Как найти сосредоточенную нагрузку на балку

Информация

Балка занимает роль основополагающего элемента в несущей конструкции. Её функция приравнивается к стержню всей конструкции, который прочно закрепили. При строительстве какого-либо сооружения очень важно осуществить грамотный расчет балки на прогиб и исключить допущение ошибки в расчетах. Прежде всего расчет требуется для определения того, на сколько балка деформируется в процессе эксплуатации сооружения. Если при расчете показатель деформации находится в пределах нормы, то можно определить нужные показатели будущей балки (сечение, материал, размер и так далее).

Делая расчет балки на прочность, необходимо четко знать виды материала, из которого изготавливаются балки (сталь, дерево, бетон, алюминий, стекло и медь). Далее нужно обратить внимание на то, что типы нагрузок, как и их схемы также различаются. Так, например, распределенная нагрузка означает, что давление оказывается не на одну точку, а распределено по всей площади балки. Сосредоточенный тип нагрузки характеризует направленность давления на один небольшой участок (точку) балки.

Вместе с типами, существуют четыре схемы нагрузок:

  • Шарнир-Шарнир
  • Заделка-Шарнир
  • Заделка-Заделка»
  • Свободный конец

Наш онлайн калькулятор позволяет сделать расчет, комбинируя все виды балок, типы и схемы нагрузок, при этом абсолютно исключив вероятность допущения ошибки в процессе расчета. Обычно рассчитывают деревянные балки, а также металлические. В процессе вычисления показателя определяется сумма сил, воздействующих на балку, которые направлены перпендикулярно конструкции. Расчет деревянной балки на прогиб осуществляется с учетом материала, т.е. учитывают вид древесины, её гибкость и многие другие параметры, также важно учесть форму сечения балки и нагрузка какого вида оказывается на балку. Сравнивая с расчетом балки из древесины, расчет металлической балки на прогиб существенно отличается, поскольку важное внимание уделяют виду соединения: электросварка, заклепки, болты и другие виды соединений.

Все перечисленные выше нюансы позволяют понять, что расчет балки на прогиб — крайне ответственный этап в процессе стройки какого-либо объекта. От него зависит надежность, долговечность и целостность всей конструкции. Наш калькулятор позволит Вам быстро и безошибочно провести предельно точный расчет.

Какие преимущества даёт наш калькулятор?

  • экономия времени;
  • исключение допущения ошибки;
  • предельная точность в расчете;
  • приятный и понятный интерфейс;
  • дополнительный справочный материал.

Таким образом, созданный нами онлайн калькулятор является незаменимым инструментом в процессе работы специалиста, которому необходимо осуществить расчет балки или любого другого важного показателя.

Содержание:

  1. Сосредоточенные силы и распределенные нагрузки
  2. Плоская система параллельных сил
  3. Равновесие системы тел
  4. Статически обозначенные и статически неопределенные задачи
  5. Методика решения задач на равновесие системы тел

Такие силы называются сосредоточенными. Однако в инженерных расчетах часто приходится встречаться с нагрузкамираспределенными вдоль данной поверхности или линии по тому или иному закону. Распределенные силы прежде всего характеризуются интенсивностью q, т.е. величиной силы, приходящейся на единицу поверхности или линии.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Сосредоточенные силы и распределенные нагрузки

Мы рассматривали силы, которые были представлены в виде вектора, приложенного к точке. Однако в природе существует большое количество взаимодействий тел, осуществляются не в точке и которые нельзя представить в виде вектора, приложенного к точке.

Такими силовыми факторами являются силы давления жидкости или газа в поверхность твердых тел, силы тяжести, как массовые силы, электромагнитные силы тому подобное. Поэтому в теоретической механике вводится понятие о распределенных силах, которые делятся на поверхностные и объемные.

Поверхностные силы действуют на некоторую поверхность тела. Объемные силы действуют на каждый элемент объема тела, рассматривается. Примером последних сил является сила притяжения.

В теоретической механике рассматривается воздействие на тело только сосредоточенных сил, приложенных к абсолютно твердым телам. А потому
распределенную нагрузку необходимо заменить его равнодействующей, то есть
сосредоточенной силой. Введем несколько общих положений.

Распределенная нагрузка характеризуется его интенсивностью Сосредоточенные силы и распределенные нагрузки, то есть величиной силы, приходящейся на единицу объема тела (в случае объемных сил), на единицу площади (в случае поверхностных сил) и на единицу длины (если поверхность, на которую действует нагрузка, можно считать линией, то есть шириной поверхности можно пренебречь). В последнем случае распределенная нагрузка называется плоской, на
силовых схемах оно изображается в виде эпюры элементарных сил, то есть графика интенсивности нагрузки, приложенная к линейному элементу тела.

В общем случае распределенная нагрузка изображается в виде определенной кривой, отражающей данный закон изменения интенсивности нагрузки на участке тела (рис. 1.20). Направление действия нагрузки показывается стрелками.

Сосредоточенные силы и распределенные нагрузки

Сначала рассмотрим равномерно распределенную нагрузку и нагрузку, распределенную по линейному закону. Заменяем распределенную нагрузку сосредоточенной силой.

Рассмотрим эти два случая:

— равномерно распределенная нагрузка (или нагрузка, распределенная по закону прямоугольника) изображается на схемах в виде прямоугольника, размеры которого таковы: высота — это интенсивность нагрузки Сосредоточенные силы и распределенные нагрузки, длина — это длина l участка тела, на которой действует нагрузка. Стрелки показывают направление действия нагрузки (рис. 1.21). Для того, чтобы заменить эту нагрузку равнодействующей силой Сосредоточенные силы и распределенные нагрузки, надо определить ее. В данном случае

Q = q · l,

где q — интенсивность нагрузки, Н/м; l — длина участка тела, на которой приложенная нагрузка, м.

Сосредоточенные силы и распределенные нагрузки

Точка C приложения равнодействующей силы Сосредоточенные силы и распределенные нагрузки размещается посередине участка тела, на которой действует нагрузка. То есть Сосредоточенные силы и распределенные нагрузки, а направление совпадает с направлением распределенной нагрузки.

— нагрузка распределена по линейному закону (то есть по закону треугольника). В этом случае (рис. 1.22) интенсивность распределенной нагрузки на участке l меняется от 0 до максимального значения qmax. Равнодействующая сила Сосредоточенные силы и распределенные нагрузки от этой нагрузки по величине равна

Сосредоточенные силы и распределенные нагрузки

Сосредоточенные силы и распределенные нагрузки

Точка C приложения равнодействующей Сосредоточенные силы и распределенные нагрузки расположена на расстоянии Сосредоточенные силы и распределенные нагрузки или Сосредоточенные силы и распределенные нагрузки, а направление совпадает с направлением нагрузки.

