Для изучения зависимости электрических параметров соберём электрическую цепь, изображённую на схеме (рис.(1)).
Состав схемы (по часовой стрелке по ходу электрического тока):
- источник электрического напряжения (тока);
- электрический ключ для размыкания;
- последовательно подключённый амперметр для измерения силы тока в цепи;
- сопротивление (спираль никелиновой проволоки);
- вольтметр, подключённый параллельно к сопротивлению.
Рис. (1). Первая схема электрической цепи
При замыкании цепи отметим показания приборов. Используя регулятор напряжения на источнике, изменим напряжение в два раза. При этом показания вольтметра и амперметра также изменятся в два раза. Продолжим увеличивать напряжение на источнике. Наблюдения показывают, что при увеличении напряжения в (3) раза, вольтметр покажет увеличение напряжения на спирали в три раза. Во столько же раз увеличится и сила тока.
Опыт показывает зависимость изменения силы тока от приложенного напряжения.
Сила тока в проводнике прямо пропорциональна напряжению на концах проводника: (Ibacksim U).
Эту зависимость можно изобразить графически:
Рис. (2). График зависимости силы тока в проводнике от напряжения между концами этого проводника
При включении в электрическую цепь источника тока различных проводников и амперметров увидим, что для разных проводников показания амперметров различны, значит, сила тока для каждого проводника отличается.
Рис. (3). Электрическая схема с набором различных сопротивлений (AB), (CD), (EF)
Графики тоже будут отличаться.
Рис. (4). Графики зависимости силы тока от напряжения для сопротивлений (AB), (CD), (EF)
Вольтметр подключим поочерёдно к концам этих проводников. Увидим равные значения напряжения. Значение силы тока на участке цепи пропорционально разности потенциалов на его концах и зависит от рода вещества проводника. Отличие электрических параметров (U) и (I) связано с тем, что проводники имеют разное электрическое сопротивление.
Сопротивление проводника равно (1) Ом, если в проводнике при напряжении на концах (1) вольт протекает сила тока (1) ампер:
([R]=1) Ом;
(R=frac{U}{I});
Единицы измерения применяют с кратными приставками: миллиом (мОм), килоом (кОм), мегаом (МОм).
(1) мОм = (0,001) Ом;
(1) кОм = (1000) Ом;
(1) МОм = (1 000 000) Ом.
Почему существует сопротивление? Движению электронов под действием поля мешают ионы кристаллической решётки металла.
Электрический ток — направленное движение заряженных частиц.
В середине (XIX) века Джеймс Кларк Максвелл объединил исследования Вольта, Эрстеда, Ампера, Ома, Фарадея в классическую электродинамику. Учёные придерживались гипотезы, что электричество переносят положительные частицы. Все законы строились на этом предположении.
За направление электрического тока принимают движение положительно заряженных частиц.
(29) апреля (1897) года Джозеф Джон Томсон выступил на заседании Королевского общества с докладом о катодных лучах, что и считается датой открытия электрона.
Электронный ток — направленное движение электронов.
В металлах электрический ток переносится электронами. Положительные ионы, связанные узлами кристаллической решётки, перемещаться не могут. Электроны, перемещаясь между ионами, сталкиваются с ними, отскакивают обратно, что уменьшает общий поток электронов.
Электрическое сопротивление — физическая величина, отражающая свойство проводника препятствовать электронному току.
(R=frac{U}{I});
([R]=1~frac{В}{А}=1~Ом).
Чтобы узнать, как зависит сила тока в цепи от сопротивления, обратимся к опыту (рис.(4)).
Рис. (5). Электрическая цепь с аккумулятором
На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор.
- Напряжение (2) В на концах резисторов постоянно. Это подтверждают показания вольтметра, подключенного параллельно к резистору.
- Используются три постоянных резистора сопротивлениями (1), (2) и (4) Ом, которые подключаются в цепь поочерёдно.
- Сила тока в цепи измеряется амперметром, который подключен последовательно с резистором.
Таблица (1). Результаты опыта
Напряжение на концах проводника, В | Сопротивление проводника, Ом | Сила тока в цепи, А |
(2) |
(1) |
(2) |
(2) |
(2) |
(1) |
(2) |
(4) |
(0,5) |
По опытным данным (табл.(1)) прослеживается закономерность, которую обнаружил ещё в (1827) году Георг Ом.
Сила тока в проводнике обратно пропорциональна сопротивлению проводника: (Ibacksim frac{1}{R}).
В честь этого ученого открытый им закон называют его именем — закон Ома для участка цепи.
Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка цепи:
где I — сила тока, U — напряжение, R — сопротивление.
При изменяющемся сопротивлении и постоянном напряжении на участке зависимость силы тока от сопротивления будет гиперболической:
Рис. (6). График зависимости силы тока от сопротивления проводника
Определить сопротивление проводника можно несколькими способами:
1. при помощи амперметра и вольтметра;
2. при помощи омметра;
3. при помощи мультиметра, который эксплуатируется в режиме омметра.
