Как найти сопротивление электрического устройства


Загрузить PDF


Загрузить PDF

Полное сопротивление, или импеданс, характеризует сопротивление цепи переменному электрическому току. Данная величина измеряется в омах. Для вычисления полного сопротивления цепи необходимо знать значения всех активных сопротивлений (резисторов) и импеданс всех катушек индуктивности и конденсаторов, входящих в данную цепь, причем их величины меняются в зависимости от того, как меняется проходящий через цепь ток. Импеданс можно рассчитать при помощи простой формулы.

Формулы

  1. Полное сопротивление Z = R или XLили XC (если присутствует что-то одно)
  2. Полное сопротивление (последовательное соединение) Z = √(R2 + X2) (если присутствуют R и один тип X)
  3. Полное сопротивление (последовательное соединение) Z = √(R2 + (|XL — XC|)2) (если присутствуют R, XL, XC)
  4. Полное сопротивление (любое соединение) = R + jX (j — мнимое число √(-1))
  5. Сопротивление R = I / ΔV
  6. Индуктивное сопротивление XL = 2πƒL = ωL
  7. Емкостное сопротивление XC = 1 / 2πƒL = 1 / ωL
  1. Изображение с названием Calculate Impedance Step 1

    1

    Импеданс обозначается символом Z и измеряется в омах (Ом). Вы можете измерить импеданс электрической цепи или отдельного элемента. Импеданс характеризует сопротивление цепи переменному электрическому току. Есть два типа сопротивления, которые вносят вклад в импеданс:[1]

    • Активное сопротивление (R) зависит от материала и формы элемента. Наибольшим активным сопротивлением обладают резисторы, но и другие элементы цепи обладают небольшим активным сопротивлением.
    • Реактивное сопротивление (X) зависит от величины электромагнитного поля. Наибольшим реактивным сопротивлением обладают катушки индуктивности и конденсаторы.
  2. Изображение с названием Calculate Impedance Step 2

    2

    Сопротивление — это фундаментальная физическая величина, описываемая законом Ома: ΔV = I * R.[2]
    Эта формула позволит вам вычислить любую из трех величин, если вы знаете две другие. Например, чтобы вычислить сопротивление, перепишите формулу так: R = I / ΔV. Вы также можете измерить сопротивление при помощи мультиметра.

    • ΔV — это напряжение (разность потенциалов), измеряемое в вольтах (В).
    • I — сила тока, измеряемая в амперах (А).
    • R — это сопротивление, измеряемое в омах (Ом).
  3. Изображение с названием Calculate Impedance Step 3

    3

    Реактивное сопротивление имеет место только в цепях переменного тока. Как и активное сопротивление, реактивное сопротивление измеряется в омах (Ом). Есть два типа реактивного сопротивления:

    • Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
      Чем быстрее меняется направление тока, тем больше индуктивное сопротивление.
    • Емкостным сопротивлением XC обладают конденсаторы, которые накапливают электрический заряд. При изменении направления тока в цепи конденсатор неоднократно обнуляет и накапливает электрический заряд. Чем дольше конденсатор заряжается, тем больше емкостное сопротивление.[4]
      Поэтому чем быстрее меняется направление тока, тем меньше емкостное сопротивление.
  4. Изображение с названием Calculate Impedance Step 4

    4

    Вычислите индуктивное сопротивление. Это сопротивление прямо пропорционально быстроте изменения направления тока, то есть частоты тока. Эта частота обозначается символом ƒ и измеряется в герцах (Гц). Формула для расчета индуктивного сопротивления: XL = 2πƒL, где L — индуктивность, измеряемая в генри (Гн).[5]

    • Индуктивность L зависит от количества витков в катушке индуктивности.[6]
      Также вы можете измерить индуктивность.
    • Если вы знакомы с единичной окружностью, то представьте, что один цикл переменного тока равен одному полному вращению этой окружности (на 2π радиан). Если умножить это значение на ƒ, которая измеряется в герцах (единиц в секунду), вы получите результат, измеряемый в радианах в секунду. Это единица измерения угловой скорости, которая обозначается через ω. Вы можете переписать формулу для вычисления индуктивного сопротивления так: XL=ωL[7]
  5. Изображение с названием Calculate Impedance Step 5

    5

    Вычислите емкостное сопротивление. Это сопротивление обратно пропорционально быстроте изменения направления тока, то есть частоты тока. Формула для вычисления емкостного сопротивления: XC = 1 / 2πƒC.[8]
    С — это емкость конденсатора, измеряемая в фарадах (Ф).

    • Вы можете измерить электрическую емкость.
    • Эту формулу можно переписать так: XC = 1 / ωL (объяснения см. выше).

