Калькулятор определяет сопротивление нескольких параллельно соединенных резисторов.
Пример. Рассчитать эквивалентное сопротивление двух резисторов 20 Ом and 30 Ом, соединенных параллельно.
Входные данные
Добавить резистор
Поделиться ссылкой на этот калькулятор, включая входные параметры
Выходные данные
Эквивалентное сопротивление
R килоом (кОм)
Введите величины сопротивлений в поля R1, R2 и т.д., добавляя при необходимости нужное количество полей для ввода, выберите единицы сопротивления в миллиомах (мОм), омах (Ом), килоомах (кОм) или мегаомах (МОм) и нажмите кнопку Рассчитать.
1 мОм = 0,001 Ом. 1 кОм = 1 000 = 10³ Ом. 1 МОм = 1 000 000 = 10⁶ Ом.
Эквивалентное сопротивление Req группы параллельно соединенных резисторов является величиной, обратной сумме величин, обратно пропорциональных сопротивлениям этих резисторов.
или
Иными словами, проводимость G параллельно соединенных резисторов равна сумме проводимостей этих резисторов:
Эта формула для Req и используется в данном калькуляторе для расчетов. Например, общее сопротивление трех резисторов 10, 15 и 20 ом, соединенных параллельно, равно 4.62 Ом:
Если параллельно соединены только два резистора, формула упрощается:
или
Если имеется n соединенных параллельно одинаковых резисторов R, то их эквивалентное сопротивление будет равно
Отметим, что общее сопротивление группы из любого количества соединенных параллельно резисторов всегда будет меньше, чем наименьшее сопротивление резистора в группе и добавление нового резистора всегда приведет к уменьшению эквивалентного сопротивления.
Отметим также, что все резисторы, соединенные параллельно находятся под одним и тем же напряжением. Однако токи, протекающие через отдельные резисторы, отличаются и зависят от их сопротивления. Общий ток через группу резисторов равен сумме токов в отдельных резисторах.
При соединении нескольких резисторов параллельно всегда нужно учитывать их допуски и рассеиваемую мощность.
Различные постоянные и переменные резисторы
Примеры применения параллельного соединения резисторов
Одним из примеров параллельного соединения резисторов является шунт в приборе для измерения токов, которые слишком велики для того, чтобы быть напрямую измеренными прибором, предназначенным для измерения небольших токов или напряжений. Для измерения тока параллельно гальванометру или электронному прибору, измеряющему напряжение, подключается резистор с очень маленьким точно известным сопротивлением, изготовленный из материала со стабильными характеристиками. Этот резистор называется шунтом. Измеряемый ток протекает через шунт. В результате на нем падает небольшое напряжение, которое и измеряется вольтметром. Поскольку падение напряжения пропорционально току, протекающему через шунт с известным и точным сопротивлением, вольтметр, подключенный параллельно шунту, можно проградуировать непосредственно в единицах тока (амперах).
Установленный в мультиметре шунт для измерения ток до 20 ампер. Отметим, что если этим мультиметром измеряется большой ток непрерывно более 10 секунд, шунт перегреется и его сопротивление изменится, что приведет к ошибке измерения
Параллельные и последовательные схемы часто используются для получения точного сопротивления или если резистора с требуемым сопротивлением нет или он слишком дорог, если его приобретать в небольших количествах для массового производства. Например, если устройство содержит много резисторов по 20 кОм и необходим только один резистор 10 кОм. Конечно, несложно найти резистор на 10 кОм. Однако для массового производства иногда бывает лучше поставить два резистора на 20 кОм параллельно, чтобы получить необходимые 10 кОм. Это приведет к снижению себестоимости печатной платы, так как будет снижена оптовая цена компонентов, а также стоимость монтажа, так как будет уменьшено количество типоразмеров элементов, которые должен установить на плату автомат установки компонентов.
Резисторы поверхностного монтажа на печатной плате
Онлайн-калькулятор позволяет быстро и удобно произвести расчет общего сопротивления резисторов при последовательном или параллельном соединениях. При расчете можно добавлять до 10 единиц резисторов для подсчета нужного результата, для этого достаточно нажать кнопку “Добавить сопротивление”
Расчет сопротивления при параллельном подключении производится по формуле:
RT = 1 / (1/R1 + 1/R2 + 1/R3 + 1/Rn..)
Расчет сопротивления при последовательном подключении производится по формуле:
RT = R1 + R2 + R3 + Rn..
Резистор и сопротивление
Теория
Резистор — искусственное «препятствие» для тока. Сопротивление в чистом виде. Резистор ограничивает силу тока, переводя часть электроэнергии в тепло. Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.
Сопротивление резистора — его основная характеристика. Основной единицей электрического сопротивления является Ом. На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), которые связаны с основной единицей следующими соотношениями:
1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм
Ниже на рисунке видна маркировка резисторов на схемах:
Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.
