Для рассмотрения характеристик электрических параметров рассмотрим назначение приборов:
- сила тока в цепи определяется амперметров, который подключается последовательно с соблюдением полярности;
- напряжение на участке цепи измеряется вольтметром, который подключается параллельно к тому участку или прибору, на котором нужно узнать разность потенциалов или напряжения;
- на деревянной изолирующей подставке — устройство, имеющее провода с различными значениями сопротивления;
- значение тока можно регулировать реостатом.
Рис. (1). Цепь с возможностью выбора проводника
Определим физические параметры (величины), влияющие на значение сопротивления проводника.
Эксперимент (1). Физическая величина — длина (прямая пропорциональность).
Эксперимент (2). Физическая величина — площадь поперечного сечения (обратная пропорциональность).
Эксперимент (3). Материал проводника, физическая величина — удельное сопротивление проводника (прямая пропорциональность).
Примечание: «эксперимент» следует понимать как включение в электрическую цепь проводников с конкретными одинаковыми и различающимися физическими параметрами и сравнение значений сопротивлений данных проводников.
Впервые зависимость сопротивления проводника от вещества, из которого он изготовлен, и от длины проводника обнаружил немецкий физик Георг Ом. Он установил:
Сопротивление проводника напрямую зависит от его длины и материала, но обратным образом зависит от площади поперечного сечения проводника.
Обрати внимание!
Из этого можно сделать вывод: чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.
Удельное сопротивление проводника зависит от строения вещества. Электроны при движении внутри металлов взаимодействуют с атомами (ионами), находящимися в узлах кристаллической решётки. Чем выше температура вещества, тем сильнее колеблются атомы и тем больше удельное сопротивление проводников.
Удельное электрическое сопротивление — физическая величина (rho), характеризующая свойство материала оказывать сопротивление прохождению электрического тока:
ρ=R⋅Sl
, где удельное сопротивление проводника обозначается греческой буквой (rho) (ро), (l) — длина проводника, (S) — площадь его поперечного сечения.
Определим единицу удельного сопротивления. Воспользуемся формулой
ρ=R⋅Sl
.
Как известно, единицей электрического сопротивления является (1) Ом, единицей площади поперечного сечения проводника — (1) м², а единицей длины проводника — (1) м. Подставляя в формулу, получаем:
, т.е. единицей удельного сопротивления будет
Ом⋅м
.
На практике (например, в магазине при продаже проводов) площадь поперечного сечения проводника измеряют в квадратных миллиметрах, В этом случае единицей удельного сопротивления будет:
, т.е.
Ом⋅мм2м
.
В таблице приведены значения удельного сопротивления некоторых веществ при (20) °С.
Удельное сопротивление увеличивается пропорционально температуре.
При нагревании колебания ионов металлов в узлах металлической решётки увеличиваются, поэтому свободного пространства для передвижения электронов становится меньше. Электроны чаще отбрасываются назад, поэтому значение тока уменьшается, а значение сопротивления увеличивается.
Обрати внимание!
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. А это значит, что медь и серебро лучше остальных проводят электрический ток.
При проводке электрических цепей, например, в квартирах не используют серебро, т.к. это дорого. Зато используют медь и алюминий, так как эти вещества обладают малым удельным сопротивлением.
Порой необходимы приборы, сопротивление которых должно быть большим. В этом случаем необходимо использовать вещество или сплав с большим удельным сопротивлением. Например, нихром.
Полиэтилен, дерево, стекло и многие другие материалы отличаются очень большим удельным сопротивлением. Поэтому они не проводят электрический ток. Такие материалы называют диэлектриками или изоляторами.
Очень часто нам приходится изменять силу тока в цепи. Иногда мы ее увеличиваем, иногда уменьшаем. Водитель трамвая или троллейбуса изменяет силу тока в электродвигателе, тем самым увеличивая или уменьшая скорость транспорта.
Реостат — это резистор, значение сопротивления которого можно менять.
Реостаты используют в цепи для изменения значений силы тока и напряжения.
Реостат на рисунке состоит из провода с большим удельным сопротивлением (никелин, нихром), по которому передвигается подвижный контакт (C) по длине провода, плавно изменяя сопротивление реостата. Сопротивление такого реостата пропорционально длине провода между подвижным контактом (C) и неподвижным (A). Чем длиннее провод, тем больше сопротивление участка цепи и меньше сила тока. С помощью вольтметра и амперметра можно проследить эту зависимость.