    Реклама

  1. Изображение с названием Calculate Impedance Step 6

    1

    Если цепь состоит исключительно из резисторов, то импеданс вычисляется следующим образом. Сначала измерьте сопротивление каждого резистора или посмотрите значения сопротивления на схеме цепи.[9]

    • Если резисторы соединены последовательно, то полное сопротивление R = R1 + R2 + R3
    • Если резисторы соединены параллельно, то полное сопротивление R = 1 / R1 + 1 / R2 + 1 / R3
  2. Изображение с названием Calculate Impedance Step 7

    2

    Сложите одинаковые реактивные сопротивления. Если в цепи присутствуют исключительно катушки индуктивности или исключительно конденсаторы, то полное сопротивление равно сумме реактивных сопротивлений. Вычислите его следующим образом:[10]

    • Последовательное соединение катушек: Xtotal = XL1 + XL2 + …
    • Последовательное соединение конденсаторов: Ctotal = XC1 + XC2 + …
    • Параллельное соединение катушек: Xtotal = 1 / (1/XL1 + 1/XL2 …)
    • Параллельное соединение конденсаторов: Ctotal = 1 / (1/XC1 + 1/XC2 …)
  3. Изображение с названием Calculate Impedance Step 8

    3

    Вычтите индуктивные и емкостные сопротивления, чтобы получить общее реактивное сопротивление. Так как при возрастании одного типа сопротивления другое уменьшается, то они, как правило, компенсируют друг друга. Чтобы найти общее реактивное сопротивление, вычтите меньшее сопротивление из большего.[11]

    • Или воспользуйтесь формулой: Xtotal = |XC — XL|
  4. Изображение с названием Calculate Impedance Step 9

    4

    Вычислите импеданс по активному и реактивному сопротивлениям в последовательной цепи. Нельзя просто сложить эти величины, так как они меняются с течением времени, но достигают максимальных значений в разное время.[12]
    Поэтому воспользуйтесь формулой:Z = √(R2 + X2).[13]

    • Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
      [15]
  5. Изображение с названием Calculate Impedance Step 10

    5

    Вычислите импеданс по активному и реактивному сопротивлениям в параллельной цепи. В этом случае используются комплексные числа (это единственный способ вычислить полное сопротивление в параллельной цепи, в которой есть как активное, так и реактивное сопротивление).

    • Z = R + jX, где j — мнимая единица: √(-1). Используйте j вместо i, чтобы не перепутать мнимую единицу (j) с силой тока (I).
    • Складывать эти числа нельзя. Например, полное сопротивление может быть представлено так: 60 Ом + j120 Ом.
    • Если у вас есть две последовательные цепи, то вы можете отдельно сложить натуральные числа и отдельно — комплексные. Например, если Z1 = 60 Ом + j120 Ом, а к этой цепи последовательно подключен резистор с Z2 = 20Ω, то Ztotal = 80Ω + j120Ω.

    Реклама

Советы

  • Общее сопротивление (активное и реактивное сопротивления) также может быть выражено через мнимое число.

Реклама

Об этой статье

Эту страницу просматривали 169 190 раз.

Была ли эта статья полезной?

Электрическое сопротивление характеризует свойство проводника оказывать противодействие направленному движению заряженных частиц.

Влияние электрического сопротивления на электрический ток можно представить следующим образом:

  • Движение свободных носителей электрического заряда внутри проводника приводит к тому, что свободные носители заряда сталкиваются с атомами и нарушают их поток.
  • Этот эффект называется сопротивлением, которое обладает свойством ограничивать электрический ток в электрической цепи.
  • Столкновение носителей электрического заряда с атомами также имеет тепловой эффект. Соответствующий элемент электрической цепи становится теплым или даже горячим. Если он перегреется, он может выйти из строя.

Электрическое сопротивление говорит о том, какое напряжение U необходимо, чтобы заставить электрический ток определенной силы тока I протекать через проводник. В физике для обозначения электрического сопротивления в формуле используется прописная буква R (от английского слова «Resistor» или «Resistance»).

Аналогия с потоком воды

Когда речь идет об электрическом сопротивлении в физике, необходимо различать два случая:

  1. Электрические сопротивления как элементы электрической цепи (см. пример на рисунке 2). То есть, если вы называете элемент в электротехнике резистором, то вы имеете в виду конкретный элемент, предназначенный для целей ограничения протекания электрического тока в электрической цепи.
  2. Электрическое сопротивление как физическая величина. Вы также можете спросить, насколько сильно тот или иной элемент препятствует протеканию электрического тока или вообще как можно рассчитать электрическое сопротивление. Здесь вы говорите об электрическом сопротивлении как о физической величине.

