Как найти сопротивление генератора в цепи

Метод эквивалентного генератора:

Метод эквивалентного генератора рационально применять в случае необходимости определения тока (напряжения, мощностн и др.) только одной ветви сложной электрической цепи.

Для этой цели разбивают сложную электрическую цепь на две части — на сопротивление R, ток которого Метод эквивалентного генератора

Активным этот двухполюсник называют потому, что в нем имеется источник ЭДС. Этот активный двухполюсник обладает определенной ЭДС Метод эквивалентного генератора

Ток в резисторе с сопротивлением R определяют по закону Ома 

Метод эквивалентного генератора

Таким образом, определение тока Метод эквивалентного генератора сводится к вычислению ЭДС эквивалентного генератора Метод эквивалентного генератора и его внутреннего сопротивления Метод эквивалентного генератора.

Величина ЭДС Метод эквивалентного генератора определяется любым методом расчета цепей постоянного тока относительно точек А а В при разомкну-клеммах, т. е. в режиме холостого хода. Практически эту ЭДС о измерить вольтметром, подключенным к клеммам А и В холостом ходе.

Внутреннее сопротивление эквивалентного генератора Метод эквивалентного генератора выявляется относительно точек А и В после предварительной смены всех источников сложной схемы эквивалентного генера-а их внутренними сопротивлениями.

Практически для определения внутреннего сопротивления эквивалентного генератора измеряют амперметром ток между точки А и В работающего двухполюсника при коротком замыкании так как сопротивление амперметра настолько мало, что им можно пренебречь. Тогда

Метод эквивалентного генератора

где Метод эквивалентного генератора — напряжение холостого хода, Метод эквивалентного генератора — ток короткого замыкания.

Такой метод практического определения внутреннего сопротивления эквивалентного генератора Метод эквивалентного генератора называется методом хо-ого хода и короткого замыкания. Расчет параметров эквивалентного генератора, его ЭДС Метод эквивалентного генератора и внутреннего сопротивления Метод эквивалентного генератора, рассматриваются в примерах 4.12 4.13.

Пример 4.12

Определить ток в сопротивлении Метод эквивалентного генератора, подключенном к точкам А В электрической цепи (рис. 4.8а) примера 4.6 методом эквивалентного генератора.

Метод эквивалентного генератора

Решение

Для определения тока Метод эквивалентного генератора в сопротивлении Метод эквивалентного генератора определим ЭДС эквивалентного генератора Метод эквивалентного генератора (рис. 4.16а) и его внутреннее сопротивление Метод эквивалентного генератора (рис. 4.166) при холостом ходе, т. е. разомкнутой цепи (между точками А и В).

Метод эквивалентного генератора

Знак «минус» обусловлен тем, что источники в схеме включены встречно и потенциал в точке А больше потенциала в точке В, так как Метод эквивалентного генератора (см. пример 4.6).

Напряжение

Метод эквивалентного генератора

Напряжение

Метод эквивалентного генератора

Следовательно, Метод эквивалентного генератораВнутреннее сопротивление эквивалентного генератора

Метод эквивалентного генератора

Искомый ток Метод эквивалентного генератора

Такой же ток получен в примере 4.6 на сопротивлении Метод эквивалентного генератора

Пример 4.13

В схеме рис. 4.17а сопротивления плеч моста равны Метод эквивалентного генератораМетод эквивалентного генератора

Сопротивление гальванометра Rr = 98,33 Ом, ЭДС источника Метод эквивалентного генератора. Методом эквивалентного генератора определить в ветви гальванометра (между точками А и В).

Метод эквивалентного генератора

Решение

Для определения тока в цепи гальванометра Метод эквивалентного генератора методом эквивалентного генератора необходимо вычислить ЭДС эквивалентного генератора Метод эквивалентного генератора между точками А и В (рис. 4.176) и внутреннее сопротивление эквивалентного генератора Метод эквивалентного генератора относительно точек А и В при присутствии гальванометра, заменив в схеме (рис. 4.17в) источник ЭДС Метод эквивалентного генератораего внутренним сопротивлением (Метод эквивалентного генератора = 0) равным нулю.

Для определения ЭДС эквивалентного генератора Метод эквивалентного генератора принимают потенциал точки С схемы (рис. 4.176) равным нулю, т. е. фс=о.

Тогда

Метод эквивалентного генератора

При замене источника ЭДС Метод эквивалентного генератора его внутренним сопротивлением, равным нулю, замыкаются накоротко точки С и D схемы (рис. 4.17в). При этом (рис. 4.17г) сопротивления Метод эквивалентного генератора соединены между собой параллельно. Также параллельно соединены между собой сопротивления Метод эквивалентного генератора. Между точками А и В сопротивления Метод эквивалентного генератора соединены последовательно. Следовательно, сопротивление эквивалентного генератора относительно точек А и В будет равно

Метод эквивалентного генератора

Тогда ток в ветви с гальванометром, который направлен из точки В в точку А, т. е. из точки с большим потенциалом в точку с наименьшим потенциалом (рис. 4.17а), будет равен

Метод эквивалентного генератора

Метод эквивалентного генератора (активного двухполюсника)

Все методы, рассмотренные ранее, предполагали расчет токов одновременно во всех ветвях цепи. Однако в ряде случаев бывает необходимым контролировать ток в одной отдельно взятой ветви. В этом случае применяют для расчета метод эквивалентного генератора.

Пусть дана некоторая электрическая цепь, которую заменим активным двухполюсником (рис. 3.10), оставив только ветвь Метод эквивалентного генератора в которой необходимо рассчитать ток.

