Как найти сопротивление переменного резистора

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

  • Особенности измерения сопротивления резистора мультиметром
  • Как визуально определить работоспособность резистора
  • Как настроить тестер для проверки резисторов
  • Как определить номинал резистора по маркировке
  • Таблица кодов для прецизионных резисторов
  • Как узнать сопротивление постоянного резистора
  • Как узнать сопротивление переменного резистора
  • Видео: как проверить резистор мультиметром

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Как проверить резистор тестером

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Как проверить резистор тестером

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Как прозвонить резистор

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
10 124 26 182 42 267 58 392 74 576 90 845
11 127 27 187 43 274 59 402 75 590 91 866
12 130 28 191 44 280 60 412 76 604 92 887
13 133 29 196 45 287 61 422 77 619 93 909
14 137 30 200 46 294 62 432 78 634 94 931
15 140 31 205 47 301 63 443 79 649 95 953
16 143 32 210 48 309 64 453 80 665 96 976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверить сопротивление резистора

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Как проверить сопротивление переменного резистора

Переменный резистор

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром


Была ли статья полезна?

Да

Нет

Оцените статью

(0)

Что вам не понравилось?


Другие материалы по теме

Что такое резистор

16.04.2019

Что такое резистор

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Как подобрать резистор по назначению и принципу работы

19.04.2018

Как подобрать резистор по назначению и принципу работы

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Как проверить диодный мост мультиметром

11.03.2019

Как проверить диодный мост мультиметром

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Как правильно померить сопротивление мультиметром

Содержание

  • 1 Природа электрического сопротивления
  • 2 Советы по измерению сопротивления
  • 3 Для чего проверяют сопротивление
  • 4 Подготовка к проведению измерений
  • 5 Проведение измерения сопротивления
  • 6 Определение сопротивления переменного резистора
  • 7 Измерение резисторов с небольшим номиналом
  • 8 Определение сопротивления изоляции проводов
  • 9 Проверка ТЭНа
  • 10 Видео по теме

Используя мультиметр, можно узнать различные электрические характеристики, в том числе сопротивление. Но необходимо уметь правильно использовать прибор и знать особенности его применения в различных ситуациях, чтобы определять значение с требуемой точностью.

Использование мультиметра для проверки радиоэлементов

Использование мультиметра для проверки радиоэлементов

Природа электрического сопротивления

При наличии разности потенциалов происходит упорядоченное движение электронов, которое называется электрическим током. При использовании разнообразных проводников одно и то же напряжение позволяет получить различную силу тока. Это связано с тем, что у каждого из них имеется своё сопротивление. Оно зависит не только от вида материала, но и от длины проводника, его поперечного сечения, температурных условий и других факторов.

Измерение сопротивления между определёнными точками электрической сети позволяет получить важную информацию о её функционировании. Сопротивление измеряют в Омах. Если имеется напряжение в 1 Вольт и оно создаёт ток в 1 Ампер, то сопротивление проводника в этой ситуации будет равно 1 Ом. Для измерения можно использовать специализированный прибор — омметр, но более популярным является применение для этой цели мультиметра.

Существует два типа таких устройств — цифровые и аналоговые. Первые показывают полученное значение на дисплее, а вторые — с помощью стрелки и циферблата. Каждый из этих типов устройств имеет свои достоинства. У аналоговых мультиметров они такие:

  • Скорость работы при выполнении измерений в больших объемах.
  • Возможность проведения измерений при низкой температуре воздуха, вплоть до –30 градусов.
  • Отображение динамики изменения измеряемого показателя.
  • В процессе измерений тока и напряжения видно наличие паразитных пульсаций.
  • Аналоговый мультиметр способен надёжно работать в условиях высокочастотных помех. Для цифрового в такой ситуации потребуется специальная защита.
  • Прибор потребляет энергию от встроенного источника питания только при измерении сопротивления. При измерении напряжения и тока она ему не нужна.

Аналоговый мультиметр

Аналоговый мультиметр

Плюсами цифровых тестеров являются:

  • Высокая точность измерений.
  • Многофункциональность.
  • Не нуждаются в обязательной подстройке нуля.
  • Диапазон измерений можно выбирать вручную или автоматически.
  • Заряд батареи не влияет на точность показаний. Если заряд батареи опустится до критически низкого значения, то на дисплее появится специальный значок. Пока он присутствует на дисплее, показания нельзя считать точными, но пользователю будет известно об этом.
  • Наличие функции автоматического определения полярности. Если щупы подключены неправильно, на экране отображаются отрицательные значения.
  • Наличие возможности записи в память результатов измерений, а также синхронизации с ПК.