Примечание. Резистор — это прибор с постоянным сопротивлением. Если необходимо регулировать силу тока в электрической цепи, то используют для этой цели реостаты — приборы с переменным сопротивлением. В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь. Реостат используется, например, в регуляторах громкости радиоприёмников.

Вы можете проиллюстрировать работу резистора как элемента (т.е. случай 1) с помощью модели протекания воды в трубе.

Если представить поток электрического тока как поток воды через трубу, то резистор, имеющий электрическое сопротивление R, выполняет функцию сужения трубы. Сужение в трубе препятствует потоку воды, подобно тому, как резистор препятствует потоку электрического тока. Если вы сильнее сузите трубу, то сопротивление потоку воды увеличится. Тем самым труба будет больше препятствовать потоку воды.

Суть электрического сопротивления на примере модели протекания воды в трубе

Рис. 1. Суть электрического сопротивления на примере модели протекания воды в трубе

Формулы для определения электрического сопротивления

Согласно закона Ома для участка электрической цепи следует, что если вы измеряете напряжение U на проводнике и через него течет ток силой I, то проводник имеет электрическое сопротивление R, равное U, деленное на I, т.е. R = U / I. Единицей измерения электрического сопротивления в СИ является Ом, которая названа в честь немецкого физика Георга Симона Ома. То есть, 1 Ом — это сопротивление проводника, в котором при напряжении 1 В проходит ток силой 1 А. Поэтому, иногда, электрическое сопротивление ещё могут называть «омическим сопротивлением».

Определение электрического сопротивления

Рис. 2. Определение электрического сопротивления

Для очень малых или очень больших сопротивлений используются такие дополнения, как милли-, кило- или мегаом. Применяются следующие отношения:

  • 1 Миллиом = 1 мОм = 1*10-3 Ом;
  • 1 Килоом = 1 кОм = 1*103 Ом;
  • 1 Мегаом = 1 МОм = 1*106 Ом.

Интересный факт! Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.

Также вы можете рассчитать электрическое сопротивление проводников с помощью их геометрических характеристик. Формула для этого следующая (см. также рисунок 3):

R = (ρ * l) / S, где

  • R — электрическое сопротивление проводника;
  • l — длина проводника;
  • S — площадь поперечного сечения проводника;
  • ρ — удельное сопротивление вещества проводника (выбирается по таблицам).

Электрическое сопротивление проводника

Рис. 3. Электрическое сопротивление проводника

Другими словами, чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Весомое значение имеет также материал, из которого изготовлен проводник.

Как измерять электрического сопротивление?

Для измерения электрического сопротивления необходимо придерживаться следующих правил:

  • Измерение проводить нужно параллельно элементу электрического цепи;
  • Элемент должен быть обесточен;
  • Элемент не должен быть подключен к электрической цепи;
  • Измерение имеет смысл только для обычного резистора.

Значение омического сопротивления лучше всего определять с помощью цифрового мультиметра, чтобы избежать ошибок и неточностей в показаниях.

При измерении с помощью измерительного прибора измеряемый элемент не должен быть подключен к источнику напряжения во время измерения. Измеряемый элемент должен быть отпаян от электрической цепи, по крайней мере, с одной стороны. В противном случае расположенные параллельно элементы будут влиять на результат измерения.

электрическое сопротивление, формулы для нахождения сопротивленияВ сфере электрики и электроники такая вещь (и понятие) как сопротивление встречается повсеместно. Хоть может и показаться, что электрическое сопротивление это плохо, так как она препятствует свободному течению электрических зарядов по проводникам, но это не совсем так. Возможно вы уже сталкивались с тем, что во всем нужна своя мера. Любой вид энергии (в нашем случае электрической, электромагнитной) в той или иной системе нуждается в своем определенном количестве. Если энергии становится больше или меньше нужной меры, то как правило возникают различные нарушения правильной ее работы. Так что сопротивление в определенных случаях это даже очень хорошо.

Ну, а какая есть формула сопротивления тока? Основополагающей формулой, по которой можно найти электрическое сопротивление является та, которая исходит из обычного закона Ома.

Как найти, вычислить электрическое сопротивление по закону Ома

Сама формула электрического сопротивления выражается так — сопротивление это отношение напряжения к силе тока. То есть, чтобы найти электрическое сопротивление нужно напряжение (разность потенциалов) разделить на силу тока. Все очень просто. Единицей измерения электрического сопротивления является «Ом» (названная в честь своего ученого открывателя). Напряжение измеряется в вольтах, а сила тока в амперах. В итоге мы имеем, 1 Ом равен 1 вольт деленный на 1 ампер. Используется и другие более крупные единицы измерения сопротивления — это килоомы (1 кОм = 1000 Ом), мегаомы (1 мОм = 1000 кОм = 1000 000 Ом).

