Как найти сопротивление проволоки в катушке


Активное сопротивление любого проводника определяется:

где ρ = 1,7∙10-8 Ом∙м – удельная проводимость материала (в данном случае — меди),
l – длина проводника, м,
S – площадь поперечного сечения проводника, м2.

Определим длину проводника. Для этого рассчитаем длину витка и умножим её на число витков. При этом длина витка будет равна длине окружности:

Определим площадь поперечного сечения проводника. В реальности проводник имеет круглое сечение, Maxwell же рассчитывает потери для всей области занятой катушкой, т.е. предполагается, что проводники полностью заполняют область. В случае, если необходим точный расчёт для катушек, намотанных проводом круглого сечения, каждый проводник катушки должен быть прорисован отдельным объектом.
Исходя из вышесказанного, будем условно считать, что катушка намотана проводником прямоугольного сечения. В этом случае площадь поперечного сечения проводника будет определяться:

Определим сопротивление обмотки:

Построим геометрию модели из Примера 1 в 3D. Для этого нажимаем ПКМ на проекте модели 2D примера 1 и выбираем Create 3D Design. После чего модель будет автоматически преобразована в 3D.

1. Создадим сечение для задания возбуждения катушки.

Для этого выделим объект катушки и применим к нему операцию «сечение» (меню Modeler > Surface > Section, выбираем плоскость сечения YZ). Получим объект, состоящий из двух сечений. Для задания возбуждения необходимо одно сечение, поэтому разделим получившийся объект (меню Modeler > Boolean > Separate Bodyes). Второе сечение не нужно, и его можно удалить.
Последнему сечению назначим величину тока, равную 10 ампер-виткам (ПКМ по сечению > Assign Excitation > Current > Value), тип обмотки – распределённая (Stranded).

2. Задание граничных условий.

В 3D постановке задачи в Maxwell по умолчанию действует условие обнуления поля на границах модели. В отличии от 2D постановки задачи открытых границ (условие Balloon) в 3D нет. Поэтому расчётную область иногда приходится увеличивать до тех пор, пока результат расчёта модели не перестанет ощутимо изменяться.

Создадим область для расчёта: Create Region (Создание региона), в открывшемся окне выберем Pad Individual Direction и по каждой оси отступим 40% от объектов модели:

Граничные условия для модели не задаём, т.к. действует граничное условие по умолчанию (присваивается нулевая величина поля на границе расчётной модели).

3. Создание сетки элементов и задания на расчёт.

Далее – создаём сетку конечных элементов, предварительно выделив все объекты модели (Assign Mesh Operation > Inside Selection > Length Based… )
Создаём новое задание на расчёт с параметрами по умолчанию (ПКМ на Analysis > Add Solution Setup)

Запускаем задачу на расчёт.

Рисунок П.2.1 – 3D модель рассчитываемой катушки

4. Расчёт омических потерь катушки.

Запустим калькулятор поля (ПКМ на Field Overlays > Calculator…)

В калькуляторе поля (Рисунок П.2.2), необходимо задать следующее выражение:

Рисунок П.2.2 – Калькулятор поля Maxwell

где V – объём, в котором рассчитываются потери (обмотка);
— вектор плотности тока в обмотке;
σ = 1/ρ = 58∙106 См/м – удельная проводимость материала (в данном случае — меди).

Запишем искомое выражение в калькуляторе поля, набрав следующую последовательность команд:

Quantity > J Выбираем вектор плотности тока
Push Дублируем
Number > Scalar > Value 58000000 Вводим величину удельной проводимости меди
/ Делим плотность тока на проводимость
Dot Перемножаем
Geometry > Volume > Coil Выбираем объём катушки (вместо Coil выбрать название катушки)
Интегрируем выражение по объёму.

В строке выражений получится:

Scl : Integrate(Volume(Coil), Dot(<Jx,Jy,Jz>, /(<Jx,Jy,Jz>, 58000000)))

Получившееся выражение сохраняем в качестве переменной (Named Expression): PowerLoss (кнопка Add..)

Разделим получившиеся потери на квадрат тока ( I = 1 А ) в проводнике (выбираем PowerLoss в списке переменных > Copy to Stack > Eval > Number > Scalar > 1 > / (операция деления).