Таблица (2). Способы измерения сопротивления
амперметр и вольтметр |
омметр |
мультиметр в режиме омметра |
Рис. 7. Амперметр и вольтметр |
Рис. 8. Омметр |
Рис. 9. Мультиметр |
Рис. 10. Обозначение омметра в цепи (или мультиметра в режиме измерения сопротивления)
Источники:
Рис. 2. График зависимости силы тока в проводнике от напряжения между концами этого проводника. © ЯКласс.
Рис. 4. Графики зависимости силы тока от напряжения для сопротивлений AB, CD, EF. © ЯКласс.
Рис. 6. График зависимости силы тока от сопротивления проводника. © ЯКласс.
Рис. 7. Старые советские измерительные приборы, Creative Commons Zero 1.0 License, https://openclipart.org/detail/205486/voltmeter-and-ammeter.
Рис. 8. Автор: Сергин Владимир Александрович — Собственный фотоснимок автора, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=4353228.
Рис. 9. Мультиметр. © ЯКласс.
Рис. 10. Указание авторства не требуется: 2021-06-07, бесплатно для коммерческого использования, https://clck.ru/VLDy3/.
Загрузить PDF
Загрузить PDF
Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.
-
1
Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.
-
2
Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь.[1]
Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.- Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
-
3
Вычислите сопротивление по известной силе тока и напряжению. Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.
- Сила тока в любых частях последовательной цепи одна и та же.[2]
Поэтому можно использовать известное значение силы тока на любом участке последовательной цепи. - Общее напряжение равно напряжению источника тока. Оно не равно напряжению на каком-либо элементе цепи.[3]
- Сила тока в любых частях последовательной цепи одна и та же.[2]
-
4
Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.
- Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: RO = 12 В / 8 А = 1,5 Ом.
Реклама
-
1
Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.
- Если цепь включает элементы, расположенные до или после разветвления, или если на одной ветви два и более элементов, перейдите к третьему разделу этой статьи (такая цепь является комбинированной).
-
2
Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: , где R1 – сопротивление первой ветви, R2 – сопротивление второй ветви и так далее до последней ветви Rn.
-
3
Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.
- В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи.[4]
Поэтому достаточно знать значение напряжение на любой ветви цепи. Общее напряжение также равно напряжению источника тока. - В параллельной цепи сила тока на каждой ветви разная. Поэтому необходимо знать значение общей силы тока, чтобы найти общее сопротивление.
- В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи.[4]
-
4
Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.
- Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: RO = 9 В / 3 А = 3 Ом.
-
5
Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.
- В реальной жизни это означает, что резистор неисправен или шунтирован (замкнут); в этом случае большая сила тока может повредить другие элементы цепи.[5]
Реклама
- В реальной жизни это означает, что резистор неисправен или шунтирован (замкнут); в этом случае большая сила тока может повредить другие элементы цепи.[5]
-
1
Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.
- Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
-
2
Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: .
-
3
Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.
- В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
-
4
Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.
- После упрощения цепи она состоит из трех резисторов со следующими сопротивлениями: 1 Ом, 1,5 Ом и 1,875 Ом. Все три резистора соединены последовательно: Ом.
-
5
Воспользуйтесь законом Ома, чтобы найти неизвестные величины. Если сопротивление каждого элемента цепи не известно, попытайтесь вычислить его. Вычислить сопротивление по известной силе тока и напряжению можно по закону Ома: R = V/I.
Реклама
-
1
Запомните формулы, включающие мощность. Электрическая мощность – это величина, которая характеризует скорость преобразования электроэнергии и скорость ее передачи (например, к лампочке).[6]
Общая мощность цепи равна произведению общего напряжения на общую силу тока. Формула: P = VI.[7]
- Запомните: чтобы вычислить общее сопротивления, нужно знать общую мощность. Значение мощности на одном элементе цепи для этих целей не подходит.
-
2
Вычислите сопротивление по известным значениям мощности и силы тока. В этом случае можно объединить две формулы, чтобы найти сопротивление.
- P = VI (мощность = напряжение х сила тока)
- Закон Ома: V = IR.
- В первую формулу вместо V подставьте произведение IR: P = (IR)I = I2R.
- Обособьте переменную R: R = P / I2.
- Сила тока в любых частях последовательной цепи одна и та же. Это не так в параллельной цепи.
-
3
Вычислите сопротивление по известным значениям мощности и напряжения. В этом случае можно объединить две формулы, чтобы найти сопротивление. Учитывайте общее напряжение в цепи, которое равно напряжению источника тока.
- P = VI
- Перепишите закон Ома так: I = V/R
- В первой формуле замените I на V/R: P = V(V/R) = V2/R.
- Обособьте переменную R: R = V2/P.