Для соединения резисторов в схемах используются три разных способа подключения: параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.
Последовательное соединение резисторов
Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле:
Rобщ = R1 + R2
Это справедливо и для большего количества соединённых последовательно резисторов:
Rобщ = R1 + R2 + R3 + … + Rn
Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.
При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.
Мощность при последовательном соединении
При соединении резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат:
R = 200 + 100 + 51 + 39 = 390 Ом
Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять
I = U/R = 100 В/390 Ом = 0,256 A
На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:
P = I2 x R = 0,2562 x 390 = 25,55 Вт
Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:
P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.
Если сложить полученные мощности, то общая Р составит:
Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт
Параллельное соединение резисторов
Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.
Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:
Rобщ = (R1 × R2) / (R1 + R2)
Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:
1 / Rобщ = 1 / R1 + 1 / R2 + … + 1 / Rn
Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.
Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.
Мощность при параллельном соединении
При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.
1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом
Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока
I = U/R = 100 В x 0,06024 Ом = 6,024 A
Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом
P = I2 x R = 6,0242 x 16,6 = 602,3 Вт
Расчет силы тока для каждого резистора выполняется по формулам:
I1 = U/R1 = 100/200 = 0,5 A;
I2 = U/R2 = 100/100 = 1 A;
I3 = U/R3 = 100/51 = 1,96 A;
I4 = U/R4 = 100/39 = 2,56 A
На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.
Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:
P1 = U2/R1 = 1002/200 = 50 Вт;
P2 = U2/R2 = 1002/100 = 100 Вт;
P3 = U22/R3 = 1002/51 = 195,9 Вт;
P4 = U22/R4 = 1002/39 = 256,4 Вт
Если сложить полученные мощности, то общая Р составит:
Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт
Калькулятор
Цветовая маркировка резисторов
Наносить номинал резистора на корпус числами — дорого и непрактично: они получаются очень мелкими. Поэтому номинал и допуск кодируют цветными полосками. Разные серии резисторов содержат разное количество полос, но принцип расшифровки одинаков. Цвет корпуса резистора может быть бежевым, голубым, белым. Это не играет роли. Если не уверены в том, что правильно прочитали полосы, можете проверить себя с помощью мультиметра или калькулятора цветовой маркировки.
Калькулятор цветовой маркировки резисторов
Основные характеристики
Сопротивление (номинал) | R | Ом |
Точность (допуск) | ± | % |
Мощность | P | Ватт |
Переменный резистор
Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом. Переменные резисторы (их также называют реостатами или потенциометрами) предназначены для постепенного регулирования силы тока и напряжения. Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. Выглядят переменные резисторы так:
На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.
Регулировать величину сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами.
Термисторы, варисторы и фоторезисторы
Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.
В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:
Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения.
На схемах варисторы обозначаются так:
В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода.
А на схемах изображаются так:
Согласитесь, что невозможно держать в голове всю информацию о технических характеристиках SMD-деталей. Но благодаря современным технологиям, в этом нет никакой необходимости — всегда можно воспользоваться онлайн-калькулятором.
Мини приложение пригодится в тех случаях, когда надо выполнить расчет SMD-резисторов по маркировке или сопротивлению.
Не нужно ничего скачивать и устанавливать на ПК или телефон (актуально для тех, кто боится заразить устройство «вирусами»). Достаточно просто перейти на сайт и в считанные секунды получить всю необходимую информацию.
Содержание
- Калькулятор SMD-резисторов
- Калькулятор смд резисторов по номиналу
- Таблица маркировки smd резисторов постоянного сопротивления
- Цветовая маркировка резисторов
- Размеры корпусов SMD деталей
- Резисторы СМД
- Конденсаторы СМД
- Конденсаторы танталовые СМД
- Конденсаторы электролитические СМД
- Транзисторы СМД
- Транзисторы мощные СМД
- Диоды MELF СМД
- Диоды SOD СМД
- Диоды SM СМД
- Таблица кодировок планарных SMD деталей
- Как определить сопротивление SMD резисторов по маркировке
В отличие от классических радиодеталей, которые распределяются по плате методом DIP-монтажа, более современные SMD-компоненты монтируются на плату по SMT технологии. Например, чип-резистор — это тот же SMD-резистор.
Калькулятор смд резисторов по номиналу
Подбор SMD-резисторов онлайн
Таблица маркировки smd резисторов постоянного сопротивления
Код | Знач. | Код | Знач. | Код | Знач. | Код | Знач. |
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 мОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 мОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 мОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 мОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 мОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 мОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 мОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 мОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 мОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 мОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 мОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 мОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 мОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 мОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 мОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 мОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 мОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 мОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 мОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 мОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 мОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 мОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 мОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 мОм |
Но не соблазняйтесь на подозрительно низкие цены — в таких ситуациях лучше дополнительно ознакомиться с отзывами других покупателей.