Сначала, введем в ветвь Метод эквивалентного генератора два источника ЭДС Метод эквивалентного генератора и Метод эквивалентного генератора одинаковые по величине и противоположно направленные:

Метод эквивалентного генератора

Затем, используя принцип наложения, данную цепь представим суммой двух цепей. В первой оставим все источники активного двухполюсника и источник ЭДС Метод эквивалентного генератора Вторая цепь представляет собой пассивный двухполюсник, имеющий входное сопротивление Метод эквивалентного генератора и источник ЭДС Метод эквивалентного генератора

Метод эквивалентного генератора

Рис. 3.10. Преобразование исходного двухполюсника в сумму двух цепей

На основании принципа наложения ток ветви Метод эквивалентного генератора

Метод эквивалентного генератора

Поскольку Метод эквивалентного генератора и они могут быть любые по величине, то подберем их значения такими, чтобы ток Метод эквивалентного генератора был равен нулю. Для этого выберем Метод эквивалентного генератораМетод эквивалентного генератора

Напряжение на зажимах источника в режиме холостого хода численно равно его ЭДС. Тогда активный двухполюсник с источником Метод эквивалентного генератора может быть представлен в виде, представленном на рис. 3.11:

Метод эквивалентного генератора

Рис. 3.11. Схема замещения активного двухполюсника

В этой схеме ЭДС Метод эквивалентного генератора численно равна Метод эквивалентного генератора активного двухполюсника, и, следовательно, ток:

Метод эквивалентного генератора

Таким образом, ток в ветви Метод эквивалентного генератора

Метод эквивалентного генератора

Пусть дана цепь (рис. 3.12), в которой необходимо рассчитать ток Метод эквивалентного генератора методом эквивалентного генератора.

Метод эквивалентного генератора

Рис. 3.12. Исходная цепь

Последовательность расчета:

1. Разомкнем ветвь с сопротивлением Метод эквивалентного генератора или примем Метод эквивалентного генератора

2. Зададим положительное направление Метод эквивалентного генератора и для произвольно выбранных положительных направлений токов. Например, для первого контура запишем уравнение по второму закону Кирхгофа:

Метод эквивалентного генератора

3. Токи Метод эквивалентного генератора и Метод эквивалентного генератора в преобразованной схеме по рис. 3.13 рассчитываем любым известным методом, например, методом контурных токов

Метод эквивалентного генератора

Тогда Метод эквивалентного генератора

Метод эквивалентного генератора

4. Определим эквивалентное сопротивление пассивного двухполюсника. Для этого мысленно закоротим все источники ЭДС исходной цепи, оставляя в схеме для реальных источников их внутренние сопротивления.

В образовавшейся схеме пассивного двухполюсника невозможно определить эквивалентное сопротивление относительно зажимов Метод эквивалентного генератора так как нет последовательно-параллельного соединения приемников, поэтому необходимо выполнить преобразование какого-либо участка цепи из «треугольника» в «звезду» или выполнить обратное преобразование.

Преобразуем, например, «треугольник» сопротивлений Метод эквивалентного генератора в «звезду» Метод эквивалентного генератора При этом получится схема с последовательно-параллельным соединением приемников (рис. 3.14).

Метод эквивалентного генератора

Рис. 3.14. Схема пассивного двухполюсника

Сопротивления этой схемы будут:

Метод эквивалентного генератора

Входное сопротивление цепи Метод эквивалентного генератора относительно зажимов Метод эквивалентного генератора и Метод эквивалентного генератора запишем в виде:

Метод эквивалентного генератора

Окончательно имеем:

Метод эквивалентного генератора

  • Теоремы теории цепей
  • Теорема обратимости (или взаимности)
  • Теорема компенсации
  • Теорема об изменении токов в электрической цепи при изменении сопротивления в одной ветви
  • Метод свертывания электрической цепи
  • Метод преобразования схем электрических цепей
  • Параллельное соединение генераторов
  • Метод узловых и контурных уравнений

Электродвижущая сила и внутреннее сопротивление ведут нескончаемую битву внутри наших источников напряжения. Что стоит за этими концепциями? Каковы их отношения и каковы последствия их существования?

Электродвижущая сила

Электродвижущая сила звучит как термин из учебника по физике, и мало кто даже из радиолюбителей точно знает, для чего она нужна и что это значит. В Википедии описание выглядит так:

Электродвижущая сила (ЭДС) – фактор, вызывающий протекание тока в электрической цепи, равный электрической энергии, полученной единичным зарядом, перемещаемым в устройстве (источнике) электрического тока в направлении, противоположном силе электрического поля, действующего на это обвинение.

Понять это с первого раза может далеко не каждый. Единственное, что стоит помнить из этого описания, – это тот факт, что электродвижущую силу часто сокращают как ЭДС – это просто короче и проще. В английском языке аббревиатура EMF, которая означает Electromotive Force.

Начнем с того, что электродвижущую силу очень часто путают с напряжением, наверное потому, что оба эти значения выражаются в вольтах. Но если посмотрим на определение напряжения, то можно увидеть что оно полностью отличается от описания ЭДС и намного короче:

Электрическое напряжение – разница электрических потенциалов между двумя точками электрической цепи или электрического поля.

Так является ли ЭДС чем-то совершенно другим, чем напряжение? Не совсем. Фактически, ЭДС и напряжение – это одно и то же физическое понятие. Они оба вызывают протекание тока и оба говорят об энергии, которую несет электрический заряд. Что же делает их особенными?

Говоря проще – ЭДС это то что хотим, а напряжение – это то что получаем. Рассмотрим тему на примере водяной установки. В этом случае можно назвать электродвижущую силу номинальным давлением насоса, который достаем из коробки. Номинальный означает то, что насос теоретически способен производить. Другими словами, ЭДС описывает сколько «толкающей силы» источник может дать. Но действительно ли получим эту силу на практике?

Теперь переходим к напряжению, эквивалентом которого в водяной системе является фактическое давление воды, которое получаем после подключения нашего насоса. Конечно любые засоры в трубах или повреждение установки снижают это давление, так же как резистор вызывает падение напряжения в цепи. Но на интересует может ли насос протолкнуть воду с мощностью, обещанной производителем, и обычно это не так. Точно так же, если у нас есть аккумулятор с ЭДС 9 В, то после его подключения и измерения напряжения на клеммах может оказаться, что там всего 8,5 В. Почему? У каждого источника напряжения есть свои недостатки, которые нельзя преодолеть физически.