- В параллельной цепи напряжение на одной ветви равно общему напряжению в цепи. Это не так в последовательной цепи, где общее напряжение не равно напряжению на одном элементе цепи.
Реклама
Советы
- Мощность измеряется в ваттах (Вт).
- Напряжение измеряется в вольтах (В).
- Сила тока измеряется в амперах (А) или в миллиамперах (мА). 1 мА = A = 0,001 А.
- В приведенных формулах переменная Р – это мгновенная мощность, то есть мощность в определенный момент времени. Если цепь подключена к источнику переменного тока, мощность постоянно меняется. Поэтому для цепей с источником переменного тока специалисты вычисляют среднюю мощность; для этого используется формула: PСР = VIcosθ, где cosθ – это коэффициент мощности цепи.[8]
Реклама
Похожие статьи
Об этой статье
Эту страницу просматривали 408 676 раз.
Была ли эта статья полезной?
Общие сведения
Прохождение электрического тока через проводник зависит от его проводимости. Это параметр пропорционален силе тока. Другими словами, он определяет способность вещества пропускать через себя электричество без потерь. Зависит проводимость от физических свойств материала, температуры, степени воздействия внешних сил. Обратной ей величиной является сопротивление, то есть характеристика проводника, показывающая его возможность сопротивляться прохождению тока.
Связь между фундаментальными параметрами электротока экспериментально установил Симон Ом. Он выяснил, что сила тока в замкнутой цепи пропорциональна разности потенциалов (напряжению) и обратно пропорциональна сопротивлению: I = U / R. Так, если R равно нулю, то сила тока будет бесконечной.
Способность веществ препятствовать прохождению электротока используется при построении электрических цепей. Так, радиоэлемент, который называется резистором, установленный в определённом месте электроцепи, позволяет получить на нагрузке нужное значение напряжения или тока. Радиодеталь представляет собой двухполюсник, который имеет установленное значение сопротивления или может изменять его.
Реальная замкнутая электрическая цепь состоит из множества активных и пассивных радиоэлементов. Каждый из них обладает каким-то значением сопротивления. В этом случае говорят о внутреннем сопротивлении прибора.
Расчёт выходных характеристик цепи, а именно величин тока и напряжения, требует знания общего сопротивления всей замкнутой цепочки. Иными словами, все элементы, начиная от источника питания и заканчивая нагрузкой, заменяются эквивалентными резисторами. Для цепи сначала считают общее значение сопротивления, а затем вычисляют нужные характеристики. Относительно источника тока, нагрузки и других элементов каждый резистор может быть подключён:
- последовательно;
- параллельно.
Вид подключения влияет на общее сопротивление. Формула для его нахождения может быть довольно громоздкой из-за смешанного соединения, поэтому чаще расчёт ведётся в несколько этапов, на каждом из которых выполняется объединение одного или нескольких элементов.
Последовательное подключение
Для удобства при изображении разветвлённой электрической цепи все сопротивления чертят в виде прямоугольников, которые являются резисторами. У любого такого элемента можно выделить два вывода. Один является началом, а другой — концом. С учетом сказанного можно сформулировать определение для последовательного соединения проводников: подключение, при котором конец предыдущего элемента соединён с началом последующего, называют последовательным.
Любой проводник обладает электрическим сопротивлением. Целью преобразования является замена чередующейся последовательности одним резистором. При этом по своим электрическим свойствам он должен не отличаться от всей цепочки. Простыми словами это можно пояснить так: если взять два чёрных ящика, у которых есть по паре выводов, причём один будет содержать всю электроцепь, а другой быть её эквивалентом, то определить, в каком из них находится схема, а где эквивалент, будет невозможно.
При последовательном соединении происходят следующие явления. Пусть имеется прямая цепочка, содержащая n резисторов: R1 + R2 + … +Rn. Сила тока — это величина, которая равняется заряду, протекающему за единицу времени. Можно представить, что в первом резисторе значение электротока будет больше, чем во втором. В результате возникнет «пробка», и скорость движения зарядов замедлится.
В точке соединения элементов произойдёт накопление электронов, что приведёт в ней к росту напряжения. Соответственно, сила тока на первом резисторе будет уменьшаться, а на втором, наоборот, увеличиваться. Это приведёт к выравниванию количества проходящих через резисторы зарядов, поэтому сила тока практически за мгновение во всей последовательной цепи станет одинаковой.
Напряжение — это работа, выполняемая по переносу заряда. По закону сохранения энергии общее её значение равняется их сумме на различных этапах. Общую разность потенциалов можно будет определить, сложив напряжения на каждом элементе. Такой вид подключения описывается следующими выражениями:
- I = I 1 = I 2 = … = In;
- U = U1 + U2 + … +Un.
