — смежные, это мы уже знаем. Сумма смежных углов равна 180^{circ}.

Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие.

Накрест лежащие углы равны.

angle 3=angle 5,

angle 1=angle 7,

angle 2=angle 8,

angle 4=angle 6.

Углы 1 и 6 — односторонние. Они лежат по одну сторону от всей «конструкции». Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180^{circ}, то есть

angle 1+angle 6=180^{circ},

angle 4+angle 7=180^{circ}.

Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными.

Соответственные углы равны, то есть

angle 2=angle 6,

angle 3=angle 7.

Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими.

Накрест лежащие углы равны, то есть

angle 3=angle 5,

angle 1=angle 7,

angle 2=angle 8,

angle 4=angle 6.

Чтобы применять все эти факты в решении задач по геометрии, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть две параллельных прямые и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это – один из шагов, из которых и состоит решение.

В этой статье – полезные теоремы и примеры решения задач ЕГЭ и ОГЭ по теме «Углы при параллельных прямых и секущей».

Этот материал можно использовать для проектов по геометрии, в работе на уроке и самостоятельно.

Теорема 1.

Углы с соответственно параллельными сторонами равны, если они оба острые или тупые.

Доказательство:

Дано два острых угла: angle ACB и angle FNM. Известно, что их стороны параллельны: CAparallel NF и CBparallel NM.

Докажем, что angle ACB=angle FNM.

Пусть NFcap  CB=D.

Тогда angle ACB=angle FDB как соответственные углы при параллельных прямых CA и NF и секущей CB.

angle FDB=angle FNM, как соответственные углы при параллельных прямых CB и NM и секущей NF.

Отсюда следует, что angle ACB=angle FNM, что и требовалось доказать.

Аналогично и для тупых углов.

Теорема 2.

Углы с соответственно параллельными сторонами в сумме составляют 180{}^circ , если один из них острый, а другой тупой.

Доказательство:

Дано: angle ACB – острый, а angle FNM – тупой. Известно, что их стороны параллельны: CAparallel NF и CBparallel NM.

Докажем, что сумма углов angle ACB и angle FNM равна 180{}^circ .

Пусть NFcap  CB=D. Продолжим луч NM за точку N и получим прямую MK.

Получили два острых угла, angle ACB и angle FNK с параллельными сторонами. Согласно теореме 1, они равны, т. е. angle ACB=angle FNK.

angle MNF+angle FNK=180{}^circ как смежные. Значит, angle MNF+angle ACB=180{}^circ.

Теорема доказана.

Теорема 3.

Если накрест лежащие углы равны, прямые параллельны.

Доказательство:

Пусть при пересечении прямых a и b секущей AB накрест лежащие углы равны: angle 1=angle 2.

Докажем, что aparallel b. Если углы 1 и 2 прямые, то прямые a и b перпендикулярны к прямой AB и, следовательно, параллельны.

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведем перпендикуляр OH к прямой a.

На прямой b от точки В отложим отрезок {BH}_1 равный отрезку AH

triangle OHA=triangle OH_1B по двум сторонам и углу между ними, поэтому angle 3=angle 4 и angle 5=angle 6. Из равенства angle 3=angle 4  следует, что точка H_1 лежит на продолжении луча OH, т. е. точки H, O и H_1 лежат на одной прямой, а из равенства angle 5=angle 6 следует, что угол 6 – прямой (так как угол 5 – прямой). Итак, прямые a и b перпендикулярны к прямой HH_1, поэтому они параллельны. Теорема доказана.

Теорема 4.

Если соответственные углы равны, прямые параллельны.

Доказательство:

Пусть при пересечении прямых a и b секущей c соответственные углы равны, например angle 1=angle 2.

Так как углы 2 и 3 – вертикальные, то angle 2=angle 3. Из этих двух равенств следует, что angle 1=angle 3 . Но углы 1 и 3 – накрест лежащие, поэтому прямые a и b параллельны. Теорема доказана.