Но всеже есть одно НО! Формулу нахождения сопротивления по закону Ома можно применять для постоянного и переменного тока лишь при наличии именно активного сопротивления (обычные резисторы, нагреватели, лампы накаливания и т.д.). Для случая реактивного сопротивления используется немного другая формула сопротивления тока. Она учитывает кроме напряжения и силы тока еще частоту, индуктивность, ёмкость.

формула для нахождения реактивного индуктивного и емкостного сопротивления

Помимо этих формул еще можно привести такую, которая показывает зависимость сопротивления от вида и размеров проводника. Формула сопротивления тока уже будет содержать такие понятия как сечение проводника, его длина, удельное сопротивления (зависящее от конкретного материала).

формула для нахождения электрического сопротивления проводника от длины сечения удельного сопротивления

А что собственно представляет собой это самое электрическое сопротивление? Думаю не лишним будет пояснить это. Итак, из физики нам известно, что любой проводник имеет так называемую кристаллическую решетку, состоящую из атомов и молекул, соединенных достаточно жесткими связями, что формирует устойчивую, фиксированную структуру. Атомы имеют ядро (состоящее из протонов и нейтронов), у которого положительный заряд. Вокруг ядра вращаются более мелкие частицы, называемые электронами, имеющими отрицательный электрический заряд.

движение зарядов (электронов) в проводнике, оказание сопротивления движениюТак вот, те электроны, что удалены от ядра дальше всего могут достаточно легко отрываться от своего атома и переходить к соседнему. При определенных условиях, а именно при подключении внешнего источника питания (а конкретнее внешнего электромагнитного поля) эти свободные электроны могут уже перемещаться упорядоченно в одном направлении. что порождает электрический ток. Но при своем движении электроны постоянно сталкиваются с другими атомами, что находятся на их пути. Вот именно это и является фактором электрического сопротивления. Следовательно предположить, что чем длиннее и тоньше будет проводник, тем больше препятствий будет на пути движения электронов, тем больше будет электрическое сопротивление. Ну, а еще одни проводники, в силу особенностей своей кристаллической решетки, будут иметь большее сопротивление, а другие — меньшее.

Напряжение можно еще сравнить с давлением (по аналогии с водой в трубах, к примеру), электрический ток это упорядоченное движение заряженных частиц, то есть в прямом смысле «поток зарядов (их количество, которое движется в одном направлении)». Вот и получается, что чем больше мы имеем (видим) напряжение на определенном участке электрической цепи (давление воды в водопроводе), при определенном потоке электронов, тем значит больше будет электрическое сопротивление, которое оказывается на движение этого самого потока электрических зарядов, внутри проводника. Все логично.

P.S. Если хорошо уметь представлять те физические процессы, что происходят внутри электрических схем, цепей, будет намного проще понять их изначальную суть. После этого любая формула становится более понятной, с точки зрения зависимости определенных физических величин. Это уже не просто набор каких-то знаков, это конкретная зависимость единиц измерения, что строго отображают в теории то, что работает на практике (в схемах, электрических устройствах и т.д.).

Какие есть формулы для вычисления сопротивления резистора

Содержание

  • 1 Что такое резистор
  • 2 Сопротивление резистора
  • 3 Последовательная цепь источника и сопротивлений
  • 4 Параллельная схема элементов
  • 5 Расчет смешанного соединения элементов схемы
  • 6 Мощность рассеивания
  • 7 Параметры резисторов
  • 8 Определение параметров по маркировке и схеме
  • 9 Видео по теме

Сопротивление направленному движению электронов (электрическому току) в проводах электроснабжения чаще всего провоцирует потери. Они зависят от площади сечения (S), длины (L), удельного сопротивления вещества провода (ρ). Однако, сопротивление послужило созданию самого распространенного элемента в электронике — резистора.

Виды резисторов

Что такое резистор

Деталь электрической или электронной схемы, сопротивляющаяся прохождению электрического тока, называется резистор (от латинского resisto — сопротивляюсь). Падение или изменение напряжения на этом элементе используется в схемотехнике для получения нужных процессов управления автоматикой или преобразования электричества в свет, тепло, звук или движение.