Получим результат: R = 0,022687 Ом.

Сравним с теоретическим результатом: R = 0,02244 Ом, погрешность составила: 0,1%.

Примечание: Нельзя забывать, что сечение электропроводящего материала в катушках, намотанных проводником круглого сечения, не будет соответствовать реальному сечению катушки. Поэтому нельзя в модели строить сечение катушек по реальным данным, т.к. это приведёт к уменьшению активного сопротивление катушки. В модели сечение катушки должно совпадать с сечением электропроводящего материала (медь, алюминий). Это сечение можно рассчитать, перемножив сечение провода на число витков в катушке.

Автор материалов: Drakon (С) 2014. Редактор: Админ

Что такое активное сопротивление катушки

Содержание

  • 1 Катушка
  • 2 Конструкция и разновидности
  • 3 Принцип работы
  • 4 Индуктивность
  • 5 Активное сопротивление
  • 6 Постоянный ток
  • 7 Переменный ток
  • 8 Замер сопротивления и формула расчета
  • 9 Заключение
  • 10 Видео по теме

Одной из наиболее важных радиотехнических деталей является катушка индуктивности. Статья раскроет тему, что такое активное сопротивление катушки. Также будет дана информация о назначении и принципе действия этого элемента, приведена формула расчета сопротивления.

Катушка

Катушка индуктивности представляет собой металлический или ферритный сердечник, на который намотано несколько витков медного провода. Элемент обладает следующими свойствами:

  1. За счет индуктивности ограничивается скорость изменения токов.
  2. С увеличением частоты тока катушка способна увеличить свое сопротивление (скин-эффект).
  3. Создает магнитное поле.
  4. Увеличивает и накапливает напряжение.
  5. Создает сдвиг фаз переменного тока.
  6. Пропорционально скорости движения тока создает ЭДС самоиндукции.

Катушка индуктивности

Все эти свойства находят применение при разработке радиоприемных устройств, генераторов частоты, тестеров, магнитометров и других видов сложного оборудования.

Конструкция и разновидности

Все типы катушек индуктивности имеют одинаковую конструкцию, независимо от области их использования. Особенности, внесенные для получения индивидуальных параметров, влияют на тип детали.

  1. Соленоид. Компонент с увеличенной общей длиной обмоточного провода. Обмотка больше диаметра детали.
  2. Тороидальная. В такой катушке соленоид выполнен в форме «тора».
  3. Многослойный тип, имеет несколько рядов обмотки.
  4. Секционированная. Обмотка имеет несколько разделенных секций, иногда из провода разного сечения. Наиболее известной катушкой этого типа является трансформатор или дроссель.
  5. Универсальная, может совмещать сразу несколько вариантов обмотки.

Конструкция катушки

Независимо от конструкции, все катушки работают по одному и тому же принципу.

Принцип работы

Катушка индуктивности работает только при прохождении электрического тока через набор витков обмотки. При подключении элемента к электрической цепи, по витку начинает двигаться ток. За счет взаимодействия провода с металлическим сердечником создается магнитный поток. Поток полностью пропорционален индуктивности катушки и величине тока. Величину магнитного потока можно рассчитать по следующей формуле: Ф=L×I.

Элементами формулы являются:

  1. «Ф» — величина магнитного потока.
  2. «L» — индукция.
  3. «I» — величина тока.

Принцип работы катушки

Количество витков влияет на величину ЭДС самоиндукции. Витки взаимодействуют не только с сердечником, но и между собой, что приводит к увеличению ЭДС.

В цепи переменного напряжения, величина ЭДС способна спровоцировать разность фаз напряжения и тока вплоть до 90 градусов.

Индуктивность

Индуктивностью катушки является способность к накапливанию электричества. Этот параметр зависит от:

  1. Числа витков.
  2. Сечения и длины провода.
  3. Конструктивных особенностей детали.
  4. От материала, длины, диаметра и формы сердечника.
  5. От расстояния между витками.
  6. Наличия экрана.

В радиоэлектронике не принято указывать значение индуктивности. Производители маркируют детали числом витков и указывают тип сердечника.

Активное сопротивление

Катушка индуктивности, не подключенная к электрической цепи, имеет только активное сопротивление.