Рис. (2). Реостат с подвижным контактом
На школьных лабораторных занятиях используют переменное сопротивление — ползунковый реостат.
Рис. (3). Ползунковый реостат
Он состоит из изолирующего керамического цилиндра, на который намотан провод с большим удельным сопротивлением. Витки проволоки должны быть изолированы друг от друга, поэтому либо проволоку обрабатывают графитом, либо оставляют на проволоке слой окалины. Сверху над проволочной обмоткой закреплен металлический стержень, по которому перемещается ползунок. Контакты ползунка плотно прижаты в виткам и при движении изолирующий слой графиты или окалины стирается, и тогда электрический ток может проходить от витков проволоки к ползунку, через него подводиться к стержню, имеющему на конце зажим (1).
Для соединения реостата в цепь используют зажим (1) и зажим (2). Ток, поступая через зажим (2), идёт по никелиновой проволоке и через ползунок подаётся на зажим (1). Перемещая ползунок от (2) к (1), можно увеличивать длину провода, в котором течёт ток, а значит, и сопротивление реостата.
В электрических схемах реостат изображается следующим образом:
Как и любой электрический прибор, реостат имеет допустимое значение силы тока, свыше которого прибор может перегореть. Маркировка реостата содержит диапазон его сопротивления и максимальное допустимое значение силы тока.
Обрати внимание!
Сопротивление реостата нужно учитывать в параметрах электрической цепи. При минимальных значениях сопротивления ток в цепи может вывести из строя амперметр.
Существуют реостаты, в которых переключатель подключается на проводники заданной длины и сопротивления: каждая спираль реостата имеет определённое сопротивление. Поэтому плавно изменять силу тока с помощью такого прибора не получится.
Рис. (4). Реостат с переключением
Сопротивление проводника:
R=ρ⋅lS
Из этой формулы можно выразить и другие величины:
Источники:
Рис. 1. Цепь с возможностью выбора проводника. © ЯКласс.
Рис. 4. «File:Rheostat hg.jpg» by Hannes Grobe (talk) is licensed under CC BY 3.0
Общие сведения
Упорядоченное движение носителей заряда в физическом теле называют электрическим током. Ими могут быть различные элементарные частицы. Например, в проводниках — электроны, электролитах — ионы. В состоянии покоя, то есть когда на тело не оказывается постороннее воздействие, движение носителей хаотичное. В результате происходит компенсирование зарядов, и ток не возникает. Если же к веществу приложить силу или деформировать его, направление движения частиц станет упорядоченным и возникнет электрический ток.
Все существующие вещества характеризуются физическими и химическими свойствами. Среди них и проводимость. Это электрическая величина, определяющая способность тела пропускать через себя ток. По своему строению все материалы делятся на 3 класса:
- проводники — вещества, не оказывающие сопротивление прохождению тока;
- полупроводники — тела, в которых величина проводимости зависит от чистоты материала, температуры и вида воздействующего излучения;
- диэлектрики — вещества, практически не проводящие электрический ток.
Величина, обратная проводимости, называется сопротивлением. Это параметр, который характеризует способность материала пропускать через себя электрический ток без потерь. Другими словами, для идеального тела количество электричества, поступившего и снятого с него, будет одинаковым.
За единицу измерения силы тока принят Ампер, показывающий, какое количество электричества проходит через поперечное сечение проводника за одну секунду: I = q / t = кулон / секунду = ампер.
Электрическое сопротивление тела зависит от природы носителей заряда и геометрии материала. Это скалярный параметр. При его расчёте используют понятие удельное сопротивление. Выражают его в омах, умноженных на метр, и обозначают греческой буквой р. По физическому смыслу величина является обратным параметром удельной проводимости.
С ней, кроме сопротивления и силы тока, тесно связано и напряжение. С физической точки зрения, это работа, которую выполняет электрическое поле при переносе единичного заряда из одной точки в другую. В Международной системе величин напряжение принято обозначать в вольтах: U = f2- f1, где f — значения потенциала заряда в точках.
Формула сопротивления
Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.
Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.
Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.
Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.
Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:
- олово — 9,9 * 10-8 Ом * мм2/м;
- медь — 0,01724 Ом * мм2/м;
- алюминий — 0,0262 Ом * мм 2/м;
- железо — 0,098 * Ом * мм2/м;
- золото — 0,023 Ом * мм2/м.
