Как найти сопротивление петли

Петля фаза ноль — измерение сопротивления, методика расчета

петля фаза ноль - измерение, расчет

Продолжаем изучение трехфазной системы. Рассматривать будем петлю фаза-ноль. Измерение полного сопротивления петли фаза-нуль или токов однофазных замыканий проводится для проверки временных параметров срабатывания защитных устройств реагирующих на сверхток (автоматических выключателей).

Петля фаза-ноль — это замкнутый контур цепи, который образуется путем замыкания фазного и нулевого проводников. Сопротивление данного контура обратно пропорционально току короткого замыкания Оно определяется при известных параметрах напряжения и силы тока в цепи с использованием формул закона Ома.

Конечно – это не то, что хотелось бы рассмотреть непосредственно после базовых основ трехфазной системы. Но учитывая, что в предыдущей статье мы отрисовали трехфазную систему на примере улицы с частной застройкой, нам не составит труда наглядно показать методику расчета петли фаза-ноль без использования дорогостоящего оборудования.

Как считать петлю фаза-ноль — формула

Есть несколько методов измерения сопротивления петли фаза-ноль для системы ТN. Рассмотрим самый простой — способом падения напряжения. Напряжение в испытуемой цепи измеряют с включенным и отключенным сопротивлением нагрузки, и сопротивление петли фаза—нуль рассчитывают по следующей методике:

петля фаза ноль - измерение, расчет

Измеряем петлю фаза ноль мультиметром

Ну что же, попробуем посчитать по данной методике. Для наглядности приведем нашу упрощенную схему трехфазного электроснабжения улицы. О том, как мы воссоздали данную схему можете ознакомиться в следующем ролике:

Для чистоты эксперимента нагрузим дома из расчета месячного потребления электроэнергии 250 кВт·ч. Делим 250 на 30 дней. Полученное делим на 16 часов. Выходим на часовое потребление 520 Вт. Какая нагрузка дает такое потребление? Считаем:

  • Мощность равна напряжению умноженному на силу тока. Мощность и напряжение известны. Нетрудно найти силу тока 2,26 А.
  • Сопротивление по закону Ома находим делением напряжения на силу тока, и равняется оно приблизительно 100 Ом.

Исходя из этого в случайном порядке нагрузим дома сопротивлениями от 80 до 120 Ом. Также добавим каждому дому повторное заземление как в системе TNCS:

петля фаза ноль - измерение, расчет

Возьмем для расчета домик (резистор R25) напряжение в котором 228,819 В: 

петля фаза ноль - измерение, расчет

В свободную розетку подключим известную нагрузку 2300 Вт. Переведем это в сопротивление и получим 23 Ом. Добавим в схему амперметр и получим силу тока 9,823 А. При этом напряжение в доме упало до 225,932 В.

петля фаза ноль - измерение, расчет

Здесь хочется отметить, что если нам известно сопротивление нагрузки, то необязательно измерять силу тока (это не совсем безопасно дешевыми мультиметрами) – достаточно измерить напряжение после подключения нагрузки, поделить на сопротивление и получить силу тока.

Все необходимые исходные данные мы получили:

Напряжение, измеренное при отключенном сопротивлении нагрузки, В 228,819
Напряжение, измеренное при включенном сопротивлении нагрузки, В 225,932
Ток, протекающий через сопротивление нагрузки, А 9,823

Рассчитываем полное сопротивление петли фаза-нуль  Z = (228,819-225,932)/9,823 = 0,2939 Ом.

Теперь делим напряжение 228,819 В на сопротивление петли фаза ноль 0,2939 Ом. Получаем ток короткого замыкания в точке расчета 778,56 А.

Проверим при помощи программы Multisim правильно ли мы нашли сопротивление петли фаза ноль:

петля фаза ноль - измерение, расчет

Как видно, все мы посчитали правильно. Программа показывает такой же ток короткого замыкания в точке расчета.

Для верности рассчитаем петлю фаза ноль еще в одном доме (R29). Напряжение в нем до подключения нагрузки 228,742 В:

петля фаза ноль - измерение, расчет

Подключим нагрузку 23 Ом. Добавим в схему амперметр и получим силу тока 9,779 А. Напряжение в доме упало до 224,910 В.

петля фаза ноль - измерение, расчет

Переносим результаты замеров в таблицу:

Напряжение, измеренное при отключенном сопротивлении нагрузки, В 228,742
Напряжение, измеренное при включенном сопротивлении нагрузки, В 224,910
Ток, протекающий через сопротивление нагрузки, А 9,779

Рассчитываем полное сопротивление петли фаза-нуль  Z = (228,742-224,910)/9,779 = 0,39186 Ом.

Теперь делим напряжение 228,742 В на сопротивление петли фаза ноль 0,39186 Ом. Получаем ток короткого замыкания в точке расчета 583,734 А.

Опять проверяем при помощи программы Multisim:

петля фаза ноль - измерение, расчет

Все сходится. Формула расчета верная.

Может возникнуть вопрос, как работает эта формула? Все предельно просто. Подключив дополнительную нагрузку в доме произошло падение напряжения. Данное падение напряжения есть не что иное, как напряжение на нагрузке от всех сопротивлений нашей петли. Зная это напряжение и силу тока в цепи по правилу последовательного соединения мы находим сопротивление петли фаза-ноль.

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что такое петля фаза-ноль простым языком - методика проведения измерения

Содержание

  • 1 Что подразумевается под термином петля фаза-ноль?
  • 2 Для чего проверяют сопротивление петли фаза-ноль
    • 2.1 Периодичность проведения измерений
  • 3 Какие приборы используют?
  • 4 Как измеряется сопротивление петли фаза ноль
    • 4.1 Методика измерения
    • 4.2 Анализ результатов измерения и выводы
    • 4.3 Форма протокола измерения

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Что такое петля фаза-ноль простым языком - методика проведения измерения

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Что такое петля фаза-ноль простым языком - методика проведения измерения

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

Что такое петля фаза-ноль простым языком - методика проведения измерения

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Что такое петля фаза-ноль простым языком - методика проведения измерения

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.

Методика измерения

Наиболее простой методикой считается падение напряжения в сети. Для этого в линию электропитания подключают нагрузку и замеряют необходимые параметры. Это простой и безопасный способ, не требующий специальных навыков, Измерение можно проводить:

  • между одной из фаз и нулевым проводом;
  • между фазой и проводом РЕ;
  • между фазой и защитным заземлением.

После подключения прибора он начинает измерять сопротивление. Требуемый прямой параметр или косвенные результаты отобразятся на экране. Их необходимо сохранить для последующего анализа. Стоит учитывать, что измерительные устройства приведут к срабатыванию УЗО, поэтому перед испытаниями необходимо их зашунтировать.

Справка! Нагрузку подключают в наиболее отдаленную точку (розетку) от источника питания.

Что такое петля фаза-ноль простым языком - методика проведения измерения

Анализ результатов измерения и выводы

Полученные параметры используют для анализа характеристик сети, а также ее профилактики. На основе результатов принимают решения о модернизации линии электропередачи или продолжении эксплуатации. Из основных возможностей выделяют следующие:

  1. Определение безопасности работы сети и надежности защитных устройств. Проверяется техническая исправность проводки и возможность дальнейшей эксплуатации без вмешательств.
  2. Поиск проблемных зон для модернизации линии электроснабжения помещения.
  3. Определение мер модернизации сети для надежной работы автоматических выключателей и других защитных устройств.