Активное сопротивление

Оно создается медным проводом и зависит от его длины, сечения. Активное сопротивление способно нарастать только после подключения в цепь. В этом случае процессы, протекающие внутри элемента, зависят от типа тока.

Постоянный ток

В подключенной к постоянному току катушке индуктивности создается магнитное поле. Его величина зависит от числа витков на сердечнике. При этом, ЭДС самоиндукции возникает при движении магнитного потока, который в зависимости от своей силы и скорости, выталкивает часть напряжения на поверхность обмотки.

Катушка под постоянным напряжением

За счет образования ЭДС, возникает эффект занижения нарастания тока в этой цепи. Ток, имея определенную силу, не способен нарасти мгновенно, так как на него действует сопротивление катушки. Постепенно преодолевая ограничение, ток плавно нарастает и достигает нормальных значений. Скорость такого переходного процесса рассчитывается с использованием следующих значений:

  • «L» — индуктивность, генри;
  • «R» — сопротивление электрической цепи, ом. Берется значение всей схемы с катушкой;
  • «t» — время переходного процесса, сек.

Формула расчета выглядит следующим образом: t=L/R. В этой формуле также используется число витков элемента. Например, t=5×0.7/70=0.05 секунд, где 5 — число витков.

Для катушек индуктивности с первичной и вторичной обмоткой, ЭДС индуктивности протекает немного иным способом. Это различие создается за счет разницы сечений витков. В такой детали ЭДС не препятствует увеличению напряжения, а направляется вместе с прерванным током в одном направлении.

В трансформаторах первичная обмотка создает эффект сильного увеличения напряжения на контактах выхода. Этого удается достичь за счет изменения силы тока на первичной обмотке. Учитывая мгновенно изменение силы тока (одномоментное размыкание), во вторичной обмотке наводится импульс э.д.с амплитудой в десятки киловольт. Примером такого явления является катушка зажигания автомобиля. Ее магнитное поле позволяет достичь напряжения в тысячи вольт, несмотря на то, что сама она работает от аккумулятора с напряжением 12 вольт.

Переменный ток

Переменный ток сильно отличается от постоянного. Поэтому и его влияние на катушку индуктивности так же будет сильно отличаться. Помимо активного сопротивления, катушка подключенная к источнику переменному току, обладает еще и индуктивным.

Катушка в цепи переменного тока

Активное сопротивление не подключенной в цепь катушки зависит только от марки провода, его длины и сечения. При замере сопротивления отключенной от цепи катушки, тестер покажет только способность самого провода сопротивляться прохождению тока. По своей сути, активное сопротивление этого элемента будет равно 0 + подключенный резистор. При таком соотношении, катушка с ее 0 сопротивлением является идеальной. Для более точного измерения сопротивления в состоянии покоя, важно чтобы деталь была полностью отключена от цепи. При замере на схеме, сопротивление будет увеличено за счет параметров других радиодеталей.

Зависимость сечения провода и вытеснения

Индуктивное сопротивление возникает только после подключения катушки в цепь переменного тока. Оно зависит от частоты тока и числа витков. Индуктивное сопротивление можно определить, используя простую формулу: XL=2×π×f×L. В данном выражении:

  1. «XL» — индуктивное сопротивление.
  2. «π» — число «пи», равное 3.14.
  3. «f» — частотная характеристика тока.
  4. «L» — индуктивность.

При прохождении переменного тока по виткам катушки, создается эффект вытеснения магнитными потоками доли токов. Это свойство схоже с влиянием постоянного тока. Главное отличие заложено в боковом вытеснении. Магнитное поле каждого витка оказывает давление на поле последующего витка. Таким образом происходит увеличение активного сопротивления.

Данный эффект увеличивается в зависимости от сечения провода, его проводимости и температуры. Эффект близости, сильно влияющий на увеличение активного сопротивления, снижают за счет подбора сечения обмоточного провода. Снижение эффекта близости недопустимо за счет увеличения расстояния между витками. Такой подход влияет на реактивное сопротивление и мощность магнитного поля.