Плоская система параллельных сил

Когда линии действия всех сил параллельны, то всегда в плоскости можно так
расположить оси координат, одна из них будет обязательно параллельной заданным силам, а вторая — перпендикулярной. А потому, чтобы тело под действием плоской системы параллельных сил находилось в равновесии, необходимо приравнять к нулю алгебраическую сумму проекций всех сил на параллельную ось и алгебраическую сумму моментов всех сил относительно произвольной точки. В данном случае система условий равновесия (1.54) упрощается и будет иметь такой вид

Сосредоточенные силы и распределенные нагрузки

Для равновесия тела, находящегося под действием системы параллельных сил
на плоскости, необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил
на ось, параллельная силам, и алгебраическая сумма моментов всех сил относительно произвольной точки А плоскости равны нулю.

Для системы параллельных сил на плоскости можно использовать и такие условия равновесия

Сосредоточенные силы и распределенные нагрузки

Для равновесия тела, находящегося под действием системы параллельных сил на плоскости, необходимо и достаточно, чтобы алгебраические суммы моментов всех
сил относительно любых двух точек плоскости равны нулю.

Однако для этих условиях существует ограничение: линия АВ, которой можно соединить
центры моментов, не должна быть параллельной силам.

Данные условия наиболее пригодны при расчетах двухопорных балок. Используя эти условия, составляют алгебраические суммы моментов всех сил относительно точек A и B, в которых установлены опоры балки.

Рассмотрим примеры задач на равновесие тела под действием плоской системы произвольных сил.

Пример:

Однородная балка АВ прямоугольного сечения весом 400 Н имеет один конец А, который закреплен шарнирно, и опирается на точечную опору (рис. 1.23). Ко второму концу балки В подвешен груз весом 200 Н. Длина балки 4 м, точечная опора расположена на расстоянии ¾ длины балки от шарнирной опоры. Угол наклона балки к горизонту составляет α = 30º.

Определить реакции опор балки.

Сосредоточенные силы и распределенные нагрузки

Краткое условие задачи:

G = 400 H ;

Q = 200 H ;

AB = 4 м;

AO = 3/4 AB = 3 м ;

α = 30º.

RA = ?

Rо = ?

Решение.

Составляем расчетно–силовую схему задачи. Приложим к оси балки заданные активные силы: силу тяжести Сосредоточенные силы и распределенные нагрузки самой балки и силу притяжения Сосредоточенные силы и распределенные нагрузки груза. Сила притяжения балки Сосредоточенные силы и распределенные нагрузки приложена посередине балки в точке C (поскольку балка однородна) и направлена ​​вертикально вниз. Сила притяжения груза Сосредоточенные силы и распределенные нагрузки приложена к концу балки В и направлена ​​вертикально вниз.

Далее условно освобождаем балку от связей и заменяем их соответствующими реакциями связей. В точке A размещена неподвижная шарнирная опора, она имеет
две составляющие реакции Сосредоточенные силы и распределенные нагрузкиA и Сосредоточенные силы и распределенные нагрузкиA, которые расположены вдоль соответствующих осей
координат. В точке O — точечная опора, которая имеет одну реакцию Сосредоточенные силы и распределенные нагрузкиo, что направлена ​​перпендикулярно к балке.

Таким образом, балка находится в равновесии под действием плоской системы произвольных сил. Для решения этой задачи используем условия равновесия (1.54),

Сосредоточенные силы и распределенные нагрузки

Поскольку оси координат x и y заданные по условию задачи, то составим соответствующие уравнения равновесия

Сосредоточенные силы и распределенные нагрузки

Если подставить значения известных величин в эти уравнения равновесия, то получим

Сосредоточенные силы и распределенные нагрузки

С третьего уравнения вычислим реакцию Ro:

RСосредоточенные силы и распределенные нагрузки  = 461,86 Н,

и подставим ее значение в первые два уравнения. Будем иметь

ХА Сосредоточенные силы и распределенные нагрузки  = R= 230,93 Н;

YА = 400 + 200 – 0,866 · 461,86 = 160,04 Н.

Поскольку определены две составляющие реакции, приложенные в точке A, — ХА  и YА, то геометрическим добавлением можно вычислить модуль полной реакции RA. А именно:

Сосредоточенные силы и распределенные нагрузки

Таким образом определении все искомые реакции.

Ответ: R= 280,97 Н;

Rо = 461,86 Н.

Пример.

Определить реакции опоры однородной балки АВ прямоугольного сечения, один конец которого A жестко закреплен в стене и находящийся под действием сосредоточенной силы P = 4,0 kH, пары сил с моментом m = 2,0 kH · м и равномерно распределенной нагрузки интенсивностью q = 1,5 Сосредоточенные силы и распределенные нагрузки.  Длина балки АВ — 5 м, равномерно распределенная
нагрузка действует на участке 3 м от точки A. Угол наклона сосредоточенной силы Сосредоточенные силы и распределенные нагрузки к горизонту составляет α = 30º, оси x и y показаны на рис. 1.24.

Краткое условие задачи:

P = 4,0 kH;

m = 2,0 kH · м;

q = 1,5 Сосредоточенные силы и распределенные нагрузки;

АВ = 5 м;

= 3 м;

α = 30º

R= ?

М= ?

Решение.

Составляем расчетно-силовую схему. Покажем все силы, приложенные к балке АВ. Прежде всего, это заданные активные силы — сила Сосредоточенные силы и распределенные нагрузки, приложена к концу балки В и направлена под углом α к горизонту. Равномерно распределенную нагрузка заменяем сосредоточенной силой Сосредоточенные силы и распределенные нагрузки, которая равна

Сосредоточенные силы и распределенные нагрузки = q · AC =1,5 · 3 = 4,5 kH .

Сосредоточенные силы и распределенные нагрузки

Сила Сосредоточенные силы и распределенные нагрузки приложена посредине участка AC и направлена ​​в ту же сторону, что и сама нагрузка, то есть вертикально вниз. Покажем на силовой схеме пару сил, которая определяется моментом m.

Далее условно освобождаем балку от вязи и заменяем ее соответствующими реакциями вязи. В точке A — жесткое закрепление балки в стене, а потому оно имеет две составляющие реакции: Сосредоточенные силы и распределенные нагрузкиA, Сосредоточенные силы и распределенные нагрузкиA, которые расположены вдоль соответствующих осей
координат, и реактивный момент MA. Направление этого неизвестного момента
показываем на силовой схеме произвольно, например, — против направления стрелки
часов. Если же при окончательном определении момента MA получим отрицательный знак, то получим, что действительное направление момента — противоположно. Покажем на силовой схеме линейные и угловые размеры. Оси координат показаны на схеме.

Как видно из построенной расчетно–силовой схемы, балка находится под действием плоской системы произвольных сил. Используем условия равновесия (1.54). А именно            = 0.