Таким образом, ЭДС – это виртуальная величина. Можем определить это как напряжение, которого достигли бы, если бы аккумулятор не имел дефектов и его эффективность составляла 100%. Электроника даже изобрела концепцию идеального источника напряжения, заключающуюся в том, что в определенных ситуациях человек закрывает глаза на недостатки источника и принимает рабочее напряжение, равное ЭДС (U = ЭДС). Но в действительности идеальных батарей, аккумуляторов и генераторов не существует, поэтому вырабатываемое во время работы напряжение всегда ниже значения ЭДС.

Эта потеря велика или нет? Чтобы проверить можно взять обычную батарею AA. На этикетке указано 1,5 В. Это значение производители называют номинальным напряжением. Так это имеется ввиду ЭДС или рабочее напряжение? Чтобы измерить ЭДС батареи, понадобится вольтметр. Важно чтобы измеряемая батарея была новой – надо видеть полный заряд, которым ее снабдил производитель, а не какое-либо остаточное напряжение в использованной батарее.

Можете измерить несколько батарей от разных производителей, и каждая из них даст разный результат. Один раз 1,60 В, в другой 1,65 В или 1,57 В. Почему же на каждой из этих батарей есть метка 1,5 В, хотя их ЭДС выше? Установите на них небольшой резистор, и результат колеблется между 1,55 В и 1,62 В, что все равно больше, чем предсказывал производитель. Что же тут происходит?

Если посмотрим в книги по электротехнике, те, которые касаются аккумуляторов, то там найдем определение до 10 различных типов напряжения! Вот несколько примеров:

  1. Теоретическое напряжение (theoretical voltage) – величина энергии, возникающая от батарей в зависимости от материалов. Например использование цинка и меди в качестве электродов даст напряжение 1,1 В, в то время как самые современные литиевые батареи могут достигать даже 3,5 В.
  2. Напряжение холостого хода (open-circuit voltage) – можем описать их как «напряжение батареи из коробки» или просто ЭДС. Это значение часто немного ниже теоретического напряжения, потому что конструкция батареи влечет за собой определенные ограничения.
  3. Рабочее напряжение (closed-circuit voltage) – батареи под нагрузкой теряют часть ЭДС. Насколько велико падение зависит от нескольких вещей, о которых расскажем далее.
  4. Номинальное напряжение – (nominal voltage) – ЭДС каждой батареи (угольной, щелочной или литиевой) может быть разным – иногда это 1,55 В, в другой раз, например, 1,62 В. Почему же тогда на каждой из них написано 1,5 В? Причина – стандартизация. Чтобы избежать путаницы и не заставлять потребителя задаваться вопросом, какое именно напряжение будет наилучшим в данном случае, было введено несколько стандартных напряжений, таких как 1,5 В, 3 В и 9 В, которым назначены ячейки. Во всех случаях ЭДС немного выше номинального напряжения, так что это «обман» в нашу пользу.
  5. Напряжение отключения (cut-off voltage) – при разрядке источник теряет энергию и, таким образом, снижает значение его ЭДС и рабочего напряжения. Через некоторое время наступит момент, когда напряжение станет слишком низким для продолжения питания устройства и он будет считаться разряженным. Но эта граница довольно плавная и зависит от нагрузки. Разряженный аккумулятор может не питать фонарик, но если поместим его в электронные часы, он сможет запитывать его еще несколько дней.

Откуда же это несоответствие? Ответ на вопрос требует изучения внутреннего сопротивления.

Внутреннее сопротивление

Сопротивление – это явление, которое можно рассматривать как положительное и отрицательное (плохое). Оно препятствует прохождению тока, забирает энергию у электронов и вызывает падение напряжения. Когда эти явления хороши? Когда хотим преобразовать электричество в тепло или свет. Без него не работали бы такие устройства, как бойлер, тостер, сушилка или лампочка.

Отрицательной стороной сопротивления будет то, что все кабели, которые подают энергию в дом и питают устройства, также обременены им. Следовательно, они также потребляют, точнее тратят впустую некоторую энергию. К счастью, сопротивление медных проводов очень низкое, и почти не почувствуются эти потери в домашних условиях.

Но есть еще один момент отрицательного сопротивления. Оно называется внутренним сопротивлением и возникает там, где меньше всего этого ожидаем – внутри источников напряжения.

Внутреннее сопротивление можно назвать узким местом источников напряжения. Это причина того, что рабочее напряжение ниже электродвижущей силы. Другими словами, оно тратит энергию еще до того, как оставит батареи или генераторы на электростанции. В нормальных условиях невозможно избежать внутреннего сопротивления. Это естественный недостаток всех источников электроэнергии – батарей, аккумуляторов, солнечных панелей, ветряных турбин или любых трехфазных генераторов, которые снабжают энергией наши дома. Откуда же оно взялось?

Внутреннее сопротивление генераторов

Начнем с генераторов переменного напряжения, потому что в их случае дело обстоит проще. Генераторы переменного тока – это просто большие электродвигатели. Они используют принцип электромагнитной индукции, то есть магнит, движущийся рядом с проводом, генерирует в нем ток.

Проще говоря, если возьмете неодимовый магнит и начнете его раскачивать возле какого-то провода, то создадите в нем электричество. Правда этого тока недостаточно для питания даже самого маленького светодиода. Во-первых, для генерации сильного тока требуется магнит гораздо большего размера, а во-вторых, гораздо больше проводов. Вращающийся магнит генерирует ток в десятках метров витой проволоки, которая его окружает. Так можно вкратце описать основы работы генераторов, типов конечно много, но здесь не будем останавливаться на них. Важно то, что это огромное количество спиральной проволоки (иногда заменяемой стержнями или листами) является важным элементом любого генератора, обеспечивая нужное количество движущихся электронов, реагирующих на вращение магнита. Примерно так работает любой генератор переменного тока.