Эффект вытеснения

В итоге активное сопротивление при подключении катушки к источнику переменного тока обладает следующими свойствами:

  1. Взаимодействует с параметрами индуктивного сопротивления.
  2. Способно занижать скорость магнитного потока.
  3. Создает сдвиг фаз напряжения и тока.
  4. При работе в условиях больших токов, активное сопротивление катушки увеличивает температуру самого компонента и всей цепи в целом. Нагрев часто происходит по причине непрочных контактов, неправильно подобранного сечения проводов на выходе и сильной нагрузки в общей сети.

В электротехнике существует ряд разновидностей экранированных катушек индуктивности. Такие экран часто делают из стали или алюминия. Они необходимы для снижения воздействия магнитного поля на ближайшие элементы схемы. У экранов есть и обратная функция. С помощью них катушка защищает себя от воздействия смежных компонентов схемы. Таким образом производители могут уменьшить определенную часть помех. Воздействие магнитного поля неэкранированной катушки можно услышать, например, если поднести элемент к включенному радиоприемнику. У экрана есть и один существенный недостаток. Он сильно увеличивает активное сопротивление самой детали.

Замер сопротивления и формула расчета

Замерить активное сопротивление катушки индуктивности можно только в обесточенном виде. Делается это при помощи мультиметра.

  1. Мультиметр надо перевести в режим омметра.
  2. Красный измерительный щуп соединить с первым выходом катушки.
  3. Черный измерительный щуп соединить со вторым выходом.
  4. Прибор покажет только активное сопротивление обмотки.

Замер сопротивления

При помощи тестера можно определить только целостность витков. Если элемент включен в цепь под напряжением, то величину сопротивления находят за счет простого вычисления по формуле: Z=U/I.

Для расчета по этой формуле, при помощи тестера определяют сначала величину тока (I) и напряжения (U). Активное сопротивление измеряется в Омах.

Зная формулу расчета активного и индуктивного сопротивления, полное сопротивление элемента может быть найдено с помощью формулы:

Z= 2×(R×R+XL×XL)

В этом выражении R является активным сопротивлением, а XL — индуктивным.

Заключение

Расчет активного сопротивления катушки несет в себе большую практическую пользу. Радиолюбители и инженеры могут определить наименьший коэффициент сопротивляемости элемента, что помогает настроить частотные характеристики электронной аппаратуры.

Видео по теме

Электрическое сопротивление обмоток различных катушек – каким оно должно бытьДостаточно большое количество электрических устройств имеет в своем составе катушки в виде намотки медной изолированной проволоки. Главным свойством, которым обладает электрическая катушка является взаимодействие с электромагнитным полем. Для одних устройств катушка выступает в роли электромагнита, притягивающая либо отталкивающая металлические части или другие катушки. В иных же устройствах электрическая катушка может служить генератором электрической энергии, по средствам электромагнитной индукции (если на катушку воздействовать внешним электромагнитным полем).

Любая электрическая катушка имеет свое внутреннее сопротивление. Причем, это сопротивление можно разделить на два типа, это активное и реактивное. Активным сопротивлением обладают катушки, через которые протекает только постоянный ток. Активное сопротивление катушки зависит от материала провода катушки, его сечения, длины. При протекании через катушку переменного тока мы уже будет иметь дело с реактивным сопротивлением, величина которого уже будет зависеть ещё и от частоты протекающего переменного тока (чем частота выше, тем больше реактивное сопротивление).

На практике, в большинстве случаев, приходится сталкиваться именно с активным электрическим сопротивлением катушек. Это сопротивление обусловлено внутренней структурой атомов, из которых состоит вещество проводника. У различных проводников внутреннее сопротивление имеет разные значения (при одной и той же длине и сечении). Это ещё называется удельным сопротивлением проводника (его обычно берут из справочников). Для нахождения сопротивления определенного проводника можно воспользоваться простой формулой: сопротивление равно удельное сопротивление материала проводника умноженное на его длину и это всё деленное на площадь поперечного сечения.

как найти сопротивление намотки, провода, катушки формула сопротивления проводника

как измерить сопротивление обмотки катушкиБолее простым способом нахождения сопротивления обмоток, широко используемом на практике, является метод обычного измерения. Берём мультиметр, омметр, выставляем нужный диапазон измерения (Омы, килоОмы, мегаОмы) и прикасаемся щупами измерителя прямо к катушке, обмотке. Наш тестер с достаточно большой точность покажет имеющееся сопротивление. Как правило, обмотка катушек, рассчитанных на низкое напряжение имеет достаточно малое сопротивление (в районе единицы-сотни Ом). Обмотки под напряжение 220, 380 и выше уже имеют сопротивление в пределах от сотен Ом до десятков килоОм.