Цифровые устройства получают всё большее распространение по сравнению с аналоговыми.

Основные блоки цифрового мультиметра

Основные блоки цифрового мультиметра

Советы по измерению сопротивления

Чтобы получить точное значение сопротивления с помощью мультиметра, необходимо соблюдать правила измерений:

  • Нужно правильно выбрать режим работы устройства. Когда проводятся измерения сопротивления, то нельзя устанавливать мультиметр в положение, предназначенное для определения значений тока или напряжения. Неправильно выбранный рабочий режим может привести к поломке прибора.
  • Рекомендуется в процессе работы использовать перчатки, не проводящие ток. В противном случае полученные результаты измерений могут быть менее точными. В некоторых случаях может возникнуть опасность для работника.
  • При прикосновении щупами контакт должен быть качественным. Чтобы обеспечить хороший контакт, к щупам подсоединяют небольшие зажимы или прикрепляют иглы. Выбор делают в зависимости от особенностей проводимых измерений. При необходимости щупы следует зачистить.
  • Измерение сопротивления проводят только на отключённых от электропитания схемах.
  • Перед проведением измерений следует хотя бы приблизительно определить диапазон ожидаемых значений, чтобы правильно его выставить.
  • Работать нужно только с исправным прибором. Если у него есть механическое повреждение или повреждена изоляция щупов, это может быть опасно.
  • При измерении элементов на плате рекомендуется предварительно выпаять хотя бы один конец. Если так не сделать, то на результат измерения сопротивления могут повлиять электрические характеристики других элементов схемы.

Щупы для мультиметра

Щупы для мультиметра

Для чего проверяют сопротивление

Часто необходимость проверить сопротивление мультиметром возникает при определении работоспособности схемы. В этом случае следует убедиться, что её характеристики соответствуют нужным. Обычно проверка сопротивления осуществляется на завершающем этапе. Сначала производят визуальный осмотр с целью определения наличия повреждённых или сгоревших деталей.

Проверяя работоспособность схемы, нужно сначала убедиться в исправности транзисторов, диодов, конденсаторов и других элементов. Далее переходят к измерению сопротивления. Если оно соответствует ожидаемым характеристикам, то проверку можно считать пройденной успешно.

Перед тем как померить сопротивление резистора мультиметром, нужно узнать его номинальное значение. В этом поможет маркировка, присутствующая на корпусе. Номинал обозначается цветными окружностями или цифрами и буквами. Чтобы расшифровать обозначение, следует воспользоваться специальным справочником.

Маркировка резисторов

Маркировка резисторов

Подготовка к проведению измерений

Перед тем как измерить сопротивление мультиметром, следует выбрать нужный режим. Для этого надо повернуть переключатель, находящийся в центре панели прибора так, чтобы он указывал на соответствующий значок. Сопротивление на мультиметре обозначается греческой буквой Ω.

Как правило, знак сопротивления находится около целого ряда цифр. Они обозначают максимальные значения возможных диапазонов измерений. На некоторых моделях мультиметров цифры могут отсутствовать. Это означает, что прибор способен в автоматическом режиме определить оптимальный диапазон измерений.

Обозначение сопротивления на разных моделях мультиметров

Обозначение сопротивления на разных моделях мультиметров

Если ожидаемое значение сопротивления известно, то требуется выбрать ближайшее большее значение. В том случае, когда нужных данных нет, сначала устанавливают максимальное значение и при необходимости переходят к меньшему.

Для работы необходимо подключить щупы. Используются чёрный и красный. Первый устанавливают в разъём с надписью COM, второй — в соседний. Разъём с надписью 10 или 20 Ампер предназначен для измерения силы тока и при работе с сопротивлением не применяется.

Гнезда для подсоединения щупов

Гнезда для подсоединения щупов

Иногда мастера интересует не точное значение сопротивления, а наличие или отсутствие обрыва. В этом случае переключатель режимов нужно установить так, чтобы он указывал на обозначение диода (треугольник и вертикальная черта у его угла). Таким образом будет включён режим, с помощью которого можно прозвонить радиоэлемент.

Режим прозвонки

Если на дисплее при использовании режима прозвонки отображается «1», то это указывает на бесконечно большое значение сопротивления. Следовательно, цепь разорвана. Наличие какого-либо числового значения свидетельствует о том, что обрыва нет.