Эти равенства являются фундаментальными для нахождения параметров при повторении резисторов в цепи. Используя закон Ома, можно найти, чему будет равняться сопротивление цепи. Формула для его нахождения будет выглядеть так: Rпос = R 1 + R 2 +… + Rn.
Параллельное соединение
По распространённости такой вид соединения чаще встречается, чем последовательное подключение. При нём проводники соединены так, что начала всех резисторов сводятся в одну точку электрической цепи, а концы — в другую. Для того чтобы заменить разветвлённое подключение одним эквивалентным элементом, нужно знать, как правильно рассчитать ток и напряжение.
Пусть имеется цепь, состоящая из R1 + R2 + … +Rn параллельно включённых радиоэлементов. На неё подаётся напряжение U. На вход схемы поступает ток с силой I. Используя закон сохранения зарядов, можно выполнить следующие рассуждения: ток втекает в узел, к которому подсоединены начала всех резисторов, затем он растекается по их выводам.
В результате через первую ветвь потечёт ток I1, вторую — I2, в энную — In. Поскольку заряд не может пропасть, то какое его количество втекло в узел, такое же должно разойтись по всем ветвям для одного и того же момента времени. Значит, сумма токов на всех выводах будет равняться поступающему на них значению.
Электростатическое поле является потенциальным, то есть работа по перемещению заряда из одной точки в другую не зависит от траектории, по которой перемещается носитель. Следовательно, при переносе одного кулона по любой ветви нужно будет совершить одинаковую работу. Из приведённых рассуждений следует, что при параллельном соединении формулы, с помощью которых можно рассчитать характеристики электрической цепи, будут следующими:
- I = I1 + I2 + … +In;
- U1 = U2 = … = Un.
Таким образом, вычисление эквивалентного сопротивления, которым можно будет заменить всю цепь в соответствии с законом Ома, выполняется по формуле: 1 / R пар = 1 / R 1 + 1 / R 2 + … + 1 / Rn. Для одинаковых проводников при вычислении сопротивления можно использовать приведённую формулу. Это позволяет в некоторых случаях упростить расчёт.
Согласно правилу сложения дробей c одинаковым знаменателем можно записать равенство: 1 / R1 + 1 / R2 + … + 1 / Rn = N / R1. Отсюда следует, что Rпар = R1 / N, где N равно числу резисторов. По аналогии можно посчитать общее сопротивление по упрощённой формуле для двух элементов: (1 / R1) + (1 / R2) = (R 2 + R 1) / R 1 * R 2. Это довольно удобные формулы для практического применения.
Решение задач
Для вычисления сопротивления любого смешанного соединения нужно запомнить всего две формулы — выражения для нахождения величины при последовательном и параллельном подключении. Поочерёдно комбинируя их применение, сложную схему можно заменить одним сопротивлением. Но не всегда приходится применять формулы. Есть задания, в которых неизвестную величину можно вычислить в уме.
Например, пусть имеется параллельное подключение из четырёх резисторов. Сопротивления проводников равняются 10 Ом, 12 Ом, 15 Ом, 20 Ом. Нужно образовать из них резистор, не изменяющий характеристики электрической цепи. Чтобы выполнить расчёт в уме, следует каждый элемент представить в виде комбинации из 60-омных резисторов. Тогда к первому нужно будет добавить шесть, ко второму — пять, к третьему — четыре, к четвёртому — три. Общее количество резисторов получится 18. Значит, Rобщ = 60 / 18 = 10 / 3 = 3,3 Ом.
Из типовых задач, в которых необходимо найти сопротивление цепи, предлагающихся в школе на уроках физики, можно привести следующие:
- Найдите ток в цепи, если вольтметр, подключённый к одному из трёх последовательно соединённых проводников, показывает 100 В. Сопротивление элементов составляет: R1 = R2 = 5 Ом, R3 = 15 Ом. В задаче три резистора подключены в линию, значит, их полное сопротивление равно: R = R 1 + R 2 + R 3 = 25 Ом. У вольтметра r внутреннее равно бесконечности. Следовательно, I = U / R = 100 / 25 = 4 A.
-
Каково будет сопротивление каждого из резисторов, если при их последовательном соединении ток равен 3A, а при параллельном — 16A. Напряжение в сети составляет 120 В. При первом способе соединения Iпосл = U / (R1 + R2), при втором Iпар = U / Rпар = U * (R1 + R2) / R1 * R2. Из первой формулы следует, что R1 + R2 = U / Iпос. Тогда: I пар = U 2 / Iпос * R 1 * R 2 → R 1 * R 2 = U 2 / I пар * I пос. Используя теорему Виета, можно составить квадратное уравнение. После его решения искомые величины будут равны: R 1 = 30 Ом, R 2 = 10 Ом.
Следует отметить, что приборы для измерения тока, напряжения и даже ёмкости используют особенности вычисления сопротивления цепи. Так, вольтметр имеет бесконечно большой внутренний импеданс, что позволяет подключать его параллельно к измеряемым точкам без внесения изменения в протекающий сигнал.