У каждого, даже самого лучшего проводника, есть сопротивление. Обмотки, без которых было бы невозможно производить электричество, в то же время являются слабым звеном каждого генератора. С одной стороны они позволяют току течь, с другой – нагреваются через существующее сопротивление, посылая часть энергии в воздух в виде тепла.

Как с этим справляется электроэнергетика? Во-первых, турбогенераторы вырабатывают очень высокое напряжение. Благодаря этому можно добиться такой же мощности при довольно низкой силе тока, и чем меньше ток – тем меньше потери из-за сопротивления. Также надо помнить, что электричество должно пройти сотни километров, прежде чем достигнет домов, поэтому стоит поддерживать высокое напряжение как можно дольше. На практике оно снижается до 220 В только на трансформаторных подстанциях, разбросанных в городах. Трансформатор – это тоже устройство, сделанное из большого количества проволоки, и на нем тоже происходит падение напряжения. Его величина зависит от нагрузки, поэтому чем больше подключено к сети оборудование, тем ниже измеряемое напряжение в розетке.

Внутреннее сопротивление батареи

Батарея или аккумулятор – это устройства, внутри которых нет проводов, но это не значит, что на них не распространяется внутреннее сопротивление. Ячейки по существу состоят из двух электродных материалов (положительного и отрицательного), которые погружены в электролит. Один из электродов, например, из цинка, отдает электроны, другой, например, из меди – принимает электроны. Соединение обоих электродов проводом позволяет возникнуть потоку электронов между ними. Поддержание обмена возможно благодаря электролиту, специальному раствору, обеспечивающему необходимые элементы химической реакции. Примерно так работают аккумуляторы.

Рассмотрим где в аккумуляторе скрывается внутреннее сопротивление. Ответ непрост, потому что в ячейке происходит множество процессов, каждый из которых добавляет свой вклад к сопротивлению. Основные из них:

  1. Дефекты электродов – каждый материал имеет дефекты в виде поврежденной структуры или примесей. Это, в свою очередь, влияет на способность электродов отдавать и принимать электроны.
  2. Ограниченная проводимость электролита – электролит заполнен ионами (положительно и отрицательно заряженными атомами), которые перемещаются между электродами, чтобы обеспечить баланс заряда и предотвратить его накопление (поляризацию). К сожалению, ионы являются частицами намного тяжелее и медленнее электронов, поэтому их поток характеризуется определенным естественным сопротивлением.
  3. Коррозия электродов – продукты химических реакций, происходящих между электролитом и электродами, должны куда-то уходить. Иногда они создают газ, который выходит из батарей с помощью специальных микроскопических клапанов, иногда это твердое вещество, которое невозможно удалить наружу. К сожалению, в случае некоторых типов аккумуляторов эти отходы могут оседать на электродах, создавая на них своего рода покрытие, которое значительно мешает правильной работе аккумулятора.
  4. Износ электродов – обмен электронами связан с изменением структуры электродов. Отрицательный электрод (например, цинк), отдавая электроны, буквально растворяется в электролите. Его уменьшающаяся поверхность означает, что он не может выпускать электроны с той же скоростью, что значительно снижает рабочие параметры батареи, особенно в более старом типе.

Приведенные выше примеры показывают, что сопротивление батареи намного более проблематично, чем сопротивление генератора, по крайней мере, по нескольким причинам:

  • Чтобы производить батареи с низким внутренним сопротивлением, многие факторы должны быть идеально согласованы друг с другом, что непросто.
  • Батареи работают на основе химических реакций, и они, естественно, чувствительны к температуре – слишком низкая или слишком высокая температура немедленно истощит элемент.
  • Внутреннее сопротивление батареи переменное. Из-за разрушения электролита и электродов сопротивление батареи увеличивается по мере ее разряда. Только новейшие литий-ионные конструкции способны минимизировать эту проблему.

Как насчет того, чтобы попытаться устранить проблему внутреннего сопротивления, увеличивая напряжение ячеек? Здесь мы сталкиваемся с рядом ограничений. Во-первых, не выйдет получать более 3,5 В от химических реакций (по крайней мере в настоящее время). Вот почему батареи с напряжением 9 В строятся путем соединения обычно 6 ячеек по 1,5 В каждая. А аккумуляторы питающие электромобили Тесла, вырабатывают напряжение 400 В, весят более 500 кг и состоят из 8256 небольших литий-ионных элементов. Аккумуляторы Tesla занимают всю поверхность пола автомобиля.

Как рассчитать внутреннее сопротивление

Раз уж внутреннее сопротивление невозможно победить, стоит хотя бы выяснить, как его можно измерить и каких значений оно может достичь. Чтобы узнать это нужно будет сделать 3 измерения.

Каждый мультиметр имеет возможность измерять сопротивление. Но нельзя пытаться измерить внутреннее сопротивление любого источника напряжения Омметром. Попытка измерить внутреннее сопротивление трансформатора, вставив щупы измерителя в розетку, – одна из худших идей, которые можно придумать. Никогда не пытайтесь это сделать!

Как тогда правильно измерить внутреннее сопротивление АКБ? Есть два метода, и вот более простой. Сначала измерьте ЭДС аккумулятора. Установите мультиметр на измерение постоянного напряжения и приложите щупы к обоим полюсам батареи.

Затем нужно измерить рабочее напряжение АКБ. Лучше всего взять резистор с известным значением, приложить его концы к обоим полюсам и снова измерить напряжение, как это делали только что.

Как видите, разница между ЭДС и напряжением новой батареи очень мала – всего 0,013 В. Следовательно, чем лучше у вас прибор, тем больше вероятность, что вы сможете измерить его. Но и не забудьте еще измерить сопротивление резистора, который используете. Тот факт, что он 47 Ом, не означает, что у него такое сопротивление. В данном случае это 46,1 Ом.