Наиболее удобно классифицировать резисторы по следующим признакам:

  • назначение. Для различных сфер используют элементы с

общими свойствами или специфическими по частоте тока, точности изготовления или ограничения по напряжению;

  • способ управления сопротивлением. Постоянные резисторы в определенном диапазоне напряжения и тока не меняют сопротивление. У переменных можно менять вручную данный параметр с целью управления процессами. Подстроечные используются для корректировки режимов при наладке и после ремонта;
  • материал рабочей части резистора. Металлы, их окислы и сплавы, графитовые или композитные смеси;
  • вид резистивных тел. Проволока, фольга или ленты из метала, напыление пленки на керамику, интегрированные каналы в микросхеме;
  • способ размещения. Резисторы могут быть впаяны в электронную плату, устанавливаться отдельно на панели управления или закладываться при создании микросхемы внутри изделия;
  • характер изменения падения напряжения на элементе от внешних условий (ВАХ). Вольт-амперная характеристика в рабочем диапазоне резистора может быть линейной или нелинейной.

Нелинейная ВАХ отражает изменение сопротивления компонента от внешних условий. Такие резисторы служат датчиками напряжения (варисторы), магнитного поля (магниторезисторы), уровня освещенности (фоторезисторы), перепада температуры (терморезисторы), изменения деформации (тензорезисторы).

Нелинейные резисторы (варисторы)

Сопротивление резистора

У тех, кто только начинает изучать азы электротехники, часто возникает вопрос, а чем отличается резистор от сопротивления. Разница в том, что резистор является пассивным элементом электроцепи, а сопротивление — это характеристика данного элемента, которую можно рассчитать, определить по маркировке или измерить. Но зачастую сопротивление используется в качестве синонима слова «резистор».

Рассчитать внутреннее сопротивление резистора в сети постоянного тока помогает формула закона Ома для элемента цепи:

Формула закона Ома

Эту формулу применяют также для расчета активного сопротивления в сети переменного тока, но используют действующий ток через элемент. Он равен постоянному току, при котором выделяется на резисторе столько же теплоты, сколько за одинаковое время при прохождении импульсного или синусоидального тока различной частоты.

Суммарное электрическое сопротивление в сетях переменного тока вычисляется при учете активной и реактивной составляющей участка цепи. Любой вид сопротивления измеряется в омах.

Одинокий резистор в схеме часто используется как ограничитель тока. На электронных платах этих элементов много. Друг с другом они соединяются в различных комбинациях: последовательно, параллельно или по смешанной системе.

Последовательная цепь источника и сопротивлений

В замкнутом контуре из последовательно соединенных резисторов и батареи ток в разных точках цепи имеет одинаковое значение. Показание вольтметра на отдельном резисторе будет отражать произведение его внутреннего сопротивления на ток в контуре. Суммарные показания вольтметров будут равны напряжению источника, а для определения общего сопротивления резисторов надо сложить сопротивления всех элементов.

Последовательную цепочку сопротивлений часто используют как делитель напряжения в маломощных измерительных или задающих ступенчатое управление параметрами устройствах. Сопротивление нагрузки Rн, подключенной параллельно R1 вместо вольтметра, должно быть немного больше, чтобы делитель работал стабильно.

Последовательная цепочка сопротивлений

Параллельная схема элементов

При параллельном соединении на каждом элементе присутствует напряжение источника, общий ток равен сумме токов резисторов. Расчет сопротивления участка цепи осуществляется по формуле R = (R1 • R2) / (R1 + R2).

Отличие параллельного соединения от последовательного заключается в том, что каждый резистор получает напряжение, которое равно напряжению источника, а общее сопротивление участка меньше меньшего из его составляющих.

Параллельная цепь элементов

Расчет смешанного соединения элементов схемы

Перед тем как рассчитать общее сопротивление схемы, состоящей из параллельных и последовательных участков, используют методы упрощения. На каждом шаге упрощенные эквивалентные схемы можно посчитать по уже известным формулам. Полученный в результате резистор будет обладать общим сопротивлением исходной схемы.

Упрощение смешанной схемы

Мощность рассеивания

Для надежной работы электрической схемы нужно знать и сопротивление резистора, и мощность рассеивания, формула для вычисления последней имеет вид:

Формула мощности

Правильно подобранный элемент схемы должен рассеять мощность Р (Вт) не разрушаясь и не нагревая другие детали.

Параметры резисторов

Выбор резисторов происходит чаще всего по следующим основным параметрам:

  • номинальному сопротивлению. Подбирается или подгоняется ближайшее к расчетному;
  • допуску — характеристика, отражающая точность при изготовлении номинального сопротивления. Она составляет 5–20%;
  • номинальной мощности рассеивания. Наибольшая величина рассеянного тепла без изменения характеристик меньше номинала элемента;
  • предельному рабочему напряжению. Приложенное к выводам резистора наибольшее напряжение, которое не разрушает его;
  • температурный коэффициент. Показывает, как изменится сопротивление резистора при колебании на один градус температуры среды.