Проведение измерения сопротивления

Чтобы замерить сопротивление мультиметром, необходимо выполнить следующие шаги:

  1. Прибор выставить в режим измерения сопротивления и выбрать нужный диапазон.
  2. Вставить щупы в соответствующие гнёзда.
  3. Щупами прикоснуться к выводам резистора.
  4. Значение на дисплее следует сравнить с номинальным. При этом нужно учитывать погрешность измерения и допуски, относящиеся к рассматриваемой детали.
  5. Измерение сопротивления резистора

Перед тем как проверить сопротивление резистора мультиметром на плате без выпаивания, нужно убедиться, что между точками контактов с щупами нет шунтирующих соединений. Для этого следует внимательно изучить проверяемый участок схемы.

Измерение сопротивления резистора

Измерение сопротивления резистора

В некоторых случаях измерение сопротивления резистора мультиметром может показать результат меньше ожидаемого. Причиной этого является межвитковой замыкание резистора.

Определение сопротивления переменного резистора

Иногда используются резисторы, в которых можно установить любое необходимое значение в заданном диапазоне. Для этой цели пользуются ручкой регулировки. Такой резистор обычно имеет три вывода. Сопротивление между первым и третьим выводом является постоянной величиной, а между 2 и 1 или 2 и 3 будет меняться в соответствии с положением ручки регулировки.

Переменный резистор

Переменный резистор

Измерение сопротивления переменного резистора мультиметром выполняется следующим образом:

  1. Нужно провести измерения между выводами 1 и 3. Значение сопротивления в этом случае должно равняться диапазону принимаемых значений.
  2. Далее следует проверить сопротивление тестером между любой из пар: 2 и 1 или 2 и 3. Щупы прикладывают к контактам и вращают ручку регулировки резистора. Показатели на дисплее должны равномерно уменьшаться или увеличиваться от нуля до номинального значения.

Если полученные значения соответствуют характеристикам детали, то она прошла проверку. В противном случае резистор является неисправным. Чаще всего исчезает контакт токосъемника. В этом случае при проверке на дисплее отображается значок бесконечности.

Измерение резисторов с небольшим номиналом

При использовании мультиметра при измерении сопротивления возможна погрешность, достигающая 10% от полученного результата. При небольших номиналах это может быть слишком много. Например, стоит учитывать, что щупы сами имеют сопротивление величиной 0.3–0.7 Ом. В таком случае выгодно применять особую методику проведения процедуры. Далее будет рассказано, как замерить сопротивление небольшого номинала на мультиметре.

Если ожидается, что величина сопротивления составит примерно 1.5 Ома, то необходимо перед измерением создать цепь как на рисунке ниже. В указанном случае потребуется приготовить ещё один резистор на 2.7 Ома с погрешностью, не превышающей 0.05%. У деталей с такой точностью в маркировке присутствует значок в виде окружности серебристого цвета. Эти два резистора соединяют последовательно.

Схема используемая для измерения небольших сопротивлений

Схема, используемая для измерений небольших сопротивлений

Далее необходимо предпринять следующие действия:

  1. Резисторы запитывают от аккумулятора на 12 В. Это напряжение доступно, например, при использовании компьютерного блока питания или автомобильной батареи.
  2. На исследуемом резисторе измеряют падение напряжения. Мультиметр при этом имеет точность до 0.1 мВ.
  3. Дальше на основе применения закона Ома проводят вычисления, в результате которых будет получено определенное сопротивление.

Согласно закону Ома в описанной выше схеме U = U1 + U2. При этом U1 — это падение напряжения на эталонном резисторе, а U2 — на том, который требуется измерить. Нам известно, что U = 12 В, тогда U2 = 12 – U1.

Теперь можно написать, что I = U1 / R1 = ( 12 – U2 ) / R1, а также I = U2 / R2.

Приравниваем правые части этих уравнений:

( 12 – U2 ) / R1 = U2 / R2

Из этого выражения определяем, что R2 = R1 * U2 / (12 – U2)

Слева от знака равенства находится сопротивление, которое необходимо получить, а справа — выражение, в котором все величины известны: R1 — эталонное сопротивление, U2 — измеренное падение напряжения. Поэтому можно без труда подсчитать R2.

Точность при применении данного способа является достаточно высокой.