Цветовая маркировка резисторов
Резисторы — пожалуй, самые «пестрые» элементы в радиоэлектронике. Все благодаря разноцветным кольцам на корпусе. Только нанесены они не для красоты, а используются для маркировки.
Новички часто путаются в цветовой маркировке.
Но на самом деле в том, чтобы расшифровать технические характеристики резистора конкретно по цвету колец — нет ничего сложного.
Для начала расположите деталь перед глазами так, чтобы цветные кольца находились слева.
Золотые или серебряные кольца, как правило, не учитываются в процессе расшифровки маркировки.
Далее считываем номер по цвету кольца:
- 0 — черный;
- 1 — коричневый;
- 2 — красный;
- 3 — оранжевый;
- 4 — желтый;
- 5 — зеленый;
- 6 — синий;
- 7 — фиолетовый;
- 8 — серый;
- 9 — белый.
Обратите внимание: третьим по счету идет кольцо, цвет которого обозначает количество нулей. Эти нули необходимо «приплюсовать» к ранее полученному номеру. На картинке ниже указаны числовые значения, зашифрованные под конкретным цветом.
К примеру, значения, помещенные в квадратные скобки — это стандарт JEDEC (США), фигурные — JEITA (Япония). Встречаются и круглые скобки. Они присутствуют на чип-резисторах, изготовленных по индивидуальному стандарту.
2 вывода | 3 вывода | 4 вывода | 5 выводов | 6 выводов | >8 выводов | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
smcj [do214ab] 7,0х6,0х2,6мм |
d2pak [to263] 9,8х8,8х4,0мм |
mbs [to269aa] 4,8х3,9х2,5мм |
d2pak5 [to263-5] 9,8х8,8х4,0мм |
mlp2x3 [mo229] (dfn2030-6) (lfcsp6) 3,0х2,0х0,75мм |
tssop8 [mo153] 4,4х3,0х1,0мм |
||||||
smbj [do214aa] 4,6х3,6х2,3мм |
dpak [to252aa] 6,6х6,1х2,3мм |
sop4 4,4х4,1х2,0мм |
dpak5 [to252-5] 6,6х6,1х2,3мм |
ssot6 [mo193] 3,0х1,7х1,1мм |
chipfet 3,05х1,65х1,05мм |
||||||
(gf1) [do214ba] 4,5х1,4х2,5мм |
(smpc) [to277a] 6,5х4,6х1,1мм |
ssop4 4,4х2,6х2,0мм |
sot223-5 6,5х3,5х1,8мм |
dfn2020-6 [sot1118] (wson6 | llp6) 2,0х2,0х0,75мм |
tdfn8 (wson8) (lfcsp8) 3,0х3,0х0,9мм |
||||||
smaj [do214ac] 4,5х2,6х2,0мм |
sot223 [to261aa] {sc73} 6,5х3,5х1,8мм |
sot223-4 6,5х3,5х1,8мм |
mo240 (pqfn8l) 3,3х3,3х1,0мм |
sot23-6 [mo178ab] {sc74} 2,9х1,6х1,1мм |
(mlf8) 2,0х2,0х0,85мм |
||||||
sod123 [do219ab] 2,6х1,6х1,1мм |
sot89 [to243aa] {sc62} 4,7х2,5х1,7мм |
sot143 2,9х1,3х1,0мм |
sot89-5 4,5х2,5х1,5мм |
tsot6 [mo193] 2,9х1,6х0,9мм |
msop8 [mo187aa] 3,0х3,0х1,1мм |
||||||
sod123f 2,6х1,6х1,1мм |
sot23f 2,9х1,8х0,8мм |
sot343 2,0х1,3х0,9мм |
sot23-5 [mo193ab|mo178aa] {sc74a} (tsop5/sot753) 2,9х1,6х1,1мм |
sot363 [mo203ab|ttsop6] {sc88|sc70-6} (us6) 2,0х1,25х1,1мм |
vssop8 3,0х3,0х0,75мм |
||||||
sod110 2,0х1,3х1,6мм |
sot346 [to236aa] {sc59a} (smini) 2,9х1,5х1,1мм |
sot543 1,6х1,2х0,5мм |
sct595 2,9х1,6х1,0мм |
sot563f {sc89-6|sc170c} [sot666] 1,6х1,2х0,6мм |
sot23-8 2,9х1,6х1,1мм |
||||||
sod323 {sc76} 1,7х1,25х0,9мм |
sot23 [to236ab] 2,9х1,3х1,0мм |
(tsfp4-1) 1,4х0,8х0,55мм |
sot353 [mo203aa] {sc88a|sc70-5} (tssop5) 2,0х1,25х0,95мм |
sot886 [mo252] (xson6/mp6c) 1,45х1,0х0,55мм |