Для проводников характерно увеличение сопротивления при росте температуры. Это связано с колебаниями атомов. В то же время с ростом температуры проводимость в полупроводниках и диэлектриках возрастает из-за увеличения концентрации носителей заряда.
Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.
Нахождение параметра
Найти сопротивление — значит, рассчитать потери тока. Существует 2 принципиально разных подхода к расчёту. В одном случае он ведётся для электрической цепи, а в другой — для материала. Если во втором случае всё предельно понятно, используется одна формула, в которую подставляют размеры тела и табличное значение удельной проводимости, то для электрической цепи не так всё просто.
В цепи может встречаться 3 вида соединения элементов:
- Параллельное. При таком соединении цепь разветвляется, то есть появляются ветви, по которым течёт ток. Ветви могут пересекаться между собой.
- Последовательное. Схема соединения представляет единую цепь, в которой нет разветвлений.
- Смешанное. Состоит из комбинированного соединения, включающего комбинации из параллельного и последовательного подключения.
Вычисление сопротивления для каждого типа соединения имеет особенности. При последовательном включении общее значение определяется путём простого складывания: R = r1 + r2 +…+ rn. При параллельном же соединении полное сопротивление цепи будет меньше самого малого из сопротивлений ветвей. Для такого включения верна формула: 1 / R = 1 / r1 + 1 / r2 +…+ 1 / rn.
Принцип расчёта смешанного соединения построен на группировке электрической цепи по виду подключения элементов. Определение параметра выполняют поочерёдно. Сначала высчитывают сопротивление одного узла, включающего однотипное соединение, затем к результату добавляют следующий элемент. Эту операцию повторяют до тех пор, пока не останется один элемент.
В радиотехнике деталь, применяющуюся в качестве сопротивления, называют резистором. С его помощью обозначают и так называемый эквивалентный параметр, используемый при расчётах электрических цепей. Его вводят, если нужно определить, например, мощность источника тока, выходное напряжение.
Таким образом, чтобы правильно посчитать сопротивление, нужно учитывать несколько факторов. При этом нужно помнить о единой системе измерений. Следует придерживаться СИ. Все величины, используемые в формулах, должны подставляться в стандартных единицах измерения. Почти во всех таблицах значение удельного сопротивления даётся в мм2/м, что связано с измерением площади.
Примеры решения задач
Решение примеров позволяет лучше разобраться в теме. При этом не только быстрее запоминаются формулы, но и становится понятным, где можно использовать полученные знания. Существует ряд заданий для самостоятельной проработки. Вот некоторые из них:
- На катушку электромагнита намотан медный провод сечением 0,003 мм2 длиною 200 метров. Найти сопротивление и массу обмотки. Для решения задачи нужно воспользоваться справочником по электрофизике. Из него взять значение удельного сопротивления меди и её плотность. Согласно справочным данным: p = 1,7 * 10−8 Ом * м, а V = 8900 кг/м3. В первом действии нужно определить массу. Для этого выразить её из формулы f = m / V и подставить заданные значения: m = V * f = l * S * f = 2 * 10|2 м * 3 * 10-8 м2 8,9 * 103 кг/м3 = 53,4 грамма. Теперь можно определить искомое сопротивление по формуле: R = (f * l) / S = (0,017 (Ом * мм2) / м * 200 м) / 0,03 мм2 = 3,4 / 0,003 = 113 Ом.
- Нужно изготовить провод длиною 100 метров и сопротивлением 1 Ом. Определить, из какого материала вес изделия будет меньше: меди или алюминия. Нужно вычислить, чему будет равно отношение масс: MCu / MAl. Из справочника взять данные: fAl = 2700 кг/м3; fCu = 8900 кг/м3; pAl = 2,8 * 10−8 Ом/м; pCu = 1,7 10−8 Ом/м. Для решения нужно выразить массы через плотность, длину и площадь поперечного сечения: m = f *l * S. Длина одинаковая, значит, отношения масс примет вид: (fCu * SCu) / (fAl * SAl). Площадь поперечного сечения будет вычисляться из правила нахождения сопротивления. Конечная формула примет вид: MCu / Mal = (fCu * RCu) / (fAl * RAl) = (8900 * 1,7) / (2700 * 2,8) = 2. Изделие из алюминия будет весить в 2 раза меньше.