как найти сопротивление обмотки катушки по формуле закона омаЗная сопротивление обмотки, как минимум можно судить о её работоспособности (если в ней нет короткозамкнутых витков), а как максимум её величину можно использовать в различных формулах. Наиболее известной и широко используемой является формула закона Ома, которая позволяет найти любую одну неизвестную величину (из трех – напряжение, ток, сопротивление) из двух известных. Учтите, в формулах нужно использовать основные единицы измерения физических величин. В законе Ома таковыми являются: для силы тока это ампер, для напряжения это вольт и для сопротивления это Ом.

Если при измерении сопротивления обмотки прибор ничего не показывает (пробник не реагирует), значит в этой катушке имеется обрыв. В этом случае катушку следует разобрать, хорошо визуально осмотреть (возможно обрыв произошел возле самих выводов катушки, что происходит достаточно часто), при необходимости её перемотать. Но бывают случаи, когда обрыва нет, тестер показывает какое-то сопротивление, сама же катушка не работает как надо. В этом случае, если вы уверены надёжности проводов и цепей, по которым подводится к обмотке напряжение, возможен вариант короткозамкнутых витков.

Короткозамкнутые витки – это витки обмоточного провода катушки, которые были накоротко замкнуты внутри самой обмотке между собой. Естественно, участок обмотки с короткозамкнутыми витками является нерабочим, более того, он является причиной возникновения дополнительного нагрева самой катушки (по причине самоиндукции, в цепях переменного тока). Причиной возникновения такого явления может послужить полое качество изоляции обмоточного провода, температурный удар (возникший сильный перегрев катушки), который был прежде, чрезмерное динамическое воздействие на катушку (удары, тряски и т.д.). Сопротивление обмотки, что имеет короткозамкнутые витки, будет меньше номинального значения, а это ведёт к ненормальной работе самой этой катушки.

устройство для проверки короткозамкнутых витков якоря электродвигателяКороткозамкнутые витки выявляются не просто. Для проверки обмотки якоря электродвигателя существует специальное устройство (можно сделать и самому, это трансформатор со специальным распилом на своем магнитопроводе, куда и ложится якорь для проверки). Если катушка до этого работала нормально, при этом особо не нагревалась, а потом вдруг начала, то скорее всего у неё появились эти самые бракованные витки. Хорошо если вы изначально знаете номинальное сопротивление своей катушки, будет с чем сравнить при измерении и выявлении неисправности обмотки. Либо же нужно сравнивать сопротивление с заведомо рабочей обмоткой другого устройства. Или же прибегнуть в вычислением сопротивления по формуле, если известны: мощность, сила тока, напряжение.

P.S. Далеко не во всех случаях при неисправности катушки виновата сама обмотка. Достаточно часто бывает так, что те провода, которые питают эту самую катушку находятся в плохом состоянии. Окисленные контакты соединяющие концы обмотки и питающие клеммы, провода, место спая значительно увеличивают сопротивление электрической цепи. Достаточно хорошо почистить подобные места, как тут же работоспособность катушки того или иного устройства полностью восстановится.


Загрузить PDF


Загрузить PDF

Полное сопротивление, или импеданс, характеризует сопротивление цепи переменному электрическому току. Данная величина измеряется в омах. Для вычисления полного сопротивления цепи необходимо знать значения всех активных сопротивлений (резисторов) и импеданс всех катушек индуктивности и конденсаторов, входящих в данную цепь, причем их величины меняются в зависимости от того, как меняется проходящий через цепь ток. Импеданс можно рассчитать при помощи простой формулы.