sot765 [mo187ca] (us8) 2,0х2,3х0,7мм |
||||||
sod323f {sc90a} 1,7х1,25х0,9мм |
dfn2020 (sot1061) 2,0х2,0х0,65мм |
(tslp4) 1,2х0,8х0,4мм |
sot553 (sot665|esv) {sc107} 1,6х1,2х0,6мм |
wlcsp6 1,2х0,8х0,4мм |
usoic10 (rm10|micro10) 3,0х3,0х1,1мм |
|
|||||
dfn1608 (sod1608) 1,6х0,8х0,4мм |
sot323 {sc70} (usm) 2,0х1,25х0,9мм |
dfn4 1,0х1,0х0,6мм |
sot1226 (x2son5) 0,8х0,8х0,35мм |
tdfn10 (vson10|dfn10) 3,0х3,0х0,9мм |
|
||||||
sod523f {sc79} 1,2х0,8х0,6мм |
sot523 (sot416) {sc75a} 1,6х0,8х0,7мм |
(dsbga4|wlcsp) 0,75х0,75х0,63мм |
(wson10) 3,0х3,0х0,8мм |
|
|||||||
sod822 (tslp2) 1,0х0,6х0,45мм |
sot523f (sot490) {sc89-3} 1,6х0,8х0,7мм |
msop10 [mo187da] 2,9х2,5х1,1мм |
|
||||||||
dfn1412 {sot8009} 1,4х1,2х0,5мм |
(uqfn10) 1,8х1,4х0,5мм |
|
|||||||||
sot723 {sc105aa} (tsfp-3) 1,2х0,8х0,5мм |
bga9 (9pin flip-chip) 1,45х1,45х0,6мм |
|
|||||||||
dfn1110 {mo340ba} (sot8015) 1,1х1,0х0,5мм |
|||||||||||
sot883 {sc101} (tslp3-1) 1,0х0,6х0,5мм |
|||||||||||
sot1123 0,8х0,6х0,37мм |
Размеры корпусов SMD деталей
Резисторы СМД
ТИП: | Расшифровка Типа: | |||||
SR | Resistor Chip Чип резистор |
|||||
Размер (дюймы) | Размер (мм) | Толщина компонента | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента бумажная |
Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
01005 | 0402 | 0.12 мм ± 0.02 | 8 мм | 2 мм | 20000 | – |
0201 | 0603 | 0.23 мм ± 0.03 | 8 мм | 2 мм | 15000 | – |
0402 | 1005 | 0.35 мм ± 0.05 | 8 мм | 2 мм | 10000 | – |
0603 | 1608 | 0.45 мм ± 0.1 | 8 мм | 4 мм | 5000 | – |
0805 | 2012 | 0.55 мм ± 0.1 | 8 мм | 4 мм | 5000 | – |
1206 | 3216 | 0.55 мм ± 0.15 | 8 мм | 4 мм | 5000 | – |
1210 | 3225 | 0.55 мм ± 0.15 | 8 мм | 4 мм | 5000 | 4000 |
2010 | 5025 | 0.55 мм ± 0.15 | 8/12 мм | 4/8 мм | – | 4000 |
2512 | 6332 | 0.55 мм ± 0.15 | 12 мм | 4/8 мм | – | 4000/2000 |
ТИП: | Расшифровка Типа: | ||||
SRМ | Melf Resistor Melf резистор (круглый) |
||||
Размер (дюймы) | Имя | Размер компонента | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
0604 | – | 1.6 мм Х 1.0 мм | 8 мм | 4 мм | 3000 |
0805 | Micro | 2.2 мм Х 1.1 мм | 8 мм | 4 мм | 3000 |
1206 | Mini | 3.2 мм Х 1.6 мм | 8 мм | 4 мм | 3000 |
1406 | Mini | 3.5 мм Х 1.4 мм | 8 мм | 4 мм | 3000 |
2308 | Melf | 5.9 мм Х 2.2 мм | 12 мм | 4 мм | 1500 |
Конденсаторы СМД
ТИП: | Расшифровка Типа: | |||||
SC | Ceramic Chip Capacitor Керамический чип конденсатор |
|||||
Размер (дюймы) | Размер (мм) | Толщина компонента | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента бумажная |
Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
01005 | 0402 | 0.2 мм ± 0.03 | 8 мм | 2 мм | 20000 | – |
0201 | 0603 | 0.3 мм ± 0.03 | 8 мм | 2 мм | 15000 | – |
0402 | 1005 | 0.5 мм ± 0.1 | 8 мм | 2 мм | 10000 | – |
0603 | 1608 | 0.8 мм ± 0.1 | 8 мм | 4 мм | 4000 | – |
0805 | 2012 | 0.6 – 1.25 мм | 8 мм | 4 мм | 4000 | 3000 |
1206 | 3216 | 0.6 – 1.25 мм | 8 мм | 4 мм | 4000 | 3000 |
1210 | 3225 | 1.25 мм – 1.5 мм | 8 мм | 4 мм | – | 3000 |