Амперметр же, наоборот, характеризуется пренебрежимо малой величиной внутреннего сопротивления, поэтому и подключают его в разрыв линии, на которой выполняют измерения.
Сила тока в цепи определяется электрическим зарядом, проходящим через поперечное сечение проводника за единицу времени: $I = frac{q}{t}$.
Электрическое напряжение — это еще одна физическая величина, характеризующая электрическое поле. Она равна отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку: $U = frac{A}{q}$.
Электрическое сопротивление — величина, зависящая от свойств проводника. На значение сопротивления не влияет ни значение силы тока в проводнике, ни значение напряжения на его концах. Его можно рассчитать по формуле $R = frac{rho l}{S}$, где $rho$ — удельное сопротивление проводника, $l$ — длина проводника, $S$ — площадь его поперечного сечения. Значение удельного сопротивления для определенного вещества можно посмотреть в таблице 1 в уроке «Расчет сопротивления проводника. Удельное сопротивление».
Эти три физические величины (силу тока, напряжение и сопротивление) связывает между собой закон Ома для участка цепи: $I = frac{U}{R}$. Сила тока в проводнике прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
В данном уроке вы научитесь использовать эти знания для решения задач. Мы рассмотрим несколько примеров, а затем перейдем к упражнениям и их подробным решениям.
Пример задачи №1
Длина медного провода, использованного в осветительной сети, $100 space м$, площадь поперечного сечения его $2 space мм^2$. Чему равно сопротивление такого провода?
Для того, чтобы рассчитать сопротивление такого проводника, нам понадобится значение его удельного сопротивления. Удельное сопротивление меди равно $0.017 frac{Ом cdot мм^2}{м}$. Так как эта величина нам дана именно в этих единицах измерения, мы не будем переводить в СИ значение площади поперечного сечения, выраженное в $мм^2$.
Теперь мы можем записать условие задачи и решить ее.
Дано:
$l = 100 space м$
$S = 2 space мм^2$
$rho = 0.017 frac{Ом cdot мм^2}{м}$
$R — ?$
Решение:
Формула для расчета сопротивления проводника:
$R = frac{rho l}{S}$.
Рассчитаем его:
$R = frac{0.017 frac{Ом cdot мм^2}{м} cdot 100 space м}{2 space мм^2} = frac{1.7 space Ом}{2} = 0.85 space Ом$.
Ответ: $R = 0.85 space Ом$.
Пример задачи №2
Никелиновая проволока длиной $120 space м$ и площадью поперечного сечения $0.5 space мм^2$ включена в цепь с напряжением $127 space В$. Определить силу тока в проволоке.
Табличное значение удельного сопротивления никелина равно $0.4 frac{Ом cdot мм^2}{м}$.
Перейдем к записи условия задачи и ее решению.
Дано:
$l = 120 space м$
$S = 0.5 space мм^2$
$U = 127 space В$
$rho = 0.4 frac{Ом cdot мм^2}{м}$
$I — ?$
Решение:
Силу тока мы можем рассчитать, используя формулу закона Ома для участка цепи:
$I = frac{U}{R}$.
Но мы не знаем значения сопротивления проводника. Его мы тоже можем вычислить:
$R = frac{rho cdot l}{S}$,
$R = frac{0.4 frac{Ом cdot мм^2}{м} cdot 120 space м}{0.5 space мм^2} = frac{48 space Ом}{0.5} = 96 space Ом$.
Теперь мы можем рассчитать силу тока:
$I = frac{127 space В}{96 space Ом} approx 1.3 space А$.
Ответ: $I approx 1.3 space А$.
Пример задачи №3
Манганиновая проволока длиной $8 space м$ и площадью поперечного сечения $0.8 space мм^2$ включена в цепь аккумулятора. Сила тока в цепи $0.3 space А$. Определить напряжение на полюсах аккумулятора.
Табличное значение удельного сопротивления манганина равно $0.43 frac{Ом cdot мм^2}{м}$.
Запишем условие задачи и решим ее.
Дано:
$l = 8 space м$
$S = 0.8 space мм^2$
$I = 0.3 space А$
$rho = 0.43 frac{Ом cdot мм^2}{м}$
$U — ?$
Решение:
Если в условии задачи сказано, что проводник включен в цепь аккумулятора, это означает, что напряжение на полюсах аккумулятора будет равно напряжению на концах проволоки.
Почему? Взгляните на такую электрическую цепь (рисунок 1). Она состоит только из проводника и аккумулятора.
Если мы захотим измерить напряжение на полюсах аккумулятора c помощью вольтметра, то параллельно подключим его в эту цепь (рисунок 2). А если захотим измерить напряжение на концах проводника? Мы подключим вольтметр точно так же. Получается, что вольтметр подключен параллельно одновременно и к источнику тока, и к проводнику. Поэтому напряжение на концах проводника — это то же самое напряжение на полюсах аккумулятора.