Теорема 5.

Если сумма односторонних углов равна 180 градусов, прямые параллельны.

Доказательство:

Пусть при пересечении прямых a и b секущей c сумма односторонних углов равна 180{}^circ , например angle 1+angle 4=180{}^circ.

Так как углы 3 и 4 – смежные, то angle 3+angle 4=180. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые a и b параллельны. Теорема доказана

И самое главное. Подборка примеров заданий ОГЭ и ЕГЭ по темам: углы при параллельных прямых и секущей, внешние накрест лежащие и внутренние накрест лежащие углы, односторонние углы.

Задачи ОГЭ по теме: Свойства параллельных прямых и секущей, углы при пересечении параллельных прямых секущей

Задача 1. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.

Решение:

Стороны BC и AD параллелограмма параллельны, АК – секущая. Углы angle KAD и angle AKB равны как накрест лежащие.

BC=BK+KC=5+14=19,

triangle ABK – равнобедренный треугольник.

Мы доказали важное утверждение.

Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.

AB=BK=5.

P_{ABCD}=left(AB+BCright)cdot 2;

P_{ABCD}=left(5+19right)cdot 2=48.

Ответ: 48.

Задача 2. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F.

Найдите AB, если AF=24, BF=10.

Решение:

Основания трапеции АD и ВС параллельны, поэтому углы BAD и АВС – односторонние при параллельных прямых АD и ВС и секущей АВ. Сумма односторонних углов равна 180^circ .

Сумма углов, прилежащих к боковой стороне трапеции, равна180{}^circ .

Мы получили, что

angle BAD+angle ABC=180^circ .

AF — биссектриса угла А,

BF — биссектриса угла В, поэтому

angle FAB=frac{1}{2}angle BAD;; angle ABF=frac{1}{2}angle ABC, тогда

angle FAB+angle ABF=90^circ .

Из треугольника AFB получим, что AFB=90{}^circ .

Мы доказали теорему:

Биссектрисы углов трапеции, прилежащих к боковой стороне, перпендикулярны.

Значит, треугольник AFB – прямоугольный.

По теореме Пифагора, {AB}^2={AF}^2+{BF}^2Rightarrow AB=sqrt{{24}^2+{10}^2}=sqrt{676}=26.

Ответ: 26.

Задача 3. Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=28, AC=16, MN=12. Найдите AM.

Решение:

Пусть М – середина АВ, N – середина ВС. Тогда MN – средняя линия треугольника АВС, MNparallel AC.

Значит, angle BMN=angle BAC, как односторонние углы при параллельных прямых MN и AC и секущей АВ.

triangle ABCsim triangle MBN по двум углам.

Отсюда displaystyle frac{AB}{BM}=displaystyle frac{AC}{MN}Rightarrow BM=displaystyle frac{ABcdot MN}{AC};

BM=displaystyle frac{28cdot 12}{16}=21.

Ответ: 21.

Задача 4. Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 108{}^circ. Найдите угол B этой трапеции. Ответ дайте в градусах.

Решение:

ABCD – трапеция, ADparallel BC – основания, AB – секущая.

Значит, angle A и angle B – внутренние односторонне углы.

Отсюда angle B=180{}^circ -108{}^circ =72{}^circ.

Ответ: 72.

Задача 5. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=7, а расстояние от точки K до стороны AB равно 4.

Решение:

Сумма углов, прилежащих к боковой стороне параллелограмма, равна 180{}^circ .

Это значит, что angle BAD +angle ABC = 180{}^circ.

AК — биссектриса угла А,

BК — биссектриса угла В, поэтому

angle KAB=frac{1}{2}angle BAD; ; angle ABK=frac{1}{2}angle ABC, тогда

angle KAB+angle ABK= 90{}^circ .

Из треугольника AKB получим, что angle ABK= 90{}^circ .