1812 | 4532 | 2 мм (Макс.) | 12 мм | 8 мм | – | 1000 |
2225 | 5664 | 2 мм (Макс.) | 12 мм | 8 мм | – | 1000 |
Конденсаторы танталовые СМД
ТИП: | Расшифровка Типа: | |||||
SD | Molded Tantalum Танталовый конденсатор (полярный компонент) |
|||||
Размер (дюймы) | Код | Толщина компонента | Размер компонента | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
3216 | A | 1.6 мм | 3.2 мм Х 1.6 мм | 8 мм | 4 мм | 2000 |
3528 | B | 1.9 мм | 3.5 мм Х 2.8 мм | 8 мм | 4 мм | 2000 |
6032 | C | 2.5 мм | 6.0 мм Х 3.2 мм | 12 мм | 8 мм | 500 |
7343 | D | 2.8 мм | 7.3 мм Х 4.3 мм | 12 мм | 8 мм | 500 |
1608 | J | 0.8 мм | 1.6 мм Х 0.8 мм | 8 мм | 4 мм | 4000 |
2012 | P/R | 1.2 мм | 2.0 мм Х 1.2 мм | 8 мм | 4 мм | 2500/3000 |
Конденсаторы электролитические СМД
ТИП: | Расшифровка Типа: | ||||
SE | Aluminum Capacitor Алюминиевый конденсатор (полярный компонент) |
||||
Диаметр корпуса | Высота корпуса | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
Кол-во в стандартной упаковке (330 мм/13 дюймов) лента пластиковая |
3 мм | 5.5 мм | 12 мм | 8 мм | 100 | 2000 |
4 мм | 5.5 мм | 12 мм | 8 мм | 100 | 2000 |
5 мм | 5.5 мм | 12 мм | 12 мм | 100 | 1000 |
6.3 мм | 5.5 мм | 16 мм | 12 мм | 100 | 1000 |
8 мм | 6 мм | 16 мм | 12 мм | 100 | 1000 |
8 мм | 10 мм | 24 мм | 16 мм | 100 | 500 |
10 мм | 10 мм | 24 мм | 16 мм | 100 | 300 – 500 |
10 мм | 14 – 22 мм | 32 мм | 20 мм | – | 250 – 300 |
12.5 мм | 14 мм | 32 мм | 24 мм | – | 200 – 250 |
12.5 мм | 17 мм | 32 мм | 24 мм | – | 150 – 200 |
12.5 мм | 22 мм | 32 мм | 24 мм | – | 125 – 150 |
16 мм | 17 мм | 44 мм | 28 мм | – | 125 – 150 |
16 мм | 22 мм | 44 мм | 28 мм | – | 75 – 100 |
18 мм | 17 мм | 44 мм | 32 мм | – | 125 – 150 |
18 мм | 22 мм | 44 мм | 32 мм | – | 75 – 100 |
20 мм | 17 мм | 44 мм | 36 мм | – | 50 |
Транзисторы СМД
ТИП: | Расшифровка Типа: | |||||||
SOT | SOT Transistor SOT транзистор |
|||||||
Тип корпуса | Количество выводов | Ширина ленты | Шаг компонента в ленте | Размер корпуса A (мм) | Размер корпуса B (мм) | Размер корпуса S (мм) | Высота корпуса H (мм) | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
SOT723 | 3 | 8 мм | 4 мм | 1.2 | 0.8 | 1.2 | 0.5 | 8000 |
SOT346 | 3 | 8 мм | 4 мм | 2.9 | 1.6 | 2.8 | 1.1 | 3000 |
SOT323 | 3 | 8 мм | 4 мм | 2.0 | 1.25 | 2.1 | 0.9 | 3000 |
SOT416 | 3 | 8 мм | 4 мм | 1.6 | 0.8 | 1.6 | 0.7 | 3000 |
SOT523F | 3 | 8 мм | 4 мм | 1.6 | 0.8 | 1.6 | 0.7 | 3000 |
SOT23 | 3 | 8 мм | 4 мм | 2.9 | 1.3 | 2.4 | 0.95 | 3000 |
SOT23-5 | 5 | 8 мм | 4 мм | 2.9 | 1.6 | 2.8 | 1.1 | 3000 |
SOT23-6 | 6 | 8 мм | 4 мм | 2.9 | 1.6 | 2.8 | 1.1 | 3000 |
SOT89 | 3 | 12 мм | 8 мм | 4.5 | 2.5 | 4.0 | 1.5 | 1000 |
SOT143 | 4 | 8 мм | 4 мм | 2.9 | 1.6 | 2.8 | 0.95 | 3000 |
SOT223 | 3 | 16 мм | 8 мм | 6.5 | 3.6 | 7.0 | 1.6 | 2500 |
SOT323 | 3 | 8 мм | 4 мм | 2.0 | 1.25 | 2.1 | 0.9 | 3000 |
SOT343 | 4 | 8 мм | 4 мм | 2.0 | 1.25 | 2.1 | 0.9 | 3000 |
SOT353 | 5 | 8 мм | 4 мм | 2.0 | 1.25 | 2.1 | 0.9 | 3000 |