Имея все измерения (ЭДС, рабочее напряжение, сопротивление резистора), достаточно запомнить Закон Ома, потому что именно по нему сделаем необходимые вычисления:

Теперь выполним 3 простых шага:

  • Шаг 1 – Рассчитайте разницу между ЭДС и рабочим напряжением. Это значение, поглощаемое внутренним сопротивлением, или падение напряжения на внутреннем сопротивлении. В этом случае 1,595 В – 1,583 В = 0,013 В.
  • Шаг 2 – Рассчитайте ток, протекающий в цепи во время работы. Для этого делим рабочее напряжение на сопротивление резистора. Получаем 1,583 В / 46,1 Ом = 0,034 А.
  • Шаг 3 – Вычисляем внутреннее сопротивление батареи, разделив падение напряжения, вызванное протекающим через нее током. Для этого эксперимента это будет 0,013 В / 0,034 А = 0,382 Ом.

Это много или мало? Зависит от того, какие батареи хотим использовать. Для сравнения, внутреннее сопротивление типичных батареек АА в лет 30 назад составляло от 1 Ом до 3 Ом, что в несколько раз больше, чем сегодня. Конечно, в 1980-х щелочные батареи только выходили на рынок, и литиевые приходилось ждать до 1995 года. Это показывает насколько сильно изменилась технология производства аккумуляторов за последние годы. Снижение внутреннего сопротивления аккумулятора позволяет снизить потери энергии, а значит повысить его КПД. Сегодняшние батареи способны питать гораздо больше энергоемких устройств, чем раньше, без сильного нагрева и поддержания постоянного напряжения в течение гораздо более длительного времени. Вот в принципе и вся теория, надеемся с практикой теперь у вас проблемы не возникнут. А если что осталось неясным – добро пожаловать на форум!

Что такое внутреннее сопротивление источника питания

Содержание

  • 1 Что такое внутреннее сопротивление
  • 2 Как измеряется внутреннее сопротивление
  • 3 Зачем нужно знать внутреннее сопротивление
  • 4 Видео по теме

Любой источник тока, будь то генератор или гальванический элемент, обладает внутренним сопротивлением. Его величина характеризирует количество энергетических потерь, появляющихся при протекании тока через источник питания. Для генератора внутреннее сопротивление определяется сопротивлением обмоток статора, для аккумулятора — электродов и электролита. Для него используется та же единица измерения, что и для общего сопротивления цепи — Ом.

Внутреннее сопротивление

Что такое внутреннее сопротивление

В электрической цепи обязательно присутствует источник питания. Обычно, оценивая его параметры, указывают, какую разность потенциалов между клеммами он обеспечивает. Если говорить об идеальной модели источника питания, то можно предположить, что он способен обеспечить в электрической цепи любую мощность с учётом имеющейся разности потенциалов.

Реальные устройства в этом аспекте сильно отличаются друг от друга. Чтобы определить работоспособность аккумулятора важно знать, что такое внутреннее сопротивление. Обычно с течением времени и вследствие износа оно постепенно возрастает. Анализируя уровень и скорость того, как изменяется внутреннее сопротивление источника тока, можно принять решение о продолжении использования батареи или о необходимости её замены.

Конструкция аккумулятора

Сказанное следует пояснить на примере. Для запуска мотора автомобиля используется аккумулятор на 12 Вольт. Известно, что при этом сила тока может достигать 250 Ампер. Однако, если взять другой элемент питания с такой же разницей потенциалов, то вполне возможна ситуация, когда от него запуск мотора осуществить не получится.

В качестве примера такого источника можно рассмотреть несколько гальванических элементов, соединённых последовательно. Разница в двух рассматриваемых ситуациях определяется наличием различного внутреннего сопротивления.

Этот параметр для аккумулятора представляет собой сумму нескольких слагаемых: сопротивление каждого вывода, корпуса и используемого электролита. В некоторых источниках тока при этом могут учитываться дополнительные элементы, включённые в данную цепь.

Важно учитывать, что понятие омического сопротивления в этой ситуации неприменимо, поскольку требуется наличие в цепи только пассивных элементов. Когда создана замкнутая цепь, ток протекает не только по ней, но и внутри источника тока. Внутреннее сопротивление определяет величину потерь энергии в нём.

Его наличие в цепи можно проиллюстрировать ещё одним примером. Если на клеммах аккумулятора имеется 12 вольт, то на первый взгляд можно легко предсказать, какая сила тока будет при нагрузке 1 Ом. Очевидно, что нужно ожидать, что по цепи пройдёт ток, равный 12 Ампер.

На самом деле это утверждение не соответствует действительности: ток будет немного меньше — примерно 11.2 Ампера. Здесь нет никакого несоответствия физике. Ведь при расчёте дополнительно требуется учитывать сопротивление источника тока, из-за которого происходит расход энергии. Оно называется внутренним. Его можно мысленно представить как резистор, соединённый последовательно с источником тока.

Замер емкости АКБ

Как измеряется внутреннее сопротивление

Для определения значения рассматриваемой характеристики применяются измерения во время прямого замыкания клемм, которое называют коротким замыканием. Как известно, если закоротить клеммы источника, между ними протечёт значительный ток. Часто это является следствием неосторожности и приводит к обгоранию изоляции и расплавлению провода.

При коротком замыкании сопротивление цепи становится минимальным. Точно измерив силу тока в этой ситуации и зная величину напряжения на клеммах при отсутствии нагрузки, можно определить внутреннее сопротивление источника питания. Для этого понадобится следующая формула:

r = U / I(зам), где

  • буквой r обозначено внутреннее сопротивление источника тока;
  • U — разность потенциалов на клеммах батареи без подсоединения к электрической цепи;
  • I(зам) — ток, который проходит при непосредственном замыкании клемм друг на друга.

Схема эксперимента

Находить значение нагрузки таким образом не всегда возможно или целесообразно, поскольку короткое замыкание может стать причиной серьезной аварии.