- Имеется электрическая цепь, подключённая к сети 120 В. Если к ней подключить 2 последовательных сопротивления ток будет равен 3 A, а если параллельно — 16 А. Найти сопротивление. Задача решается с помощью закона Ома и формул вычисления сопротивления цепи: Iпосл = U / (r1 + r2); Iпар = U * (r1 + r2) / r1 * r2. Из них можно выразить искомые величины: r1 + r2 = U /Iпосл и r1 * r2 = U2 / Iпар * Iпос. Выполнив вычисления, можно найти, что r1 = 30 Ом, r2 = 10 Ом.
Решение заданий по теме обычно не вызывает трудностей. Нужно лишь внимательно переводить единицы измерения, знать формулы и иметь радиофизический справочник.
Активное сопротивление любого проводника определяется:
где ρ = 1,7∙10-8 Ом∙м – удельная проводимость материала (в данном случае — меди),
l – длина проводника, м,
S – площадь поперечного сечения проводника, м2.
Определим длину проводника. Для этого рассчитаем длину витка и умножим её на число витков. При этом длина витка будет равна длине окружности:
Определим площадь поперечного сечения проводника. В реальности проводник имеет круглое сечение, Maxwell же рассчитывает потери для всей области занятой катушкой, т.е. предполагается, что проводники полностью заполняют область. В случае, если необходим точный расчёт для катушек, намотанных проводом круглого сечения, каждый проводник катушки должен быть прорисован отдельным объектом.
Исходя из вышесказанного, будем условно считать, что катушка намотана проводником прямоугольного сечения. В этом случае площадь поперечного сечения проводника будет определяться:
Определим сопротивление обмотки:
Построим геометрию модели из Примера 1 в 3D. Для этого нажимаем ПКМ на проекте модели 2D примера 1 и выбираем Create 3D Design. После чего модель будет автоматически преобразована в 3D.
1. Создадим сечение для задания возбуждения катушки.
Для этого выделим объект катушки и применим к нему операцию «сечение» (меню Modeler > Surface > Section, выбираем плоскость сечения YZ). Получим объект, состоящий из двух сечений. Для задания возбуждения необходимо одно сечение, поэтому разделим получившийся объект (меню Modeler > Boolean > Separate Bodyes). Второе сечение не нужно, и его можно удалить.
Последнему сечению назначим величину тока, равную 10 ампер-виткам (ПКМ по сечению > Assign Excitation > Current > Value), тип обмотки – распределённая (Stranded).
2. Задание граничных условий.
В 3D постановке задачи в Maxwell по умолчанию действует условие обнуления поля на границах модели. В отличии от 2D постановки задачи открытых границ (условие Balloon) в 3D нет. Поэтому расчётную область иногда приходится увеличивать до тех пор, пока результат расчёта модели не перестанет ощутимо изменяться.
Создадим область для расчёта: Create Region (Создание региона), в открывшемся окне выберем Pad Individual Direction и по каждой оси отступим 40% от объектов модели:
Граничные условия для модели не задаём, т.к. действует граничное условие по умолчанию (присваивается нулевая величина поля на границе расчётной модели).
3. Создание сетки элементов и задания на расчёт.
Далее – создаём сетку конечных элементов, предварительно выделив все объекты модели (Assign Mesh Operation > Inside Selection > Length Based… )
Создаём новое задание на расчёт с параметрами по умолчанию (ПКМ на Analysis > Add Solution Setup)
Запускаем задачу на расчёт.
Рисунок П.2.1 – 3D модель рассчитываемой катушки
4. Расчёт омических потерь катушки.
Запустим калькулятор поля (ПКМ на Field Overlays > Calculator…)
В калькуляторе поля (Рисунок П.2.2), необходимо задать следующее выражение:
Рисунок П.2.2 – Калькулятор поля Maxwell
где V – объём, в котором рассчитываются потери (обмотка);
— вектор плотности тока в обмотке;
σ = 1/ρ = 58∙106 См/м – удельная проводимость материала (в данном случае — меди).
Запишем искомое выражение в калькуляторе поля, набрав следующую последовательность команд:
Quantity > J | Выбираем вектор плотности тока |
Push | Дублируем |
Number > Scalar > Value 58000000 | Вводим величину удельной проводимости меди |
/ | Делим плотность тока на проводимость |
Dot | Перемножаем |
Geometry > Volume > Coil | Выбираем объём катушки (вместо Coil выбрать название катушки) |
Интегрируем выражение по объёму. |
В строке выражений получится:
Scl : Integrate(Volume(Coil), Dot(<Jx,Jy,Jz>, /(<Jx,Jy,Jz>, 58000000)))
Получившееся выражение сохраняем в качестве переменной (Named Expression): PowerLoss (кнопка Add..)