SOT363 | 6 | 8 мм | 4 мм | 2.0 | 1.25 | 2.1 | 0.9 | 3000 |
SOT23-8 | 8 | 8 мм | 4 мм | 2.9 | 1.6 | 2.9 | 1.2 | 3000 |
Транзисторы мощные СМД
ТИП: | Расшифровка Типа: | |||||||
DPAK | DPAK Transistor DPAK транзистор |
|||||||
Тип корпуса | Количество выводов | Ширина ленты | Шаг компонента в ленте | Размер корпуса L (мм) | Размер корпуса W (мм) | Высота корпуса H (мм) | Размер корпуса S (мм) | Кол-во в стандартной упаковке (330 мм/13 дюймов) лента пластиковая |
DPAK | 3 | 16 мм | 8 мм | 6 | 6.5 | 2.3 | 10 | 2500 |
D2PAK | 3 | 24 мм | 16 мм | 9.2 | 10 | 4.4 | 15 | 500 – 800 |
D2PAK-5 | 5 | 24 мм | 16 мм | 9.2 | 10 | 4.4 | 15 | 500 – 800 |
D2PAK-7 | 7 | 24 мм | 16 мм | 9.2 | 10 | 4.4 | 15 | 500 – 800 |
D3PAK | 3 | 24 мм | 24 мм | 14 | 16 | 4.7 | 18.8 | 500 |
Диоды MELF СМД
ТИП: | Расшифровка Типа: | |||
SOD | SOD, SM, Melf Diode/Rectifier SOD, SM, Melf диоды (круглые) |
|||
Тип компонента | Размер компонента (диметр Х длинна) | Ширина ленты | Шаг компонента в ленте | Кол-во в стандартной упаковке (180 мм/7 дюймов) лента пластиковая |
MiniMELF/SOD-80 (LL34) | 1.6 мм Х 3.5 мм | 8 мм | 4 мм | 2500 |
MELF (LL35/LL41) | 2.5 мм Х 5.0 мм | 12 мм | 4 мм | 1500 |
MELF (SM1) | 2.5 мм Х 5.0 мм | 12 мм | 4 мм | 1750 |
Диоды SOD СМД
ТИП: | Расшифровка Типа: | |||||||
SM | Rectangular Diode Gull Wing Lead Квадратный диод – выводы «ласточкин хвост» |
|||||||
Тип корпуса | Ширина ленты | Шаг компонента в ленте | Размер корпуса L (мм) | Размер корпуса W (мм) | Высота корпуса H (мм) | Размер корпуса S (мм) | Размер корпуса B (мм) | Кол-во в стандартной упаковке (170 мм/7 дюймов) лента пластиковая |
SOD923 | 8 мм | 2 мм | 0.8 | 0.6 | 0.4 | 1.0 | 0.2 | 8000 |
SOD723 | 8 мм | 2 мм | 1.0 | 0.6 | 0.5 | 1.4 | 0.3 | 8000 |
SOD523 | 8 мм | 4 мм | 1.2 | 0.8 | 0.6 | 1.6 | 0.3 | 3000 |
SOD323 | 8 мм | 4 мм | 1.7 | 1.25 | 0.7 | 2.5 | 0.3 | 3000 |
SOD123 | 8 мм | 4 мм | 2.7 | 1.5 | 1.3 | 3.6 | 0.7 | 3000 |
DO215AC | 12 мм | 4 мм | 4.3 | 2.6 | 2.2 | 6.1 | 1.4 | 1800 |
DO215AA | 12 мм | 8 мм | 4.3 | 3.6 | 2.3 | 6.2 | 2.0 | 1000 |
DO215AB | 16 мм | 8 мм | 7.0 | 6.0 | 2.3 | 1 0 | 3.0 | 900 |
Диоды SM СМД
ТИП: | Расшифровка Типа: | |||||||
SM | Rectangular Diode C-Bend Lead (Modified J-Lead) Квадратный диод C – вывод (J-вывод) |
|||||||
Тип корпуса | Ширина ленты | Шаг компонента в ленте | Размер корпуса L (мм) | Размер корпуса W (мм) | Высота корпуса H (мм) | Размер корпуса S (мм) | Размер корпуса B (мм) | Кол-во в стандартной упаковке (170 мм/7 дюймов) лента пластиковая |
SMAJ | 12 мм | 4 мм | 4.3 | 2.6 | 2.2 | 5.0 | 1.5 | 1800 |
SMBJ | 12 мм | 8 мм | 4.3 | 3.6 | 2.3 | 5.4 | 2.0 | 750 |
SMCJ | 16 мм | 8 мм | 7.0 | 6.0 | 2.3 | 8.0 | 3.0 | 850 |
Таблица кодировок планарных SMD деталей
Указаны первые пары цифр маркировки SMD-компонента. Необходимо нажать на них, после чего откроется страница с еще одной таблицей, в которой прописаны комбинации остальных символов. Также приводится краткое обозначение функций и параметров.