Составим соответствующие уравнения равновесия

Сосредоточенные силы и распределенные нагрузки

Если подставить значения известных величин в эти уравнения равновесия, то получаем

Сосредоточенные силы и распределенные нагрузки

Из первого уравнения вычислим XA:

X= 4,0Сосредоточенные силы и распределенные нагрузки = Сосредоточенные силы и распределенные нагрузки = 3,46 kH.

Из второго уравнения вычислим YA:

Y= 4,5 + 4,0 · Сосредоточенные силы и распределенные нагрузки = 6,50 kH.

С третьего уравнения вычислим MA:

M= 2,0 + 4,5 Сосредоточенные силы и распределенные нагрузки + 4,0 Сосредоточенные силы и распределенные нагрузки · 5 = 2,0 + 6,75 + 10,0 = 18,75 kH.

Поскольку составляющие реакций XA и YA, приложенных в точке A, вычислены, то можно найти модуль RA полной реакции в точке A. Будем иметь

Сосредоточенные силы и распределенные нагрузки

Таким образом, определены все искомые реакции.

Ответ: R= 4,30 kH; M= 18,75 kH.

Равновесие системы тел

Системой тел называется совокупность нескольких тел, или которые опираются друг на друга, или соединены шарнирами, которые дают возможность относительного движения тел.

При решении задач на систему тел различают силы внешние и внутренние.

Внешние силы — это силы взаимодействия тел данной системы с другими телами, которые не входят в состав системы.

Внутренние силы — это силы взаимодействия между отдельными телами, которые входят в состав данной системы. Внутренние силы существуют попарно, как действие и
противодействие.

Статически обозначенные и статически неопределенные задачи

Задача является статически обозначенной, если для нее можно составить такое
количество уравнений равновесия материальной системы, не меньше, чем число
неизвестных.

Задача, является статически неопределенной, если число уравнений равновесия
системы меньше, чем число неизвестных.

В теоретической механике рассматриваются только статически обозначенные
материальные системы.

Методика решения задач на равновесие системы тел

Равновесие системы тел можно рассматривать в целом под действием только
внешних сил. Но может так случиться, что количество уравнений равновесия будет
меньше, чем количество неизвестных. Тогда необходимо рассматривать равновесие
отдельных тел системы, условно разделяя ее обязательно по внутренним связям. Причем необходимо учитывать, что внутренние силы реакций входят попарно, как действие и противодействие.

Рассмотрим пример решения задач на равновесие системы тел.

Пример.

На трех-шарнирную арку А В С (рис. 1.25) действует вертикальная сила Р = 10 kH. Вес каждой части балки Q1 = Q2 = 6 kH. Определить реакции шарниров А, В, С арки, размеры которой данные на рисунке.

Решение.

Как видно из схемы, заданная система тел состоит из двух пиварок I и II, которые соединены шарниром в точке С. Составим расчетно–силовую схему, где покажем заданные активные силы Q1, Q2, Сосредоточенные силы и распределенные нагрузки и реакции связей: в точках A и B (неподвижные шарнирные опоры) — Сосредоточенные силы и распределенные нагрузкиA ,Сосредоточенные силы и распределенные нагрузкиA и Сосредоточенные силы и распределенные нагрузкиВ , Сосредоточенные силы и распределенные нагрузкиВ и в точке (шарнирное соединение) — Сосредоточенные силы и распределенные нагрузкиC , Сосредоточенные силы и распределенные нагрузки´C и Сосредоточенные силы и распределенные нагрузкиC , Сосредоточенные силы и распределенные нагрузки´С. Эти неизвестные реакции в точке С являются внутренними силами системы тел, а потому Сосредоточенные силы и распределенные нагрузкиCСосредоточенные силы и распределенные нагрузки´C  и Сосредоточенные силы и распределенные нагрузкиC = Сосредоточенные силы и распределенные нагрузки´С.

Покажем оси прямоугольной декартовой системы координат Axy.

Сосредоточенные силы и распределенные нагрузки

Условно разделяем систему тел на два отдельных тела по шарниру С. Действие отброшенной части заменяем двумя реакциями Сосредоточенные силы и распределенные нагрузкиC и Сосредоточенные силы и распределенные нагрузкиC, которые равны

Сосредоточенные силы и распределенные нагрузки

Теперь рассмотрим отдельно равновесие каждого тела, для чего составим две системы уравнений равновесия. Используем условия равновесия.

Для первого тела (левая половина арки):

Сосредоточенные силы и распределенные нагрузки = 0; ХА — ХС = 0,

   Сосредоточенные силы и распределенные нагрузки = 0; YA + YCQ1P = 0,

 Сосредоточенные силы и распределенные нагрузки = 0; ХС · 4 + YC · 5 — Q1 · 1 — P · 4 = 0.

Для второго тела (правая половина арки):

Сосредоточенные силы и распределенные нагрузки = 0; ХB — Х´С = 0,

   Сосредоточенные силы и распределенные нагрузки = 0; YB + CQ2P = 0,

Сосредоточенные силы и распределенные нагрузки = 0; Q2 · 1 — Х´С · 4 + · 5 = 0.

Как видно из полученных шести уравнений равновесия, в них содержатся шесть неизвестных: ХА, ХBХСYAYBYC .

Определим эти неизвестные величины. С третьего уравнения второй системы определим C . Перепишем это уравнение следующим образом:

5= 4Х´С — Q2,

откуда находим реакцию :

Сосредоточенные силы и распределенные нагрузки

Поскольку численно C = YC , а ХСХ´С, то подставив значения этих реакций в третье уравнение первой системы, получаем

Сосредоточенные силы и распределенные нагрузки

или

8ХС = Q1 + Q2 + 4P,

откуда

Сосредоточенные силы и распределенные нагрузки

Теперь есть возможность определить неизвестную реакцию . Подставив значение XC в третье уравнение второй системы, будем иметь

Сосредоточенные силы и распределенные нагрузки

Из первого уравнения первой системы имеем XA = XC = 6,5 kH. А с первого уравнения второй системы должны XB = – C = – 6,5 kH. Направление этой реакции противоположно показанному на силовой схеме. Из второго уравнения первой системы получаем

YA = Q1 + PYC = 6,0 + 10,0 – 4,0 = 12,0 kH.

Из второго уравнения второй системы вычислим последнюю неизвестную реакцию YB. Она будет равняться YB = C + Q2 = 4,0 + 6,0 = 10,0 kH.

Таким образом вычислено все искомые величины.

Ответ:

XA = 6,5 kH; YA = 12,0 kH; XB = — 6,5 kH; YB = 10,0 kH; XC = 6,5 kH; YC = 4,0 kH.