Мы доказали теорему:

Биссектрисы углов параллелограмма, прилежащих к боковой стороне, перпендикулярны.

Значит, треугольник AKB – прямоугольный.

Расстояние от точки K до стороны AB – это длина перпендикуляра, проведенного из точки K на прямую АВ, т.е. KH=4.

triangle AKN=triangle AKH по гипотенузе и острому углу Rightarrow KN=KH.

Аналогично, triangle BKH=triangle BKM по гипотенузе и острому углу Rightarrow KH=KM.

Получили: KN=KH=KM=4Rightarrow MN=8.

Тогда S_{ABCD}=ADcdot MN; S_{ABCD}=8cdot 7=56.

Ответ: 56.

Задача 6. На плоскости даны четыре прямые. Известно, что angle 1=120{}^circ , angle 2=60{}^circ , angle 3=55{}^circ . Найдите angle 4. Ответ дайте в градусах.

Решение:

angle 1 и angle 2 – это внутренние односторонние углы,

angle 1+angle 2=120{}^circ +60{}^circ =180{}^circ.

Отсюда следует, что прямые параллельны, т.е. aparallel b.

Рассмотрим углы при параллельных прямых aparallel b и секущей d.

angle 3 и angle 4 – это односторонние углы, а значит, они равны: angle 3=angle 4=55{}^circ.

Ответ: 55.

Задача 7. Прямые m и n параллельны. Найдите angle 3, если angle 1=22{}^circ , angle 2=72{}^circ . Ответ дайте в градусах.

Решение:

mparallel nRightarrow angle 1=angle 4=22{}^circ  как односторонние углы.

Сумма углов треугольника равна 180{}^circ .

Для треугольника на рисунке:

angle 2+angle 3+angle 4=180{}^circ Rightarrow angle 3=180{}^circ -72{}^circ -22{}^circ =86{}^circ .

Ответ: 86.

Задача 8. Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30{}^circ и 45{}^circ. Найдите больший угол параллелограмма. Ответ дайте в градусах.

Решение:
angle A=angle BAC+angle CAD=30{}^circ +45{}^circ =75{}^circ ,

angle A и angle B – это внутренние односторонние углы при параллельных прямых.

ADparallel BC и секущей АВ, их сумма равна 180{}^circ .

Тогда angle B=180{}^circ -angle A=180{}^circ -75{}^circ =105{}^circ .

Это и есть наибольший угол параллелограмма.

Ответ: 105.

Задача 9. Найдите величину тупого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 15{}^circ. Ответ дайте в градусах.

Решение:

AK – биссектриса угла А параллелограмма ABCD, angle A=30{}^circ.

angle A и angle B – внутренние односторонние углы при параллельных прямых.

ADparallel BC и секущей АВ. Их сумма равна 180{}^circ , значит, angle B=180{}^circ -30{}^circ =150{}^circ.

Ответ: 150.

Задача 10. В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и angle ACD=169{}^circ . Найдите меньший угол между диагоналями параллелограмма. Ответ дайте в градусах.

Решение: AC=2ABRightarrow AO=OC=AB=CD, тогда triangle COD – равнобедренный, в нем OC= CD. Значит,  angle COD=angle CDO=displaystyle frac{180{}^circ -169{}^circ }{2}=5,5{}^circ .

Ответ: 5,5.

Задачи ЕГЭ по теме: Углы при параллельных прямых и секущей

Задача 1, ЕГЭ. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3:4, считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.

Решение:

Напомним, что биссектриса угла – это луч, выходящий из вершины угла и делящий угол пополам.

Пусть BM – биссектриса тупого угла B. По условию, отрезки MD и AB равны 3x и 4x соответственно.

Рассмотрим углы CBM и BMA. Поскольку AD и BC параллельны, BM – секущая, углы CBM и BMA являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник ABM – равнобедренный, следовательно, AB = AM = 4x.