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | 0G | 0H | 0I | 0J | 0K | 0L | 0M | 0N | 0P | 0Q | 0R | 0S | 0T | 0U | 0V | 0W | 0X | 0Y | 0Z |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D | 1E | 1F | 1G | 1H | 1I | 1J | 1K | 1L | 1M | 1N | 1P | 1Q | 1R | 1S | 1T | 1U | 1V | 1W | 1X | 1Y | 1Z |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2P | 2Q | 2R | 2S | 2T | 2U | 2V | 2W | 2X | 2Y | 2Z |
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3P | 3Q | 3R | 3S | 3T | 3U | 3V | 3W | 3X | 3Y | 3Z |
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4P | 4Q | 4R | 4S | 4T | 4U | 4V | 4W | 4X | 4Y | 4Z |
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 5M | 5N | 5P | 5Q | 5R | 5S | 5T | 5U | 5V | 5W | 5X | 5Y | 5Z |
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6P | 6Q | 6R | 6S | 6T | 6U | 6V | 6W | 6X | 6Y | 6Z |
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 7J | 7K | 7L | 7M | 7N | 7P | 7Q | 7R | 7S | 7T | 7U | 7V | 7W | 7X | 7Y | 7Z |
80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 8P | 8Q | 8R | 8S | 8T | 8U | 8V | 8W | 8X | 8Y | 8Z |
90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9P | 9Q | 9R | 9S | 9T | 9U | 9V | 9W | 9X | 9Y | 9Z |
A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | AA | AB | AC | AD | AE | AF | AG | AH | AI | AJ | AK | AL | AM | AN | AP | AQ | AR | AS | AT | AU | AV | AW | AX | AY | AZ |
B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | BA | BB | BC | BD | BE | BF | BG | BH | BI | BJ | BK | BL | BM | BN | BP | BQ | BR | BS | BT | BU | BV | BW | BX | BY | BZ |
C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | CA | CB | CC | CD | CE | CF | CG | CH | CI | CJ | CK | CL | CM | CN | CP | CQ | CR | CS | CT | CU | CV | CW | CX | CY | CZ |
D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | DA | DB | DC | DD | DE | DF | DG | DH | DI | DJ | DK | DL | DM | DN | DP | DQ | DR | DS | DT | DU | DV | DW | DX | DY | DZ |
E0 | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | EA | EB | EC | ED | EE | EF | EG | EH | EI | EJ | EK | EL | EM | EN | EP | EQ | ER | ES | ET | EU | EV | EW | EX | EY | EZ |
F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | FA | FB | FC | FD | FE | FF | FG | FH | FI | FJ | FK | FL | FM | FN | FP | FQ | FR | FS | FT | FU | FV | FW | FX | FY | FZ |
G0 | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | GA | GB | GC | GD | GE | GF | GG | GH | GI | GJ | GK | GL | GM | GN | GP | GQ | GR | GS | GT | GU | GV | GW | GX | GY | GZ |
H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | HA | HB | HC | HD | HE | HF | HG | HH | HI | HJ | HK | HL | HM | HN | HP | HQ | HR | HS | HT | HU | HV | HW | HX | HY | HZ |
I0 | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | IA | IB | IC | ID | IE | IF | IG | IH | II | IJ | IK | IL | IM | IN | IP | IQ | IR | IS | IT | IU | IV | IW | IX | IY | IZ |
J0 | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | J9 | JA | JB | JC | JD | JE | JF | JG | JH | JI | JJ | JK | JL | JM | JN | JP | JQ | JR | JS | JT | JU | JV | JW | JX | JY | JZ |
K0 | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | KA | KB | KC | KD | KE | KF | KG | KH | KI | KJ | KK | KL | KM | KN | KP | KQ | KR | KS | KT | KU | KV | KW | KX | KY | KZ |
L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | LA | LB | LC | LD | LE | LF | LG | LH | LI | LJ | LK | LL | LM | LN | LP | LQ | LR | LS | LT | LU | LV | LW | LX | LY | LZ |
M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | MA | MB | MC | MD | ME | MF | MG | MH | MI | MJ | MK | ML | MM | MN | MP | MQ | MR | MS | MT | MU | MV | MW | MX | MY | MZ |
N0 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | NA | NB | NC | ND | NE | NF | NG | NH | NI | NJ | NK | NL | NM | NN | NP | NQ | NR | NS | NT | NU | NV | NW | NX | NY | NZ |
P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | PA | PB | PC | PD | PE | PF | PG | PH | PI | PJ | PK | PL | PM | PN | PP | PQ | PR | PS | PT | PU | PV | PW | PX | PY | PZ |