Поэтому на практике измерять внутреннее сопротивление источника питания с помощью короткого замыкания можно разве что только у маломощных аккумуляторов на 1,2В (при этом мультиметр должен находиться в режиме измерения тока до 20А). Для определения внутреннего сопротивления у мощных источников, таких как, автомобильный аккумулятор и подобных необходимо использовать активную нагрузку (например, лампу накаливания), а сам способ расчёта приведён в статье ниже.

Поэтому используются другие решения вопроса, как найти внутреннее сопротивление источника. Например, с помощью специальных измерительных приборов. Функцией измерения данного параметра снабжены оригинальные зарядные устройства iMax B6, ToolkinRC M8,  M6, M600.

Зачем нужно знать внутреннее сопротивление

На первый взгляд может показаться, что наличие внутреннего сопротивления интересно только с теоретической точки зрения. На самом деле в некоторых ситуациях знать чему оно равно бывает жизненно важным.

Одна из таких ситуаций — определение работоспособности автомобильного аккумулятора. Его внутреннее сопротивление не является постоянным. Оно изменяется под воздействием различных факторов и влияет на напряжение на клеммах. Чтобы быть уверенным в работоспособности оборудования, нужно не только уметь найти его внутреннее сопротивление, но и знать, какая его величина соответствует норме.

Проверка напряжения аккумулятора

На внутреннее сопротивление источника питания могут оказывать влияние такие факторы:

  • Температурные условия. Чем холоднее, тем с меньшей скоростью в аккумуляторе протекают химические процессы. Это приводит к увеличению внутреннего сопротивления и постепенному уменьшению напряжения на клеммах.
  • Срок службы аккумулятора. У новых устройств внутреннее сопротивление имеет минимальную величину. Постепенно оно начинает расти. Это связано с тем, что в аккумуляторе происходит необратимый химический процесс. В некоторых случаях он  относительно медленный, а в других может быть довольно заметным. Последнее, например, относится к свинцово-кислотным аккумуляторам.
  • Емкость аккумулятора.
  • Иногда на устройство может оказываться механическое воздействие, из-за которого появляются внутренние обрывы.
  • Количество используемого электролита.
  • Ток, который создаётся батареей, зависит от нагрузки цепи. В зависимости от него меняется сопротивление.

Зависимость внутреннего сопротивления

Влияние большого количества факторов приводит к тому, что в качестве нормального можно рассматривать различные значения внутреннего сопротивления. Однако его стандартным увеличением за год принято считать 5%. Если эта норма превышена, значит, на исправность аккумулятора нужно обратить особое внимание.

При анализе стоит принимать во внимание не только те значения, которые указаны в технической документации. Необходимо учитывать и то, насколько интенсивно происходят изменения сопротивления со временем. Это даст более точную информацию об исправности батареи и поможет понять, чего нужно добиваться, чтобы обеспечить работоспособность оборудования.

Изменение внутреннего напряжения со временем

Один из наиболее простых способов измерения внутреннего сопротивления можно продемонстрировать на следующем примере. Его применение возможно при условии, что ЭДС аккумулятора известна.

ЭДС (ℰ, единица измерения — вольты, В) — это электродвижущая сила источника питания, равная отношению работы сторонних сил по перемещению заряда от отрицательного полюса источника к положительному к величине этого заряда: ℰ=A/q. Если к источнику питания не подключена нагрузка, то ЭДС по своему значению равно напряжению на его клеммах.

Будет рассмотрена ситуация, когда ЭДС равна 1.5 В. Составляется электрическая цепь, в которой выходы аккумулятора присоединяются к электрической лампочке. Измеряется падение напряжения на ней и ток, проходящий через цепь. Они, соответственно, равны 1.2 В и 0.3 А.

Цифры, которые здесь приводятся, являются условными. При измерении мастер может выбрать другой тип электрической нагрузки, если сочтёт это необходимым.

Схема с лампочкой

Сопротивление лампы накаливания сильно отличается в нагретом и холодном состоянии. Поэтому определять «R» с помощью мультиметра в режиме измерения сопротивления — неверно. Чтобы точно узнать сопротивление лампы накаливания необходимо померить ток, проходящий через неё и напряжение на лампе во включенном (нагретом) состоянии. Далее, по закону Ома можно вычислить искомую величину:

R = U / I = 1.2 / 0.3 = 4 Ом.

В этой формуле буквой R обозначается полное сопротивление цепи. Его можно выразить, как сумму r + R, где r — внутреннее и R — обычное сопротивление.

Тогда: R + r = ℰ / I

Из этой формулы определяется r = ℰ / I − R = 1.5 / 0.3 − 4 = 1 Ом.

Таким образом можно определять внутреннее сопротивление источника питания в безопасном режиме, не прибегая к короткому замыканию.

Важным условием нахождения значения r является знание величины электродвижущей силы. Эта характеристика имеет максимальное значение у новых и хорошо заряженных батарей. Те, что уже долго были в использовании, могут иметь значительно меньшую ЭДС вследствие разряда, износа, который часто связан с необратимыми химическими процессами в аккумуляторе.

Для определения ℰ необходимо отключить любую нагрузку от клемм источника питания и подключить вольтметр или мультиметр в режиме измерения напряжения. Прибор покажет значение ЭДС. Почему — это легко понять. По закону Ома для полной цепи:

I = ℰ / (R + r),

так как вольтметр имеет сопротивление R→∞, то ток I≈0. Следовательно напряжение на клеммах равно ЭДС:

U = I·R = ℰ – I·r = ℰ.

Также следует упомянуть, что нулевым внутренним сопротивлением «r» обладает только идеальный генератор напряжения. Также существуют элементы с большим внутренним сопротивлением — это разные датчики, источники сигналов, а r=∞ обладает только идеальный источник тока. Помимо этого, существуют двухполюсники с отрицательным значением r, его можно получить в схемах с обратной связью и в элементах с отрицательным дифференциальным сопротивлением. Расчеты применимы не только для аккумулятора, но и для любого другого источника тока, например, гальванической батареи, двухполюсника, петли фаза-нуль. Использовать эти знания можно для согласования источника и нагрузки, понижения высоких напряжений и минимизации шума.