Для переменных резисторов учитывают ряд дополнительных характеристик:

  • износоустойчивость — число циклов;
  • функцию изменения сопротивления (линейная, логарифмическая, обратнологарифмическая);
  • уровень шума при движении ползунка.

Определение параметров по маркировке и схеме

Некоторые из параметров наносятся непосредственно на резисторы, например, сопротивление и допуск. Раньше для информации о них использовали буквы и цифры. Номинальное сопротивление резисторов имеет диапазон от 0.01 Ом до 1 ГОм. Цифры в маркировке обозначают номинал, а буквы — множитель. Конкретная величина получается умножением или делением цифр.

Маркировка на корпусе

Буквенно-цифровая маркировка предполагает использование букв Е и R для сопротивлений до 99 Ом, выше — К, а уровень мегаомов обозначается буквой М. В зависимости от того, какую позицию занимает буква в цифровом коде, определяются целые числа или дробные. Узнать, какому множителю соответствует определенная буква, поможет специальная таблица, которую можно найти в любом справочном пособии.

Расшифровка буквенных обозначений

Элементы с цифро-буквенной маркировкой сейчас можно найти преимущественно в старой аппаратуре. В ходе ее ремонта часто приходится менять резисторы, поэтому необходимо уметь расшифровывать такое обозначение.

Примеры расшифровки маркировки резисторов

Сейчас в угоду минимизации отказались от буквенно-цифровых обозначений. На поверхность резисторов наносится маркировка кольцами или точками разных цветов. Чтобы определить по полоскам сопротивление резистора, следует начинать со смещенной к одному из выводов или самой широкой цветной полоски.

Набор цветов первых трех колец при 5 и 6-полосной раскраске означает шифр сопротивления резистора, цвет четвертого кольца обозначает определенное значение множителя для него. Цвет пятого кольца показывает точность изготовления резистора. При шестиполосной окраске цвет последнего кольца обозначает изменение сопротивления (процент) при перепаде температуры окружающей среды на 1 градус. Четырех и пятиполосная раскраска его не имеет.

При четырехполосной маркировке сопротивление резисторов определяется по цветам первых двух. Цвет третьей полосы — это множитель для точного определения сопротивления. Последняя полоса своей расцветкой говорит о допуске в процентах от номинала.

Цветная маркировка

На электрической схеме резистор изображается в виде прямоугольника с размерами 4×10 мм. Рядом с изображением указывается буква R и цифра, обозначающая порядковый номер элемента на схеме, например, R1. Указывается также номинальное сопротивление. Как определить его по буквенно-цифровой маркировке, было рассказано выше.

Мощность рассеивания указывается на графическом изображении специальными метками, если этот параметр меньше 1 ватта. Как узнать мощность по ним подскажет таблица, приведенная ниже.

Маркировка мощности рассеивания

Если мощность рассеивания выше одного ватта, то внутри прямоугольника ставят римскую цифру. Например, V используется для мощности величиной 5 Вт, Х — 10 Вт и т. п.

Бывают случаи, когда нет возможности воспользоваться маркировкой, например, если она повреждена или стерта. В таком случае нужно знать, как измерить сопротивление специальным прибором. Это может быть омметр или мультиметр. Они мало чем отличаются, но последний является многофункциональным прибором. Принцип измерений основывается на законе Ома. Перед тем как проверить резистор, следует выставить рабочий режим и диапазон измеряемого сопротивления.

Проверка резистора мультиметром

Алгоритм по измерению сопротивления используется такой:

Алгоритм измерения сопротивления мультиметром

Резистор является довольно простым элементом и по своему устройству, и по принципу работы. Поэтому его сопротивление определяется также довольно просто. Еще больше облегчают задачу онлайн-калькуляторы. Ими можно воспользоваться, если возникает необходимость рассчитывать сопротивление многих элементов, для соединения которых применяются разные способы, а также для расшифровки маркировки в виде цветных полос.

Видео по теме




Download Article


Download Article

There are two ways to hook together electrical components. Series circuits use components connected one after the other, while parallel circuits connect components along parallel branches. The way resistors are hooked up determines how they contribute to the total resistance of the circuit.

  1. Image titled Calculate Total Resistance in Circuits Step 1

    1

    Identify a series circuit. A series circuit is a single loop, with no branching paths. All the resistors or other components are arranged in a line.