Периметр параллелограмма – это сумма всех его сторон, то есть

7x+7x+4x+4x=88.

Отсюда x=4, 7x=28.

Ответ: 28.

Задача 2, ЕГЭ. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50{}^circ ? Ответ дайте в градусах.

Решение:

Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на рисунок. По условию, alpha -beta =50{}^circ , то есть alpha =beta +50{}^circ .

Углы alpha и beta – односторонние при параллельных прямых и секущей, следовательно,

alpha +beta =180{}^circ , по свойству односторонних углов.

Итак, 2beta +50{}^circ =180{}^circ.

beta =65{}^circ , тогда alpha =115{}^circ .

Ответ: 115.

Задача 3, ЕГЭ. Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.

Решение:

angle B и angle C – внутренние односторонние углы и при параллельных прямых

AB и DC и секущей BC; их сумма равна 180{}^circ .

BE – биссектриса угла В, значит angle ABE=angle CBE=angle BEA как накрест лежащие углы при BCparallel AD и секущей BE. Тогда triangle ABE – равнобедренный, AB=AE=5=DC.

Аналогично, CE – биссектриса угла С, значит angle DCE=angle BCE=angle CED как накрест лежащие углы при BCparallel AD и секущей CE. Тогда triangle DCE – равнобедренный и DC=DE=5.

Значит AD=AE+ED=10.

Ответ : 10.

Задача 4, ЕГЭ. В ромбе ABCD угол ABC равен 122{}^circ. Найдите угол ACD. Ответ дайте в градусах.

Решение:

angle B и angle C – это внутренние односторонние углы при параллельных прямых.

ABparallel DC и секущей BC, их сумма равна 180{}^circ .

Значит, angle C=180{}^circ -angle B=180{}^circ -122{}^circ =58{}^circ .

ABCD – ромб, диагонали ромба делят его углы пополам.

Тогда angle ACD=58div 2=29{}^circ .

Ответ: 29.

Задача 5, ЕГЭ. Угол между стороной и диагональю ромба равен 54{}^circ . Найдите острый угол ромба.

Решение:

Диагональ ромба делит его угол пополам, то есть является биссектрисой угла ромба. Поэтому один из углов ромба равен 54cdot 2=108 градусов, и это тупой угол ромба. Тогда острый угол ромба равен 180{}^circ -108{}^circ =72{}^circ .

Ответ: 72.

Задача 6, ЕГЭ. Основания трапеции равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол 150{}^circ. Найдите площадь трапеции.

Решение:

Пусть angle D=150{}^circ ;  AB=18;  DC=6;  AD=7.

Углы, прилежащие к боковой стороне AD трапеции, являются внутренними односторонними при ABparallel DC и секущей BC. Их сумма равна 180{}^circ .

Тогда angle A=30{}^circ . Построим высоту из вершины D. Получим прямоугольный треугольник с острым углом в 30{}^circ .

Высота трапеции DH – это катет, лежащий напротив угла в 30{}^circ и равный половине гипотенузы, т. е. h=0.5cdot AD=0.5cdot 7=3.5.

Отсюда S_{ABCD}=displaystyle frac{DC+AB}{2}cdot h; S_{ABCD}=displaystyle frac{6+18}{2}cdot 3.5=12cdot 3.5=42.

Ответ: 42.

Задача 7, ЕГЭ. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50{}^circ? Ответ дайте в градусах.

Решение:

У равнобедренной трапеции углы при основании равны т.е. angle A=angle B; ; angle D=angle C.

По условию, angle D-angle B=50{}^circ Rightarrow angle C-angle B=50{}^circ ;

angle C и angle B, прилежащие к боковой стороне CB трапеции, являются внутренними односторонними углами при параллельных прямых
AB и DC и секущей BC. Их сумма равна 180{}^circ .

angle C+angle B=180{}^circ.

Получили:

left{ begin{array}{c}angle C-angle B=50{}^circ \angle C+angle B=180{}^circ end{array}right. .