Разделим получившиеся потери на квадрат тока ( I = 1 А ) в проводнике (выбираем PowerLoss в списке переменных > Copy to Stack > Eval > Number > Scalar > 1 > / (операция деления).
Получим результат: R = 0,022687 Ом.
Сравним с теоретическим результатом: R = 0,02244 Ом, погрешность составила: 0,1%.
Примечание: Нельзя забывать, что сечение электропроводящего материала в катушках, намотанных проводником круглого сечения, не будет соответствовать реальному сечению катушки. Поэтому нельзя в модели строить сечение катушек по реальным данным, т.к. это приведёт к уменьшению активного сопротивление катушки. В модели сечение катушки должно совпадать с сечением электропроводящего материала (медь, алюминий). Это сечение можно рассчитать, перемножив сечение провода на число витков в катушке.
Автор материалов: Drakon (С) 2014. Редактор: Админ
Онлайн калькулятор закона Ома позволяет определять связь между силой тока, электрическим напряжением и сопротивлением проводника в электрических цепях.
Для расчета, вам понадобится воспользоваться отдельными графами:
— сила тока вычисляется в Ампер, исходя из данных напряжения (Вольт) и сопротивления (Ом);
— напряжение вычисляется в Вольт, исходя из данных силы тока (Ампер) и электрического сопротивления (Ом);
— электрическое сопротивление вычисляется в Ом, исходя из данных силы тока (Ампер) и напряжения (Вольт);
— мощность вычисляется в Ватт, исходя из данных силы тока (Ампер) и напряжения (Вольт).
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»
Смотрите также
Загрузить PDF
Загрузить PDF
Полное сопротивление, или импеданс, характеризует сопротивление цепи переменному электрическому току. Данная величина измеряется в омах. Для вычисления полного сопротивления цепи необходимо знать значения всех активных сопротивлений (резисторов) и импеданс всех катушек индуктивности и конденсаторов, входящих в данную цепь, причем их величины меняются в зависимости от того, как меняется проходящий через цепь ток. Импеданс можно рассчитать при помощи простой формулы.
Формулы
- Полное сопротивление Z = R или XLили XC (если присутствует что-то одно)
- Полное сопротивление (последовательное соединение) Z = √(R2 + X2) (если присутствуют R и один тип X)
- Полное сопротивление (последовательное соединение) Z = √(R2 + (|XL — XC|)2) (если присутствуют R, XL, XC)
- Полное сопротивление (любое соединение) = R + jX (j — мнимое число √(-1))
- Сопротивление R = I / ΔV
- Индуктивное сопротивление XL = 2πƒL = ωL
- Емкостное сопротивление XC = 1 / 2πƒL = 1 / ωL
-
1
Импеданс обозначается символом Z и измеряется в омах (Ом). Вы можете измерить импеданс электрической цепи или отдельного элемента. Импеданс характеризует сопротивление цепи переменному электрическому току. Есть два типа сопротивления, которые вносят вклад в импеданс:[1]
- Активное сопротивление (R) зависит от материала и формы элемента. Наибольшим активным сопротивлением обладают резисторы, но и другие элементы цепи обладают небольшим активным сопротивлением.
- Реактивное сопротивление (X) зависит от величины электромагнитного поля. Наибольшим реактивным сопротивлением обладают катушки индуктивности и конденсаторы.
-
2
Сопротивление — это фундаментальная физическая величина, описываемая законом Ома: ΔV = I * R.[2]
Эта формула позволит вам вычислить любую из трех величин, если вы знаете две другие. Например, чтобы вычислить сопротивление, перепишите формулу так: R = I / ΔV. Вы также можете измерить сопротивление при помощи мультиметра.- ΔV — это напряжение (разность потенциалов), измеряемое в вольтах (В).
- I — сила тока, измеряемая в амперах (А).
- R — это сопротивление, измеряемое в омах (Ом).
-
3
Реактивное сопротивление имеет место только в цепях переменного тока. Как и активное сопротивление, реактивное сопротивление измеряется в омах (Ом). Есть два типа реактивного сопротивления:
- Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
Чем быстрее меняется направление тока, тем больше индуктивное сопротивление. - Емкостным сопротивлением XC обладают конденсаторы, которые накапливают электрический заряд. При изменении направления тока в цепи конденсатор неоднократно обнуляет и накапливает электрический заряд. Чем дольше конденсатор заряжается, тем больше емкостное сопротивление.[4]
Поэтому чем быстрее меняется направление тока, тем меньше емкостное сопротивление.
- Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
-
4
Вычислите индуктивное сопротивление. Это сопротивление прямо пропорционально быстроте изменения направления тока, то есть частоты тока. Эта частота обозначается символом ƒ и измеряется в герцах (Гц). Формула для расчета индуктивного сопротивления: XL = 2πƒL, где L — индуктивность, измеряемая в генри (Гн).[5]
- Индуктивность L зависит от количества витков в катушке индуктивности.[6]
Также вы можете измерить индуктивность. - Если вы знакомы с единичной окружностью, то представьте, что один цикл переменного тока равен одному полному вращению этой окружности (на 2π радиан). Если умножить это значение на ƒ, которая измеряется в герцах (единиц в секунду), вы получите результат, измеряемый в радианах в секунду. Это единица измерения угловой скорости, которая обозначается через ω. Вы можете переписать формулу для вычисления индуктивного сопротивления так: XL=ωL[7]
- Индуктивность L зависит от количества витков в катушке индуктивности.[6]
-
5
Вычислите емкостное сопротивление. Это сопротивление обратно пропорционально быстроте изменения направления тока, то есть частоты тока. Формула для вычисления емкостного сопротивления: XC = 1 / 2πƒC.[8]
С — это емкость конденсатора, измеряемая в фарадах (Ф).- Вы можете измерить электрическую емкость.
- Эту формулу можно переписать так: XC = 1 / ωL (объяснения см. выше).
Реклама
-
1
Если цепь состоит исключительно из резисторов, то импеданс вычисляется следующим образом. Сначала измерьте сопротивление каждого резистора или посмотрите значения сопротивления на схеме цепи.[9]
- Если резисторы соединены последовательно, то полное сопротивление R = R1 + R2 + R3…
- Если резисторы соединены параллельно, то полное сопротивление R = 1 / R1 + 1 / R2 + 1 / R3 …
-
2
Сложите одинаковые реактивные сопротивления. Если в цепи присутствуют исключительно катушки индуктивности или исключительно конденсаторы, то полное сопротивление равно сумме реактивных сопротивлений. Вычислите его следующим образом:[10]
- Последовательное соединение катушек: Xtotal = XL1 + XL2 + …
- Последовательное соединение конденсаторов: Ctotal = XC1 + XC2 + …
- Параллельное соединение катушек: Xtotal = 1 / (1/XL1 + 1/XL2 …)
- Параллельное соединение конденсаторов: Ctotal = 1 / (1/XC1 + 1/XC2 …)
-
3
Вычтите индуктивные и емкостные сопротивления, чтобы получить общее реактивное сопротивление. Так как при возрастании одного типа сопротивления другое уменьшается, то они, как правило, компенсируют друг друга. Чтобы найти общее реактивное сопротивление, вычтите меньшее сопротивление из большего.[11]
- Или воспользуйтесь формулой: Xtotal = |XC — XL|
-
4
Вычислите импеданс по активному и реактивному сопротивлениям в последовательной цепи. Нельзя просто сложить эти величины, так как они меняются с течением времени, но достигают максимальных значений в разное время.[12]
Поэтому воспользуйтесь формулой:Z = √(R2 + X2).[13]
- Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
[15]
- Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
-
5
Вычислите импеданс по активному и реактивному сопротивлениям в параллельной цепи. В этом случае используются комплексные числа (это единственный способ вычислить полное сопротивление в параллельной цепи, в которой есть как активное, так и реактивное сопротивление).
- Z = R + jX, где j — мнимая единица: √(-1). Используйте j вместо i, чтобы не перепутать мнимую единицу (j) с силой тока (I).
- Складывать эти числа нельзя. Например, полное сопротивление может быть представлено так: 60 Ом + j120 Ом.
- Если у вас есть две последовательные цепи, то вы можете отдельно сложить натуральные числа и отдельно — комплексные. Например, если Z1 = 60 Ом + j120 Ом, а к этой цепи последовательно подключен резистор с Z2 = 20Ω, то Ztotal = 80Ω + j120Ω.
Реклама
Советы
- Общее сопротивление (активное и реактивное сопротивления) также может быть выражено через мнимое число.
Реклама
Об этой статье
Эту страницу просматривали 169 017 раз.