Если показатели находятся в пределах нормы и ток КЗ не превышает показатели отсечки автоматов, дополнительные меры не требуются. В противном случае необходимо искать проблемные места и устранять их, чтобы обеспечить работоспособность выключателей.

Форма протокола измерения

Что такое петля фаза-ноль простым языком - методика проведения измерения

Последним этапом в измерении сопротивления петли фаза-ноль является занесение показаний в протокол. Это необходимо для того, чтобы сохранить результаты и использовать их для сравнения в будущем. В протокол вписывается информация о дате проверки, полученный результат, используемый прибор, тип расцепителя, его диапазон измерения и класс точности.

В конце составленной формы подводят итоги испытания. Если он удовлетворительный, то в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а если нет — список необходимых действий для улучшения показателя.

В заключение необходимо подчеркнуть важность измерений сопротивления петли. Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только обезопасит работу с электроприборами, но и увеличит срок эксплуатации сети.

В электрических сетях напряжением до 1000 в с глухим заземлением нейтрали должно быть обеспечено надежное отключение защитным аппаратом однофазного к. з. Это диктуется требованиями техники безопасности.
Расчетными точками для определения величины тока к. з. являются наиболее удаленные (в электрическом смысле) точки сети, так как именно этим точкам соответствует наименьшее значение тока однофазного к. з.
Величина однофазного тока к. з. может быть определена по приближенной формуле

где U
ф — фазное напряжение сети, в;
Z
т — полное сопротивление понижающего трансформатора току замыкания на корпус, ом;
Z
п — полное сопротивление петли фаза — нуль линии до наиболее удаленной точки сети, ом.
Расчетные значения полных сопротивлений понижающих трансформаторов при однофазных замыканиях приведены в табл. 7-1.
Для трансформаторов мощностью более 630 ква при определении тока к. з. можно принять:
Z
т=0
Полное сопротивление петли проводов или жил кабеля линии определяется по формуле

где Rп — активное сопротивление фазного (Rф) и нулевого (Ro) проводов, ом;
R
п=Rф+Rо (7-3)
Х
п— индуктивное сопротивление петли проводов или жил кабеля, ом.

Активные сопротивления проводов из цветных металлов определяются по табл. 5-1. Средние значения индуктивных сопротивлений петель проводов или жил кабелей из цветных металлов на 1 км линии даны в табл. 7-2.
Для стальных проводов индуктивное сопротивление петли проводов определяется по формуле

где Х’п— внешнее индуктивное сопротивление петли из прямого и обратного проводов, равное для воздушной линии напряжением до 1000 В 0,6 Ом/км; Х»п.п и Х»п.о — внутренние индуктивные сопротивления соответственно прямого и обратного проводов линии, Ом/км.
Значения полных сопротивлений петель для проводов и жил кабелей из цветных металлов на 1 км линии даны в табл. 7-3. В табл. 7-6 указаны сопротивления петли «фаза трехжильного кабеля — стальная полоса» для небронированных кабелей.

Таблица 7-1 Расчетные сопротивления трансформаторов при однофазном к. з. на стороне 400/230 в
Тип Номинальная мощность, ква Напряжение
обмотки ВН. кв
Схема соединений Полное сопротивление Zт, ом
ГОСТ401-41
ТМ, ТМА
ТМ
ТМ
ТМ
ТМА
ТСМА
ТСМ
ТМ, ТМА
ТМ, ТМА
ТМ. ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ
20
30
50
100
100
100
100
180
180
320
320
560
560
750
1000
1000
6-10
6-10
6-10
6-10
35
6-10
35
6-10
35
6-10
35
6-10
35
6-10
6-10
35
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
1,39
0,9
0,54
0,27
0,25
0,26
0,25
0,15
0,14
0,085
0,08
0,048
0,046
0,036
0,027
0,026
ГОСТ12022-66
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
25
40
63
63
100
100
160
160
250
250
400
400
400
630
6-10
6-10
6-10
20
6-10
20-35
6-10
20-35
6-10
20-35
6-10
20-35
6-10
6-10
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
Д/Ун
У/Ун
1,04
0,65
0,413
0,38
0,26
0,253
0,162
0,159
0,104
0,102
0,065
0,064
0,022
0,043
ГОСТ11920-66
ТМ
ТМ
ТМ
ТМ
1 000
1 000
1 000
1 000
6-10
20-35
6-10
20-35
У/Ун
У/Ун
Д/Ун
Д/Ун
0,027
0,026
0,009
0,01
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
160
180
250
320
400
560
630
750
1 000
1 000
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
0,055
0,15
0,035
0,085
0,022
0,048
0,014
0,036
0,009
0,027

Примечания: Для понижающих трансформаторов с напряжением вторичных обмоток 230/133в значения сопротивлений в 3 раза меньше указанных в табл. 7-1.
Условные обозначения схем соединений трансформаторов:
У — звезда; Ун — звезда с выведенной нулевой точкой; Д — треугольник.

Таблица 7-2 Средние значения индуктивных сопротивлений петли прямого и обратного проводов или жил кабеля, выполненного из цветных металлов ом/км
Условия прокладки Индуктивные
сопротивления
Кабель до 1 кв или провода, проложенные в трубах 0,15
Изолированные провода на роликах 0,4
Провода на изоляторах внутри помещений или по наружным стенам здания 0,5
Воздушные линии низкого напряжения 0,6
Таблица 7-3 Полные сопротивления петли прямого и обратного провода линии или жил кабеля, ом/км
Сечение провода, мм.кв Кабель и провода в трубах Провода на роликах и изоляторах Провода воздушных линий
прямого обратного медные алюминиевые медные алюминиевые медные алюминиевые
1
1,5
1,5
2,5
2,5
4
4
4
6
6
6
10
10
10
16
16
16
25
25
25
35
35
35
50
50
50
70
70
70
95
95
95
120
120
120
150
150
150
1
1
1,5
1,5
2,5
1,5
2,5
4
2,5
4
6
4
6
10
6
10
16
10
16
25
10
16
35
16
25
50
25
35
70
35
50
95
50
70
120
50
70
150
37,8
31,5
25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,12
6,50
4,90
3,68
4,26
3,04
2,40
2,58
1,94
1,49
2,38
1,74
1,09
1,60
1,14
0,793
1,03
0,833
0,58
0,755
0,608
0,428
0,568
0,461
0,350
0,535
0,430
0,285




25,2

20,5
15,8
17,9
13,2
10,5
11,1
8,42
6,32
7,24
5,14
3,96
4,44
3,26
2,56
4,08
2,90
1,84
2,62
1,92
1,29
1,74
1,39
0,932
1,27
0,99
0,797
0,922
0,745
0,561
0,862
0,687
0,446


25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,14
6,52
4,92
3,71
4,28
3,08
2,45
2,62
1,98
1,55
2,42
1,79
1,16
1,65
1,21
0,890
1,11
0,927
0,706
856
0,712
0,566









25,2

20,5
15,8
17,9
13,2
10,5
11,1
8,42
6,32
7,24
5,15
3,99
4,46
3,30
2,60
4,11
2,96
1,90
2,66
1,97
1,36
1,80
1,45
1,03
1,34
1,08
0,815












9,3


6,16

4,96
3,75
4,32
3,13
2,52
2,69
2,08
1,68
2,48
1,87
1,29
1,74
1,32
1,05
1,24
1,08
0,896
1,02
0,915
0,772
0,858
0,792
0,732


