Запишем закон Ома:
$I = frac{U}{R}$.
Выразим из него напряжение, которое нужно найти:
$U = IR$.
Сопротивление проводника рассчитаем по формуле $R = frac{rho cdot l}{S}$.
$R = frac{0.43 frac{Ом cdot мм^2}{м} cdot 8 space м}{0.8 space мм^2} = frac{3.44 space Ом}{0.8} = 4.3 space Ом$.
Теперь мы можем рассчитать напряжение:
$U = 0.3 space А cdot 4.3 space Ом = 1.29 space В approx 1.3 space В$.
Ответ: $U approx 1.3 space В$.
Упражнения
Упражнение №1
Длина одного провода $20 space см$, другого — $1.6 space м$. Площадь сечения и материал проводов одинаковы. У какого провода сопротивление больше и во сколько раз?
Обратите внимание, что если материал проводников один и тот же, то одинаковы и значения удельных сопротивлений $rho$ для этих проводников.
Дано:
$l_1 = 20 space см$
$l_2 = 1.6 space м$
$S_1 = S_2 = S$
$rho_1 = rho_2 = rho$
СИ:
$l_1 = 0.2 space м$
$frac{R_2}{R_1} — ?$
Показать решение и ответ
Скрыть
Решение:
Сопротивление проводника рассчитывается по формуле $R = frac{rho cdot l}{S}$.
Сопротивление первого провода:
$R_1 = frac{rho_1 l_1}{S_1} = frac{rho l_1}{S}$.
Сопротивление второго провода:
$R_2 = frac{rho_2 l_2}{S_2} = frac{rho l_2}{S}$.
Теперь сравним их между собой:
$frac{R_2}{R_1} = frac{frac{rho l_2}{S}}{frac{rho l_1}{S}} = frac{l_2}{l_1}$.
Подставим численные значения длины проводов:
$frac{R_2}{R_1} = frac{1.6 space м}{0.2 space м} = 8$.
Получается, что сопротивление второго провода больше сопротивления первого в 8 раз.
Это логично, ведь вы знаете, что чем больше длина проводника, тем больше его сопротивление.
Ответ: сопротивление второго провода больше сопротивления первого в 8 раз.
Упражнение №2
Рассчитайте сопротивления следующих проводников, изготовленных из:
- Алюминиевой проволоки длиной $80 space см$ и площадью поперечного сечения $0.2 space мм^2$
- Никелиновой проволоки длиной $400 space см$ и площадью поперечного сечения $0.5 space мм^2$
- Константановой проволоки длиной $50 space см$ и площадью поперечного сечения $0.005 space см^2$
Для решения этой задачи нам понадобятся табличные значения удельного сопротивления для веществ, из которых изготовлены проволоки. Удельное сопротивление алюминия — $0.028 frac{Ом cdot мм^2}{м}$, никелина — $0.4 frac{Ом cdot мм^2}{м}$, константана — $0.5 frac{Ом cdot мм^2}{м}$.
Обратите внимание на единицы измерения удельных сопротивлений, длин и площадей проводников. Для корректных расчетов длину каждой проволоки мы переведем в СИ (в $м^2$). Площади поперечных сечений должны быть выражены в $мм^2$. Для третьего задания переведем $см^2$ в $см^2$.
Дано:
$l_1 = 80 space см$
$l_2 = 400 space см$
$l_3 = 50 space см$
$S_1 = 0.2 space мм^2$
$S_2 = 0.5 space мм^2$
$S_3 = 0.005 space см^2 = 0.5 space мм^2$
$rho_1 = 0.028 frac{Ом cdot мм^2}{м}$
$rho_2 = 0.4 frac{Ом cdot мм^2}{м}$
$rho_3 = 0.5 frac{Ом cdot мм^2}{м}$
СИ:
$l_1 = 0.8 space м$
$l_2 = 4 space м$
$l_3 = 0.5 space м$
$R_1 — ?$
$R_2 — ?$
$R_3 — ?$
Показать решение и ответ
Скрыть
Решение:
Формула для расчета сопротивления проводника: $R = frac{rho l}{S}$.
Рассчитаем по ней сопротивление каждого проводника.
$R_1 = frac{rho_1 l_1}{S_1}$,
$R_1 = frac{0.028 frac{Ом cdot мм^2}{м} cdot 0.8 space м}{0.2 space мм^2} = frac{0.0224 space Ом}{0.2} = 0.112 space Ом$.
$R_2 = frac{rho_2 l_2}{S_2}$,
$R_2 = frac{0.4 frac{Ом cdot мм^2}{м} cdot 4 space м}{0.5 space мм^2} = frac{1.6 space Ом}{0.5} = 3.2 space Ом$.