Определение сопротивления изоляции проводов

Чтобы кабель или отдельный провод могли надёжно функционировать, они защищаются изоляцией. Она может быть сделана из поливинилхлорида, бумаги и других материалов. Чтобы убедиться в целостности и надёжности изоляции, требуется проверить сопротивление провода. Это делается в такой последовательности:

  1. Необходимо выбрать режим прозвонки.
  2. Вставить щупы в соответствующие гнезда.
  3. Проверить работоспособность щупов. Для этого их надо соединить друг с другом. Если при этом на дисплее появится ноль (или тысячные доли), это означает, что прибор исправен, а в цепи нет обрыва.
  4. Щупы следует приложить к контактам исследуемого участка провода и замкнуть цепь.
  5. Если провод целый, то будет слышен звуковой сигнал. Если сопротивление существенно превышает выбранный диапазон измерений, на дисплее появится 1. В этом случае следует изменить диапазон.

Полученный результат должен соответствовать нормативам и рабочему диапазону тестера. Если речь идёт о достаточно большом сопротивлении, для проверки кабелей применяются специальные измерительные приборы — мегаомметры.

Результат прозвонки

Результат прозвонки

Проверка ТЭНа

Основным элементом многих современных бытовых приборов является трубчатый электрический нагреватель или сокращенно ТЭН. Если бойлер или стиральная машина перестали греть воду, следует знать, как прозванивать этот элемент.

Сопротивление ТЭНа мультиметром проверяется в такой последовательности:

  1. Необходимо рассчитать сопротивление электронагревателя, используя формулу R = U2 / P. Здесь U = 220 В (напряжение в сети), а номинальную мощность Р можно узнать из паспорта прибора.
  2. Следует отключить проверяемый электроприбор от сети. Затем добраться до ТЭНа и отсоединить провода от него.
  3. Выставить мультиметр в режим измерения сопротивления и выбрать диапазон 200 Ом.
  4. Прикоснуться щупами к выводам ТЭНа. У него нет полярности, поэтому не имеет значения, к какому выводу подключать ноль, а к какому фазу.
  5. Если на дисплее высветится значение, соответствующее рассчитанному по формуле, то нагреватель работоспособен. При наличии обрыва в цепи появится 1 или знак бесконечности. При замыкании на дисплее отображается 0.
  6. Проверка ТЭНа

Проверка ТЭНа

Проверка ТЭНа

Еще следует проверить ТЭН на утечку тока (пробой). В этом случае выбираем режим прозвонки и одним щупом прикасаемся к выводу, а другим к корпусу нагревателя. Появившийся при этом звук свидетельствует о наличии пробоя, поэтому без замены ТЭНа не обойтись. Дотрагиваться к электроприбору, подключенному к электросети, нельзя, поскольку можно получить сильный удар током.

Видео по теме

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи. 

Содержание статьи

  • 1 Что такое резистор с изменяемым (переменным) сопротивлением
  • 2 Способы производства
  • 3 Схематическое обозначение  и цоколевка
  • 4 Виды и особенности применения
    • 4.1 Характер изменения сопротивления
    • 4.2 Сдвоенные, тройные, счетверенные
    • 4.3 Дискретный переменный резистор
    • 4.4 С выключателем
  • 5 Способы подключения: реостат и потенциометр
  • 6 Основные параметры
  • 7 Как проверить переменный резистор при помощи тестера

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Регулируемые или переменные резисторы - виды и размеры разные

Регулируемые или переменные резисторы — виды и размеры разные

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

Пример характеристик подстроечных резисторов SMD

Пример характеристик подстроечных резисторов SMD

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать»  нужную длину волны и т.д.

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Ползунковые переменные резисторы проволочного типа

Ползунковые переменные резисторы проволочного типа

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

Со снятой крышкой видна проволочная спираль и бегунок

Со снятой крышкой видна проволочная спираль и бегунок

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Пленочный регулируемый резистор

Пленочный регулируемый резистор

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Переменные резисторы SMD

Переменные резисторы SMD

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение  и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три.  Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах  переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Обозначение на схемах переменных и подстроечных резисторов

Обозначение на схемах переменных и подстроечных резисторов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Цоколевка переменного резистора

Цоколевка переменного резистора

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

    Характер изменения сопротивления в переменных резисторах

    Характер изменения сопротивления в переменных резисторах

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

    Сдвоенный регулируемый резистор и его обозначение

    Сдвоенный регулируемый резистор и его обозначение

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Так выглядят сдвоенные и строенные переменные сопротивления

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: как выглядит, как обозначается на схеме

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Основные параметры

Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:

  • Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
  • Рабочая температура.
  • Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
  • Эффективный угол поворота регулятора.