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Кинематика
  20. Кинематика твердого тела
  21. Движения твердого тела
  22. Динамика материальной точки
  23. Динамика механической системы
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации. 

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению. 

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Типы балок

Виды балок:

  1. Деревянные — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

  2. Металлические — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

Условие прочности при изгибе

На эти параметры влияют следующие факторы:

  • величина наружных нагрузок, их положение;

  • параметры, характер, нахождение поперечного сечения;

  • продольные величины;

  • материал;

  • число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты. 

Построение эпюр балки

Эпюра распределения величины нагрузки на объект:

215

Расчет на жесткость

Алгоритм исчисления:

221

В формуле обозначены:

  • M – max момент, возникающий в брусе;

  • Wn,min – момент сопротивления сечения (табличный показатель);

  • Ry – сопротивление на изгиб (расчётный показатель);

  • γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

  • рабочий план объекта;

  • определение характеристик балки, характер сечения;

  • определение max нагрузки, воздействующей на брус;

  • оценка точки max прогиба;

  • проверка прочности max изгибающего момента.

Расчет моментов инерции и сопротивления сечения

Алгоритм исчисления:

222

Где:

  • J – момент инерции сечения;

  • W – момент сопротивления.

Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.

Нахождение максимальной нагрузки и прогиба

Формула для вычисления:

223

Здесь обозначены:

  • q – нагрузка равномерно-распределенная;

  • E – гибкость (табличный показатель);

  • l – длина;

  • I – момент инерции сечения.

Нагрузки учитываются статические и периодические.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках. 

230

При применении соответствующих коэффициентов, придерживаются следующего:

  • балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;

  • балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;

  • нагрузка консольного типа;

  • воздействие комплексной нагрузки.

Пример расчет балки на прогиб

Рассмотрим задачу из курса сопромата.

Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм. 

Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.

231

Решение.

Чтобы узнать σ(К), τ(К), σmax, τmax
определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:

241

Из этого следует:

242

Определение прочности по нормальному напряжению:

243

Определение прочности по касательному напряжению:

244

Задача решена.

При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки. 

Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.

Привет! В этой статье предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции опор, чему учат еще в рамках дисциплины — «теоретическая механика». Но для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Так как этот урок для чайников, я многие моменты буду упрощать и рассказывать только самое основное, чтобы написанное здесь, было понятно даже самому неподготовленному студенту — заочнику.

В рамках статьи рассмотрим 4 примера: двухопорная балка, загруженная посередине пролёта сосредоточенной силой, такая же балка, но загруженная распределённой нагрузкой, консольная балка и плоская рама.

Что такое реакция опоры?

Чтобы лучше понять, что такое реакция опоры (опорная реакция), давай рассмотрим следующий пример — балку (стержень) лежащую на опорах:

Схема, демонстрирующая схему балки (стержня) и опоры

На балку давит нагрузка – сила, в свою очередь, балка давит на опоры. И чтобы балка лежала на опорах (никуда не проваливалась), опоры выполняют свою основную функцию — удерживают балку. А чтобы удерживать балку, опоры должны компенсировать тот вес, с которым балка давит на них. Соответственно, действие опор можно представить в виде некоторых сил, так называемых — реакций опор.

Возникшие реакции в опорах балки под нагрузкой

Для балки, и нагрузка, и реакции опор, будут являться внешними силами, которые нужно обязательно учитывать при расчёте балки. А чтобы учесть опорные реакции, сначала нужно научиться определять их, чем, собственно, и займёмся на этом уроке.

Виды связей и их реакции

Связи – это способы закрепления элементов конструкций. Опоры, которые я уже показывал ранее – это тоже связи.

 В этой статье будем рассматривать три вида связей: жёсткая заделка, шарнирно-подвижная и шарнирно-неподвижная опора.

Жёсткая заделка

Схема жёсткой заделки

Жёсткая заделка — это один из вариантов закрепления элементов конструкций. Этот тип связи препятствует любым перемещениям, тем самым для плоской задачи, может возникать три реакции: вертикальная (RA), горизонтальная (HA) и момент (MA).

Реакции жёсткой заделки

Шарнирно-подвижная и шарнирно-неподвижная опора

В этой статье будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Схема шарнирно-подвижной и шарнирно-неподвижной опоры

В шарнирно-неподвижной опоре возникает две реакции: вертикальная и горизонтальная. Так как опора препятствует перемещению в этих двух направлениях. В шарнирно-подвижной опоре возникает только вертикальная реакция.

Реакции в шарнирно-подвижной и шарнирно-неподвижной опоре

Однако, видов связей и их условных обозначений достаточно много, но в рамках этой статьи их все рассматривать не будем. Так как, изученные ранее виды связей, являются основными и практически всегда, при решении задач по сопромату, ты будешь сталкиваться именно с ними.

Что такое момент силы?

Также необходимо разобраться с понятием момент силы.

Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр.

Проиллюстрирую написанное:

Схема для нахождения момента силы
На изображении показано, как определить момент силы F, относительно точки O.

Правило знаков для моментов

Также для моментов, нужно задаться каким-то правилом знаков. Я в своих уроках буду придерживаться такого правила:

  • если сила относительно точки стремится повернуть ПРОТИВ часовой стрелки, то момент положительный;
  • если она стремится повернуть ПО часовой стрелке, то момент отрицательный.
Правило знаков для моментов

Всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнём с простейшей расчётной схемы балки.

Определение реакций для двухопорной балки

Возьмём балку, загруженную посередине сосредоточенной силой и опирающейся на шарнирно-неподвижную и шарнирно-подвижную опору:

Расчётная схема балки, загруженная распределённой нагрузкой

Введём систему координат: направим ось x вдоль балки, а ось y вертикально. Обозначим реакции в опорах как HA, RA и RB:

Указание координатных осей для схемы балки

Для тех, кто пришёл сюда, ещё будучи на этапе изучения теоретической механики, а я знаю, таких будет много, важно отметить, что в сопромате не принято указывать знаки векторов над силами.

В термехе же, в обязательном порядке, преподаватель от тебя настойчиво будет требовать указывать знак вектора над всеми силами, вот так:

Обозначение векторов

Условия равновесия системы

Чтобы найти все реакции, нужно составить и решить три уравнения — уравнения равновесия:

Условия равновесия

Данные уравнения являются условиями равновесия системы. А так как мы предполагаем, что опоры обеспечивают это состояние равновесия (удерживают балку). То составив и решив уравнения равновесия — найдём значения опорных реакций.

Первое уравнение называется уравнением проекций — суммой проекций всех сил на координатную ось, которая должна быть равна нулю. Два других уравнения называются уравнениями моментов — суммами моментов всех сил относительно точек, которые должны быть равны нулю.

Уравнения равновесия

Как видишь, чтобы научиться находить реакции опор, главное — научиться правильно составлять уравнения равновесия.