Сложив два уравнения, получим: 2angle C=230{}^circ , тогда angle C=115{}^circ.

Ответ: 115.

Задания ЕГЭ Базового уровня, геометрия. Свойства углов при параллельных прямых и секущей.

Задание 1. Основания трапеции равны 10 и 20, боковая сторона, равная 8, образует с одним из оснований трапеции угол 150{}^circ . Найдите площадь трапеции.

Решение:

Углы, прилежащие к боковой стороне трапеции, являются внутренними односторонними углами при параллельных основаниях трапеции и секущей. Их сумма равна 180{}^circ . Значит, острый угол трапеции равен 30{}^circ . Построив высоту, мы увидим, что она лежит против прямого угла в прямоугольном треугольнике. Значит, высота равна половине боковой стороны, т.е. h=4.

Отсюда

Ответ: 60.

Задание 2. В прямоугольной трапеции основания равны 4 и 7, а один из углов равен 135{}^circ . Найдите меньшую боковую сторону.

Решение:

Углы, прилежащие к боковой стороне трапеции, являются внутренними односторонними углами при параллельных прямых и секущей. Их сумма равна 180{}^circ . Значит, острый угол равен 45{}^circ .

Вторая высота отсекает равнобедренный прямоугольный треугольник с катетом, равным разности оснований. Значит, высота равна: 7–4=3.

Отсюда

Ответ: 16,5.

Задание 3. В трапеции ABCD известно, что AB = CD, angle BDA=40{}^circ и angle BDC=30{}^circ . Найдите угол ABD. Ответ дайте в градусах.

Решение:

angle D=angle BDA+angle BDC=40{}^circ +30{}^circ =70{}^circ . Углы, прилежащие к боковой стороне трапеции, являются внутренними односторонними углами при параллельных прямых и секущей. Их сумма равна 180{}^circ . Значит, острый угол равен 110{}^circ .

Нам дана трапеция, в которой AB=CD. Очевидно, что это боковые стороны, и трапеция равнобедренная с основаниями AD и BC .

AD и BC параллельны, BD секущая, тогда angle ADB=angle DBC=40{}^circ .

angle ABD=angle ABC-angle DBC=110{}^circ -40{}^circ =70{}^circ.

Ответ: 70.

Задание 4. В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке K. Найдите KC, если AB = 4, а периметр параллелограмма равен 20.

Решение:

ABCD – параллелограмм, тогда AB = DC = 4.

AK – биссектриса угла А, значит, angle BAK=angle KAD;

angle KAD=angle AKC как накрест лежащие углы при параллельных прямых BC и AD и секущей AK.

Получили, что triangle ABK – равнобедренный и AB=BK=4.

P_{ABCD}=left(AB+ADright)cdot 2=20, значит AB+AD=10Rightarrow AD=6,

KC=BC-BK=6-4=2.

Ответ: 2.

Задание 5. Прямые m и n параллельны (см. рисунок). Найдите angle 3, если angle 1=117{}^circ , angle 2=24{}^circ . Ответ дайте в градусах.

Решение:

mparallel n, angle 2=angle 4=24{}^circ (как накрест лежащие углы).

angle 1+angle 4+angle 3=180{}^circ (развернутый угол).

Тогда angle 3=180{}^circ -left(angle 1+angle 4right)=180{}^circ -left(117{}^circ +24{}^circ right)=39{}^circ .

Ответ: 39.

Задание 6. В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и angle ACD=104{}^circ . Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.

Решение:

Пусть диагонали пересекаются в точке О, т.е. ACcap BD=O.

AC=2ABRightarrow AB=displaystyle frac{1}{2}cdot ACRightarrow AB=AO=OC=CD.

AB и CD параллельны, АС – секущая, Rightarrow angle BAC=angle ACD=104{}^circ .