4,03
4,50
3,34
2,66
4,15
3,00
1,96
2,70
2,03
1,44
1,86
1,53
1,13
1,42
1,18
0,907
1,09
0,945
0,808
1,04
0,808
0,732
Таблица 7-6 Полные сопротивления петли «фаза трех жильного кабеля — стальная полоса», ом/км
Сечение кабеля, мм.кв Ток и материал жил кабеля Размеры стальной полосы, мм
20X4 40X4 50X4 50X4 60X4 80X4 100X4,
100X6
100X5,
100X8
Ток срабатывания максимального расцепителя автомата, а 150 1400 200 1400 250 1400 300 1400 400 1400 500 1400
Номинальный ток
плавкой вставки безынарционного предохранителя, а
60 600 80 600 100 600 120 600 150 600 200 600
Материал жил кабеля: Полное сопротивление петли, ом/км
3X4

3X6

3Х10

3X16

3X25

3X35

3X50

3X70

3X95

3X120

3X150

3X185

Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюмниий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
9,59
13,52
7,76
10,34
6,36
7,86
5,6
6,49
5,14
5,70
4,91
5,30
4,75
5,02
4,64
4,83
4,57
4,70
4,51
4,62
4,47
4,56
4,44
4,52
8,42
12,35
6,59
9,17
5,19
6,69
4,43
5,32
3,97
4,53
3,74
4,13
3,58
3,85
3,47
3,66
3,40
3,53
3,34
3,45
3,30
3,39
3,27
3,35
7,82
11,79
5,97
8,59
4,55
6,07
3,78
4,68
3,31
3,88
3,09
3,48
2,92
3,19
2,81
3,0
2,73
2,87
2,69
2,8
2,65
2,74
2,63
2,7
7,45
11,42
6,60
8,22
4,18
5,7
3,41
4,31
2,94
3,51
2,71
3,11
2,55
2,72
2,44
2,63
2,36
2,50
2,32
2,43
2,28
2,37
2,26
2,33
7,40
11,37
5,54
8,17
4,11
5,63
3,32
4,24
2,86
3,43
2,64
3,03
2,47
2,74
2,37
2,55
2,29
2,42
2,24
2,35
2,21
2,29
2,18
2,25
7,17
11,14
5,31
7,94
3,98
5,4
3,09
3,01
2,63
3,2
2,4
2,8
2,24
2,5
2,4
2,32
2,06
2,19
2,01
2,12
1,98
2,06
1,95
2,02
7,14
11,13
5,27
7,92
3,83
5,37
3,04
3,96
2,57
3,15
2,35
2,74
2,19
2,45
2,08
2,26
2,01
2,14
1,96
2,07
1,93
2,01
1,90
1,96
6,92
10,91
5,05
7,7
3,61
5,15
2,82
3,74
2,35
2,93
2,13
2,52
1,97
2,23
1,86
2,04
1,79
1,92
1,74
1,85
1,71
1,79
1,68
1,74
6,82
10,81
4,95
7,61
3,5
5,05
2,71
3,64
2,24
2,82
2,01
2,41
1,86
2,12
1,75
1,93
1,67
1,8
1,63
1,74
1,60
1,65
1,58
1,64
6,59
10,58
4,72
7,38
3,27
4,82
2,48
3,41
2,01
2,59
1,78
2,18
1,63
1,89
1,52
1,7
1,44
1,57
1,4
1,51
1,37
1,47
1,35
1,41
6,56
10,56
4.68
7,34
3,22
4,77
2,42
3,36
1,95
2,53
1,73
2,12
1,57
1,83
1,46
1,64
1,38
1,51
1,35
1,45
1,31
1,39
1,28
1,35
6,45
10,45
4,57
7,23
3,1
4,66
2,31
3,25
1,84
2,42
1,62
2,01
1,46
1,72
1,35
1,53
1,27
1,40
1,24
1,34
1,2
1,28
1,17
1,24

Примечание: Сопротивление петли «фаза кабеля -стальная полоса» не остается постоянным для указанных в таблице значений тока, так как сопротивление стальной полосы зависит от тока. Для промежуточных значений тока величина сопротивления определяется интерполяцией

Надежное отключение защитным аппаратом однофазного к. з. будет обеспечено при условии выполнения соотношения

где К31 — допустимая кратность минимального тока к. з. по отношению к номинальному току плавкой вставки предохранителя или току срабатывания, или номинальному току максимального расцепителя автомата I3;
I
к-наименьшая величина однофазного тока к. з., определяемая по формуле (7-1),а.
Допустимая кратность минимального тока к. з. должна быть не менее 3 по отношению к номинальному току плавкой вставки предохранителя и номинальному току расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику, и не менее 1,1 Кр по отношению к току срабатывания автоматического выключателя, имеющего только электромагнитный расцепитель (Кр — коэффициент, учитывающий разброс характеристик расцепителя по данным завода).
Для сетей, прокладываемых во взрывоопасных помещениях, допустимые кратности тока к. з. увеличиваются до значения 4 по отношению к номинальному току плавкой вставки предохранителя и 6 по отношению к номинальному току расрасцепителя автоматического выключателя с обратно зависимой от тока характеристикой.
Для сетей, защищаемых только от токов к. з., в необходимых случаях (например, для отстройки от токов самозапуска двигателей) допускается завышение токов плавких вставок предохранителей и уставок расцепителей автоматов, но при этом кратность тока к. з. должна иметь значение не менее 5 по отношению к номинальному току плавкой вставки предохранителя и не менее 1,5 по отношению к току срабатывания электромагнитного расцепителя автомата.
Значения допустимой кратности тока к. з. для различных условий прокладки сети приведены в табл. 7-8.

Таблица 7-8 Значения допустимой минимальной кратности тока к. з. по отношению к току защитного аппарата
Условия прокладки Допустимая кратность тока к. з. по отношению
к номинальному току плавкой вставки предохранителя к току уставки срабатывания автоматического выключателя, имеющего только электромагнитный
расцепитель (отсечку)
к номинальному току расцепителя
автоматического выключателя с обратно зависимой от тока характеристикой
Сеть проложена в невзрывоопасном помещении при условии выполнения требований табл. 4-50 3 1,1Кр 3
Сеть проложена в не взрывоопасном помещении при условии, что требования табл. 4-50 не выполняются 5 1,5
Сеть проложена во взрывоопасном помещении 4 1,1Кр 6

Примечания: Кр — коэффициент, учитывающий разброс характеристик автоматических выключателей с электромагнитным расцепителем. При отсутствии данных завода о гарантируемой точности уставки тока срабатывания автоматического выключателя с электромагнитным расцепителем (отсечка) допускается принимать значение коэффициента Кр для автоматических выключателей на номинальный ток до 100 а равным 1,4, выше 100 а — равным 1,25. При затруднении в выполнении требований, указанных в табл. 7-8, допускается применение быстродействующей защиты от замыкания на землю.

Пример 7-1.

На рис. 7-1 представлена схема четырехпроводной воздушной линии, выполненной алюминиевыми проводами и получающей питание от шин распределительного щита 380/220 в. Нейтраль системы глухо заземлена. Сечения проводов и длины участков линии указаны на рис. 7-1.
Пренебрегая сопротивлением внешней сети до шин щита и сопротивлением трансформатора, проверить действие защитных аппаратов при однофазном к. з. в наиболее удаленных точках линии для следующих вариантов:
1. Линия защищена предохранителями с плавкими вставками на номинальный ток 80 а.
2. Линия защищена автоматическим выключателем типа А 3124 с комбинированными расцепителями на номинальный ток 100 а.
3. Линия защищена автоматическим выключателем типа А 3124 с электромагнитными расцепителями с уставкой тока срабатывания 600 а .