$R_3 = frac{rho_3 l_3}{S_3}$,
$R_2 = frac{0.5 frac{Ом cdot мм^2}{м} cdot 0.5 space м}{0.5 space мм^2} = frac{0.25 space Ом}{0.5} = 0.5 space Ом$.
Ответ: $R_1 = 0.112 space Ом$, $R_2 = 3.2 space Ом$, $R_3 = 0.5 space Ом$.
Упражнение №3
Спираль электрической плитки изготовлена из нихромовой проволоки длиной $13.75 space м$ и площадью поперечного сечения $0.1 space мм^2$. Плитка рассчитана на напряжение $220 space В$. Определите силу тока в спирали плитки.
Удельное сопротивление нихрома равно $1.1 frac{Ом cdot мм^2}{м}$.
Дано:
$l = 13.75 space м$
$S = 0.1 space мм^2$
$U = 220 space В$
$rho = 1.1 frac{Ом cdot мм^2}{м}$
$I — ?$
Показать решение и ответ
Скрыть
Решение:
Силу тока в спирали плитки мы можем рассчитать, используя формулу закона Ома для участка цепи: $I = frac{U}{R}$.
Неизвестное сопротивление нихромовой проволоки рассчитаем по формуле $R = frac{rho l}{S}$.
$R = frac{1.1 frac{Ом cdot мм^2}{м} cdot 13.75 space м}{0.1 space мм^2} = frac{15.125 space Ом}{0.1} = 151.25 space Ом$.
Рассчитаем теперь силу тока:
$I = frac{220 space В}{151.25 space Ом} approx 1.5 space А$.
Ответ: $I approx 1.5 space А$.
Упражнение №4
Сила тока в железном проводнике длиной $150 space мм$ и площадью поперечного сечения $0.02 space мм^2$ равна $250 space мА$. Каково напряжение на концах проводника?
Для решения задачи нам понадобится значение удельного сопротивления. Для железа оно равна $0.1 frac{Ом cdot мм^2}{м}$.
Дано:
$I = 250 space мА$
$l = 150 space мм$
$S = 0.02 space мм^2$
$rho = 0.1 frac{Ом cdot мм^2}{м}$
СИ:
$I = 0.25 space А$
$l = 0.15 space м$
$U — ?$
Показать решение и ответ
Скрыть
Решение:
Закон Ома для участка цепи: $I = frac{U}{R}$.
Выразим отсюда напряжение: $U = IR$.
Рассчитаем сопротивление проводника:
$R = frac{rho l}{S}$,
$R = frac{0.1 frac{Ом cdot мм^2}{м} cdot 0.15 space м}{0.02 space мм^2} = frac{0.015 space Ом}{0.02} = 0.75 space Ом$.
Теперь мы можем рассчитать напряжение на концах проводника:
$U = 0.25 space А cdot 0.75 space Ом approx 0.2 space В$.
Ответ: $U approx 0.2 space В$.
Смешанное соединение проводников. Расчёт электрических цепей
Повторение. Факты про последовательное и параллельное соединение проводников.
1. При последовательном соединении проводников общее сопротивление участка равно сумме сопротивлений проводников:
2. При последовательном соединении проводников силы тока в каждом из проводников равны и равны общей силе тока на участке цепи:
3. При последовательном соединении проводников сумма напряжений равна общему напряжению на участке цепи:
4. При параллельном соединении проводников общая проводимость участка равна сумме проводимостей проводников:
5. При параллельном соединении проводников сумма сил токов равна общей силе тока на участке цепи:
6. При параллельном соединении проводников напряжения в каждом из проводников равны и равны общему напряжению на участке цепи:
Задача 1
Четыре одинаковые лампы подключены к источнику постоянного напряжения (см. Рис. 1). Определите силу тока в каждой лампе, если напряжение на источнике составляет 30 В.
Дано: ;
Найти: , , ,
Решение
Рис. 1. Иллюстрация к задаче
На рисунке 1 изображена электрическая цепь со смешанным соединением проводников: лампы 2 и 3 соединены параллельно, а лампы 2 и 4 соединены последовательно с участком цепи, состоящим из ламп 2 и 3.
Проводимость участка цепи, состоящего из ламп 2 и 3, равна:
Следовательно, сопротивление этого участка равно:
Так как лампы 1 и 4 соединены последовательно с участком цепи, состоящим из ламп 2 и 3, то общее сопротивление ламп будет равно:
Согласно закону Ома, сила тока всей цепи равна:
Так как при последовательном соединении проводников силы тока в каждом из проводников равны и равны общей силе тока на участке цепи, то:
Необходимо найти силу тока на лампах 2 и 3. Для этого вычислим напряжение на участке цепи, который состоит из ламп 2 и 3:
Так как лампы 2 и 3 соединены параллельно, то напряжения на этих лампах равны:
Отсюда сила тока в каждой лампе равна:
Ответ: ;
Задача 2
Участок цепи, который состоит из четырёх резисторов, подключён к источнику с напряжением 40 В (см. Рис. 2). Вычислите силу тока в резисторах 1 и 2, напряжение на резисторе 3. Сопротивление первого резистора равно 2,5 Ом, второго и третьего – по 10 Ом, четвёртого – 20 Ом.