AB=AORightarrow triangle BAO – равнобедренный, отсюда угол между диагоналями равен:

angle BOA=displaystyle frac{180{}^circ -104{}^circ }{2}=38{}^circ .

Ответ: 38.

Если вам понравился наш материал на тему «Углы при параллельных прямых и секущей» — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

На этой странице вы узнаете:

  • Какими бывают углы?
  • По каким признакам можно сказать, что треугольники равны?
  • Что такое коэффициент подобия?
  • Какие бывают многоугольники?
  • Какими формулами пользоваться, чтобы найти площадь фигуры?
  • Что такое окружность и из чего она состоит?
  • Когда можно вписать окружность в многоугольник, а когда около него можно её описать?

Прямая, отрезок, луч, углы

Квадрат, круг, треугольник. Несомненно, вы знаете о таких геометрических фигурах, эти фигуры относятся к разделу геометрии, который называется планиметрия. Планиметрия – это наука о изучении геометрических фигур на плоскости. Точки, прямые, отрезки, лучи и углы являются основой этого раздела геометрии. Давайте их и рассмотрим.

Прямая – это линия, не имеющая ни начала, ни конца, такая линия может быть бесконечной.

Отрезок – это часть прямой, ограниченная с обеих сторон.

Луч – это отрезок, ограниченный только с одной стороны.

Угол – это фигура, образованная двумя лучами, исходящими из одной точки, измеряется в градусах.

Рассмотрим части угла:

Углы бывают четырёх видов: 

Смежные и вертикальные углы

Смежные углы – это углы, имеющие одну общую сторону, а две другие стороны этих углов лежат на одной прямой.

Смежные углы в сумме дают 180°.

Вертикальные углы – это углы, вершиной которых является одна и та же точка, стороны одного такого угла являются продолжениями сторон другого угла.

Рассмотрим углы при параллельных прямых

Накрест лежащие углы – это углы, образованные при пересечении двух параллельных прямых секущей и лежащие по разные стороны от секущей между параллельным прямыми. Такие углы всегда равны.

Внутренние односторонние углы – это углы, образованные при пересечении двух параллельных прямых секущей и лежащие по одну сторону от секущей между параллельным прямыми. Сумма этих углов 1800. 

Соответственные углы — это углы, образованные при пересечении двух параллельных прямых секущей и лежащие по одну сторону от секущей так, что один угол находится между двумя прямыми относительно одной прямой, а другой угол прилегает к другой прямой с внешней стороны. Эти углы равны.

Пусть a || b, а с – секущая 

Тогда 3 и 6, 4 и 5 накрест лежащие; 3 и 5, 4 и 6 внутренние односторонние; 1 и 5, 2 и 6, 3 и 7, 4 и 8 соответственные 

Треугольники, их виды и признаки их равенства

Сумма углов любого треугольника равна 180°

Для треугольников также верно следующее утверждение: каждая сторона треугольника меньше суммы двух других его сторон

Элементы треугольника:

Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Также медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины (в треугольнике медиана показана как BM)

Биссектриса – это отрезок, делящий угол на два равных угла. Также центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника (в треугольнике биссектриса показана как BD)

Высота – это перпендикуляр, опущенный из вершины на одну из сторон треугольника. Также высоты или их продолжения пересекаются в одной точке, которая называется ортоцентром (в треугольнике высота показана как ВН)

Средняя линия – это отрезок, соединяющий середины сторон. Средняя линия треугольника параллельна основанию, и по длине она равна половине основания. Средняя линия трапеции равна половине суммы оснований и параллельна основаниям.

Виды треугольников:

У равностороннего треугольника все стороны равны и углы по 600.

У равнобедренного треугольника равны только две стороны и углы при основании. Медиана, проведенная в нём к основанию, также является биссектрисой и высотой. 