Рис. 7-1. Схема к примеру

Соображения, по которым выбран тот или иной аппарат защиты, здесь не рассматриваются. Пример имеет ограниченную цель — показать типичные случаи проверки защитного отключения при однофазном к. з.

Решение.

Условие срабатывания аппаратов защиты проверяем по формуле (7-5). Определяем сопротивления петли фазного и нулевого проводов линии при однофазном к. з. в такой точке, для которой значение сопротивления будет наибольшим. По табл. 7-.3 находим значения удельных сопротивлений петли «фаза — нуль» для сечений участков линии:

3 X 70+1 X 35 Zn=1,53 ом/км;
3 X 35+1 X 16 Zn=
3,0 ом/км;
3 X
16+1 X 16 Zn=4,03 ом/км;

Определяем, какая из точек Д или Е является расчетной. Сопротивление петли между точками Г и Д

4,03 X 0,08=0,323 ом;

сопротивление петли между точками Г и Е

3 X 0,13=0,39 ом.

Расчетной оказывается точка Е. Полное сопротивление петли «фаза — нуль» между точками А и Е составляет:

Zn= 1,53(0,07+0,08) +0,39 = 0,62 ом.

Номинальное фазное напряжение

Uн = 220 в.

Определяем величину однофазного тока при к. з. в наиболее удаленной точке Е сети (по условию примера следует принять Zт= 0):

Проверяем выполнение условия (7-5) для всех трех вариантов защиты линии.
Вариант 1.
Допустимая минимальная кратность тока к. з. по отношению к номинальному току плавкой вставки предохранителя согласно табл. 7-8 равна:

К31 = 3.
Отсюда: 3х80=240 а<355 а.

Таким образом, надежное действие защищающих линию предохранителей обеспечивается.
Вариант 2.
Допустимая кратность тока к. з. по отношению к тепловому элементу комбинированного расцепителя, имеющему обратно зависящую от тока характеристику, равна:

К31 = 3.
Отсюда соотношение (7-5)
3х100=300 а<355 а
выполняется.
Вариант 3.
По данным завода гарантируемая точность уставки для автоматических выключателей типа А 3124 составляет ±15%. Приняв в соответствии с указанием табл. 7-8 коэффициент запаса равным 1,1, получим:

К31 = 1,1х1,15=1,27;
1,27х600=760 а>355 а.

Надежность действия автоматического выключателя при к. з. в точке Е не обеспечивается.

Пример 7-2.

В системе с глухо заземленной нейтралью при напряжении 380/220 в линия защищается предохранителями с плавкими вставками на номинальный ток 100 а. Полагая Zт = 0, определить наибольшую длину линии, при которой будет обеспечиваться надежное перегорание предохранителей при однофазном к. з. в конце линии для следующих вариантов выполнения линии:
1. Воздушная линия с алюминиевыми проводами сечением 3 X 50+1 X 25 мм.кв.
2. Трехжильный кабель с алюминиевыми жилами сечением 3X50 мм.кв в алюминиевой оболочке, используемой в качестве заземляющего провода.
3. Трехжильный небронированный кабель с алюминиевыми жилами сечением 3 X 50 мм.кв с заземляющей шиной в виде стальной полосы сечением 50 X 4 мм.

Решение.

По табл. 7-8 определяем минимально допустимую кратность тока к. з.:

К31 = 3.

Наименьшая допустимая величина однофазного тока к. з.

I
к = 3х100=300 а.

Учитывая, что по условию примера Zт = 0, находим по формуле (7-1) наибольшее допустимое сопротивление «фаза — нуль» линии:

Определяем удельное сопротивление 1 км петли «фаза — нуль»: для варианта 1 по табл. 7-3
Zп = 2,03 ом/км;
для варианта 2
Zп = 1,03 ом/км;
для варианта 3 по табл. 7-6
Zп = 2,74 ом/км.

Наибольшие допустимые длины линии будут равны:
вариант 1

вариант 2

вариант 3

Наибольшая длина линии обеспечивается применением кабеля с использованием алюминиевой оболочки в качестве заземляющего (нулевого) провода.

В электрических сетях напряжением до 1000 в с глухим заземлением нейтрали должно быть обеспечено надежное отключение защитным аппаратом однофазового к. з. Это диктуется требованиями техники безопасности.
Расчетными точками для определения величины тока к. з. являются более удаленные (в электрическом смысле) точки сети, так как конкретно этим точкам соответствует меньшее значение тока однофазового к. з.
Величина однофазового тока к. з. может быть определена по приближенной формуле

где U ф — фазное напряжение сети, в;
Z т — полное сопротивление понижающего трансформатора току замыкания на корпус, ом;
Z п — полное сопротивление петли фаза — нуль полосы до более удаленной точки сети, ом.
Расчетные значения полных сопротивлений понижающих трансформаторов при однофазовых замыканиях приведены в табл. 7-1.
Для трансформаторов мощностью более 630 ква при определении тока к. з. можно принять:
Z т =0
Полное сопротивление петли проводов либо жил кабеля полосы определяется по формуле

где R п — активное сопротивление фазного ( R ф ) и нулевого (Ro) проводов, ом;
R п =R ф +R о (7-3 )
Х п — индуктивное сопротивление петли проводов либо жил кабеля, ом.

Активные сопротивления проводов из цветных металлов определяются по табл. 5-1. Средние значения индуктивных сопротивлений петель проводов либо жил кабелей из цветных металлов на 1 км полосы даны в табл. 7-2.
Для железных проводов индуктивное сопротивление петли проводов определяется по формуле

где Х’ п — наружное индуктивное сопротивление петли из прямого и оборотного проводов, равное для воздушной полосы напряжением до 1000 В 0,6 Ом/км; Х» п.п и Х» п.о — внутренние индуктивные сопротивления соответственно прямого и оборотного проводов полосы, Ом/км.
Значения полных сопротивлений петель для проводов и жил кабелей из цветных металлов на 1 км полосы даны в табл. 7-3. В табл. 7-6 указаны сопротивления петли «фаза трехжильного кабеля — железная полоса» для небронированных кабелей.

Таблица 7-1 Расчетные сопротивления трансформаторов при однофазовом к. з. на стороне 400/230 в

Тип Номинальная мощность, ква Напряжение
обмотки ВН. кв
Схема соединений Полное сопротивление Zт, ом
ГОСТ401-41
ТМ, ТМА
ТМ
ТМ
ТМ
ТМА
ТСМА
ТСМ
ТМ, ТМА
ТМ, ТМА
ТМ. ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ
20
30
50
100
100
100
100
180
180
320
320
560
560
750
1000
1000
6-10
6-10
6-10
6-10
35
6-10
35
6-10
35
6-10
35
6-10
35
6-10
6-10
35
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
1,39
0,9
0,54
0,27
0,25
0,26
0,25
0,15
0,14
0,085
0,08
0,048
0,046
0,036
0,027
0,026
ГОСТ12022-66
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
25
40
63
63
100
100
160
160
250
250
400
400
400
630
6-10
6-10
6-10
20
6-10
20-35
6-10
20-35
6-10
20-35
6-10
20-35
6-10
6-10
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
Д/Ун
У/Ун
1,04
0,65
0,413
0,38
0,26
0,253
0,162
0,159
0,104
0,102
0,065
0,064
0,022
0,043
ГОСТ11920-66
ТМ
ТМ
ТМ
ТМ
1 000
1 000
1 000
1 000
6-10
20-35
6-10
20-35
У/Ун
У/Ун
Д/Ун
Д/Ун
0,027
0,026
0,009
0,01
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
160
180
250
320
400
560
630
750
1 000
1 000
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
0,055
0,15
0,035
0,085
0,022
0,048
0,014
0,036
0,009
0,027

Примечания: Для понижающих трансформаторов с напряжением вторичных обмоток 230/133в значения сопротивлений в 3 раза меньше обозначенных в табл. 7-1.
Условные обозначения схем соединений трансформаторов:
У — звезда; Ун — звезда с выведенной нулевой точкой; Д — треугольник.