Формулы

  1. Полное сопротивление Z = R или XLили XC (если присутствует что-то одно)
  2. Полное сопротивление (последовательное соединение) Z = √(R2 + X2) (если присутствуют R и один тип X)
  3. Полное сопротивление (последовательное соединение) Z = √(R2 + (|XL — XC|)2) (если присутствуют R, XL, XC)
  4. Полное сопротивление (любое соединение) = R + jX (j — мнимое число √(-1))
  5. Сопротивление R = I / ΔV
  6. Индуктивное сопротивление XL = 2πƒL = ωL
  7. Емкостное сопротивление XC = 1 / 2πƒL = 1 / ωL
  1. Изображение с названием Calculate Impedance Step 1

    1

    Импеданс обозначается символом Z и измеряется в омах (Ом). Вы можете измерить импеданс электрической цепи или отдельного элемента. Импеданс характеризует сопротивление цепи переменному электрическому току. Есть два типа сопротивления, которые вносят вклад в импеданс:[1]

    • Активное сопротивление (R) зависит от материала и формы элемента. Наибольшим активным сопротивлением обладают резисторы, но и другие элементы цепи обладают небольшим активным сопротивлением.
    • Реактивное сопротивление (X) зависит от величины электромагнитного поля. Наибольшим реактивным сопротивлением обладают катушки индуктивности и конденсаторы.
  2. Изображение с названием Calculate Impedance Step 2

    2

    Сопротивление — это фундаментальная физическая величина, описываемая законом Ома: ΔV = I * R.[2]
    Эта формула позволит вам вычислить любую из трех величин, если вы знаете две другие. Например, чтобы вычислить сопротивление, перепишите формулу так: R = I / ΔV. Вы также можете измерить сопротивление при помощи мультиметра.

    • ΔV — это напряжение (разность потенциалов), измеряемое в вольтах (В).
    • I — сила тока, измеряемая в амперах (А).
    • R — это сопротивление, измеряемое в омах (Ом).
  3. Изображение с названием Calculate Impedance Step 3

    3

    Реактивное сопротивление имеет место только в цепях переменного тока. Как и активное сопротивление, реактивное сопротивление измеряется в омах (Ом). Есть два типа реактивного сопротивления:

    • Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
      Чем быстрее меняется направление тока, тем больше индуктивное сопротивление.
    • Емкостным сопротивлением XC обладают конденсаторы, которые накапливают электрический заряд. При изменении направления тока в цепи конденсатор неоднократно обнуляет и накапливает электрический заряд. Чем дольше конденсатор заряжается, тем больше емкостное сопротивление.[4]
      Поэтому чем быстрее меняется направление тока, тем меньше емкостное сопротивление.
  4. Изображение с названием Calculate Impedance Step 4

    4

    Вычислите индуктивное сопротивление. Это сопротивление прямо пропорционально быстроте изменения направления тока, то есть частоты тока. Эта частота обозначается символом ƒ и измеряется в герцах (Гц). Формула для расчета индуктивного сопротивления: XL = 2πƒL, где L — индуктивность, измеряемая в генри (Гн).[5]

    • Индуктивность L зависит от количества витков в катушке индуктивности.[6]
      Также вы можете измерить индуктивность.
    • Если вы знакомы с единичной окружностью, то представьте, что один цикл переменного тока равен одному полному вращению этой окружности (на 2π радиан). Если умножить это значение на ƒ, которая измеряется в герцах (единиц в секунду), вы получите результат, измеряемый в радианах в секунду. Это единица измерения угловой скорости, которая обозначается через ω. Вы можете переписать формулу для вычисления индуктивного сопротивления так: XL=ωL[7]
  5. Изображение с названием Calculate Impedance Step 5

    5

    Вычислите емкостное сопротивление. Это сопротивление обратно пропорционально быстроте изменения направления тока, то есть частоты тока. Формула для вычисления емкостного сопротивления: XC = 1 / 2πƒC.[8]
    С — это емкость конденсатора, измеряемая в фарадах (Ф).

    • Вы можете измерить электрическую емкость.
    • Эту формулу можно переписать так: XC = 1 / ωL (объяснения см. выше).