Видео по теме

ФЕДЕРАЛЬНОЕ
АГЕНТСТВО СВЯЗИ

ФЕДЕРАЛЬНОЕ
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А.
БОНЧ-БРУЕВИЧА»

(СПбГУТ)

Факультет
Информационных систем и технологий

ОТЧЁТ

по
лабораторной работе
на тему:

«ИССЛЕДОВАНИЕ
НАГРУЗОЧНЫХ ХАРАКТЕРИСТИК ГЕНЕРАТОРА
С РЕЗИСТИВНЫМ ВНУТРЕННИМ СОПРОТИВЛЕНИЕМ»

Бригада
№2
Группа ИКТ-04

1.
Инкин Георгий

2.
Максимова Дарья

3.
Егоров Никита

4.
Горбунов Святослав

Преподаватель:
Кубалова А.Р.

Лабораторная
работа 1

«ИССЛЕДОВАНИЕ
НАГРУЗОЧНЫХ ХАРАКТЕРИСТИК ГЕНЕРАТОРА
С РЕЗИСТИВНЫМ ВНУТРЕННИМ СОПРОТИВЛЕНИЕМ»

Цель
работы:

1.
Изучите свойства генератора тока(a),
генератора напряжения(б) и условия их
эквивалентности.

2.
Рассчитайте нагрузочные характеристики
напряжения Uн, тока Iн и мощности PН в
зависимости от величины резистивного
сопротивления нагрузки RН для следующей
схемы замещения генератора.

Р
асчёт:

Используемые
формулы –

Где
Uxx
– напряжение холостого хода,

Iкз
– ток короткого замыкания

х
стоит принять равному 0.03, 0.125, 0.5, 1,2, 8, 32

Исходя
из этого, составим табличку и заполним
её

Таблица
1

x

0.03

0.125

0.5

1

2

8

32

Lg
x

-1.523

-0.903

-0.301

0

0.301

0.903

1.505

Uн/Uxx

0.029

0.111

0.333

0.5

0.666

0.888

0.996

Iн/Iкз

0.970

0.888

0.666

0.5

0.333

0.111

0.003

Рн/Рн
макс

0.113

0.339

0.888

1

0.888

0.339

0.112

Таблица
2.1

Uxx1=
7.6 В

Iкз1=
74 мА
Ri1=
103 Ом

Rн,
Ом

3

6

13

27

51

100

200

430

820

1.6к

3.2к

Измерить

Uн,
В

Iн,
мА

0.2

74

0.4

72

0.8

67

1.6

60

2.4

51

3.6

38

4.8

26

6

15

6.6

9

6.8

5

7.2

2

Рассчитать по
результатам измерений

Uн/Uxx

Iн/Iкз

Pн=Uн*Iн,
мВт

Рн/Pн
макс

0.026

1

14.8

0.1

0.052

0.973

28.8

0.2

0.105

0.882

53.6

0.4

0.210

0.811

96

0.7

0.316

0.689

122.4

0.9

0.474

0.514

136.8

1

0.632

0.351

124.8

0.9

0.789

0.202

90

0.6

0.868

0.122

59.4

0.4

0.895

0.068

34

0.2

0.947

0.027

14.4

0.1

Вычислить

lg(Rн/Ri)

-1.53

-1.23

-0.89

-0.58

-0.3

-0.01

0.28

0.62

0.9

1.19

1.49

Таблица
2.2

Uxx2=
13 В

Iкз2=
66 Ма
Ri2=
197 Ом

Rн,
Ом

3

6

13

27

51

100

200

430

820

1.6к

3.2к

Измерить

Uн,
В

Iн,
мА

0.2

74

0.4

72

0.8

67

1.6

60

2.4

51

3.6

38

4.8

26

6

15

6.6

9

6.8

5

7.2

2

Рассчитать
по результатам измерений

Uн/Uxx

Iн/Iкз

Pн=Uн*Iн,
мВт

Рн/Pн
макс

0.015

1.121

14.8

0.069

0.03

1.09

28.8

0.134

0.061

1.015

53.6

0.25

0.123

0.909

96

0.448

0.185

0.773

122.4

0.57

0.277

0.576

136.8

0.638

0.369

0.394

124.8

0.582

0.462

0.227

90

0.42

0.503

0.136

59.4

0.277

0.523

0.076

34

0.159

0.554

0.03

14.4

0.067

Вычислить

lg(Rн/Ri)

-1.82

-1.52

-1.18

-0.86

-0.59

-0.29

0.006

0.34

0.619

0.91

1.211

Графики:

Вывод:

В
режиме согласованной нагрузки внутреннее
сопротивление генератора равно
сопротивление нагрузки, мощность
максимальная, КПД 50%, в режиме холостого
хода и короткого замыкания, мощность
минимальна.

Контрольные
вопросы

1.
При каких условиях генератор электрической
энергии можно считать источником
напряжения, а при каких – источником
тока?

При
любых условиях в рабочем состоянии он
является источником и того и другого
(Без нагрузки это ток утечки.).

Когда
вращается генератор, на его выводах
образуется ЭДС-напряжение. Если нагрузить
выводы любым сопративлением, потечёт
ток.

Внутреннее
сопротивление =0 :генератор напряжения.
И противно = бесконечности — генератор
тока. Чему учат или хотят ли учится?
Холостой ход — источник напряжения
(почти идеальный источник ЭДС)

короткое
замыкание — источник тока.

2.
При каких условиях электрические цепи
можно считать эквивалентными?

Эквивалентным
называется преобразование, при котором
напряжения и токи в частях схемы, не
подвергшихся преобразованию, не меняются

3.
Как пересчитать генератор с источником
напряжения в эквивалентный ему генератор
с источником тока и наоборот?