Таблица 7-2 Средние значения индуктивных сопротивлений петли прямого и оборотного проводов либо жил кабеля, выполненного из цветных металлов ом/км

Условия прокладки Индуктивные
сопротивления
Кабель до 1 кв либо провода, проложенные в трубах 0,15
Изолированные провода на роликах 0,4
Провода на изоляторах снутри помещений либо по внешним стенкам строения 0,5
Воздушные полосы низкого напряжения 0,6

Таблица 7-3 Полные сопротивления петли прямого и оборотного провода полосы либо жил кабеля, ом/км

Сечение провода, мм.кв Кабель и провода в трубах Провода на роликах и изоляторах Провода воздушных линий
прямого оборотного медные дюралевые медные дюралевые медные дюралевые
1
1,5
1,5
2,5
2,5
4
4
4
6
6
6
10
10
10
16
16
16
25
25
25
35
35
35
50
50
50
70
70
70
95
95
95
120
120
120
150
150
150
1
1
1,5
1,5
2,5
1,5
2,5
4
2,5
4
6
4
6
10
6
10
16
10
16
25
10
16
35
16
25
50
25
35
70
35
50
95
50
70
120
50
70
150
37,8
31,5
25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,12
6,50
4,90
3,68
4,26
3,04
2,40
2,58
1,94
1,49
2,38
1,74
1,09
1,60
1,14
0,793
1,03
0,833
0,58
0,755
0,608
0,428
0,568
0,461
0,350
0,535
0,430
0,285




25,2

20,5
15,8
17,9
13,2
10,5
11,1
8,42
6,32
7,24
5,14
3,96
4,44
3,26
2,56
4,08
2,90
1,84
2,62
1,92
1,29
1,74
1,39
0,932
1,27
0,99
0,797
0,922
0,745
0,561
0,862
0,687
0,446


25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,14
6,52
4,92
3,71
4,28
3,08
2,45
2,62
1,98
1,55
2,42
1,79
1,16
1,65
1,21
0,890
1,11
0,927
0,706
856
0,712
0,566









25,2

20,5
15,8
17,9
13,2
10,5
11,1
8,42
6,32
7,24
5,15
3,99
4,46
3,30
2,60
4,11
2,96
1,90
2,66
1,97
1,36
1,80
1,45
1,03
1,34
1,08
0,815












9,3


6,16

4,96
3,75
4,32
3,13
2,52
2,69
2,08
1,68
2,48
1,87
1,29
1,74
1,32
1,05
1,24
1,08
0,896
1,02
0,915
0,772
0,858
0,792
0,732


















4,03
4,50
3,34
2,66
4,15
3,00
1,96
2,70
2,03
1,44
1,86
1,53
1,13
1,42
1,18
0,907
1,09
0,945
0,808
1,04
0,808
0,732
Сечение кабеля, мм.кв Ток и материал жил кабеля Размеры металлической полосы, мм
20X4 40X4 50X4 50X4 60X4 80X4 100X4,
100X6
100X5,
100X8
Ток срабатывания наибольшего расцепителя автомата, а 150 1400 200 1400 250 1400 300 1400 400 1400 500 1400
Номинальный ток
плавкой вставки безынарционного предохранителя, а
60 600 80 600 100 600 120 600 150 600 200 600
Материал жил кабеля: Полное сопротивление петли, ом/км
3X4

Таблица 7-6 Полные сопротивления петли «фаза 3-х жильного кабеля — железная полоса», ом/км

Примечание: Сопротивление петли «фаза кабеля -стальная полоса» не остается неизменным для обозначенных в таблице значений тока, так как сопротивление металлической полосы находится в зависимости от тока. Для промежных значений тока величина сопротивления определяется интерполяцией

Надежное отключение защитным аппаратом однофазового к. з. будет обеспечено при условии выполнения соотношения

где К 31 — допустимая кратность малого тока к. з. по отношению к номинальному току плавкой вставки предохранителя либо току срабатывания, либо номинальному току наибольшего расцепителя автомата I 3 ;
I к -наименьшая величина однофазового тока к. з., определяемая по формуле (7-1),а.
Допустимая кратность малого тока к. з. должна быть более 3 по отношению к номинальному току плавкой вставки предохранителя и номинальному току расцепителя автоматического выключателя, имеющего назад зависимую от тока характеристику, и более 1,1 К р по отношению к току срабатывания автоматического выключателя, имеющего только электромагнитный расцепитель (К р — коэффициент, учитывающий разброс черт расцепителя по данным завода).
Для сетей, прокладываемых во взрывоопасных помещениях, допустимые кратности тока к. з. растут до значения 4 по отношению к номинальному току плавкой вставки предохранителя и 6 по отношению к номинальному току расрасцепителя автоматического выключателя с назад зависимой от тока чертой.
Для сетей, защищаемых только от токов к. з., в нужных случаях (к примеру, для отстройки от токов самозапуска движков) допускается завышение токов плавких вставок предохранителей и уставок расцепителей автоматов, но при всем этом кратность тока к. з. обязана иметь значение более 5 по отношению к номинальному току плавкой вставки предохранителя и более 1,5 по отношению к току срабатывания электромагнитного расцепителя автомата.
Значения допустимой кратности тока к. з. для разных критерий прокладки сети приведены в табл. 7-8.

Расчет токов однофазового кз в сети 0,4 кВ

В данной статье пойдет речь об определении величины тока однофазового тока к.з. в сетях 0,4 кВ с глухозаземленной нейтралью.

Данный вопрос очень животрепещущ, так как электрические сети 0,4 кВ, являются более распространёнными.

В текущее время существует два способа расчета однофазового КЗ – четкий и приближенный и оба способа основаны на способе симметричных составляющих.

1. Четкий способ определения тока однофазового КЗ

1.1 Четкий способ определения тока однофазового КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:

Точный метод определения тока однофазного КЗ

Используя данный способ можно с большой степенью точности определять токи КЗ при узнаваемых сопротивлениях прямой, оборотной и нулевой последовательности цепи фаза-нуль.

К огорчению, на практике данный способ не всегда может быть применять, из-за отсутствия справочных данных на сопротивления прямой, оборотной и нулевой последовательности для кабелей с дюралевыми и медными жилами с учетом методов прокладки фазных и нулевых проводников.

2. Приближенный способ определения тока однофазового КЗ

2.1 Приближенный способ определения тока однофазового кз при большой мощности питающей энергосистемы (Хс < 0,1Хт), рассчитывается по формуле [Л1, с 4 и Л3, с 39]:

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазового замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазового кз определяется по формуле 2-26 [ Л3, с 39]:

2.3 Значение Z∑ определяется по таблице 2.9 либо можно найти по формуле 2-25 [ Л3, с 39]:

Определения суммарного сопротивления цепи

где:
х1т и r1т; х2т и r2т; х0т и r0т — индуктивное и активное сопротивления трансформатора токам прямой, оборотной и нулевой последовательности, мОм. Принимаются по таблице 2.4 [Л3, с 29].

Таблица 2.9 - Значения суммраного сопротивления цепи

Таблица 2.4 - Активные и интуктивные сопротивления 6(10)/0,4 кВ

Значение Zт/3 для разных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].