Расчётная схема для определения реакций

Уравнение проекций

Запишем первое уравнение — уравнение проекций для оси x.

В уравнении будут участвовать только те силы, которые параллельны оси x. Такая сила у нас только одна — HA. Так как HA направлена против положительного направления оси x, в уравнение её нужно записать с минусом:

Тогда HA будет равна:

Поздравляю, первая реакция найдена!

Уравнения моментов

А теперь самое интересное…запишем уравнение моментов, относительно точки A, с учётом ранее рассмотренного правила знаков для моментов.

Так как сила F поворачивает ПО часовой стрелке, записываем её со знаком «МИНУС» и умножаем на плечо.

Так как сила RB поворачивает ПРОТИВ часовой стрелки, пишем её со знаком «ПЛЮС» и умножаем на плечо. И, наконец, всё это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB:

Вторая реакция найдена! Третья реакция находится аналогично, но только теперь уравнение моментов записываем относительно другой точки:

Проверка правильности найденных опорных реакций

Чем хороши задачи на определение реакций, так это тем, что правильность расчёта реакций легко проверить. Для этого достаточно составить дополнительное уравнение равновесия, подставить все численные значения и если сумма проекций сил или сумма моментов будет равна нулю, то и реакции, значит, найдены — верно, а если нет, то ищем ошибку.

Составим дополнительное уравнение проекций для оси y и подставим все численные значения:

Как видишь, реакции опор найдены правильно.

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:

Схема балки, загруженная распределённой нагрузкой

Перед тем как посчитать реакции опор, распределенную нагрузку нужно «свернуть» до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Сворачивание распределённой нагрузки до сосредоточенной силы

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Обозначение реакций в опорах и координатных осей
Условия равновесия для балки

Расчёт реакций для консольной балки

Давай рассмотрим теперь пример с жёсткой заделкой – консольную балку. Заодно посмотрим, как учесть силу, приложенную под углом (α = 30°).

Консольная балка, загруженная распределённой нагрузкой и силой под определённым углом

Силу, направленную под определённым углом, нужно разложить на две составляющие – горизонтальную и вертикальную. А их значения найти из силового треугольника:

Раскладывание сил на составляющие и силовой треугольник

Покажем реакции в заделке и выполним расчёт:

Обозначение реакций, сил и координатных осей для консольной балки

Для этой задачи выгоднее использовать другую форму условий равновесия:

А выгодна она тем, что из каждого записанного уравнения будем сразу находить реакцию:

Не пугайся отрицательного значения реакции! Это значит, что при указании реакции, мы не угадали с её направлением. Расчёт же показал, что MA, направлена не по часовой стрелке, а против.

В теоретической механике, когда реакции получают с «минусом» обычно не заморачиваются и не меняют их направление на схеме, так и оставляют в ответе отрицательное значение, оговаривая, что да реакция найдена, но с учётом знака, на самом деле направлена в другую сторону. Потому что найденные реакции в задачах на статику, являются конечной точкой расчёта.

У нас же, в сопромате после нахождения опорных реакций, всё только начинается. Найдя реакции, мы всего лишь находим ВСЕ силы действующие на элемент конструкции, а дальше по сценарию стоит задача определить внутренние усилия, возникающие в этом элементе, расчёты на прочность и т. д. Поэтому на схеме, обязательно следует указывать истинное направление реакций. Чтобы потом, когда будут рассчитываться внутренние усилия ничего не напутать со знаками.

Если получили отрицательное значение, нужно отразить это на схеме:

Изменение направления реактивного момента

С учётом изменений на схеме реакция будет равна:

Сделаем проверку, составив уравнение равновесие, ещё не использованное – сумму моментов относительно, скажем, точки B, которая, при правильном расчёте, конечно, должна быть равна нулю:

Если не менять направление реакции, то в проверочном уравнении нужно учесть этот «минус»:

Можешь посмотреть еще один пример, с похожей схемой, для закрепления материала, так сказать.

Реакции опор для плоской рамы

Теперь предлагаю выполнить расчёт плоской рамы. Для примера возьмём расчётную схему, загруженную всевозможными видами нагрузок:

Расчётная схема плоской рамы

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим систему координат x и y.
Обозначение реакций, сворачивание распределённой нагрузки и введение осей координат

Выполняем расчёт реакций опор:

Меняем направление реакции RA:

Изменение направления опорной реакции

В итоге получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумма будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

Несмотря на то что заводы железобетонных изделий производят большое количество готовой продукции, все же иногда приходится делать железобетонную балку перекрытия или железобетонную перемычку самому. А при строительстве дома с использованием несъемной опалубки без этого просто не обойтись.

Практически все видели строителей-монтажников, засовывающих в опалубку какие-то железяки, и почти все знают, что это — арматура, обеспечивающая прочность конструкции, вот только определять количество и диаметр арматуры или сечение горячекатаных профилей, закладываемых в железобетонные конструкции в качестве арматуры, хорошо умеют только инженеры-технологи. Железобетонные конструкции, хотя и применяются вот уже больше сотни лет, но по-прежнему остаются загадкой для большинства людей, точнее, не сами конструкции, а расчет железобетонных конструкций. Попробуем приподнять завесу таинственности над этой темой примером расчета железобетонной балки.

Расчет любой строительной конструкции вообще и железобетонной балки в частности состоит из нескольких этапов. Сначала определяются геометрические размеры балки.

Этап 1. Определение длины балки.

Рассчитать реальную длину балки проще всего. Главное, что мы заранее знаем пролет, который должна перекрыть балка, а это уже большое дело. Пролет — это расстояние между несущими стенами для балки перекрытия или ширина проема в стене для перемычки. Пролет — это расчетная длина балки, реальная длина балки будет конечно же больше. Так как балка висеть в воздухе не может (я думаю над этим, но пока решение не найдено), значит, длина балки должна быть больше пролета на ширину опирания на стены. И хотя все дальнейшие расчеты производятся по расчетной, а не по реальной длине балки, определить реальную длину балки все-таки нужно. Ширина опор зависит от прочности материала конструкции под балкой и от длины балки, чем прочнее материал конструкции под балкой и чем меньше пролет, тем меньше может быть ширина опоры. Теоретически рассчитать ширину опоры, зная материал конструкции под опорой можно точно также, как и саму балку, но обычно никто этого не делает, если есть возможность опереть балку на кирпичные, каменные и бетонные (железобетонные) стены на 150-300 мм при пролетах 2-10 метров. Для стен из пустотелого кирпича и шлакоблока может потребоваться расчет ширины опоры.

Для примера примем значение расчетной длины балки = 4 м.

Этап 2. Предварительное определение ширины и высоты балки и класса (марки) бетона.