Определяем
внутренее сопротивление генератора
относительно участка цепи, где необходимо
определить ток. Для этого источники ЭДС
закорачиваются, а источники тока —
разрываются

Для
эквивалентного генератора напряжения
рассчитываем напряжение холостого
хода, то есть напряжение на том участке,
который рассматриваем. Для эквивалентного
генератора тока находим ток короткого
замыкания, закоротив исследуемый
участок. В обоих случаях можно применять
любой известный метод.

Находим
искомый ток по соответствующей формуле

4.
Какой режим работы генератора называется
согласованным? Чем он характерен?

Согласованным
называется режим, при котором мощность,
отдаваемая источником или потребляемая
приемником, достигает максимального
значения. Это возможно при определенном
соотношении (согласовании) параметров
электрической цепи, откуда и вытекает
название данного режима.

5.
Как экспериментально определить
параметры генератора с резистивным
внутренним сопротивлением: задающее
напряжение U0, задающий ток I0, внутренне
сопротивление Ri?

Включить
две разные нагрузки, измерить ток и
напряжение, в первом и во втором случае
и решить систему уравнений.

Метод эквивалентного генератора (источника)

Прежде, чем приступать к расчету методом эквивалентного генератора, необходимо знать, что, строго говоря, существуют две разновидности этого метода — Метод эквивалентного генератора напряжения и Метод эквивалетного генератора тока

Оба метода работают очень похоже. Во-первых, применяются только для расчета тока в одной ветви. Во-вторых, вся остальная цепь, относительно нужного участка заменятся на один элемент — источник напряжения или источник тока, каждый — со своим внутренним сопротивлением.

Рассмотрим оба этих метода подробнее

Метод эквивалентного генератора напряжения

Иногда в разной литературе называется «Теорема Тевенена», «Теорема Тевенина» и даже «Теорема Тевенена-Гельмгольца». По сути, это все одно и то же

Исходя из названия, очевидно, что мы используем источник напряжения. Значит, нам необходимо определить ЭДС этого источника и его внутренее сопротивление.

С внутренним сопротивлением все очень просто. Нам нужно именно сопротивление относительно того участка, ток в котором мы рассчитываем. Для этого все источники ЭДС заменятся закоротками, так как у них внутренее сопротивление равно нулю. Источники тока заменяются разрывом, так как их внутреннее сопротивление бесконечно.

Предположим, есть вот такая цепь:

Решение зада по электротехнике - Метод эквивалентного генератора

Нам нужно методом эквивалентного генератора определить ток через R3. Рассчитывая внутренее сопротивление генератора. закорачиваем источники ЭДС и разрываем источник тока. Получаем схему:

Решение зада по электротехнике - Метод эквивалентного генератора

Очевидно, общее сопротивлелние такой схемы Rэкв = R1+R2

Теперь необходимо рассчитать напряжение холостого хода генератора. Звучит сурово, но это просто напряжение на нужном нам участке цепи с убранной нагрузкой (в нашем случае — R3):

Решение зада по электротехнике - Метод эквивалентного генератора

Для этого можно возспользоываться абсолютно любым, известным вам способом — методом контурных токов, методом узловых потенциалов или непосредственным применением законов Кирхгофа.

После того, как напряжение холостого хода найдено, можно переходить к последнему этапу расчета — вычислению требуемого тока. Для этого, фактически, просто используется закон Ома для полной цепи:

Решение зада по электротехнике - Метод эквивалентного генератора

Здесь Uхх — напряжение холостого хода генератора, Rэкв — его внутреннее сопротивление, Rн — сопротивление нагрузки. Для нашего случая:

Решение зада по электротехнике - Метод эквивалентного генератора

Метод эквивалентного генератора тока

Иногда называется Теорема Нортона. Если вы разобрались с эквивалетным генератором напряжения, то здесь тоже все будет просто

Первый этап — вычисление внутреннего сопротивления генератора — ничем не отличается от того, что мы рассматривали выше. Так же разрываем нужную нам ветку и относительно нее находим сопротивление цепи, закорачивая ЭДС и разрывая источники тока.

Следующий шаг — определение тока короткого замыкания. Для этого участок, который мы рассматриваем, закорачивается и определяется ток через него любым удобным способом:

Решение зада по электротехнике - Метод эквивалентного генератора

Вот и все, можно определять нужный ток:

Решение зада по электротехнике - Метод эквивалентного генератора

Как и ранее, здесь Rэкв — внутренее сопротивление генератора, Rн — сопротивление нагрузки, Iкз — ток короткого замыкания генератора.

Для нашего случая:

Решение зада по электротехнике - Метод эквивалентного генератора

Кстати, внимательный читатель лекго узнает в последних формулах обыкновенный делитель тока

Подведем итоги, записав пошаговый алгоритм использования метода эквивалентного генератора:

  • Определяем внутренее сопротивление генератора относительно участка цепи, где необходимо определить ток. Для этого источники ЭДС закорачиваются, а источники тока — разрываются
  • Для эквивалентного генератора напряжения рассчитываем напряжение холостого хода, то есть напряжение на том участке, который рассматриваем. Для эквивалентного генератора тока находим ток короткого замыкания, закоротив исследуемый участок. В обоих случаях можно применять любой известный метод.
  • Находим искомый ток по соответствующей формуле
  • Разобравшись с принципом действия, вы теперь сможете с лучшим пониманием рассмотреть наш пример решения методом эквивалентного генератора

    И последнее — указанные методы абсолютно так же работают не только с постоянным током, но и для цепей переменного тока. Разумеется, там нужно использовать комплексные значения токов, напряжений и сопротивлений.

    Понравилась статья? Поделить с друзьями:
  • Как правильно составить договор купли продажи на корову
  • Как найти человека по паспорту беларусь
  • Как составить претензию на жэу
  • Как найти терпение на детей
  • Как найти улучшенный доспех школы медведя