Таблица 2 - Расчетные сопротивления масляных трансформаторов по ГОСТ 11920-73 и ГОСТ 12022-76 при вторичном напряжении 400/230 В

Таблица 3,4 - Расчетные сопротивления трансформаторов с негорючим заполнением по ГОСТ 16555-75 при вторичном напряжении 0,4 кВ

Сопротивления контактов шин, аппаратов, трансформаторов тока в данном способе не учитываются, так как арифметическая сумма Zт/3 и Zпт делает не который припас.

2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 [Л3, с 39]:

Полное сопротивление трансформатора Zт

2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:

  • Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] либо по таблицам [Л2], мОм/м;
  • l – длина участка, м.

Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для разных кабелей и шинопроводов согласно [Л3, с 41,42].

Таблицы 2.10, 2.11 - Полное удельное сопротивление петли фаза-нуль для кабелей

Таблицы 2.12 - 2.15 - Полное удельное сопротивление петли фаза-нуль для кабелей и шинопроводов

Справочные таблицы 7, 10 со значениями активных сопротивления медных и дюралевых проводов, кабелей [Л1, с 6, 14].

Таблица 7 - Активные сопротивления медных и алюминиевых проводов и кабелей с резиновой и пластмассовой изоляцией при температуре жилы +65 С, Ом/км

Таблица 10 -Активные сопротивления кабелей с бумажной изоляцией при температуре жилы +80 С, Ом/км

Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы +65(+80) С [Л1, с 15, 16].

Таблицы 11 - 13 - со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4)- жильных кабелей с различной изоляций и при температуре жилы +65(+80)

На практике согласно [Л1, с 5] рекомендуется применять приближенный способ определения тока однофазового КЗ. При таком способе, допустимая погрешность в расчете тока однофазового КЗ при неточных начальных данных в среднем равна – 10% в сторону припаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления применяется 4-я жила или оболочка кабеля; 10-12% — при использовании железных труб для зануления проводки.

Из выше изложенного, следует, что при использовании данного способа, создаётся не который припас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.

1. Советы по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. ГОСТ 28249-93 – Способы расчета в электроустановках переменного тока напряжением до 1 кВ.
3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Что такое петля фаза-ноль и как её измерить

Эксплуатация электрической сети связана с повышенной опасностью. В неё включаются устройства, предназначенные для автоматического отключения питания, при возникновении тока короткого замыкания. Для проверки корректной работы сети, используется петля фаза-ноль – элемент цепи, предназначенный для прохождения тока по замкнутому контуру от источника питания.

Что такое петля фаза-ноль?

Каждый электрический прибор, работающий от напряжения до 1 кВ, должен быть заземлён через нейтраль. При соединении металлических деталей оборудования между собой, ток которого замыкания возникает на проводящих частях его корпуса. При возникновении КЗ на контуре формируется сопротивление, которое должно быть измерено для правильного подбора элементов цепи.

Если изоляция кабельной проводки нарушена, может произойти произвольное замыкание фазы с нулём, либо с металлической поверхностью электроприбора. При таком аварийном состоянии возникает петля фаза-ноль. Показатель сопротивления контура позволяет подобрать нужный автомат для автоматического отключения сети.

Согласно нормам ПУЭ, петля фаза-ноль представляет собой замкнутый контур цепи, который образуется путём замыкания фазного и нулевого проводников. Сопротивление данного контура обратно пропорционально току короткого замыкания, определяется по формуле закона Ома, при известных параметрах напряжения и силы тока в цепи.

Для чего проверяют сопротивление петли фаза-ноль

Проверка сопротивления петли фаза-ноль – важный этап проверки работоспособности электрической сети. Данная операция выполняется для обеспечения ряда условий:

  • Установка нужного защитного автомата (УЗО). Возможность точного расчёта тока КЗ, который обеспечит подбор автомата, срабатывающего без задержек.
  • Подбор сечения кабеля глухозаземлённой нейтрали и фазной жилы.
  • Определение необходимости установки стабилизирующего устройства при частых колебаниях переменного тока в сети.
  • Проверка возможности обеспечения селективности при работе оборудования.
  • Во многих случаях, при вводе кабельной линии в эксплуатацию, требуется согласование электроустановочных изделий с органами Ростехнадзора. Перед оформлением разрешительной документации, ответственные лица обязаны предоставить протоколы измерений сопротивления на петле фаза-ноль и других испытаний цепи.

С экономической точки зрения, проверка сопротивления фаза-ноль позволяет подобрать оптимальные электроустановочные изделия без переплат за лишние показатели или сечения.

Измерение петли фаза-ноль

Измерение петли фаза-ноль должно проводиться профессиональными электриками. Специалисты могут не только определить реальные цифры, но также дать своё заключение и рекомендации по оптимизации сети. Для проведения контрольного замера своими руками потребуется определённый набор инструментов, обширные теоретические знания и следование технологической карте.

Меры безопасности при измерении петли «Ф-Н»

При измерении петли фаза-ноль необходимо соблюдать методы предосторожности, пренебрежение которыми может вызвать серьёзные последствия как для работы оборудования, так и для здоровья человека. Это связано с тем, что алгоритм проведения замеров подразумевает принудительное создание тока КЗ, который при нормальном режиме работы является аварийным случаем. Чтобы избежать чрезвычайных ситуаций, требуется выполнить следующие условия:

  • Перед началом испытания нужно убедиться, что относительная влажность воздуха в помещении не превышает 60% – 65%. При большем показателе водяные пары могут сработать как проводник.
  • Контрольный замер сопротивления петли фаза-ноль может сопровождаться возникновением искры, из-за чего проведение подобной операции в помещениях с легковоспламеняющимися жидкостями или газами категорически запрещено.
  • При вычислении сопротивления на контуре, необходимо использовать положенное по технике безопасности защитное обмундирование.
  • Замеры петли фаза-ноль должна проводиться только при известном сопротивлении на контуре заземления. Это позволить выставить на измерительном приборе нужные параметры.

Для проведения замера, следует пройти аттестацию и иметь на руках допуск к манипуляциям с электроустановками не ниже, чем 3 группы. Проведение замеров – это ответственная работа, связанная с повышенной опасностью.

Приборы для замера петли фаза-ноль

Для проведения измерений петли фаза-ноль используются специализированные приборы. В торговых точках можно встретить 3 основных типа устройств, которые имеют немного разный принцип работы и конструктивные особенности:

  • ИФН-200. Высокотехнологичный прибор, позволяющий произвести измерения как активного, так и реактивного сопротивления. Помимо определения характеристик петли фаза-ноль, устройство может работать в режиме омметра и вольтметра.

При использовании ИФН-200 не требуется проверка показателей заземляющего и фазного кабелей, так как прибор самостоятельно определяет требуемый диапазон измерений.

Микропроцессор, встроенный в устройство, позволяет добиться точности измерений до 3%, а также имеет функцию памяти на 35 предыдущих настроек.

Является одним из самых точных и надёжных приборов, представленных на рынке.

  • MZC-300. Многофункциональный электронный инструмент от российской компании Sonel с 20-летней историей.

Прибор позволяет провести измерение в цепи с номинальным напряжением до 0,5 кВ. Определяет возможный ток КЗ, измеряет полное сопротивление на контактах всех видов заземляющих проводников СИП.

Интерфейс оборудования совместим с ПК через беспроводное соединение по Bluetooth. Позволяет составлять базы данных и проводить расчёты дополнительных параметров электросети.