Эти параметры нам точно не известны, но их следует задать, чтобы было, что считать.

Если это будет перемычка, то логично из конструктивных соображений сделать перемычку шириной, приблизительно равной ширине стены. Для балок перекрытия ширина может быть какой угодно, но обычно принимается не менее 10 см и кратной 5 см (для простоты расчетов). Высота балки принимается из конструктивных или эстетических соображений. Например, для кирпичной кладки логично сделать перемычку высотой в 1 или 2 высоты кирпича, для поризованного блока — в 1 высоту блока и так далее. Если балки перекрытия будут видны после окончания строительства, то также логично сделать высоту балки пропорциональной ширине и длине балки, а также расстоянию между балками. Если балки перекрытия будут бетонироваться одновременно с плитой перекрытия, то полная высота балки при расчетах будет составлять: видимая высота балки + высота монолитной плиты перекрытия.

Для примера примем значения ширины = 10 см, высоты = 20 см, класс бетона В25.

Этап 3. Определение опор.

С точки зрения сопромата, будет ли это перемычка над дверным или оконным проемом или балка перекрытия, значения не имеет. А вот то как именно балка будет опираться на стены имеет большое значение. С точки зрения строительной физики любую реальную опору можно рассматривать или как шарнирную опору, вокруг которой балка может условно свободно вращаться или как жесткую опору. Другими словами жесткая опора называется защемлением на концах балки. Почему столько внимания уделяется опорам балки, станет понятно чуть ниже.

1. Балка на двух шарнирных опорах.

Если железобетонная балка устанавливается в проектное положение после изготовления, ширина опирания балки на стены меньше 200 мм, при этом соотношение длины балки к ширине опирания больше 15/1 и в конструкции балки не предусмотрены закладные детали для жесткого соединения с другими элементами конструкции, то такая железобетонная балка однозначно должна рассматриваться как балка на шарнирных опорах. Для такой балки принято следующее условное обозначение:

Балка на 2 шарнирных опорах
Балка на 2 шарнирных опорах

2. Балка с жестким защемлением на концах.

Если железобетонная балка изготавливается непосредственно в месте установки, то такую балку можно рассматривать, как защемленную на концах только в том случае, если и балка и стены, на которые балка опирается, бетонируются одновременно или при бетонировании балки предусмотрены закладные детали для жесткого соединения с другими элементами конструкции. Во всех остальных случаях балка рассматривается, как лежащая на двух шарнирных опорах. Для такой балки принято следующее условное обозначение:

Защемленная балка
Балка защемленная на концах

3. Многопролетная балка.

Иногда возникает необходимость рассчитать железобетонную балку перекрытия, которая будет перекрывать сразу две или даже три комнаты, монолитное железобетонное перекрытие по нескольким балкам перекрытия или перемычку над несколькими смежными проемами в стене. В таких случаях балка рассматривается как многопролетная, если опоры шарнирные. При жестких опорах количество пролетов значения не имеет, так как опоры жесткие, то каждая часть балки может рассматриваться и рассчитываться как отдельная балка.

4. Консольная балка.

Балка, один или два конца которой не имеют опор, а опоры находятся на некотором расстоянии от концов балки, называется консольной. Например плиту перекрытия над фундаментом, выступающую за пределы фундамента на несколько сантиметров, можно рассматривать как консольную балку, кроме того перемычку, опорные участки которой больше l/5 также можно рассматривать как консольную и так далее.

Этап 4. Определение нагрузки на балку.

Нагрузки на балку могут быть самыми разнообразными. С точки зрения строительной физики все, что неподвижно лежит на балке, прибито, приклеено или подвешено на балку — это статическая нагрузка. Все что ходит, ползает, бегает, ездит и даже падает на балку — это все динамические нагрузки. Нагрузка может быть сосредоточенной, например, человека, стоящего на балке, или колеса автомобиля, опирающиеся на балку длиной 3 и более метров, можно условно рассматривать как сосредоточенную нагрузку. Сосредоточенная нагрузка измеряется в Ньютонах (по старому, в килограмм-силах (кгс)).

А вот кирпич, керамоблок или любой другой материал лежащий на перемычке, а также плиты перекрытия, снег, дождь и даже ветер, землетрясение, цунами и много чего еще можно рассматривать как распределенные нагрузки, действующие на перемычку или балку перекрытия. Кроме того распределенная нагрузка может быть равномерно распределенной, равномерно и неравномерно изменяющейся по длине и т.д. Распределенная нагрузка измеряется в Н(кгс/м2), но при расчетах используется значение распределенной нагрузки на погонный метр, так как при построении эпюр изгибающих моментов ни высота ни ширина балки не принимаются во внимание, а принимается во внимание только длина балки. Перевести квадратные метры в погонные не сложно. Если рассчитывается балка перекрытия, то распределенная нагрузка вполне логично умножается на расстояние между осями балок перекрытия. Если определяется нагрузка на перемычку, то можно плотность материала конструкции, лежащей на перемычке, умножить на ширину и на высоту конструкции.

Чем более точно мы посчитаем нагрузки, действующие на балку, тем более точным будет наш расчет и тем надежнее будет конструкция. И если со статическими нагрузками все более-менее просто, то динамические нагрузки потому и динамические что не стоят на месте и пытаются усложнить нам и без того не простой расчет.

С одной стороны конструкцию следует рассчитывать на максимально неблагоприятное сочетание нагрузок, с другой стороны теория вероятности говорит о том, что вероятность такого сочетания нагрузок крайне мала и рассчитывать конструкцию на максимально неблагоприятное сочетание нагрузок, значит неэффективно тратить строительные материалы и людские ресурсы.

Дом, построенный по всем правилам и способный выдержать практически все, включая ядерный удар, никто кроме свихнувшегося миллионера не купит, слишком дорого. Поэтому при расчете конструкций динамические нагрузки используются с различными поправочными коэффициентами, учитывающими вероятность сочетания нагрузок, но как показывает практика, учесть все невозможно. Здания, разрушающиеся во время землетрясений, ураганов, цунами и даже обильных снегопадов — яркое тому подтверждение. Чтобы хоть как-то облегчить жизнь не только инженерам-конструкторам, но и простым людям, принято рассчитывать междуэтажные перекрытия на распределенную нагрузку 400 кг/м2 (без учета веса конструкции перекрытия). Данная распределенная нагрузка учитывает практически все возможные сочетания нагрузок на перекрытия в жилых домах, тем не менее никто не запрещает рассчитывать конструкции на бoльшие нагрузки, например если на железобетонные балки будет укладываться какое-то очень тяжелое перекрытие, например железобетонные пустотные плиты добавят еще 300-330 кг/м2, мы же остановимся на значении 400 кг/м2. Конечно, можно было бы просто сказать, что мы будем рассчитывать балку на распределенную нагрузку 400 кг/м.п при шаге между балками 1 метр, но хотелось бы, чтобы Вы имели хотя бы приблизительное представление, откуда взялась эта цифра.