У прямоугольного треугольника один угол равен 900 и сумма двух других углов тоже равна 900. Сторона, лежащая напротив прямого угла в таком треугольнике, называется гипотенузой, а две другие — катетами. Катет, лежащий напротив угла 300, равен половине гипотенузы. Медиана, проведённая в прямоугольном треугольнике из вершины прямого угла, равна половине гипотенузы

Признаки равенства треугольников:

  1. Треугольники равны по двум сторонам и углу между ними

АВ = А1В1

АС = А1С1

Угол ВАС = угол В1А1С1

  1. Треугольники равны по стороне и двум прилежащим к ней углам

АВ = А1В1

Угол ВАС = угол В1А1С1

Угол АВС = угол А1В1С1

  1. Треугольники равны по трём сторонам

АВ = А1В1

АС = А1С1

ВС = В1С1

 Давайте теперь разберёмся, что значит подобие:

Если треугольники похожие, но отличаются только размером, тогда поможет подобие треугольников

Коэффициент подобия – это число, в которое отличаются стороны треугольников

Если АВС подобен А1В1С1, тогда верно равенство, где к – коэффициент подобия

Если треугольники подобны, тогда отношение их площадей равно квадрату коэффициента подобия

Признаки подобия треугольников:

  1. По двум сторонам и углу между ними

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны

  1. По двум углам

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны

  1. По трём сторонам

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны

Площадь треугольника

Площадь треугольника, если известна высота и основание, к которому она проведена

Площадь треугольника с двумя известными сторонами и углом между ними

Площадь прямоугольного треугольника с известными катетами

Площадь правильного треугольника, если известна только сторона

Формула Герона позволяет вычислить площадь треугольника, если известны его стороны

Площадь треугольника, когда известен полупериметр и радиус вписанной окружности

Площадь треугольника, когда известны стороны и радиус описанной окружности

Многоугольник

Многоугольник – это часть плоскости, ограниченная замкнутой ломаной линией

Многоугольники бывают выпуклые и невыпуклые

Многоугольник является выпуклым, если он находится в одной полуплоскости относительно прямой, содержащей любую его сторону

Для нахождения площади любого выпуклого четырёхугольника существует формула:

 Виды многоугольников:

  1. Параллелограмм – это четырёхугольник, у которого стороны попарно параллельны

Свойства параллелограмма:

  1. Противоположные стороны равны
  2. Противоположные углы равны
  3. Диагонали делятся точкой пересечения пополам

Формулы площади

  1. Прямоугольник – это четырехугольник, у которого все углы прямые

Свойства прямоугольника:

  1. Диагонали равны
  2. Противоположные стороны параллельны и равны
  3. Угол между сторонами прямой
  4. Сумма углов 360 градусов

Формула площади

Квадрат – это частный случай прямоугольника

Свойства квадрата:

  1. Диагонали взаимно перпендикулярны и равны
  2. Диагонали делят углы квадрата пополам
  3. Все стороны равны
  4. Угол между сторонами прямой
  5. Сумма углов 360 градусов

Формулы площади

  1. Трапеция – это четырёхугольник с двумя параллельными сторонами (основаниями), а две другие стороны у него не параллельны 

Трапеция может быть произвольной, равнобедренной или прямоугольной.

Общие свойства трапеции:

  1. Сумма углов, прилежащих к боковой стороне, равна 180 градусов
  2. Средняя линия равна полусумме оснований
  3. Отрезок, соединяющий середины диагоналей, равен полуразности её оснований

Свойства равнобедренной трапеции:

  1. Углы при основании равны
  2. Диагонали равны

Формулы площади

  1. Ромб – это параллелограмм, у которого все стороны равны

Свойства ромба:

  1. Противоположные углы равны
  2. Все стороны равны
  3. Диагонали делятся точкой пересечения пополам
  4. Диагонали перпендикулярны друг другу
  5. Диагонали являются биссектрисами углов 

Формулы площади

Окружность

Окружность – это замкнутая прямая на плоскости, все точки которой равноудалены от центра (например, обруч)