Параметры мощных переменных резисторов

Параметры мощных переменных резисторов

Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

Что такое резистор

Резистор — это самый распространенный радиоэлемент, который используется в электронике. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство — он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Виды резисторов

Существует множество видов резисторов, которые используются в радио-электронной промышленности. Давайте разберем основные из них.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

резисторы

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа —  маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит  постоянный резистор на электрических схемах:

резистор советское обозначение на схемахрезистор иностранное обозначение

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят — буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

резисторы по мощностям

Далее мощность маркируется с помощью римских цифр. V — 5 Ватт, X — 10 Ватт, L  -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

Что такое резистор

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

Что такое резистор

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры;  SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор  в DIP корпусе

Что такое резистор

Переменные резисторы

Переменные резисторы выглядят так:

перменные резисторы

На схемах обозначаются так:

переменные резисторы на схемах

Соответственно отечественный и зарубежный вариант.

А вот  и их цоколевка (расположение выводов):

потенциометры

потенциометр схема

Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой  тока — реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

потенциометр и реостат

[quads id=1]

Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

подстроечные резисторы

А вот  так  обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

Что такое резистор

Термисторы

Термисторы — это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС — тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный.  Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором.  У термисторов  при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды  растет и сопротивление.

термисторы

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

термисторы обозначение на схеме

Варисторы

Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения —  это варисторы. 

варисторы

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а  также от импульсных скачков напряжения. Допустим  у нас «скакануло» напряжение. Все это дело «чухнул» варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

сгоревший варистор

На схемах варисторы обозначаются вот таким образом:

обозначение варистора на схеме

Фоторезисторы

Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

фоторезисторы

На схемах они обозначаются вот таким образом:

обозначение фоторезистора на схеме

Тензорезисторы

Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

тензорезисторы

На схемах тензорезистор выглядит вот так:

обозначение тензорезистора на схеме

Вот анимация работы тензорезистора, позаимствованная с Википедии.

тензорезистор анимация

Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

Как измерить сопротивление резистора

Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.

Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.

измерение сопротивления

измерение сопротивления

Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.

Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.

формула сопротивления через закон Ома

формула сопротивления через закон Ома

Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!

Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной — это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула

формула сопротивления через закон Ома

Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.

лампа накаливания потребление тока

лампа накаливания потребление тока

Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу  0,71 Ампер.

Получаем, что сопротивление раскаленной нити лампы в данном случае составляет

сопротивление нити лампы накаливания

Последовательное и параллельное соединение резисторов

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

параллельное соединение резисторов

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

формула параллельное соединение резисторов

При последовательном соединении номиналы резисторов просто тупо суммируются

последовательное соединение резисторов

В этом случае

последовательное соединение резисторов

Хорошее видео по теме

Используйте калькулятор цветовой маркировки резисторов.

Похожие статьи по теме «резисторы»

Маркировка резисторов

Фоторезистор

RC цепь

Активное и реактивное сопротивление

Что такое сопротивление

Закон Ома

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Переменные резисторы

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометры

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

Устройство переменного резистора

Устройство переменного резистора-2

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

Схема потенциометра

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Внешний вид непроволочного потенциометра

Устройство непроволочного потенциометра

Контактная щетка непроволочного потенциометра

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

Потенциометры типа СПО

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство проволочного потенциометра

Витки проволоки на резистивном элементе

Вариант намотки резистивного элемента

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

Обозначение номинального сопротивления на корпусе переменных резисторов

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

График функциональных характеристик потенциометров

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

Вариант конструкции резистивного элемента

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Обозначение потенциометров на электрических схемах

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Обозначение ступенчатого регулирования

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Обозначение сдвоенных переменных резисторов

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Обозначение механической связи сдвоенных резисторов

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Обозначение переменных резисторов со встроенным выключателем

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

Подстроечный резистор

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

Подстроечные резисторы специальной конструкции

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

Мощный подстроечный резистор типа ПЭВР

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

Обозначение подстроечного резистора на электрических схемах

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Включение переменного резистора реостатом

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

Включение переменного резистора реостатом вариант 2

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

Включение потенциометра делителем напряжения

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Схема делителя напряжения

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

Понравилась статья? Поделить с друзьями:
  • Missing binary operator before token как исправить
  • Как найти немую девушку
  • Дубай молл водопад с ныряльщиками как найти
  • Как составить историю персонажу
  • Как найти первую цифру ответа