Этап 5. Определение максимального изгибающего момента, действующего на поперечное сечение балки.

Тут все зависит от того, какие на балку действуют нагрузки, какие у балки опоры и сколько пролетов, некоторые типы балок, рассмотренные на этапе 2, являются статически неопределимыми, и хотя все можно рассчитать самому, но не будем углубляться в теорию, проще воспользоваться готовыми формулами для наиболее характерных случаев.

Пример расчета железобетонной балки на шарнирных опорах, на которую действует распределенная нагрузка.

Максимальный изгибающий момент для балки лежащей на двух шарнирных опорах, а в нашем случае балки перекрытия, опирающейся на стены, на которую действует распределенная нагрузка, будет посредине балки:

Мmax = (q · l2) / 8; (5.1)

Для пролета 4 м Мmax = (400 · 42) / 8 = 800 кг·м

Этап 6. Расчетные предпосылки:

Расчет по прочности элементов железобетонных конструкций производится для нормальных и наклонных к продольной оси сечений в наиболее напряженных местах (для этого мы и определяли значение момента).

Железобетон — это композитный материал, прочностные свойства которого зависят от множества факторов, которые точно учесть при расчете достаточно сложно. Кроме того. бетон хорошо работает на сжатие из-за относительно высоких прочностных характеристик по сжатию, а арматура хорошо работает на растяжение, а при сжатии возможно выпучивание арматуры. Поэтому конструирование железобетонной конструкции сводится к определению сжатых и растянутых зон.

В растянутых зонах устанавливается арматура. При этом высота сжатой и растянутой зоны заранее неизвестна и потому применять обычные методы подбора сечения, как для деревянной или металлической балки, не получится.

На основе накопленного опыта по расчету и работе железобетонных конструкций разработано несколько методик расчета. Далее приводится одна их них, основанная на следующих расчетных предпосылках:

— сопротивление бетона растяжению принимается равным нулю;
— сопротивление бетона сжатию принимается равномерно распределенным, равным Rпр (Rb по новому СП);
— максимальные растягивающие напряжения в арматуре равны расчетному сопротивлению растяжению Rа (Rs по новому СП);
— сжимающие напряжения в напрягаемой и ненапрягаемой арматуре принимаются не более расчетного сопротивления сжатию Rа (Rsc по новому СНиПу);
— рекомендуется применять элементы таких поперечных сечений, чтобы вычисленная по расчету относительная высота сжатой зоны бетона ξ=x/h0 не превышала ее граничного значения ξR, при котором предельное состояние элемента наступает, когда напряжения в растянутой зоне достигают расчетного сопротивления Rа.

Граничное условие имеет вид

x ≤ ξRho или ξ ≤ ξR (6.1)

Величина ξ определяется по формуле:

Формула расчета коэффициента

где

ξo — характеристика сжатой зоны бетона, определяемая для тяжелого бетона и бетона на пористых заполнителях по формуле:

ξo = a — 0,008Rпр; (6.3)

в которой Rпр принимается в МПа; коэффициент а = 0,85 для тяжелого бетона и а = 0,8 для бетона на пористых заполнителях.

Значение напряжения σА в арматуре принимается при 0,002ЕА = 400 МПа равным для арматуры классов:

A-I, A-II, A-III, B-I и Вр-1: (Ra — σo);

A-IV, Ат-IV, A-V, At-V, At-VI, B-II, Bp-II и K-7: (Ra + 400 — σ0),

где

Ra — расчетное сопротивление арматуры растяжению с учетом коэффициентов условий работы арматуры ma, σo — значение предварительного напряжения арматуры с учетом потерь при коэффициенте точности натяжения mт < 1.

Если при расчете изгибаемых элементов учитывается коэффициент условий работы бетона mб1 = 0,85, то в формулу (6.2) вместо значения 400 подставляется 500.

Дальнейший расчет мы будем производить для балки с обычной (не преднапряженной) арматурой, при этом рассчитывать сечение арматуры мы будем только для нижней части балки, в которой действуют растягивающие напряжения, это вовсе не означает, что в верхней части балки арматуры (устанавливаемой по технологическим соображениям) не будет, но позволит значительно упростить расчет.

расчет для балки с обычной арматурой

При расчете элементов прямоугольного сечения с одиночной не преднапряжённой арматурой (когда расчетная арматура устанавливается только в области растяжения) можно пользоваться вспомогательной таблицей 1 и формулами:

M = Aobh2oRпр (6.4)

Fa = M/ηhoRa (6.5)

где

Аo =x/ho(1 — x/2ho) = ξ(1 -0,5ξ) (6.6)

η = (1 — x/2ho) = 1 — 0,5ξ (6.7)

Коэффициент армирования μ и процент армирования μ·100 (%) определяется по формулам:

μ = Fa/bho, или μ = ξRпр/Ra (6.8)

μ% = 100μ (6.9)

Основываясь на опыте проектирования оптимальных по стоимости железобетонных изделий рекомендуется принимать:

μ% = 1÷2%, ; ξ = 0,3÷0,4 — для балок (6.10)

μ% = 0,3÷0,6%, ξ = 0,1÷0,15 — для плит перекрытия (6.11)

Таблица 1. Данные для расчета изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой (согласно «Пособия по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)»)

Этап 7. Расчет сечения арматуры.

Размеры поперечного сечения железобетонной балки и положение арматуры мы можем задавать сами, исходя из технологических требований или других соображений. Например, мы решили, что балка будет иметь высоту h = 20 см и ширину b = 10 см. Расстояние а центра поперечного сечения арматуры от низа балки обычно принимается в пределах 2-3 см.

Дальнейший расчет мы будем производить при а = 2 см. Расчетное сопротивление растяжению для арматуры класса А-III согласно таблице 5.8 (СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры):

Ra = 3600 кгс/см2 (355 МПа). Сейчас принято использовать новые обозначения для классов арматуры. Расчетное сопротивление сжатию для бетона класса В25 согласно таблице 4 Rпр (Rb) = 148 кгс/см2 (14,5 МПа, впрочем для расчетов можно использовать и приближенное значение 145 кгс/см2, это даст небольшой запас по прочности около 2%, зато не требует точного перевода МПа в кгс/см2). Теперь у нас есть все данные для определения коэффициента Аo. Преобразовав формулу (6.4) мы получим:

Аo = M/bh2oRпр = 800/(0,1·0,182·1480000) = 0,1668

Теперь по вспомогательной таблице 1 мы можем найти η = 0,907 и ξ = 0,187. Полученное значение ξ меньше рекомендуемого для балок (согласно формулы 6.10). Чтобы уменьшить стоимость балки мы можем уменьшить и ширину и высоту балки так, чтобы полученное значение ξ было в рекомендуемых пределах или уменьшить класс бетона. Для начала уменьшим высоту балки с 20 до 15 см. Тогда:

Аo = M/bh2oRпр = 800/(0,1·0,132·1480000) = 0,3264

по таблице 1 η = 0,795 и ξ = 0,41

Тогда согласно формуле (6.5) требуемая площадь сечения арматуры:

Fa = M/ηhoRa = 800/(0,795·0,13·36000000) = 0,0002152 м2 или 2,152 см2.