    Реклама

  1. Изображение с названием Calculate Impedance Step 6

    1

    Если цепь состоит исключительно из резисторов, то импеданс вычисляется следующим образом. Сначала измерьте сопротивление каждого резистора или посмотрите значения сопротивления на схеме цепи.[9]

    • Если резисторы соединены последовательно, то полное сопротивление R = R1 + R2 + R3
    • Если резисторы соединены параллельно, то полное сопротивление R = 1 / R1 + 1 / R2 + 1 / R3
  2. Изображение с названием Calculate Impedance Step 7

    2

    Сложите одинаковые реактивные сопротивления. Если в цепи присутствуют исключительно катушки индуктивности или исключительно конденсаторы, то полное сопротивление равно сумме реактивных сопротивлений. Вычислите его следующим образом:[10]

    • Последовательное соединение катушек: Xtotal = XL1 + XL2 + …
    • Последовательное соединение конденсаторов: Ctotal = XC1 + XC2 + …
    • Параллельное соединение катушек: Xtotal = 1 / (1/XL1 + 1/XL2 …)
    • Параллельное соединение конденсаторов: Ctotal = 1 / (1/XC1 + 1/XC2 …)
  3. Изображение с названием Calculate Impedance Step 8

    3

    Вычтите индуктивные и емкостные сопротивления, чтобы получить общее реактивное сопротивление. Так как при возрастании одного типа сопротивления другое уменьшается, то они, как правило, компенсируют друг друга. Чтобы найти общее реактивное сопротивление, вычтите меньшее сопротивление из большего.[11]

    • Или воспользуйтесь формулой: Xtotal = |XC — XL|
  4. Изображение с названием Calculate Impedance Step 9

    4

    Вычислите импеданс по активному и реактивному сопротивлениям в последовательной цепи. Нельзя просто сложить эти величины, так как они меняются с течением времени, но достигают максимальных значений в разное время.[12]
    Поэтому воспользуйтесь формулой:Z = √(R2 + X2).[13]

    • Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
      [15]
  5. Изображение с названием Calculate Impedance Step 10

    5

    Вычислите импеданс по активному и реактивному сопротивлениям в параллельной цепи. В этом случае используются комплексные числа (это единственный способ вычислить полное сопротивление в параллельной цепи, в которой есть как активное, так и реактивное сопротивление).

    • Z = R + jX, где j — мнимая единица: √(-1). Используйте j вместо i, чтобы не перепутать мнимую единицу (j) с силой тока (I).
    • Складывать эти числа нельзя. Например, полное сопротивление может быть представлено так: 60 Ом + j120 Ом.
    • Если у вас есть две последовательные цепи, то вы можете отдельно сложить натуральные числа и отдельно — комплексные. Например, если Z1 = 60 Ом + j120 Ом, а к этой цепи последовательно подключен резистор с Z2 = 20Ω, то Ztotal = 80Ω + j120Ω.

    Реклама

Советы

  • Общее сопротивление (активное и реактивное сопротивления) также может быть выражено через мнимое число.

Реклама

Об этой статье

Эту страницу просматривали 168 783 раза.

Была ли эта статья полезной?

Онлайн калькулятор для определения физических свойств катушки / материалов катушки, таких как сопротивление, общая длина требуемого провода и количество витков. Расчет сопротивления и напряжения исходит из того, что провод будет из меди.

Калькулятор катушки. Калькулятор материалов катушки

Формулы расчета свойств катушки:

T = bl / d

n = Витки/ T

cd = (2 x n x d) + bd

r = (n x d + bd) / 2

a = PI x r x r

L = (2 x PI x r x n) / 1000

rpm = .0333 *((0.812/2)*(0.812/2))/((d/2)*(d/2))

R = rpm x L

V = R x I

P = V x I

где,

  • T = витков в обмотке;
  • bl = длина катушки;
  • d = диаметр проволоки;
  • n = количество витков;
  • cd = наружный диаметр катушки;
  • bd = диаметр катушки;
  • r = радиус середины катушки;
  • a = площадь поперечного сечения;
  • L = общая длина;
  • rpm = сопротивление / метр;
  • R = сопротивление;
  • V = напряжение при номинальном токе;
  • I = ток;
  • P = мощность при номинальном токе;



людей нашли эту статью полезной. А Вы?

Понравилась статья? Поделить с друзьями:
  • Как найти шестиугольник в игре
  • Как найти массу жидкости зная только объем
  • Как найти архимедову силу примеры
  • Как составить план по окружающему миру 3 класс труд в крестьянском хозяйстве
  • Как найти объем производства в сопоставимых ценах