  2. Image titled Calculate Total Resistance in Circuits Step 2

    2

    Add all resistances together. In a series circuit, the total resistance is equal to the sum of all resistances.[1]
    The same current passes through each resistor, so each resistor does its job as you would expect.

    • For example, a series circuit has a 2 Ω (ohm) resistor, a 5 Ω resistor, and a 7 Ω resistor. The total resistance of the circuit is 2 + 5 + 7 = 14 Ω.

    Advertisement

  3. Image titled Calculate Total Resistance in Circuits Step 3

    3

    Start with current and voltage instead. If you don’t know the individual resistance values, you can rely on Ohm’s Law instead: V = IR, or voltage = current x resistance. The first step is to find the circuit’s current and total voltage:

    • The current of a series circuit is the same at all points on the circuit.[2]
      If you know the current at any point, you can use that value in this equation.
    • The total voltage is equal to the voltage of the supply (the battery). It is not equal to the voltage across one component.[3]
  4. Image titled Calculate Total Resistance in Circuits Step 4

    4

    Insert these values into Ohm’s Law. Rearrange V = IR to solve for resistance: R = V / I (resistance = voltage / current). Plug the values you found into this formula to solve for total resistance.

    • For example, a series circuit is powered by a 12 volt battery, and the current is measured at 8 amps. The total resistance across the circuit must be RT = 12 volts / 8 amps = 1.5 ohms.
  5. Advertisement

  1. Image titled Calculate Total Resistance in Circuits Step 5

    1

    Understand parallel circuits. A parallel circuit branches into multiple paths, which then join back together. Current flows through each branch of the circuit.

    • If your circuit has resistors on the main path (before or after the branched area), or if there are two or more resistors on a single branch, Skip down to the combination circuit instructions instead.
  2. Image titled Calculate Total Resistance in Circuits Step 6

    2

    Calculate the total resistance from the resistance of each branch. Since each resistor only slows current passing through one branch, it only has a small effect on the total resistance of the circuit. The formula for total resistance RT is {frac  {1}{R_{T}}}={frac  {1}{R_{1}}}+{frac  {1}{R_{2}}}+{frac  {1}{R_{3}}}+...{frac  {1}{R_{n}}}, where R1 is the resistance of the first branch, R2 is the resistance of the second branch, and so on up to the last branch Rn.

  3. Image titled Calculate Total Resistance in Circuits Step 7

    3

    Begin with total current and voltage instead. If you don’t know the individual resistances, you’ll need the current and voltage instead:

    • In a parallel circuit, the voltage across one branch is the same as the total voltage across the circuit.[4]
      As long as you know the voltage across one branch, you’re good to go. The total voltage is also equal to the voltage of the circuit’s power source, such as a battery.
    • In a parallel circuit, the current may be different along each branch. You need to know the total current, or you won’t be able to solve for total resistance.
  4. Image titled Calculate Total Resistance in Circuits Step 8

    4

    Use these values in Ohm’s Law. If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm’s Law: R = V / I.

    • For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω.
  5. Image titled Calculate Total Resistance in Circuits Step 9

    5

    Watch out for branches with zero resistance. If a branch on the parallel circuit has no resistance, all of the current will flow through that branch. The resistance of the circuit is zero ohms.

    • In practical applications, this usually means a resistor has failed or been bypassed (short-circuited), and the high current could damage other parts of the circuit.[5]
  6. Advertisement

  1. Image titled Calculate Total Resistance in Circuits Step 10

    1

    Break down your circuit into series sections and parallel sections. A combination circuit has some components linked together in series (one after the other), and others in parallel (on different branches). Look for areas of your diagram that simplify to a single series or parallel section.[6]
    Circle each one to help you keep track of them.

    • For example, a circuit has a 1 Ω resistor and a 1.5 Ω resistor connected in series. After the second resistor, the circuit splits into two parallel branches, one with a 5 Ω resistor and the other with a 3 Ω resistor.
      Circle the two parallel branches to separate them from the rest of the circuit.
  2. Image titled Calculate Total Resistance in Circuits Step 11

    2

    Find the resistance of each parallel section. Use the parallel resistance formula {frac  {1}{R_{T}}}={frac  {1}{R_{1}}}+{frac  {1}{R_{2}}}+{frac  {1}{R_{3}}}+...{frac  {1}{R_{n}}} to find the total resistance of a single parallel section of the circuit.[7]

  3. Image titled Calculate Total Resistance in Circuits Step 12

    3

    Simplify your diagram. Once you’ve found the total resistance of a parallel section, you can cross out that whole section on your diagram. Treat that area as a single wire with resistance equal to the value you found.