Таким образом для армирования нашей балки достаточно 2 стержней диаметром 12 мм. Площадь сечения арматуры составит 2,26 см2. Подбор арматуры удобно производить по таблице 2 (см. ниже).

Коэффициент армирования нашей балки согласно формулам (6.8) и (6.9) составит:

μ% = 100·0.41·148/3600 = 1,65 %

Такой процент находится в рекомендуемых пределах. Осталось проверить соблюдение граничных условий согласно формул (6.1-6.3):

ξo = 0,85 — 0,008·14,5 = 0,734

ξR = 0,734/(1 + 365/400(1 + 0,734/1,1)) = 0,2911

Граничное условие нами не соблюдено, поэтому нужно увеличить высоту балки, чтобы уменьшить относительную высоту сжатой зоны бетона. При h = 17,5 см:

Аo = M/bh2oRпр = 800/(0,1·0,1552·1450000) = 0,23

по таблице 1 η = 0,867 и ξ = 0,266

Тогда согласно формуле (6.5) требуемая площадь сечения арматуры:

Fa = M/ηhoRa = 800/(0,867·0,155·36000000) = 0,0001653 м2 или 1,653 см2.

для армирования нашей балки придется использовать те же 2 стержня диаметром 12 мм. Так как площадь сечения 2 стержней диаметром 10 мм составляет 1,57 см2.

Коэффициент армирования нашей балки согласно формулам (6.8) и (6.9) составит:

μ% = 100·0,266·145/3600 = 1,071 %

Такой процент находится в рекомендуемых пределах. Значение ξ = 0,266 меньше; ξR = 0,2911. Таким образом все необходимые и рекомендуемые условия по проектированию железобетонных элементов нами соблюдены.

Таблица 2. Площади поперечных сечений и масса арматурных стержней.

Этап 8. Проверка прочности по касательным напряжениям.

Так как арматуру в верхнем слое и поперечное армирование балки (хомуты или вертикальные стержни) мы не предусматривали, то следует проверить прочность балки по касательным напряжениям, исходя из следующих условий:

Qmax ≤ 2,5Rbtbho (8.1)

где

Qmax — максимальное значение поперечной силы (определяется по эпюре поперечных сил). При нашей расчетной схеме Qmax = ql/2 = 400·4/2 = 800 кг;

Rbt — расчетное сопротивление бетона растяжению, для класса бетона B25 Rbt = 10,7 кгс/см2 (определяется по той же таблице 4);

таким образом

800 кг < 2,5·10,7·10·15,5 = 4146,25 кг

Условие прочности по касательным напряжениям нами выполняется и в этом случае расчета по сечениям, наклонным к продольной оси, не требуется. Однако это вовсе не означает, что поперечная арматура совсем не нужна. Дело в том, что мы рассчитывали балку на равномерно распределенную нагрузку, в действительности же нагрузка далеко не всегда может рассматриваться как равномерно распределенная, например, при укладке деревянных лаг с шагом 0,5-1 м по ж/б балкам, нагрузку более правильно рассматривать как несколько сосредоточенных. И даже при установке тяжеленного шкафа или, например, бильярдного стола на монолитную плиту перекрытия часть нагрузок будет явно сосредоточенными. В таких случаях и значение момента может быть несколько больше, но самое главное, возникают значительные местные напряжения. Поперечная арматура перераспределяет внутренние напряжения, а потому использование поперечной арматуры необходимо в балках, для которых все возможные нагрузки и их сочетания предусмотреть не возможно.

Пример расчета железобетонной перемычки, на действие равномерно распределенной нагрузки.

Ну и еще один пример для закрепления пройденного материала: нужно рассчитать перемычку пролетом 3 м для внутренней стены толщиной 40 см, на которую с двух сторон опираются стандартные пустотные плиты перекрытия из железобетона длиной 6 м, собственный вес плиты составляет 300-330 кг/м2. Итого суммарная расчетная нагрузка составит около 700 кг/м2, а расчетная нагрузка на погонный метр составит
700·6 = 4200 кг/м.п.

Максимальный изгибающий момент для такой балки составит

4200·32/8 = 4725 кгм.

Принимаем ширину перемычки 40 см, исходя из технологических соображений. Высоту перемычки первоначально принимаем 20 см, класс бетона и класс арматуры такие же, как и в предыдущем примере, тогда:

Аo = M/bh2oRпр = 4725/(0,4·0,182·1450000) = 0,251

По вспомогательной таблице 1 находим η = 0,853 и ξ = 0,293 (так как мы не изменяли класс бетона и арматуры то условие ξ ≤ ξR (6.1) соблюдено).

Тогда согласно формуле (6.5) требуемая площадь сечения арматуры:

Fa = M/ηh0Ra = 4725/(0,853·0,18·36000000) = 0,000854 м2 или 8,54 см2.

Для армирования перемычки можно использовать 4 стержня диаметром 18 мм. Площадь сечения арматуры составит 10,17 см2.

Коэффициент армирования нашей балки согласно формулам (6.8) и (6.9) составит:

μ% = 100·0.293·145/3600 = 1,18 %

Рекомендуемая СНиП 2.03.01-84(1996) толщина защитного слоя должна составлять не менее толщины стержня арматуры и не менее 15 мм при высоте балки до 250 мм. Это условие у нас не соблюдено, так как при а = 2 см защитный слой составит 11 мм. Чтобы соблюсти условие, необходимо поднять арматуру, из технологических соображений примем а = 3 см. Чтобы не производить полный перерасчет лучше просто увеличить высоту балки на 1 см. Таким образом высота балки составит 21 см.

Конечно, любую конструкцию не мешает проверить на прогиб, мало ли чего. И хотя железобетонные конструкции подчиняются тем же законам физики как и конструкции из любых других материалов, все же определение прогиба для железобетонной конструкции имеет свои особенности.

Для расчета балок может помочь онлайн калькулятор, которым очень легко пользоваться.


Понравилась статья? Поделить с друзьями:
  • Как найти объем налитой жидкости формула
  • Как найти угловой коэффициент этой линейной функции
  • Как найти название духов по фото
  • Как правильно составить долговую расписку при дтп
  • Red dead redemption как найти лошадь