  • M-417. Прибор, выпускавшийся ещё в советские времена, позволяет измерить сопротивление на петле фаза-ноль с граничными параметрами от 0.1 до 2,0 Ом. Обработка результатов измерений проводится в соответствии с нормами ПУЭ, прибор обеспечивает проверку ожидаемого тока КЗ на кабельной линии с напряжением до 0,4 кВ.

Устройство оснащено базовыми средствами защиты от перегрева и автоматически отключается при образовании потенциала более 36В. Скорость реакции составляет менее 0,3 секунд с момента замыкания цепи.

Перед началом измерений, приборы должны быть настроены и пройти поверку, во избежание выдачи некорректных результатов.

Схема подключения прибора

После проведения настройки, перед началом измерений, прибор должен быть правильно подключён к сети. Способ и схема включения зависят от методики проведения испытаний:

  • При замере ожидаемого тока короткого замыкания. Для достижения максимальной эффективности измерений, прибор должен быть включён в цепь как можно дальше от УЗО. В таком случае, при формировании КЗ и срабатывании автомата, достигается уверенность в правильности подбора защитного устройства. То есть, УЗО сработает в любой точке цепи.
  • Проверка петли фаза-ноль методом снижения напряжения. Для осуществления измерений, напряжение в сети полностью отключается. После этого, в цепь включается устройство, дающее опорное сопротивление и проводится замер фаза-нуль. Данный метод не связан с возникновением переменного тока в сети, что исключает образование КЗ и искры. Испытание может проводиться при особо опасных условиях.
  • Самая сложная, но рабочая схема включения прибора в сеть – метод амперметра-вольтметра. При проведении замеров требуется использование дополнительного устройства – понижающего трансформатора. Испытания проводятся посредством замыкания кабеля с пониженным напряжением и силой тока на проводниковой части корпуса оборудования. Показатели, полученные в ходе измерений, не являются конечными, и сопротивление петли должно быть рассчитано по формуле.

На практике, чаще всего используется первый способ измерения сопротивления петли фаза-нуль. Такая методика не требует дополнительного оборудования и даёт конечные показатели максимально быстро и точно. При проведении замеров, щупы прибора подключатся в цепь C–N (фаза-ноль), C–PE (фаза-дополнительный проводник на нейтрали) или ТТ (с использованием трансформатора).

Методика измерения

Для получения корректных результатов измерений, все работы должны проводиться в строгом соответствии с приведённым ниже алгоритмом:

  1. На первом этапе определяется суммарное сопротивление цепи, а также граничные условия для срабатывания УЗО при фактическом токе КЗ:
  • Суммарное сопротивление контура определяется при замыкании щупов прибора между фазным кабелем и проводником заземления в цепи.
  • На современном электронном приборе имеется соответствующая функция, которая отображается на дисплее словом «loop», или «петля». Необходимо выбрать данный показатель, после чего задать другие граничные условия – тип, номинальный ток и период срабатывания УЗО.
  • Прибор включается в цепь по схеме С-N. При корректной работе оборудования, на экране появятся 3 показателя – Z (искомая величина – суммарное сопротивление цепи), ISC (ожидаемый ток КЗ) и Lim (минимальный ток КЗ, для которого рассчитывается УЗО).
  • Для отображения показателей на экране, прибор приводится в активное состояние после нажатия клавиши Test.
  • Определение необходимого сопротивления петли фаза-нуль для срабатывания УЗО. Перед проведением испытания на дисплее выбирается соответствующая индикация ZS, которая в международной системе означает УЗО.
  • Считывание показаний производится после отображения трёх величин Z, ISC, Lim, описанных выше.
  1. Суммарное сопротивление линии, ожидаемый ток КЗ:
  • На дисплее прибора выбирается параметр «Линия».
  • Испытание проводится посредством последовательного включения прибора по схемам фаза-фаза и фаза-нейтраль.
  • После каждого подключения на устройстве нажимается клавиша Test, а показатели Z, ISC и Lim заносятся в протокол испытаний.

Важно! При выполнении измерений с помощью прибора, необходимо убедиться, что напряжение в сети постоянное, без перепадов. Если это условие не соблюдается, измерение должно проводиться несколько раз со сравнением полученных показателей. Лучшим решением для определения параметров работы нестабильной сети будет временное включение стабилизатора напряжения. Переменные показания прибора, выходящие за рамки допустимой погрешности, определяют необходимость использования стабилизирующего оборудования.

Таблица нормативных показателей полного сопротивления петли фаза-нуль

Сечение фазной жилы кабеля, мм2

Сечение нулевой жилы кабеля, мм2

Суммарное сопротивление цепи фаза-ноль на кабелях с ПВХ изоляцией, Ом/км, при температуре нагрева жилы до +65 оС

Вид металла кабельной жилы

Алюминий

Медь

Сопротивл. фазы, rф

Сопротивл. нуля r0

Суммарное сопротивл. цепи, Z

Сопротивл. фазы, rф

Сопротивл. нуля r0

Суммарное сопротивл. цепи, Z

1,5

1,5

14,55

14,55

29,10

2,5

2,5

14,75

14,75

29,50

8.73

8.73

17.46

4,0

4,0

9,20

9,20

18.40

5.47

5.47

10.94

6,0

6,0

6,15

6,15

12.30

3.64

3.64

7.28

10,0

10,0

3,68

3,68

7.36

2.17

2.17

4.34

16,0

16,0

2,30

2,30

4.60

1.37

1.37

2.74

25,0

25,0

1,47

1,47

2.94

0.873

0.873

1.746

35,0

35,0

1,05

1,05

2.10

0.625

0.625

1.25

50,0

25,0

0,74

1,47

2.21

0.436

0.873

1.309

50,0

50,0

0,74

0,74

1.48

0.436

0.436

0.872

70,0

35,0

0,527

1,05

1.577

0,313

0.625

0.938

70,0

70,0

0,527

0,527

1.054

0,313

0.313

0.626

95,0

50,0

0,388

0,74

1.128

0,23

0.436

0.666

95,0

95,0

0,388

0,388

0.776

0,23

0.23

0.46

120,0

35,0

0,308

1,55

1.858

0,181

0.625

0.806

120,0

70,0

0,308

0,527

0.835

0,181

0.313

0.494

120,0

120,0

0,308

0,308

0.616

0,181

0.181

0.362

150,0

50,0

0,246

0,74

0.986

0,146

0.436

0.582

150,0

150,0

0,246

0,246

0.492

0,146

0.146

0.292

185,0

50,0

0,20

0,74

0.94

0,122

0.436

0.558

185,0

185,0

0,20

0,20

0.40

0,122

0.122

0.244

240,0

240,0

0,153

0,153

0.306

0,090

0.090

0.18

Таблица сопротивления трансформатора

Показатель мощности трансформатора, кВ А

25

40

63

100

160

250

400

630

1000

Значение сопротивления трансформатора, ZT / 3, Ом

0,30

0,18

0,12

0,067

0,055

0,028

0,018

0,014

0,0088

Таблица зависимости сопротивления УЗО от силы тока

Сила тока автоматического выключателя, Iавт, А

1

2

6

10

12

16

20

25

32–40

Свыше 50

Сопротивление автоматического выключателя, Rавт, Ом

1,44

0,46

0,061

0,024

0,013

0,01

0,007

0,0056

0,004

0,001

Таблица зависимости сопротивления дуги от сопротивления цепи

Сопротивление цепи, Rцепи, Ом

0,05

0,1

0,2

0,3

0,4

0,5

0,6

0,8

1,0

1,5

Свыше 2

Сопротивление дуги, Rдуги, Ом

0,015

0,022

0,032

0,04

0,045

0,053

0,058

0,075

0,08

0,12

0,15

Формулы для расчёта

После проведения измерений и занесения результатов в протокол установленной формы, необходимо провести некоторые вычисления, которые позволят проверить работоспособность УЗО и кабельных линий. Вычисления сводятся к использованию стандартных электротехнических формул, в соответствии с ПУЭ:

  • Формула сопротивления петли фаза-ноль:

Z = ZS + ZT / 3,

Z – искомая величина сопротивления петли фаза-нуль,

ZS – суммарное сопротивление всех жил кабелей, входящих в цепь,

ZТ – сопротивление трансформатора, подключенного к цепи.