Q0 | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | QA | QB | QC | QD | QE | QF | QG | QH | QI | QJ | QK | QL | QM | QN | QP | QR | QS | QT | QU | QV | QW | QX | QY | QZ | |
R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | RA | RB | RC | RD | RE | RF | RG | RH | RI | RJ | RK | RL | RM | RN | RP | RQ | RR | RS | RT | RU | RV | RW | RX | RY | RZ |
S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | SA | SB | SC | SD | SE | SF | SG | SH | SI | SJ | SK | SL | SM | SN | SP | SQ | SR | SS | ST | SU | SV | SW | SX | SY | SZ |
T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | TA | TB | TC | TD | TE | TF | TG | TH | TI | TJ | TK | TL | TM | TN | TP | TQ | TR | TS | TT | TU | TV | TW | TX | TY | TZ |
U0 | U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8 | U9 | UA | UB | UC | UD | UE | UF | UG | UH | UI | UJ | UK | UL | UM | UN | UP | UQ | UR | US | UT | UU | UV | UW | UX | UY | UZ |
V0 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | VA | VB | VC | VD | VE | VF | VG | VH | VI | VJ | VK | VL | VM | VN | VP | VQ | VR | VS | VT | VU | VV | VW | VX | VY | VZ |
W0 | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | WA | WB | WC | WD | WE | WF | WG | WH | WI | WJ | WK | WL | WM | WN | WP | WQ | WR | WS | WT | WU | WV | WW | WX | WY | WZ |
X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | XA | XB | XC | XD | XE | XF | XG | XH | XI | XJ | XK | XL | XM | XN | XP | XQ | XR | XS | XT | XU | XV | XW | XX | XY | XZ |
Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | YA | YB | YC | YD | YE | YF | YG | YH | YI | YJ | YK | YL | YM | YN | YP | YQ | YR | YS | YT | YU | YV | YW | YX | YY | YZ |
Z0 | Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | Z8 | Z9 | ZA | ZB | ZC | ZD | ZE | ZF | ZG | ZH | ZI | ZJ | ZK | ZL | ZM | ZN | ZP | ZQ | ZR | ZS | ZT | ZU | ZV | ZW | ZX | ZY | ZZ |
Смотреть видео:
Как определить сопротивление SMD резисторов по маркировке
Как определить сопротивление SMD резисторов по маркировке .
Помогла ли вам статья?
( 1 оценка, среднее 5 из 5 )
Закон Ома
- Главная
- /
- Физика
- /
- Закон Ома
Чтобы посчитать Закон Ома воспользуйтесь нашим очень удобным онлайн калькулятором:
Закон Ома для участка цепи
Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).
Онлайн калькулятор
Найти силу тока
Напряжение: U =В
Сопротивление: R =Ом
Сила тока: I =
0
А
Формула
I = U/R
Пример
Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:
Сила тока на этом участке I = 12/2= 6 А
Найти напряжение
Сила тока: I =A
Сопротивление: R =Ом
Напряжение: U =
0
В
Формула
U = I ⋅ R
Пример
Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:
Напряжение на этом участке U = 6⋅2 = 12 В
Найти сопротивление
Напряжение: U =В
Сила тока: I =A
Сопротивление: R =
0
Ом
Формула
R = U/I
Пример
Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:
Электрическое сопротивление на этом участке R = 12/6 = 2 Ом
Закон Ома для полной цепи
Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.
Онлайн калькулятор
Найти силу тока
ЭДС: ε =В
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =Ом
Сила тока: I =
0
А
Формула
I = ε/R+r
Пример
Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:
Сила тока I = 12/4+2 = 2 А
Найти ЭДС
Сила тока: I =А
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =Ом
ЭДС: ε =
0
В
Формула
ε = I ⋅ (R+r)
Пример
Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:
ЭДС ε = 2 ⋅ (4+2) = 12 В
Найти внутреннее сопротивление источника напряжения
Сила тока: I =А
ЭДС: ε =В
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =
0
Ом
Формула
r = ε/I — R
Пример
Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:
Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом
Найти сопротивление всех внешних элементов цепи
Сила тока: I =А
ЭДС: ε =В
Внутреннее сопротивление источника напряжения: r =Ом
Сопротивление всех внешних элементов цепи: R =
0
Ом
Формула
R = ε/I — r
Пример
Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:
Сопротивление всех внешних элементов цепи: R = 12/2 — 2 = 4 Ом