    • In the example above, you can ignore the two branches and treat them as one resistor with resistance 1.875Ω.
  4. Image titled Calculate Total Resistance in Circuits Step 13

    4

    Add up resistances in series. Once you’ve replaced each parallel section with a single resistance, your diagram should be a single loop: a series circuit. The total resistance of a series circuit is equal to the sum of all individual resistances, so just add them up to get your answer.

    • The simplified diagram has a 1 Ω resistor, 1.5 Ω resistor, and the section with 1.875 Ω you just calculated. These are all connected in series, so R_{T}=1+1.5+1.875=4.375Ω.
  5. Image titled Calculate Total Resistance in Circuits Step 14

    5

    Use Ohm’s Law to find unknown values. If you do not know the resistance in one component of your circuit, look for ways to calculate it. If you know the voltage V and current I across that component, find its resistance using Ohm’s Law: R = V / I.

  6. Advertisement

  1. Image titled Calculate Total Resistance in Circuits Step 15

    1

    Learn the formula for power. Power is the rate that the circuit consumes energy, and the rate it delivers energy to whatever the circuit is powering (such as a light bulb).[8]
    The total power of a circuit is equal to the product of the total voltage and the total current. Or in equation form: P = VI.[9]

    • Remember, when solving for total resistance, you need to know the total power of the circuit. It’s not enough to know the power flowing through one component.
  2. Image titled Calculate Total Resistance in Circuits Step 16

    2

    Solve for resistance using power and current. If you know these two values, you can combine two formulas to solve for resistance:

    • P = VI (power = voltage x current)
    • Ohm’s Law tells us that V = IR.
    • Substitute IR for V in the first formula: P = (IR)I = I2R.
    • Rearrange to solve for resistance: R = P / I2.
    • In a series circuit, the current across one component is the same as the total current. This is not true for a parallel circuit.
  3. Image titled Calculate Total Resistance in Circuits Step 17

    3

    Find resistance from power and voltage. If you only know the power and voltage, you can use a similar approach to find resistance. Remember to use the total voltage across the circuit, or the voltage of the battery powering the circuit:

    • P = VI
    • Rearrange Ohm’s Law in terms of I: I = V / R.
    • Substitute V / R for I in the power formula: P = V(V/R) = V2/R.
    • Rearrange to solve for resistance: R = V2/P.
    • In a parallel circuit, the voltage across one branch is the same as the total voltage. This is not true for a series circuit: the voltage across one component is not the same as the total voltage.
    • Alternatively, you can isolate the circuit and physically test resistance using a multimeter. [10]
  4. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do I calculate the resistance of 2 resistors when I know the sum of the resistors?

    Community Answer

    Assuming you mean total resistance, you first need to determine if they are in series or parallel. In series the total resistance simply equals the sum of the resistors. In parallel, the inverse of the total resistance equals the sum of the inverse of each individual resistor. Therefore, you will not be able to calculate total resistance in a parallel circuit if you only know the sum.

  • Question

    If V = IR, how do I calculate if one cell = 2V and the resistor is 4 ohm?

    Community Answer

    I = V/R . This is derived from the equation V =I R. In the question the value of potential difference (v) is mentioned as 2V, i.e, 2 volts. The value of resistance of the resistor is given as 4 ohms. Substitute these values in the first equation; i.e, l = V/R, so, I = 2/4. Therefore, I = 0.5 amps.

  • Question

    Can I use frequency to calculate resistance?

    Community Answer

    Resistance does not change with frequency. However, AC circuits do have a similar quality called reactance which does change with frequency. Learn more here.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • The power value P used in these formulas refers to instantaneous power, or power at a specific moment in time. If the circuit uses AC power, the power is changing constantly. Electricians calculate the average power for AC circuits using the formula Paverage = VIcosθ, where cosθ is the power factor of the circuit.[11]

  • Power is measured in watts (W).

  • Voltage is measured in volts (V).

Show More Tips

Advertisement

About This Article

Article SummaryX

To calculate total resistance in series circuits, look for a single loop with no branching paths. Add all of the resistances across the circuit together to calculate the total resistance. If you don’t know the individual values, use the Ohm’s Law equation, where resistance = voltage divided by current. Plug in the values for voltage and current and solve for R to get the total resistance in a circuit. Keep reading the article if you want to learn how to calculate the resistance on a parallel or combination circuit!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,792,843 times.

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Видео показывает вверх ногами как исправить
  • Как исправить ошибку потока данных
  • Прага как составить маршрут
  • Как составить финансовый план семейного бюджета
  • Как найти мать для своего ребенка