  • Ожидаемая сила тока наступления однофазного КЗ:

IКЗ = UФ / Z,

IКЗ – искомая величина,

UФ – номинальное напряжение на фазном кабеле,

Z – значение сопротивления петли фаза-ноль, определяемое по формуле, приведённой ниже.

  • Время защитного автоматического отключения УЗО является табличной величиной, и не должно превышать следующих значений:

UФ = 127 В, TNпред = 0,8 с,

UФ = 220 В, TNпред = 0,4 с,

UФ = 380 В, TNпред = 0,2 с,

UФ более 380 В, TNпред = 0,1 с,

TNпред – максимально допустимое время срабатывания защитного автоматического отключения УЗО.

  • Полное предельное сопротивление проводника, обеспечивающего защитное отключение УЗО:

ZП = 50 Z / UФ,

50 – константа, характеризующая снижение номинального напряжения в проводнике на участке цепи между заземляющим кабелем и щитком, где установлен УЗО.

  • Сила тока короткого замыкания, при достижении которого происходит автоматическое аварийное отключение:

IКЗ факт = UФ / ZП.

Из приведённых формул видно, что зависимость расчёта каждого показателя выводится из стандартного закона Ома в каноническом виде. Численные значения характеристик принимаются по результатам проведённых измерений, либо определяются по таблицам, приведённым выше. Формула сопротивления петли фаза-нуль является основной расчётной величиной

Считывание полученной информации

Вне зависимости от типа, модели и модификации прибора, считывание показателей производится с интерактивного жидкокристаллического дисплея после нажатия на клавишу «Старт» или «Test».

Более дорогие версии оборудования снабжаются крупным многострочным дисплеем, на котором отображаются сразу все необходимые данные. Если прибор имеет маленький встроенный дисплей, информация на нём высвечивается не полностью. Для получения всех сведений требуется пролистывание экрана путём нажатия клавиш «Sel» или «Z/L».

Некоторые устройства из числа повышенной ценовой категории снабжены функцией памяти на несколько последних настроек, как правило, от 5 до 35 позиций. Это значительно упрощает работу специалистов на крупном объекте. Занесение каждого измерения в память прибора позволяет отложить составление протокола до начала камеральных обработок натурных испытаний электрической сети.

Анализ результатов измерения и оформление формы протокола замера

По результатам измерения, полученные сведения заносятся в протокол установленной формы. Данный документ заверяется экспертом, имеющим необходимую квалификацию и допуск, после чего он вступает в законную силу и прикладывается к общей папке для сдачи объекта. В протоколе указываются следующие сведения:

  • Данные о компании, силами которой были проведены измерения.
  • Порядковый номер, название и дата составления бумаги.
  • Официальные сведения о заказчике испытаний.
  • Данные, обосновывающие необходимость проведения замеров. В этой графе указывается информация, для какой цели проводилась работа – приёмка объекта в эксплуатацию, проведение периодической инспекции, либо испытания после проведения ремонта и замены электротехнических установок.
  • Сведения о климатических параметрах в помещении, где производились измерения. Если проверка проводилась в отношении внешней кабельной линии, указываются параметры наружного воздуха в день испытаний.
  • Таблица с результатами измерений, оформленная в соответствии с требованиями ПУЭ.
  • Сведение о приборах, использовавшихся в ходе испытаний с указанием даты их поверки.
  • Выводы экспертной комиссии.

Протокол испытаний подтверждает безопасность эксплуатации кабельной сети и электрооборудования. При выдаче положительного заключения ответственное лицо ставит личную подпись, а представителем компании заверяют бумагу синей печатью, что говорит об ответственности, возложенной на предприятие.

Пример протокола испытаний

Протокол № ___

Проверки согласования параметров цепи фаза-ноль с характеристиками автоматов защиты и целостности защитных проводников

Климатические параметры, по состоянию на дату проведения испытаний

Температура воздуха ___ оС, Относительная влажность воздуха __%, Атмосферное давление ___ мм рт. ст.

Цель проведения измерений:

Нормативная техническая документация, на соответствие которой были проведены испытания:

  1. Результаты замеров

№ Поз.

Проверяемый участок цепи, место установки автомата защиты

Аппарат защиты от сверхтока

Измеренное значение сопротивления цепи фаза-ноль, Ом

Измеренное (расчётное) значение тока однофазного замыкания, А

Время срабатывания автомата защиты, сек.

Типовое обознач.

Тип расцеп.

Номин. ток

Диапаз. тока срабат. расцеп. коротк. замык. 

А

В

С

А

В

С

Максим. допуст.

По время-токовой хар-ке

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Щит силовой, №1

1

Группа № 1

ВА6730

С

10

50 – 100

0,6

366

0,4

0,01

2

Группа № 2

ВА6730

С

10

50 – 100

0,5

440

0,4

0,01

3

Группа № 3

ВА6730

С

16

80 – 160

0,4

550

0,4

0,01

4

Группа № 4

ВА6730

С

25

125–250

0,5

440

440

0,4

0,01

5

Группа № 5

ВА6730

С

16

80 – 160

0,5

0,4

0,01

Заключение: Параметры цепи фаза-ноль соответствуют требованиям ПУЭ, п. № 3.1.8, п № 1.7.79

Измерения провели:

Ведущий инженер ЭИЛ: Авилов / Авилов А. Ю.

Инженер ЭИЛ: Иванов / Иванов С. О.

Протокол проверил и утвердил:

Начальник ЭИЛ: Кочетков / Кочетков М. А.

Дата __. __.____

Периодичность проведения испытаний

Согласно требованиям норм ПУЭ, натурные испытания со снятием показаний сопротивления петли фаза-ноль и проверкой тока КЗ должны проводиться со следующей периодичностью:

  • Перед введением нового объекта в эксплуатацию.
  • После проведения ремонтных работ и замены отдельных устройств.
  • В профилактических целях – не реже, чем 1 раз в 3 года.

При проведении повторных испытаний составляется новый протокол, при котором старый документ теряет актуальность.

Коротко о главном

Измерение сопротивления петли фаза-нуль с определением тока КЗ и проверкой времени срабатывания защитного автомата УЗО – обязательная и ответственная процедура. Данная работа регламентируется требованиями ПУЭ, результаты заносятся в протокол, подлежащий согласованию в Ростехнадзоре. Испытания проводятся специальным контрольно-измерительным оборудованием, которое должно пройти поверку. Замеры проводятся с использованием разных схем подключения к сети и последующим считыванием информации на дисплее приборов. После получения результатов измерения сопротивления, оставшиеся значения определяются по формулам, выведенными из закона Ома.

Понравилась статья? Поделить с друзьями:
  • Как найти поставщиков конкурентов
  • Как найти поставщика товара в россии
  • Replacing invalid security id with default security id for file windows 7 как исправить
  • Как найти модуль координаты тела по графику
  • Как найти общее давление двух жидкостей