Дано: ; ; ;
Найти: , ,
Решение
Рис. 2. Иллюстрация к задаче
Через резистор течёт такой же ток, как и через весь участок (), следовательно, согласно закону Ома:
То есть для нахождения нужно вычислить сопротивление (R) всего участка цепи, который состоит из двух последовательно подключённых частей, одна часть с резистором , другая часть с резисторами :
Резистор соединён параллельно резисторам и , следовательно:
Резисторы и соединены последовательно, поэтому:
Следовательно, сопротивление всей цепи равно:
Подставим данное значение в формулу для нахождения тока в резисторе :
Так как при параллельном соединении проводников напряжения в каждом из проводников равны и равны общему напряжению на участке цепи, то:
Отсюда:
При последовательном соединении силы тока одинаковы, поэтому:
Получили систему уравнений:
Решив эту систему получим, что:
Так как и соединены последовательно:
Напряжение на резисторе равно:
Ответ: ; ;
Задача 3
Найдите полное сопротивление цепи (см. Рис. 3), если сопротивление резисторов , , . Найдите силу тока, идущего через каждый резистор, если к цепи приложено напряжение 36 В.
Дано: ; ; ;
Найти: , , , , , , ;
Решение
Рис. 3. Иллюстрация к задаче
Резисторы , , соединены последовательно, поэтому сопротивление на этом участке равно:
Резистор подключён параллельно участку с резисторами , , , поэтому сопротивление на участке с резисторами ,, , равно:
Резисторы и соединены с участком цепи с резисторами ,, , последовательно, то есть общее сопротивление цепи равно:
Через резистор и () неразветвлённой цепи течёт весь ток цепи, поэтому:
По закону Ома этот ток равен:
Общее напряжение цепи будет состоять из напряжений , так как ,, соединены последовательно (, потому что и параллельны):
Согласно закону Ома:
Резисторы , , соединены последовательно, следовательно:
Ответ: ; ; ;
Разветвление: Задача на бесконечную электрическую цепь
Найдите сопротивление R бесконечной цепи, показанной на рисунке 4.
Рис. 4. Иллюстрация к задаче
Решение
Поскольку рассматриваемая в задаче цепь бесконечна, удаление одной «ячейки», состоящей из резисторов и , не влияет на её сопротивление. Следовательно, вся цепь, находящаяся правее звена , тоже имеет сопротивление R. Это позволяет нарисовать эквивалентную схему цепи (см. Рис. 5) и записать для неё уравнение.
Рис. 5. Иллюстрация к задаче
Получили квадратное уравнение относительно R. Решая это уравнение и отбрасывая отрицательный корень (отрицательного сопротивления не существует), получаем формулу для общего сопротивления цепи:
Проанализировав данную формулу, можно заметить, что если , то общее сопротивление цепи . То есть резистор с малым сопротивление практически закоротит всю последующую бесконечную цепь.
Ответ:
Итоги
Мы рассмотрели различные задачи на смешанное сопротивление проводников, а также на расчёт электрических цепей.
Разветвление: Задача из ЕГЭ
Сопротивление каждого резистора в цепи (см. Рис. 6) равно 100 Ом. Участок подключён к источнику постоянного напряжения выводами AиB. Напряжение на резисторе равно 12 В. Найти напряжение между выводами схемы на участке A–B(варианты ответа: а) 12 В; б) 18 В; в) 24 В; г) 36 В.
Дано: ;
Найти:
Решение
Рис. 6. Иллюстрация к задаче
Резисторы расположены последовательно, значит, силы тока на этих резисторах равны:
Так как, по условию, , то и напряжения на этих резисторах будут равны:
Следовательно, общее напряжения на участке, состоящем из резисторов , будет равно:
Так как участок с резисторами соединён с участком с резисторами параллельно, то напряжения на этих участках равны между собой и равны общему напряжению на участке A–B:
Ответ: г) 36 В
Данную задачу, как видим, можно решить, не зная значений сопротивления, а зная только то, что они равны. Также эту задачу можно решить, зная значение сопротивлений , даже если они не равны.
Вопросы к конспектам
Участок электрической цепи состоит из трех сопротивлений: ; ; (см. Рис. 7). Определите показания вольтметров и амперметров , если амперметр показывает силу тока 2 А.
Рис. 7. Иллюстрация к задаче
Как нужно соединить четыре резистора, сопротивления которых 0,5 Ом, 2 ОМ, 3,5 Ом и 4 Ом, чтобы их общее сопротивление было 1 Ом?