Дуга – это часть окружности, заключённая между двумя точками, лежащими на этой окружности

В окружности можно провести радиус, диаметр и хорду

Радиус – расстояние от центра до окружности

Диаметр – прямая, соединяющая две точки на окружности и проходящая через центр окружности

Хорда – прямая, соединяющая две любых точки окружности

Также в окружности есть два вида углов

Вписанный угол – угол, у которого вершина лежит на окружности, а стороны угла пересекают её. Такой угол равен половине дуги, на которую опирается

Центральный угол – угол, у которого вершина находится в центре окружности, а стороны угла пересекают её. Данный угол равен дуге, на которую опирается

Окружность, вписанная в четырёхугольник

Чтобы вписать окружность в четырёхугольник, суммы длин противоположных сторон четырёхугольника должны быть равны

              a + c = b + d

Окружность, вписанная в прямоугольный треугольник

У вписанной в прямоугольный треугольник окружности радиус вычисляется по формуле r

Окружность, описанная около четырёхугольника

Чтобы описать окружность около четырёхугольника, необходимо и достаточно выполнения одного из условий:

  1. Сумма противоположных углов треугольника равна 180 градусов
  2. Вписанные углы, опирающиеся на одну хорду, равны

Окружность, описанная около прямоугольного треугольника

  1. Диаметр окружности равен гипотенузе вписанного треугольника
  2. Радиус описанной окружности равен половине гипотенузы

R=c/2, где c-диаметр

Теорема синусов:

Отношения длин сторон треугольника к синусам противолежащих углов равны между собой, а также равны двум радиусам описанной окружности

Фактчек

Равенство треугольников можно определить по одному из трёх признаков равенства треугольников (по двум сторонам и углу между ними, по стороне и прилежащим к ней углам, по трем сторонам).

  • Признаки подобия немного отличаются от признаков равенства треугольников (по двум сторонам и углу между ними, по двум углам, по трём сторонам), по ним определяется отношение соответственных сторон одного треугольника к сторонам другого.
  • Для нахождения площади выпуклого четырёхугольника есть универсальная формула 
    S = ½* d1* d2 *sin α , где d 1, d 2 — длины диагоналей четырехугольника, α — угол между диагоналями четырехугольника. 
  • Окружность можно вписать в четырёхугольник, если суммы его противоположных сторон равны, а описать окружность около четырёхугольника можно, если пара противоположных углов в сумме даёт 180 градусов.
  • Так же стоит помнить, что в теореме синусов равны не только отношения противолежащих сторон к синусам углов, но и каждое такое отношение равно двум радиусам описанной окружности.

Проверь себя

Задание 1.
Чему равен отрезок соединяющий середины диагоналей в трапеции с основаниями а и b?

1. (a + b) / 2
2. (a — b) / 2         
3.  a-b
4. a+b

Задание 2.
В прямоугольном треугольнике один из катетов равен половине гипотенузы, чему равен угол напротив этого катета?

1. 90°
2. 60°    
3. 30°
4. 20°

Задание 3.
Чему равен вписанный угол, опирающийся на хорду равную 84 градусам?

1. 42°
2. 21°
3. 84°
4. 90°

Задание 4.
Чему равен радиус описанного прямоугольного треугольника с катетами 3 и 4?

1. 5
2. 1,5
3. 2,5
4. 2

Задание 5.
Из каких длин сторон треугольника нельзя получить треугольник?

1. 4   16  12
2. 5   6   9
3. 3. 41   18   24
4. 17   14   28

Ответы: 1. — 2; 2. — 2; 3. — 1; 4. — 3; 5. — 1.

Понравилась статья? Поделить с друзьями:
  • Как найти работу для своей машины
  • Как исправить диск царапанный
  • Как найти число обратное разности чисел дробей
  • Как найти углы на плоскости 7 класс
  • Нерадивый студент молчал у доски как рыба об лед исправить речевые ошибки